Identification of the factors that lead to dispersal and inbreeding

by

Ronald Michael Nelson

Submitted in partial fulfilment of the requirements for the degree PhD Genetics
In the Faculty of Natural and Agricultural Science
University of Pretoria
Pretoria
August 2009
Summary

Individual-based simulation modelling is an excellent method for testing hypotheses, while including realistic and stochastic population parameters. This thesis considers the evolution of dispersal or inbreeding through individual-based simulation modelling.

The occurrence of exclusive inbreeding and exclusive outbreeding is found in a number of organisms and are referred to as mixed mating. Mixed mating is suggested to be in response to low levels of inbreeding depression as well as simultaneous inbreeding- and outbreeding depression while intermediately related mating partners are not available. The results of this thesis show that stable mixed mating strategies evolve in the presence of both inbreeding and outbreeding depression, as well as, under conditions where low levels of inbreeding depression are present. Also, inclusive fitness allows higher levels of inbreeding in genetic systems where the mating partners are more related to each other.

Dispersal evidently evolves in response to inbreeding depression. A number of other factors, such as local mate competition and the cost of dispersal also influence the rate of dispersal. In addition to these factors, it is shown in this thesis that male dispersal evolves when there is variation in patch sex ratios. Simulation data also supports parent-offspring conflict models, as males have reduced dispersal rates when they, rather than their parents, determine the dispersal rate.

Population structure is affected by dispersal rates. Using individual-based simulation modelling and various sampling strategies, reveals that few molecular markers, for a few individuals, are sufficient to accurately detect population subdivision, especially when the sub-populations are large. It is, however, indicated that planning prior to sampling are important for proper assessment of population structure.

Lastly, molecular data from the pollinating fig wasp *Platyscapa awekei* reveals that this species suffers from low levels of inbreeding depression. However, when this data are simulated, stable mixed mating did not evolve although it is observed in *P. awekei*. Sex ratio variation, high local mate competitions and male only broods are therefore suggested to drive male dispersal. It is consequently advantageous to use various techniques to unravel the evolution of a trait and gain insight into the system.
To: My Grandfather
Acknowledgements

I thank my supervisor, Jaco Greeff, for his support during my research, allowing me the freedom to choose my topics of research, and subsequently to wander into the realm of individual-based simulation modelling. Many hours were spent discussing various aspects of evolution, biology and statistics and I learned a great deal from him and it has been a privilege to work together.

I thank my family for all the love and encouragement. To my parents, many thanks for the support, both financial and otherwise, provided over the years. To my sibling, Cindy, thanks for all the visits in the lab and often participating in various discussions on evolution and related matters.

I am very grateful to everyone who read, commented and pointed to errors in the manuscripts: Chapter 2 – Jaco Greeff, Carina Schlebusch, Marié Warren and two anonymous reviewers; Chapter 3 – Jaco Greeff, Carina Schlebusch and Marié Warren; Chapter 4 – Jaco Greeff, Carina Schlebusch, Marié Warren and Pam de Waal and Chapter 5 – Jaco Greeff, Carina Schlebusch and Marié Warren. A special thanks to Marié Warren, who patiently corrected my English throughout the thesis.

To the Department of Genetics at the University of Pretoria and my fellow lab members, past and present Annie, Aret, Christoff, David, Duncan, Heike, Joscha, Marié, Mel, Motoaki, Okkie, Pam, Soné, Vinet, and Zee, many thanks for making the work environment a fun place to be and your companionship during this study.

I am grateful to the National Botanical Gardens of South Africa that allowed me to collect figs and fig wasps on their premises. I also extend my appreciation to the University of Pretoria and the National Research Foundation for their financial support during this study.

Lastly, I owe a massive debt of gratitude to my wife, Carina. I am thankful for her constant support of my research while doing her own PhD. Her love, encouragement and understanding made life a pleasure during this study.
Preface

Each chapter in this thesis, except for the introduction and conclusion, is written as a journal article and is either submitted or in preparation for submission and as such includes its own introduction, and discussion section. In chapters 2 and 3 the results and discussion sections are combined respectively as a discussion naturally follows a description of the generated data.

Jaco Greeff, my supervisor, is included as co-author for the submitted manuscripts for chapters 2, 3 and 4. The reasons for this are twofold. First, the models were developed with suggestions from him, although the underlying ideas as well as the simulation models themselves are my own. Secondly, all of the financing and facilities required to complete these studies were provided through funding secured by him.

In this thesis I extend a number of existing ideas with the use of individual-based simulation modelling within the Delphi environment, compiled for the Windows operating system. As such, these programs and source code are available in the electronic appendix submitted with this thesis. Although these programs are merely the tools used to test ideas, the following can be mentioned regarding the code itself: the program discussed in chapter 4 was created first, followed by the program for chapter 2 and lastly the program for chapter 3. Starting with no formal education in programming and no experience with the Delphi environment the program code may be somewhat informal. Therefore, the code for the last program is more efficient than the first. Additionally, in the general introduction, I deal with individual-based simulation modelling as a tool to study evolutionary processes to avoid repetition in the chapters where it was employed.

Lastly, to keep all the theory and models grounded in reality, much of the research in this thesis refer to pollinating fig wasp biology. While the simulation models are not exclusive for the pollinating fig wasp system they are applicable to them. Furthermore, chapter 5 deals with empirical data from this system and for these reasons I introduce the pollinating fig wasp system in the in general introduction.
Table of Contents

Summary II
Acknowledgements IV
Preface V
Table of Contents VI
List of Tables and Figures X

1. INTRODUCTION 1

Individual-based simulation modelling 2
 A simple simulation model 2
 Stochasticity in simulation modelling 5
 A short note on inclusive fitness in simulation modelling 8
 Advantages of simulation modelling 9
 Disadvantages of simulation modelling 11
 Assessment of simulation models 11

Pollinating fig wasps 13

Aims of this thesis 16
 1. When should mixed mating evolve? 16
 2. Does the sex ratio affect dispersal? 17
 3. How many samples are necessary to accurately detect population structure? 18
 4. Are mixed mating and male dispersal in Platyscapa awekei, due to intermediate inbred individuals having the highest fitness? 19

2. EVOLUTIONARY STABLE MIXED MATING IN A VARIETY OF GENETIC SYSTEMS 21

Abstract 21

Introduction 22
Results and Discussion 53

4. ADEQUATE SAMPLE SIZES FOR ACCURATE DETECTION OF POPULATION SUBDIVISION: A SIMULATION BASED EXPLORATION OF SUMMARY STATISTICS 61

Abstract 61

Introduction 62

Materials and methods 64

Model description 64

General parameters 65

Experiments 65

Experiment 4.1: Simulation of different Fst values 65

Experiment 4.2: Simulation of different population sizes 66

Experiment 4.3: Simulation of a single population for estimates of optimal sampling 66

Results 68

Experiment 4.1: Effect of the Fst values on the standard deviation of the Fst 68

Experiment 4.2: Effect of population size on the standard deviation of the Fst 71

Experiment 4.3: Effect of sample size vs. number of loci on the accuracy of the Fst 71

Discussion 74

Effect of population size on accuracy 74

Effect of the Fst on the accuracy 75

Effect of sample size and loci number on accuracy 76

Guidelines on sampling 77

5. INBREEDING DEPRESSION DOES NOT PROMOTE MIXED MATING AND DISPERSAL IN A MALE POLLINATING FIG WASP, PLATUSCAPA AWEKEI 79

Abstract 79
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>80</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>82</td>
</tr>
<tr>
<td>Sample collection</td>
<td>82</td>
</tr>
<tr>
<td>Genotype reconstruction</td>
<td>84</td>
</tr>
<tr>
<td>Genotyping</td>
<td>86</td>
</tr>
<tr>
<td>Statistics</td>
<td>89</td>
</tr>
<tr>
<td>Results</td>
<td>89</td>
</tr>
<tr>
<td>Discussion</td>
<td>91</td>
</tr>
<tr>
<td>6. CONCLUSIONS</td>
<td>100</td>
</tr>
<tr>
<td>Mixed mating</td>
<td>100</td>
</tr>
<tr>
<td>Dispersal</td>
<td>101</td>
</tr>
<tr>
<td>Sampling</td>
<td>102</td>
</tr>
<tr>
<td>Platyscapa awekei</td>
<td>103</td>
</tr>
<tr>
<td>7. REFERENCES</td>
<td>105</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>117</td>
</tr>
<tr>
<td>ELECTRONIC APPENDIX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(inside back cover)</td>
</tr>
</tbody>
</table>
List of Tables and Figures

Chapter 1

Figure 1.1. Steps in a simple individual-based simulation model. *Explicit fitness determination is often excluded if it is an emerging property of the simulation. 4

Figure 1.2. The optimal probability of dispersal under the simulated conditions (1 foundress mother dispersal cost of 0.5) is expected to be approximately 0.49 (see chapter 3). The population is initialised with a 0 probability of dispersal. Two large mutational steps can be seen early in the simulation but as the optimal phenotype is approached only small mutation steps are selected for. 8

Figure 1.3. The life cycle of pollinating fig wasps and developmental stages of a fig. *P. awekei are one of only a few species, of pollinating fig wasps, where the males are documented to disperse; see text for details. 14

Chapter 2

Figure 2.1. Process sequence of model. *If the population is selfing rather than sibmating the first mate will also be the second mate when inbreeding. 26

Table 2.1. State variables and default input values. 28

Figure 2.2. The increase in the inbreeding coefficient, f, during 20 sequential inbreeding events (dotted lines) and the corresponding decrease in fitness (solid lines) for a) both sibmating systems and b) the selfing system. Values in italics indicate the cost of inbreeding, b, that relates the inbreeding coefficient to a fitness value ($W = e^{-bf}$). 32
Figure 2.3. Contour plots of the probability of inbreeding (α) for a) Sibmating diploids b) selfing diploids and c) sibmating haplodiploids from simulations of different fitness values for once- (W_1) or twice- (W_2) inbred individuals. d) Key for plots a-c with bar charts in each area representing the general fitness trends of that parameters space. The diagonal line in each plot indicates where there is only one fitness level for all the inbreeding classes and one for the outbreeding class. White areas represents exclusive inbreeding ($\alpha = 1$) while the darkest area represents exclusive outbreeding ($\alpha = 0$). Shades of grey show different levels of mixed mating.

Figure 2.4. Comparison of optimal α (indicated by contours) when different initial mating strategies are specified. The initial inbreeding frequency of the population is 0 in plots a, c & e while it is 1 in plots b, d & f. Similar levels of mixed mating can be seen when comparing the same genetic system: sibmating diploids (a & b), selfing diploids (c & d) and sibmating haplodiploids (e & f). For all three genetic systems the final mating strategy is similar regardless of the starting α, except in the lower left quadrant below the diagonal.

Figure 2.5. Probability of inbreeding (α), for different cost of inbreeding (b). For selfing diploids (triangles, dotted line), sibmating diploids (diamonds, dashed line), and sibmating haplodiploids (squares, solid line). Error bars indicate standard deviation of the four repeats.

Chapter 3

Figure 3.1. Life history of individuals (process sequence of model).

Table 3.1. Population and patch parameters for each simulation. *Average number of males per patch when binomial variation was introduced. Each parameter set was simulated 10 times.

Table 3.2. ANOVA table for model from experiment 3.1.

Table 3.3. ANOVA table for model from experiment 3.2.

Table 3.4. ANOVA table for models from experiment 3.3.
Figure 3.2. Modelled relationships between dispersal and sex ratio with binomial variance (from experiment 3.1, see table 3.2). Diamonds and solid lines: 1-foundress simulations; circles and dashed lines: 2-foundress simulations; triangles and dotted lines: 3-foundress simulations. Dash-dot line indicates the binomial distributed sex ratio with an average of 0.25 males. The response intervals for each of the simulations are indicated above the graph.

Figure 3.3. Modelled relationships between dispersal and sex ratio with no variation between patches (from experiment 3.2, see table 3.3). Solid line: 5 males per patch; dashed line: 10 males per patch; dotted line: 15 males per patch. Dash-dot line indicates the predicted level of dispersal (0.833) at for one-foundress patches at dispersal cost of 0.2 (see text).

Figure 3.4. Modelled relationship between dispersal rate and cost of dispersal (from experiment 3.3, see table 3.4). Diamonds and solid lines: 1 foundress; circles and dashed lines: 2 foundresses. Bold lines indicate our results, thin lines from predicted dispersal if under maternal control (see text).

Chapter 4

Table 4.1. Parameters used for each simulated population in experiment 4.2. The Fst value for all the simulations at the separation of the single population into two sub populations was 0. Final Fst was calculated using all individuals and loci.

Figure 4.1. Standard deviation of Fst over a number of generations (calculated using repeated sampling of different sample sizes, from 10 to 100). It can be seen that the variation over generations was very small except at generation 5000, where the populations were separated (also figure 4.2 for actual Fst values).

Figure 4.2. The increase in summary statistics when a population was separated into two subpopulations. The summary statistics were calculated using all the loci from all the individuals at different generations and a clear increase in the population structure can be seen.
Figure 4.3. Decrease in standard deviation of the Fst as the number of individuals sampled increases for an increasing number of loci sampled for different sized populations (subpopulation size indicated in the legend from 1000 to 10000 with the Fst of the population when all individuals and loci are used). Larger populations have a lower standard deviation for all combinations of loci and individuals sampled.

Figure 4.4. Contour plot of the standard deviation of the Fst. The standard deviation decreases when either the number of loci genotyped or the number of individuals sampled increases.

Chapter 5

Table 5.1. Population source data with averages and standard deviation (SD) for the clutch size and number of underdeveloped individuals as well as the percentage of virgin females (i.e. male only broods) and average homozygosity per tree.

Figure 5.1 a) Range of traps, constructed from eppendorf tubes, used on different sized fruits. b) Traps fitted on figs of Tree 2. Scale = 1 cm.

Table 5.2. Primer sequences, label colour, size and number of alleles of the 6 microsatellites loci used to determine foundress genotypes. Reaction pools indicate the combinations of primers amplified together, with their respective annealing temperatures.

Table 5.3. PCR conditions, and reagents. The denaturing, annealing and elongation steps were repeated 30 times. *quantity for each primer in the pool 3.

Table 5.4. Parameters used for simulations. The maximum and minimum fitness values are from the 95% confidence intervals of model 1. Each parameter set was simulated 5 times. The number of homozygous loci for each successive sibmating was determined from Greeff et al. (2009).

Table 5.5. ANOVA table and model estimates for model 5.1 (Adjusted R^2 = 0.188)
Figure 5.2. Relationship between clutch size and number of homozygous loci for each tree (*model 5.1*). Tree 1: dash-dot line, Tree 2: Long-dash line, Tree 3: short-dash line, Tree 4: dotted line, Tree 5: solid line.

Table 5.6. ANOVA table and estimates for the linear model: Under-developed ~ tree (Adjusted $R^2 = 0.045$).

Table 5.7. ANOVA table and estimates for the generalised linear model: Proportion under-developed per clutch ~ tree (data transformed with logit transformation).

Table 5.8. Probability of sibmating from simulated parameter estimates (see table 5.4).

Figure 5.3. Different trees used in study: a) Tree 1; b) Tree 2; c) Tree 3; d) Tree 4 and e) Tree 5. Scale = 1 meter, measured from marker attached to each tree.
1. Introduction

In nature, organisms display a broad range of variation in their morphology and behaviour. Darwin (1859) recognised that natural selection acts upon this phenotypic variation. This means that individuals that are better adapted to their environmental conditions have a higher probability to reproduce, passing their genes (and traits), on to the next generation. It is, however, naïve to think that all organisms are optimised for their respective environments. Various constraints may cause individuals to express phenotypes that are slightly maladapted and unable to reach their optimal state. In addition, some traits may be maladapted due to the relatively small effects that they have on the fitness of an individual. Looking at evolution through optimization is not a new concept and has been refined to make it more appropriate to unravelling evolutionary concepts (Maynard Smith, 1978b; Mitchell & Valone, 1990; Orzack & Sober, 2001; Stearns & Schmid-Hempel, 1987). One aim of studying evolution is thus to identify factors under selection that may influence specific traits.

In this thesis I focus mostly on two traits: dispersal and inbreeding. I aim to unravel which factors affect dispersal and inbreeding, how dispersal and inbreeding affect population structure and how this influences sampling schemes. I further empirically examine how dispersal and inbreeding affect the fitness in a model organism.

I use the introduction to describe the primary tool used, namely, individual-based simulation modelling, to investigate these traits and why it is ideal for optimisation studies. All the simulations are, however, grounded in reality and I introduce pollinating fig wasps as model organisms, which inspired most of these simulations. The brief description of their life history is also applicable to chapter 5, where molecular tools were used to investigate inbreeding and dispersal. Lastly, I provide an overview of the aims of each chapter.
Individual-based simulation modelling

“In short, it shows what the world would look like, if it really did work the way in which we think it does.”

Individual-based simulation (also called individual-based modelling or agent-based modelling) is where organisms are created in silico and their interactions with each other and the simulated environment investigated. Individuals, as discrete units within a population or ecological systems, define these models. Each of these individuals is, in turn, defined by at least one parameter that varies between individuals, and is tracked during the history of interactions with the environment and other individuals. In the last four decades, individual-based simulation modelling has increased substantially (in part reflecting the advancements in computer processing power) and include models of ecological and evolutionary processes (DeAngelis & Mooij, 2005; Grimm, 1999; Grimm et al., 2006; Łomnicki, 1999; Mitchell, 1998; Peck, 2004; Prescott et al., 2007). These processes are complex and individual-based simulation is an extremely powerful tool with which biological systems may be mimicked and experimented on, to unravel questions in ecology and evolution (DeAngelis & Mooij, 2005; Grimm, 1999; Grimm et al., 2006; Kokko, 2007; Mitchell, 1998; Peck, 2004; Winsberg, 2003). Simulation modelling has a number of advantages over analytical models, especially when the system under investigation is complex. However, this method of investigation also has its disadvantages and limitations and is open to misuse as is the case for other research tools. Subsequently I will elaborate all these points, and the reasons why I used simulation modelling, starting with a description of how a basic simulation model works.

A simple simulation model

Individual-based simulations have a simple structure and it is immediately apparent that it is similar to natural processes driving evolution (figure 1.1). For brevity, I shall refer to “individual-based simulations” simply as “simulations”. Each individual in
these simulations is characterised by a few traits. During the simulation, these traits are tracked for each individual organism throughout the life cycle of their digitised life history. Depending on the question addressed, offspring production of each individual is constrained by a number of factors including, the other individuals competing for mating and reproduction, simulated physical constraints on individuals, simulated environmental constraints, or a combination of some or all of these factors. After many generations the traits under investigation should be adapted to the enforced and emerging constraints.

The steps depicted in figure 1.1 are followed in all the models (bar the fitness calculation when fitness emerges as a consequence of different reproductive capabilities, chapter 3, or when loci under investigation are neutral, chapter 4):

1. A population of organisms is initialised and alleles are distributed to all individuals. Alleles can be assigned either randomly to the individuals, or all individuals can receive the same allele (necessary when local optima need to be identified, see stochasticity in simulation modelling).

2. If fitness values are implicitly stated (chapter 2), each individual’s fitness is calculated.

3. Individuals are selected to mate. This is performed either at random (chapter 3, where fitness is an emerging property; chapter 4, where loci are neutral) or using a specific selection method when individuals have assigned fitness values (the selection method employed in this thesis is fitness proportional selection with “Roulette wheel” sampling, see stochasticity in simulation modelling and chapter 2).

4. Offspring are created and receive their alleles from their parents via normal Mendelian inheritance.

5. Each offspring is mutated at each locus with a predetermined probability (see stochasticity in simulation modelling).

6. Once the number of offspring reaches the number of individuals in the parental population the new population replaces the old. Steps 2 to 6 are iterated for a number of generations.
Figure 1.1. Steps in a simple individual-based simulation model. *Explicit fitness determination is often excluded if it is an emerging property of the simulation.
The number of generations depends on how fast the traits of interest stabilise, and preliminary runs are performed to determine this. Data is collected at the end of the simulation or sometimes averaged over the latter part of the simulation (once stability is reached). Normally, simulations are repeated multiple times with slight adjustments to one parameter. In turn, each parameter set (i.e. each simulation with a change to any parameter) is repeated multiple times. Comparison between the adjustments and the trait of interest are investigated and analysed. If the trait is influenced by the adjusted parameter conclusions about this relationship, and its influence on the evolution of the system can be made.

Stochasticity in simulation modelling

A key feature of simulation modelling is its inherent demographic stochasticity and individual variation (DeAngelis & Mooij, 2005; Grimm, 1999). Including stochastic parameters and their effects are becoming increasingly important if we want to extend our knowledge of evolutionary theory (DeAngelis & Mooij, 2005; Housten & McNamara, 1985; Lenormand et al., 2009; Yoshimura & Shields, 1987). Individual-based simulations are therefore well suited to expand classical models, resulting in better prediction of population and ecosystem evolution (DeAngelis & Mooij, 2005; Judson, 1994; Peck, 2004). It is, however, important to note that the variation within the simulation models in this thesis is strictly constrained by the model parameters. This means that the trait being optimised has a finite number of solutions and that de novo development of a new trait to increase fitness and offspring production is impossible. These constraints are in agreement with Darwinian theory of evolution where phylogenetic inertia often limit better forms of adaptation, and optimisation is mostly from current individual variation (Darwin, 1859; Orzack & Sober, 2001).

Variation in natural populations is often lost due to drift or selection. During modelling, the aim is to create a realistic representation of these processes (drift and selection) while producing and maintaining enough variation in finite population sizes for a trait to be optimised (DeAngelis & Mooij, 2005). I will address two components, used by the models in this thesis, which maintain variation in a similar manner to natural systems, namely fitness proportion selection and mutation. This is by no means a complete account of the incorporation of stochastic variation in simulation...
models, but is of importance because these two components force the maintenance of some variation (rather than emerging spontaneously from the model). It is therefore important that these components are an accurate reflection of natural systems.

In nature, fitter individuals are identified by their ability to produce more offspring. This does not mean that only the fittest individuals reproduce, but that they will, on average, produce proportionally more offspring. In simulation modelling there are various ways of selecting who should mate (Mitchell, 1998). It is, therefore, important to choose a selection method where sufficient variation is maintained to move away from local optima yet strong enough to optimise the traits under investigation (Mitchell, 1998). Fitness proportion selection with “roulette wheel” sampling (used in chapter 2) is well suited for simulations of biological systems because it enables fitter individuals to mate more often, while weaker individuals are not completely excluded. Briefly, each individual’s fitness value is divided by the total fitness of the population (i.e. sum of all the individual’s fitness values). This is the proportional fitness of each individual. Individuals are then assigned a slice of a “roulette wheel” according to their proportional fitness. To select an individual to mate, “the wheel is spun” (i.e. a random number is drawn). Whoever owns that number on the “roulette wheel” will mate. This is repeated for each mating event, leading to fitter individual being selected more often than weaker individuals (Mitchell, 1998).

In biological systems phenotypic variation is largely created by mutations. Unfortunately, the stochastic effects of mutations are often excluded from evolutionary models (Lenormand et al., 2009; Orr, 2005). In the simulations in this thesis, two types of mutational models are used; firstly jumping mutations (chapters 2 and 3, electronic appendix), where an allele can mutate to any of the possible alleles. Jumping mutations enable a population to search through large fitness landscapes, reducing the risk of getting stuck on a local optimum (Lenormand et al., 2009). It is however known that, when a population approaches the phenotypic optimum, mutations with large phenotypic effects will be more deleterious than mutations with small phenotypic effects. Therefore, if a trait is to be optimised completely, infinitesimally small mutations must occur (Fisher, 1930; Lenormand et al., 2009; Orr, 2005). For this reason a second mutational model is used, namely, stepwise mutations (chapters 2-4, see electronic appendix). When an allele mutates via stepwise mutation it changes to the next possible sequential value. In other words if
there are 11 possible alleles, determining dispersal probability, ranging from 0 to 1, an allele with the value 0.3 will change to 0.2 or 0.4 with equal probability.

In all the models the number of alleles can be changed (chapters 2-4, see electronic appendix), and if increased, the mutational steps become smaller (this unfortunately enlarges the parameter space, which requires more generations to explore). The mutations in simulation modelling are obviously not infinitely small, but the stepwise mutations model is a practical solution to enable the population to approach the optimum more efficiently than with random jumping mutations only. It should be noted that in all the simulations, where both mutational models were used, the probability of a stepwise mutation was four times that of a jumping mutation. Figure 1.2, from experiment 3.3 in chapter 3, is an example of where both mutational models in the simulation enable individuals to approach the optimal behaviour and encapsulate the mutational step-size decrease of Fisher's (1930) geometrical model of adaptation.

With increasing computing power, we are able to study evolutionary processes, including demographic stochasticity in more detail. Current commercial computers are often powerful enough to search through extremely large parameter spaces using large population sizes, thousands of alleles and many generations. The problem of local optima in studies of adaptation is therefore becoming less of a concern. We should however guard against exploiting current computing power and remember that simulations should reflect realistic conditions, as organisms in nature may get stuck on local optima. Depending on the biological question, comparison of multiple simulations, with realistic parameters may be more informative, including the dynamics of stochasticity in nature.
Figure 1.2. The optimal probability of dispersal under the simulated conditions (1 foundress mother dispersal cost of 0.5) is expected to be approximately 0.49 (see chapter 3). The population is initialised with a 0 probability of dispersal. Two large mutational steps can be seen early in the simulation but as the optimal phenotype is approached only small mutation steps are selected for.

A short note on inclusive fitness in simulation modelling

The concept of inclusive fitness, developed by Hamilton (1963, 1964), deals with the additional fitness advantage genes obtain by helping relatives of their bearers to mate. Using analytical models to track inclusive fitness is often difficult (Kokko, 2007). Inclusive fitness is, however, an emerging property of simulation modelling (Gros et al., 2008; Poethke et al., 2007), irrespective of the selection model employed. It is therefore not necessary for any formal statement in the model to deal with inclusive fitness. This property of simulation modelling is unfortunately easy to overlook.

To ensure that the inclusive fitness in the simulation model reflects the biological system, the same genetic setup must be used in the simulation. This is of utmost importance if the trait under investigation has an effect on the mating opportunities of related individuals, because the kin value of different family
members differs between these systems. The three genetic systems in this thesis are haploids, diploids and haplodiploids. A brief description of the relatedness within these genetic systems (without prior inbreeding) is as follows: Any individual is related to him/herself by 1 (applicable where selfing takes place, see chapter 2). The average relatedness of a haploid individual to any sibling or either parent is 0.5. It is the same for any diploid individual. In haplodiploids the average relatedness between brothers as well as mothers to daughters is 0.5. The relatedness of sisters to each other is 0.75. The relatedness of haploid males to their mothers is 1 (Crozier, 1970), and to their sisters 0.5, however they have a reduced reproductive value (Price, 1970). Intuitively we know that inbreeding will increase the relatedness of siblings. However, in haplodiploids the reproductive value of females increases more relative to their male counterparts in inbred populations (Hamilton, 1979; Taylor & Bulmer, 1980). In chapter 2 some of the effects of different inclusive benefits, due to different average relatedness, can be seen.

The point of this section, however, is the emerging property of inclusive fitness in simulation modelling. Therefore it needs to be stressed that, all other things being equal, individuals who have more offspring, nephews or nieces will have more of their genes in the next generation. If this is achieved by helping your relatives reproduce, the trait having this effect will be selected for without it being stated formally in the simulation model.

Advantages of simulation modelling

Using simulation modelling to study evolution has many advantages. I have already alluded to some of the advantages, such as, the allowance of greater variation (especially individual variation) than analytical models (DeAngelis & Mooij, 2005; Grimm, 1999) and the natural inclusion of inclusive fitness has also been dealt with. I will mention a number of other advantages of simulation modelling, all of which, to some degree motivated its use, in this thesis:

Individuals are discrete units in individual-based simulation. The system is thus investigated, using a ‘bottom-up’ approach where population characteristics emerge from the interactions of the individuals. This approach enables the investigator to
track the behaviour of individual organisms (Grimm, 1999), which could aid in unravelling the system dynamics.

When a researcher builds a simulation model, they usually tailor it to suit their research needs. In these models, we therefore have access to all the parameters, which we think are important in the system. Included are parameters that we cannot manipulate in natural systems due to logistic, physiological, budget or ethical constraints (Grimm, 1999; Peck, 2004; Winsberg, 2003). With all the parameters under our control, it should be clear that an experimental approach may help a great deal in understanding the system. In spite of this, modellers often fail to perform methodical experiments (DeAngelis & Mooij, 2005; Grimm, 1999). Additional advantages of the customisability and flexibility of these models are that different data input formats can be handled, specific data output formats can be created (DeAngelis & Mooij, 2005) and it becomes easy to integrate empirical data into the models (Grimm, 1999).

The realism of simulation models is another advantage. Analytical models are unmanageable when they become too complex (Judson, 1994; Łomnicki, 1999; Prescott et al., 2007), and cannot always capture all the fine scale life cycle detail necessary to explain processes in ecological systems (DeAngelis & Mooij, 2005; Łomnicki, 1999; Peck, 2004). Simulation modelling also automatically incorporates subtle interactions often left out from mathematical modelling. It is therefore possible to simulate the parameters from analytical models and compare results (Kokko, 2007), followed by adding more parameters to the simulation models. These additional parameters add more realism to the model (e.g. variation in behaviour and environmental conditions, realistic and finite population sizes, multiple fitness classes etc.), and may lead to the revision and extensions of current theories (Grimm, 1999, see chapters 2 and 3).

When realistic parameters are used, direct comparisons between the model system and the natural system can be made. As a result, simulation modelling can be used to guide planning of empirical experiments (Judson, 1994; Łomnicki, 1999; Peck, 2004; Winsberg, 2003). This was done in chapter 4, where realistic parameters were used to predict optimal sampling schemes in natural populations.
Disadvantages of simulation modelling

It is important to be realistic about the capabilities of any research tool. This section is therefore important to highlight potential pitfalls of individual-based simulation models and when their use is inappropriate. Strangely enough, many of the advantages simulation models have, also border on being reasons for not using it. Foremost is the detail that can be added to a simulation model. It is possible to create a simulation so realistic that it does, not only encapsulate the parameters and processes necessary to address the biological question, but to also have many additional factors which influence the system in a small or unimportant way (DeAngelis & Mooij, 2005; Kokko, 2007). This could result in a simulation that is as complex as the natural system from which no additional understanding of it may be gained (DeAngelis & Mooij, 2005; Kokko, 2007; Peck, 2004; Prescott et al., 2007), and is the reason that some biologists reject the use of simulation models (Judson, 1994; Mitchell, 1998).

The freedom to tailor simulation models also comes at a cost. It is often difficult to create and maintain simulation models, as the model structure is inherently more complex than that of analytical models (DeAngelis & Mooij, 2005; Grimm, 1999; Grimm et al., 2006; Peck, 2004). There is thus no standard way to create a simulation model, and this, together with the complexity, makes it difficult to document and communicate these models (Grimm et al., 2006; Judson, 1994). It is therefore clear that, if an analytical model can be used it should (Kokko, 2007; Peck, 2004), as they are simpler and clearer, and easy to communicate in the general language of mathematics (Grimm et al., 2006).

Assessment of simulation models

From the last two sections it is evident that, before individual-based simulation is used in a study, its possible contribution to unravelling the biological system under investigation should be assessed. Once completed, a useful simulation model would be poised between the last two sections where the benefits are maximised and the costs minimised. There are a number of ways to determine if a simulation model is
adequate, but before this is done it is essential to ensure that there are no functional problems (Grimm, 1999; Winsberg, 2003). It is usual to perform a barrage of trials, checking and rechecking the reaction when each parameter is changed or set to its extremes. This is probably the most tedious part of simulation modelling, and only after proper evaluation of the functioning, can experiments be designed from which understanding may be derived (Winsberg, 2003).

To assess the appropriateness of the model the following should be considered (summarised from: Grimm, 1999; Judson, 1994; Peck, 2004; Prescott et al., 2007; Winsberg, 2003): 1) Does the model represent the biological system adequately? The model must accurately capture the biological system and yet be simple enough to be used as a model from which insight into the system can be gained. 2) Do manipulations of the parameters and processes result in expected reactions? Simulations are created to mimic a biological system that has often been studied empirically and or analytically. The simulation model is therefore expected to respond in a similar fashion to changes in parameters, as the natural system or analytical models would. 3) Does the model make predictions? When multiple parameters are changed to encapsulate the complexities of the system, the simulation model should provide an estimate of how the system will react over a number of generations.

The power of simulation modelling does not lie in our ability to simulate natural or theoretical systems. Rather, by systematic manipulation and experimentation on these virtual representations, we attempt to gain insight in the modelled system and apply this knowledge to understanding how the world works (Grimm, 1999; Peck, 2004). Individual-based simulations are therefore very useful research tools when used in conjunction with empirical data. The biological system under investigation should be well studied and specific research questions defined. Once this is done it is important to plan the simulation in as much detail as possible before the actual modelling begins (this reduces the chance of requiring large changes once the model is developed). In addition to individual-based simulations, a “top-down” approach, using analytical models (often done before simulation modelling), improves knowledge of the system processes (Grimm, 1999). It is therefore necessary for biologists using various approaches to collaborate with each other to create a cohesive explanation of natural selection and evolution (Prescott et al., 2007).
Pollinating fig wasps

All of the simulation models in this thesis are grounded in reality, and were mostly inspired by the pollinating fig wasp system. Furthermore, the empirical data used in chapter 5 was obtained from the pollinating wasp species, *Platyscapa awekei*. A short description of their life history and interaction with their hosts is therefore justified.

The pollinating fig wasp and fig tree system is well studied in evolutionary biology and much is known about their life history and mating ecology (Greeff et al., 2003; Hamilton, 1979; Herre et al., 1997; Zammit & Schwarz, 2000). Consequently, the association between specific wasp and tree species is well documented (Cook & Rasplus, 2003; Cook & West, 2005; Corner, 1985; Janzen, 1979; Ramirez, 1970; Wiebes, 1979, but see Michaloud et al., 1996; Molbo et al., 2004; Rasplus, 1996 for exceptions). The role of the wasp in this mutualism is to transfer pollen from the generally inaccessible flowers of one tree to another receptive tree. In return, the wasps are provided with an environment to develop and mate in. During the development of a single crop of figs, pollinating wasps complete their whole life cycle. These events are similar in all pollinating wasp and fig species, and are depicted in figure 1.3 (the deviations from the general pollinating fig wasp life history observed in *P. awekei* are noted below). The development of figs are often categorised into 5 phases, A to E (Galil & Eisikowitch, 1968). During A-phase the fig syconium structure develops. The syconia can be seen as buds on the tree and are completely filled throughout most of this phase (Verkerke, 1989).

During-B phase the flowers inside the syconium becomes receptive to pollination. Volatile compounds released by the figs attract pollinating female wasps (Hossaert-McKey et al., 1994; Van Noort et al., 1989). The foundress females enter the syconium through a small opening, called an ostiole, losing their wings and antennae in the narrow passage (Wiebes, 1979). It is common for a single female or a small number of females to enter a syconium. Once inside, they lay their eggs in some of the flowers and simultaneously pollinate others (Herre, 1989; Kjellberg et al., 2001). A foundress mother is able to control the sex ratio of her
Figure 1.3. The life cycle of pollinating fig wasps and developmental stages of a fig.
P. awekei are one of only a few species, of pollinating fig wasps, where the males are documented to disperse; see text for details.
offspring by selective fertilisation of her eggs. Fertilised eggs develop into diploid daughters while the unfertilised eggs develop into haploid males (Werren, 1987). Unable to exit from the syconium, a foundress female lays all her eggs in a single syconium and dies (but see Moore et al., 2006).

During C-phase the wasp larvae develop in individually galled flowers by feeding on the endosperm (Verkerke, 1989). At the same time the seeds develop in the flowers without wasp larvae.

D-phase begins when the males emerge from their galls. Pollinator males are wingless and are morphologically dissimilar to their female counterparts (Murray, 1990; Wiebes, 1979). After the males emerge they mate with the females that are still within their galls (Berg & Wiebes, 1992; Zammit & Schwarz, 2000). Since females are receptive only whilst still in their galls, males need to crawl between the galls to reach, and mate with the females (Galil, 1977; Hamilton, 1979; Herre et al., 1997). After mating, the females leave their galls and exit the syconium through a hole chewed by the males. Often the males complete their whole life cycle in their native fig. In a number of species, including P. awekei, males have been recorded to disperse from their native syconium and enter into other syconia (Greeff et al., 2003), where they will probably try to find additional mating opportunities. P. awekei is also one of a few species where the males engage in contest competition for mating opportunities (Greeff et al., 2003) and a strong association has been found between higher average sex ratios in fighting and dispersing species (Nelson & Greeff, 2009). Females leaving the syconium disperse to new receptive B-phase syconia and start the cycle anew.

Lastly, the syconium ripens, signalling E-phase. During this phase the syconium often swells, changes colour, and is consumed by a number of different animals, which disperse the seeds (Berg & Wiebes, 1992; Burrows & Burrows, 2003).

The life history of pollinating fig wasps have a number of features, which make the system ideal for testing evolutionary theories empirically, analytically and with simulation modelling. An important factor is the low number of foundress mothers per patch. The population is therefore extremely structured and most of the matings are with relatives. This leads to high levels of inbreeding in pollinating fig wasps, which is promoted by purging via the haploid males (Antolin, 1999; Herre et al., 1997; Werren, 1993). However, the observation of dispersing males in some species raises questions on optimal mating strategies and inbreeding depression, which is addressed in chapters 2 and 5. Another effect of the low foundress numbers is the high
levels of local mate competition, which is often reduced by female biased sex ratios or male dispersal (see below). These three factors are addressed in chapter 3. A last feature of pollinating fig wasp life history is the absence of overlapping generations, which make their system a pleasure to simulate.

Aims of this thesis

The aims of this thesis are to extend theories on the evolution of inbreeding and dispersal. Four specific questions are addressed, three using individual-based simulation modelling (chapters 2-4) and one with empirical data obtained from pollinating fig wasps (chapter 5). Following, is a short introduction to each question (due to their diverse nature each chapter is preceded with a complete account of the relevant background from the literature).

1. *When should mixed mating evolve?*

In nature we see a rich variety of mating systems. At the extremes are exclusive inbreeding and exclusive outbreeding, and in-between is a continuum of various levels of both (Thornhill, 1993). In this thesis, I investigate the conditions necessary for the evolution of stable mixed mating, defined as: a strategy where individual sometimes mate with close individuals (or self in the case of hermaphrodites) while at other times they mate with completely unrelated individuals. In other words, a strategy where individuals employ either of the extreme mating options on a regular basis. Mixed mating strategies are found in a number of organisms where individuals do not have access to intermediate related mating partners (Godfray & Cook, 1997; Goodwillie et al., 2005; Greeff et al., 2009; Hardy, 1994; Jain, 1976).

The default choice of all organisms should be inbreeding, due to the kin advantage gained by mating with relatives (Bateson, 1983; Bengtsson, 1978; Fisher, 1941; Kokko & Ots, 2006; Parker, 1979; Pusey & Wolf, 1996; Waller, 1993; Waser et al., 1986; Wolf, 2000; see also section: ‘A short note on inclusive fitness in simulation modelling’). This decision is however offset by the possible fitness losses due to inbreeding depression (Bengtsson, 1978; Fisher, 1941; Pusey & Wolf, 1996; Waser et
al., 1986). Conversely, outbreeding depression would shift the strategy towards inbreeding (Charlesworth & Charlesworth, 1987; Knight, 1799; Mather, 1955; Williams, 1975). In some circumstances both inbreeding and outbreeding depression may be present simultaneously and matings with distantly related individuals may be optimal (Bateson, 1983; Price & Waser, 1979). As mentioned, in some organisms, this is not an option.

When investigating mating systems it is therefore necessary to explore the fitness level of offspring resulting from inbreeding or outbreeding. A number of models have laid the foundation for predicting, when inbreeding, outbreeding or mixed mating should occur, from the ensuing offspring fitness levels (Campbell, 1986; Charlesworth & Charlesworth, 1987; Damgaard et al., 1992; Feldman & Christianson, 1984; Holsinger, 1988; Holsinger et al., 1984; Lande & Schemske, 1985; Latta & Ritland, 1993; Lloyd, 1979; Maynard Smith, 1977; Maynard Smith, 1978a; Taylor & Getz, 1994; Uyenoyama & Waller, 1991a; Uyenoyama & Waller, 1991b; Waser et al., 1986). In chapter 2, a simulation approach is used to extend current analytical models. This is done by exploring: optimal mating strategies ranging from inbreeding depression to outbreeding depression (including where intermediate inbreeding has the highest fitness); stochastic demographic variables; multiple fitness values for serially inbred individuals; sibmating diploids and haplodiploids, in addition to, selfing diploids.

2. Does the sex ratio affect dispersal?

In 1871, Darwin noted the equal proportions of males and females in many species. He proposed the first theory of the adaptive nature of sex ratios (Darwin, 1871), but being unable to convince himself, he retracted it (Darwin, 1874). Fisher (1930) showed that natural selection would promote the under-represented sex, which would lead to equal sex ratios. The theory of sex ratios was, however, vastly extended by Hamilton (1967), who included non-equal reproductive values of males and females and structured populations to his models. He showed that, in a number of organisms, only one or a few females contribute offspring to discrete patches in a population. If mating took place in these patches, without prior dispersal, competition for mating opportunities was mostly between relatives. This phenomenon is termed Local Mate
Competition (LMC), and females often bias their sex ratios to limit its occurrence (for examples in fig wasps see: Frank, 1985; Herre, 1985; Herre et al., 1997).

Simultaneously, theories on when dispersal should evolve were also advanced. Once again, LMC was recognised early on as an important factor, in this case, driving the evolution of dispersal (Hamilton & May, 1977; Van Valen, 1971; see for reviews: Clobert et al., 2001; Ronce, 2007). Two other factors, eminent in the evolution of dispersal and usually included in dispersal models, are inbreeding depression and the cost of dispersal (Bengtsson, 1978; Clobert et al., 2001; Frank, 1986; Gandon, 1999; Hamilton & May, 1977; Motro, 1983; Motro, 1991; Perrin & Mazalov, 2000; Ronce, 2007; Taylor, 1988). It is apparent that, while low foundress numbers (i.e. high LMC) and the occurrence of inbreeding depression will increase the rate of dispersal, high cost of dispersal will oppose the evolution thereof.

Theories of dispersal and sex ratio evolution often overlap and a number of models have investigated the co-evolution of these factors (Hamilton, 1967; Perrin & Mazalov, 2000; Taylor, 1994; Taylor & Bulmer, 1980; Wild & Taylor, 2004). While these models show that the sex ratio is affected by the rate of dispersal, dispersal is often not affected by the sex ratio. In chapter 3, the effect of sex ratios on dispersal is explored. This is done with simulation modelling where: binomially distributed sex ratios are produced; males decide to disperse in response to their native patch sex ratio; different foundress mothers per patch are allocated. All this is done in the absence of inbreeding depression.

3. How many samples are necessary to accurately detect population structure?

Original ideas for measuring genetic distance between populations were developed by Wright (1931). With the advent of molecular genetics a number of practical methods were derived to estimate population differentiation. Collectively called summary statistics, they differ from Wright’s Fst and include: Gst, where heterozygosity is used to estimate population subdivision (Nei, 1987); θ, where variance components are used to determine population structure (Weir & Cockerham, 1984); and Rst, where rare alleles are used, taking a stepwise mutation model of microsatellites into account,
to determine if there is population structure (Slatkin, 1995). (It should be noted that
the method described by Weir & Cockerham (1984) is commonly used in analysis of
population subdivision. Their estimate will be referred to as the default Fst from here
onwards).

New generation programs have changed the way in which population structure
is determined (Neigel, 2002; Pearse & Crandall, 2004). These programs, of which
STRUCTURE is currently the most popular, uses likelihood methods to infer
population subdivision (Falush et al., 2003; Kaeuffer et al., 2007; Neigel, 2002;
Pearse & Crandall, 2004; Pritchard et al., 2000). In spite of this, summary statistics
are still routinely used in combination with newer techniques (Pearse & Crandall,
2004; Neigel, 2002; Balloux & Lugon-Moulin, 2002). The power of all these methods
is, however, still dependent on the number of loci and individuals sampled.

The aim of chapter 4 is to provide simple guidelines when planning a sampling
scheme. The program used was originally developed to simulate a large population
that split, which were then used to investigate how drift, stepwise mutation and low
migration rates between the two populations increase their genetic distance. The
program was later amended by adding an extensive sampling scheme generator. This
allowed multiple different samplings (i.e. different sample sizes and or different
number of loci) from the simulated population. The output generated comprises of
summary statistics, which can be compared and analysed to determine the minimum
sampling requirements. Alternatively, the allele values of the sampled individual can
be obtained, that can be analysed independently using current genetic programs. In
chapter 4 a number of sampling schemes are investigated and general sampling
guidelines are presented.

4. Are mixed mating and male dispersal in Platyscapa awekei, due to
intermediate inbred individuals having the highest fitness?

Pollinating fig wasps are famous for being extremely inbred (Herre et al., 1997;
Molbo et al., 2002; Molbo et al., 2004), but a few including *P. awekei*, have been
noted to display mixed mating strategies (Greeff, 2002; Greeff et al., 2009; Greeff et
al., 2003; Herre et al., 1997; Jansen van Vuuren et al., 2006; Molbo et al., 2002;
Molbo et al., 2004; Moore et al., 2006; Zavodna et al., 2005). A number of studies suggest possible reasons for the dispersal phenotype in *P. awekei* and these include less female biased sex ratios (Nelson & Greeff, 2009) and reduced LMC between brothers (Moore et al., 2006; Nelson & Greeff, 2009), a consequence of fighting morphology (Greeff et al., 2003; Nelson & Greeff, 2009) and simultaneous inbreeding and outbreeding depression (Greeff et al., 2009). The last study however had ambiguous results and it is not clear if *P. awekei* suffers from outbreeding depression only, or a combination of both inbreeding and outbreeding depression (Greeff et al., 2009).

In chapter 5, I examine the fitness of various levels of inbred *P. awekei* females. This is accomplished by comparing the number of offspring (as a proxy for fitness) to the number of homozygous microsatellite loci for each mother. The results are used in the simulation model “SibMate” (chapter 2) and the predicted mating system of *P. awekei* is compared and discussed.
2. Evolutionary stable mixed mating in a variety of genetic systems

Abstract

In nature, individuals often have to choose between mating with close relatives and unrelated individuals. In some species however, a mixture of close inbreeding and outbreeding co-exists and is referred to as mixed mating. A number of theoretical models can explain the existence of mixed mating. We simulate the evolution of mating preferences for three genetic systems, diploid selfing, diploid sibmating and haplodiploid sibmating. Mating preferences are determined by a single locus, while the fitness of an individual depends on the level of inbreeding. Fitness combinations that allow stable mixed mating strategies to evolve include low levels of inbreeding depression and almost all scenarios where intermediate inbreeding is optimal. We find that stable mixed mating readily evolves when a minimum of at least three fitness levels are specified (in contrast to two fitness levels: one for inbreeding and one for outbreeding). We also find that stable mixed mating can evolve for selfing diploids, sibmating diploids and sibmating haplodiploids. The high relatedness of the selfing individuals lead to lower levels of inbreeding followed by sibmating diploids and lastly sibmating haplodiploids. Comparing our results with empirical data give an indication of when mixed mating can be expected.
Introduction

When individuals choose a mate they often have to decide between a close relative or an unrelated individual. In plants and simultaneous hermaphrodites, selfing is an additional option. Various mating strategies could therefore evolve, ranging from exclusive inbreeding to exclusive outbreeding, and a myriad of mating strategies are indeed found in nature (see: Keller & Waller, 2002; Thornhill, 1993; for reviews). The optimal mating strategy is dependent on genetic and environmental pressures acting on an individual, as well as, the dynamics and breeding strategy of the population (Keller & Waller, 2002).

The fitness of an individual with a specific mating strategy is affected by inclusive fitness benefits, outbreeding depression and inbreeding depression. Inclusive fitness benefits are gained from extra mating opportunities to related individuals and favours the evolution of inbreeding (Bateson, 1983; Bengtsson, 1978; Fisher, 1941; Kokko & Ots, 2006; Parker, 1979; Pusey & Wolf, 1996; Waller, 1993; Waser et al., 1986; Wolf, 2000). Outbreeding can be detrimental due to the break-up of co-adapted gene complexes or the loss of adaptation to local environments (Bengtsson, 1978; Fisher, 1941; Pusey & Wolf, 1996; Waser et al., 1986). Inbreeding depression and its causes, such as overdominance, are well documented (Charlesworth & Charlesworth, 1987; Knight, 1799; Mather, 1955; Williams, 1975). If inbreeding depression is severe it will lead to inbreeding avoidance (see Kokko & Ots, 2006). Conversely, outbreeding depression should lead to exclusive inbreeding (Lynch, 1991).

It has been suggested that if inbreeding and outbreeding depression are present simultaneously, these two factors will oppose each other and an intermediate level of inbreeding could be the optimal mating strategy (Bateson, 1983; Price & Waser, 1979). In these circumstances, matings with close kin are avoided but so are matings with completely unrelated individuals (Bateson, 1983). However, individuals often only have full sibs or unrelated individuals available and not individuals of the optimal intermediate genetic distance. Here, a mixed mating strategy, consisting of close inbreeding or complete outbreeding of individuals, may be a “frustrated” way to solve the evolutionary puzzle (Greeff et al., 2009). Under these conditions, a population should have both inbreeding and outbreeding as mating strategies, each occurring at a stable frequency.
A number of models did not find equilibria where mixed mating was stable. Rather, they showed that if inbreeding depression became too severe the equilibrium switched from complete inbreeding to complete outbreeding. For instance, it is well known that self compatible diploids species should switch from outbreeding to inbreeding if the fitness of inbred individuals are more than half that of the outbred individuals, and *vice versa* (Charlesworth & Charlesworth, 1987; Feldman & Christianson, 1984; Holsinger et al., 1984; Lande & Schemske, 1985; Lloyd, 1979; Maynard Smith, 1977; Maynard Smith, 1978a; Waser et al., 1986). Taylor & Getz, (1994) explored sibmating in diploid and haplodiploid individuals with two fitness classes, namely inbred and outbred. They found no fitness combination where mixed mating was stable for sibmating diploids. For sibmating haplodiploids they found that stable mixed mating may occur under very specific conditions. Stable mixed mating occur when inbreeding reduces the fitness of the offspring between 30% and 33%, and when the population starts as mostly outbreeding individuals (Taylor & Getz, 1994).

Maynard Smith (1977) explored models where serial inbreeding led to a continuous reduction in fitness. He showed that mixed mating systems could evolve as pure inbreeding or outbreeding populations were not resistant against opposite strategies invading. In support, Latta & Ritland (1993) showed, using recursive equations for multiple loci, that a decline in fitness of serial inbred individuals led to stable mixed mating. They found that mixed mating evolved at higher frequencies when controlled by increasing numbers of genes. In addition, they showed that mixed mating remained stable in the face of purging if inbreeding depression was sufficiently small (Latta & Ritland, 1994). In a similar study Damgaard et al. (1992) also found stable mixed mating for selfing individuals at different levels of inbreeding depression. In these studies (as in ours) a fixed relationship between fitness and the level of inbreeding was assumed. This allows for easy comparison to experimental data, but ignores the potential coevolution between fitness and inbreeding. Genotypes for inbreeding and genotypes that tolerate inbreeding becomes linked and may determine the direction in which the mating system evolves (Campbell, 1986; Holsinger, 1988; Uyenoyama & Waller, 1991a; Uyenoyama & Waller, 1991b). However, empirical data should include these dynamic effects and may then easily be combined with the fixed relationship models, such as we will develop below.
By considering serial classes of inbreeding Campbell (1986) also found that mixed mating could be maintained, even in systems where inbreeding depression coevolves with the mating preference loci. Campbell’s models, however, only explored serial inbreeding for selfing diploids and it would be difficult to adjust for sibmating diploids or haplodiploids, as their fitness needs to take into account the inbred status of individuals two generations prior.

In this study we investigate the optimal mating strategy that emerges in three genetic systems (selfing diploids, sibmating diploids and sibmating haplodiploids) with different fitness levels for each class of serially inbred individuals. These genetic systems have different inclusive fitness benefits to inbreeding: A female is related to herself by 1 and to her diploid brother by 0.5. In haplodiploids, a male related to this sister by 0.5, but this value needs to be discounted by the reduced reproductive value of haplodiploid males (Price, 1970), giving a kin value of 0.25. We should thus expect that inbreeding should evolve less readily in sibmating haplodiploids than in sibmating diploids than in selfing diploids.

We used individual-based simulation modelling to determine the optimal mating strategy for individuals of three genetic systems over a range of fitness values. Note that fitness values were not allowed to co-evolve with the mating strategy. Fitness values were chosen to reflect inbreeding depression, outbreeding depression, inbreeding depression with purging, and situations where intermediate inbreeding has the highest fitness.

Model description

The purpose of this model is to understand when mixed mating will evolve in the context of different fitness specifications for individuals. To test the effects of inclusive fitness we consider three genetic systems that differ in kin benefits when inbreeding occurs: selfing diploids, sibmating diploids and sibmating haplodiploids. The fitness values used were different for a range of successive inbred individuals rather than having only one fitness value for inbred individuals which is irrespective of the number of times inbred.
State variables

The model consists of two structural levels: individuals and populations. Each individual has the following state variables: allele-A, allele-B, ancestry and fitness. The allele-variables are memory allocations for two alleles at a single locus and are only defined as A and B to distinguish between the two assigned values. Each allele allocated to an individual has a value from 0 to 1 that defines the probability that the individual will sibmate (for diploids the phenotype is the average of the two alleles, i.e. additive). This phenotype is expressed in the females (i.e. the females decide if they want to sibmate or outbreed). In cases where the individuals are haplodiploid, the B-allele for the males is not defined. The ancestry variable records the breeding history and it is reset to 0 when an individual is mated with an unrelated individual. Each successive sibmating, or selfing, increases the ancestry variable by 1 and is inherited by the offspring. The fitness of each individual is dependant on the ancestry variable and is thus a function of the organism’s degree of inbreeding. This is a key component in this study as it allows individuals that have different degrees of inbreeding to have different fitness values. In each simulation the fitness level for each inbred class is explicitly defined in the experimental procedure (see below).

When the population is sibmating it is composed of two arrays of individuals (male and female). When the population is selfing the arrays collapse into one. The population is furthermore characterised by mutation rate (for the locus determining selfing or sibmating), number of generations, ploidy of individuals, number of evenly spaced alleles (e.g. for 11 alleles their values would be: 0; 0.1; 0.2; …; 1) and fitness of the inbreeding classes.

Simulation process and scheduling

The model proceeds in generation time steps (figure 2.1). In each generation step the events are processed as follows: Fitness is assigned for all individuals in the population, mating commences and the newly created population replaces the old population (i.e. no overlapping generations). The following sub-steps are followed during mating until the new population is equal in size to the old population: selection
Figure 2.1. Process sequence of model. *If the population is selfing rather than sibmating the first mate will also be the second mate when inbreeding.
of an individual to mate, selection of a mate, creating two offspring from parental genotypes and mutation of the offspring.

Design concepts

Optimal mating strategies emerge from the population dynamics but the population dynamics are entirely characterized by rules specifying an individual’s behaviour. As mentioned, the fitness of each inbreeding class is specified explicitly and does not change during the simulation. The fitness of individuals more inbred than the last defined class have the same fitness as the individuals in last defined class. A fitness proportion scale with “roulette wheel” sampling is used to obtain the mating individual (Mitchell, 1998). In brief, this means that the fitness of each individual is weighted, relative to the total fitness of the population, and assigned a proportion of the total fitness (i.e. fitter individuals have more numbers on the roulette wheel assigned to them). A random value is drawn between 0 and the total fitness of the population and the individual whose assigned proportion includes this value is selected to mate. Note that the fitness of haploid males was unaffected by their ancestry as all their loci are hemizygous and homozygosity is unaffected by their inbreeding history.

Data gathered for analysis included the probability of inbreeding (α) in the population (calculated as the average inbreeding of the last 500 generations) as specified by the alleles of the individuals.

It is important to note that inclusive fitness does not have to be introduced explicitly since kin-advantage will emerge by default in any individual-based simulation (Gros et al., 2008; Poethke et al., 2007).

Initialisation and input

The population input values are given in table 2.1. The initial inbreeding frequency of the population was established by assigning two alleles to each individual at the first generation. These values were from a uniform distribution ranging from 0 to 1 (in this chapter we used values with a 0.1 interval or 0.01 interval, therefore providing 11 and
Table 2.1. State variables and default input values.

<table>
<thead>
<tr>
<th>State variable</th>
<th>Experiment 2.1</th>
<th>Experiment 2.2</th>
<th>Experiment 2.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population size</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td># Generations</td>
<td>5000</td>
<td>5000</td>
<td>10000</td>
</tr>
<tr>
<td>Mutation rate</td>
<td>0.001</td>
<td>0.001</td>
<td>0.0001</td>
</tr>
<tr>
<td># Possible alleles</td>
<td>11</td>
<td>11</td>
<td>101</td>
</tr>
<tr>
<td>Individual parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allele-A</td>
<td>from uniform distribution</td>
<td>0, 1 and uniform distribution</td>
<td>from uniform distribution</td>
</tr>
<tr>
<td>Allele-B</td>
<td>from uniform distribution</td>
<td>0, 1 and uniform distribution</td>
<td>from uniform distribution</td>
</tr>
<tr>
<td>Ancestry</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fitness</td>
<td>derived from ancestry</td>
<td>derived from ancestry</td>
<td>derived from ancestry</td>
</tr>
<tr>
<td>Fitness parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_0 (Outbred)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>W_1 (Once inbred)</td>
<td>0.01 to 2 (step size 0.01)</td>
<td>0.2 to 2 (step size 0.2)</td>
<td>b, see figure 2.2</td>
</tr>
<tr>
<td>W_2 to W_∞</td>
<td>0.01 to 2 (step size 0.02)</td>
<td>0.2 to 2 (step size 0.2)</td>
<td>b, see figure 2.2</td>
</tr>
</tbody>
</table>
101 possible allele values respectively, see table 2.1). In some experiments the initial inbreeding frequency was specified and here all the alleles in the population had the same value. The individual’s ancestry was set to 0 (i.e. initial population is outbred). The females’ genotype was used to determine if she would sibmate or not.

Sub-models

Mutations: The probability that an allele was selected to mutate was 0.0001 per individual per generation. The mutational model used was a combination of stepwise and jumping mutations. Once an allele was selected to undergo a mutation, there was a 20% chance for it to become any of the possible alleles. Alternatively, the allele mutated one step to either of the adjacent alleles with equal probability.

Mating: When two individuals mated, each transferred one allele to the new offspring, if the offspring was diploid. The haploid offspring received an allele only from the diploid parent. In both cases the allele that each parent donated was chosen at random, i.e. normal Mendelian inheritance. Each mating pair always produced one male and one female offspring.

The use of probability distributions during mutation, mate selection and the choice of females, causes noise in the model so that each run will reach a stable point along a different trajectory and may not reach the same equilibrium. Therefore the inbreeding optima have a rugged appearance across the parameter space.

Experiments

We first investigate the possibility of a stable mixed mating strategy evolving with three, rather than two inbred classes (outbred, once inbred, twice or more times inbred). This was done for all three genetic systems by simulation of many different fitness combinations (high resolution, 20000 parameter sets per genetic system). Second, we investigate the effect of the mating strategy of the initial population on the evolution of subsequent strategies. This was done for all three genetic systems simulations (low resolution, 100 parameter sets per genetic system) of the three fitness classes with specified initial mating strategies. Last, by simulating a population
with 21 fitness classes for all three genetic systems, we show that although stable mixed mating strategy requires at least 3 fitness classes, more classes will easily lead to stable mixed mating. These simulations also allow us to compare our simulations to empirical estimates of the inbreeding coefficient and the mating system.

Experiment 2.1: Optimal mating strategies with three inbreeding classes

All three genetic systems (selfing diploids, sibmating diploids and sibmating haplodiploids) had the following fitness parameters during simulation. The fitness of the outbred individuals \((W_0)\) was fixed at 1. Simulations were performed with stepwise increases of the fitness level of either the once-inbred individuals \((W_1)\) or twice-inbred individuals \((W_2)\). We explored the following fitness ranges \(0.01 \leq W_1 \leq 2\) and \(0.01 \leq W_2 \leq 2\). The resolution for \(W_1\) was 0.01 for each successive simulation and 0.02 for \(W_2\) (larger increases were used due to computational time constraints). In the selfing diploid and the sibmating haplodiploid the following fitness combinations were not simulated: \(W_1 = 0.01\) to 2 and \(W_2 = 1\) to 2 only where \(W_1 < W_2\) (these areas were however simulated at lower resolution in experiment 2.2, see results and discussion). All the individuals that had a higher inbreeding level than twice-inbred individuals had the same fitness as the twice-inbred individuals (i.e. \(W_3\) to \(W_\infty = W_2\)).

Experiment 2.2: The importance of initial conditions on the final equilibria

We simulated three inbreeding classes with different initial inbreeding frequencies for all three genetic systems. We fixed the fitness of outbred individuals \((W_0)\) at 1. The same fitness ranges for once- \((W_1)\) and twice- \((W_2)\) inbred individuals were explored as in experiment 2.1 \((0.01 \leq W_1 \leq 2\) and \(0.01 \leq W_2 \leq 2\)) but the stepwise increase for both \(W_1\) and \(W_2\) were 0.2. For all three genetic systems all the simulations were repeated twice. Once with the initial inbreeding frequency of the population set to 0 and once set to 1.
Experiment 2.3: Optimal mating strategies with 21 inbreeding classes

We assigned 21 fitness classes (W_0 to W_{20}) for all three genetic systems. The fitness for W_0 was fixed at 1.00 for all the simulations. The fitness of each inbred class was calculated as: $W_i = e^{b_i}$, where $-b$ is the slope of fitness decline on the inbreeding coefficient (f) (Charlesworth & Charlesworth, 1987). We then performed 8 simulations, each with a greater level of inbreeding depression, i.e. a larger value of b (figure 2.2). The cost of inbreeding for each genetic system ranged from $b = 0.1$ to $b = 2$ (figure 2.2, we explored slopes outside this range but the population fixed a single strategy at these points, see results and discussion). Since the fitness is calculated from the inbreeding coefficient, f_i, and not the number of times an individual is inbred, f needs to be calculated for each class of inbredness: for sibmating individuals f was calculated as: $f_i = f_{i-1}/2 + f_{i-2}/2 + 1/4$ and for selfing individuals as: $f_i = (1 + f_{i-1})/2$, where $f_0 = 0$ from Lynch & Walsh (1998). Note that the inbreeding coefficient for offspring of full sibmating in haplodiploids is equal to that of diploids (Wright, 1969). The inbreeding coefficient was almost 1 after 20 serial sibmating events (figure 2.2a) and reached the same level after only 8 serial selfing events (figure 2.2b). Each simulation was repeated four times.

Program

The code for the simulation program was written in Delphi Professional version 7.0. Although the code used in all the simulations is similar, minor alterations were made to enable repeated simulations with different fitness combinations or initial inbreeding strategies. The application “SibMate” (standard version for single simulations only and no automatic repeats) is available in the electronic appendix. It may be used to simulate populations with up to 21 breeding and fitness classes, which can be easily compared to empirical data.
Figure 2.2. The increase in the inbreeding coefficient, f, during 20 sequential inbreeding events (dotted lines) and the corresponding decrease in fitness (solid lines) for a) both sibmating systems and b) the selfing system. Values in italics indicate the cost of inbreeding, b, that relates the inbreeding coefficient to a fitness value ($W = e^{-bf}$).
Results and Discussion

Our results showed that mixed mating strategies can be stable for a range of fitness values, that the degree of inbreeding increases with the inclusive fitness benefits of inbreeding, that mixed mating is expected for realistic values of inbreeding depression and that the starting conditions have a minor influence on the final equilibria that are reached.

From experiment 2.1 we produced the plots in figure 2.3. The contours present the probability of inbreeding (α), which was calculated for each simulation from the average value of the alleles in the whole population of the last 500 generations (i.e. generation 4500 to 5000, while stability was reached after approximately 1000 generations). Each of the simulations had different fitness values for the once- (W_1) and twice- (W_2) inbred individuals as indicated on the y- and x-axes respectively, with a total of 10 000 simulations for each genetic system. Note that figure 2.3d indicates the general fitness trends within each parameter space as bar charts and may be used as a key for the other plots in figure 2.3.

Mixed mating was stable over a large area of the parameter space: this included low levels of inbreeding depression, as well as, scenarios where intermediate inbreeding had the highest fitness. This result is in contrast to models with only two fitness values, one for inbreeding and one for outbreeding, where mixed mating is not stable.

The three genetic systems are indicated in figure 2.3a-c. By comparing these graphs it is clear that inbreeding was more frequent in selfing than sibmating diploids, and that it was more common in diploid than haplodiploid sibmating individuals. This is as we expected and is because the kin benefits are the highest for the selfing diploids and the lowest for the sibmating haplodiploids.

A number of published models explored only two classes of inbredness, i.e. exclusive inbreeding W_{inbred} or exclusive outbreeding W_0 for selfing diploids (Charlesworth & Charlesworth, 1987; Feldman & Christianson, 1984; Lloyd, 1979; Maynard Smith, 1977; Maynard Smith, 1978a; Taylor & Getz, 1994) and for sibmating diploids and haplodiploids (Taylor & Getz, 1994). The diagonal lines in the figure 2.3 correspond to these models as the fitness for inbreeding once, twice or more are the same (i.e. $W_{\text{inbred}} = W_1 = W_2$ to W_∞). We find that selfing diploids switch from
Figure 2.3. Contour plots of the probability of inbreeding (α) for a) Sibmating diploids b) selfing diploids and c) sibmating haplodiploids from simulations of different fitness values for once- (W_1) or twice- (W_2) inbred individuals. d) Key for plots a-c with bar charts in each area representing the general fitness trends of that parameters space. The diagonal line in each plot indicates where there is only one fitness level for all the inbreeding classes and one for the outbreeding class. White areas represents exclusive inbreeding ($\alpha = 1$) while the darkest area represents exclusive outbreeding ($\alpha = 0$). Shades of grey show different levels of mixed mating.
selfing diploids switch from exclusive inbreeding to exclusive outbreeding at $W_{\text{inbred}} = 0.51$ (figure 2.3b). This is similar to the aforementioned studies where the switch is found at an inbreeding depression of 50% for selfing diploids.

Our results for sibmating also agreed with previous models where only two classes of inbredness were explored (Taylor & Getz, 1994) and we found the switch from exclusive inbreeding to outbreeding at levels of inbreeding depression close to that of Taylor & Getz (1994) ($W_{\text{inbred}} = 0.61$ for sibmating diploids and at $W_{\text{inbred}} \approx 0.70$ for the sibmating haplodiploids, along the diagonals of figures 2.3a and 2.3c respectively). The higher switch points for the selfing diploids than the sibmating haplodiploids than the sibmating diploids were due to the different inclusive fitness advantages as mentioned above.

In the midpoint of each plot in figure 2.3 the fitness of all the inbreeding classes was the same ($W_0 = W_1 = W_2 = 1$). Even though fitness values were equal the kin advantage favoured inbreeding for all three genetic systems.

The area in the lower left quadrant above the diagonal is where different levels of inbreeding depression were simulated and outbreeding evolved (darkest areas in figure 2.3a-c), especially at more severe inbreeding depression. However, in all three genetic systems there were stable mixed mating strategies when inbreeding depression was reduced (shaded areas, figure 2.3a-c). The reason for mixed mating in this area is a high fitness value of the once-inbred individuals (W_1), regardless of a low value for twice-inbred individuals (W_2). However, as twice inbred individual’s fitness increased, inbreeding as a strategy could be maintained and exclusive inbreeding evolved.

The contour lines for α at 0.01 and 0.02 were drawn to give an indication of the gradient of the switch from outbreeding to mixed mating. The selfing diploid system (figure 2.3b) had a sudden switch from outbreeding to mixed mating, and had the smallest area of exclusive outbreeding. Both the sibmating diploid and haplodiploid systems (figures 2.3a and 2.3c) had slightly less steep gradients. The sibmating models had larger areas of exclusive outbreeding with the haplodiploid having the largest (again the inclusive fitness differences between the genetic systems were the cause for the different results).

Two areas were simulated where intermediate inbreeding was optimal (i.e. once-inbred individuals were the fittest; W_1 higher than W_0 and W_2). First, the top left quadrant: here, in addition to the once-inbred individuals being the fittest, outbred
individuals had a higher fitness than the repeated inbred individuals ($W_1 > W_0 > W_2$). A large part of the parameter space in this area led to the evolution of stable mixed mating (indicated by shades of grey, figure 2.3a-c). This result confirmed that stable mixed mating would evolve if intermediate inbreeding were optimal, given that intermediate related individuals are not available or recognisable. Again the high value of the once-inbred individuals (W_1) favoured inbreeding, but a low value of the twice-inbred individuals (W_2) prevented it from being fixed and mixed mating evolved as a stable strategy. However, where the twice-inbred individuals (W_2) had high fitness, inbreeding was maintained in the population and mixed mating became more biased towards inbreeding. The different kin advantages again caused selfing populations to fix inbreeding at lower levels of W_2, followed by sibmating diploids and then sibmating haplodiploids.

The second area where once-inbred individuals had the highest fitness was the top right quadrant above the diagonal. Here, however, the twice-inbred individuals were fitter than outbred individuals ($W_1 > W_2 > W_0$, see figure 2.3d) and inbreeding was the most prevalent strategy that evolved (figure 2.3a-c). In these circumstances the reduction in fitness associated with outbreeding in order to proceed to the highest fitness of the once-inbred class was too great to allow stable mixed mating. This is a special case of outbreeding depression within an area where intermediate inbreeding is specified as optimal, but never reached. The contour lines for α at 0.98 and 0.99 were drawn to give an indication of the swiftness of the switch from exclusive outbreeding to mixed mating. The switch in all three genetic systems was rapid and relatively similar.

Outbreeding depression was simulated in the parameter space at the top right quadrant below the diagonal (see figure 2.3d). For sibmating diploids we found, as expected, that only inbreeding evolved as a stable strategy (the same results are found for sibmating haplodiploids and selfing diploids at lower resolution, figure 2.4, and inferred for figure 2.3).

Fitness values in the lower right quadrant are unlikely to be found in nature. Here, once inbred individuals had the lowest fitness while repeatedly inbred individuals had the highest fitness ($W_2 > W_0 > W_1$, see figure 2.3d). Therefore, only the sibmating diploid system was simulated to include the lower right quadrant in experiment 2.1. We expected all three genetic systems to fix exclusive inbreeding as
the only stable strategy and verified it with low-resolution simulations of this fitness area for the two remaining genetic systems (experiment 2.2).

Purging of recessive deleterious mutations is found in many natural situations (Crnokrak & Barrett, 2002), and this may lead to exclusive inbreeding. In the lower left quadrant below the diagonal, various levels of purging were simulated (i.e. once inbred individuals had the lowest fitness while outbred individuals had the highest $W_0 > W_2 > W_1$, see figure 2.3d) and we see there was a single switch from outbreeding to inbreeding without any stable mixed mating (figure 2.3).

In natural populations we also expect that there should be some degree of purging and a loss of inbreeding depression (Lloyd, 1979), particularly if there are multiple serial inbreeding events. Purging is slow if the cost of inbreeding is low and inbreeding depression may be maintained (Charlesworth et al., 1990; Lande & Schemske, 1985; Latta & Ritland, 1994). Even lethal mutations, which will lead to a large decrease in fitness of the inbred individuals, may be maintained in moderately selfing populations (Latta & Ritland, 1994).

The haplodiploid genetic system is very effective at purging deleterious alleles as these alleles are exposed to selection in the haploid males. This will mean that haplodiploid taxa will tend to have less inbreeding depression (Antolin, 1999; Bruckner, 1978; Werren, 1993) and will be situated more to the right and above diploid populations in figure 2.3. This will agree with the observation that haplodiploids in natural populations often inbreed (Hamilton, 1967; Werren, 1993; but see chapter 5).

By comparing figures 2.4a, c and e to figures 2.4b, d, and f respectively, it is clear that there is a small part of the parameter space where the final equilibrium was dependent on the initial conditions. This is where W_1 was very low but the difference between W_0 and W_2 was not so big that an individual who are able to attain the optimum fitness will have an extreme advantage over the rest of the individuals in the population. This area was largest for selfing diploids, followed by sibmating diploids and then sibmating haplodiploids. Theory predicts that the initial mating strategies of the population could affect the evolution of subsequent mating strategies (Campbell, 1986; Holsinger, 1988; Lande & Schemske, 1985; Uyenoyama, 1986; Waller, 1993). In these studies it was due to coevolution and linkage of alleles determining fitness and alleles determining mating strategy.
Figure 2.4. Comparison of optimal α (indicated by contours) when different initial mating strategies are specified. The initial inbreeding frequency of the population is 0 in plots a, c & e while it is 1 in plots b, d & f. Similar levels of mixed mating can be seen when comparing the same genetic system: sibmating diploids (a & b), selfing diploids (c & d) and sibmating haplodiploids (e & f). For all three genetic systems the final mating strategy is similar regardless of the starting α, except in the lower left quadrant below the diagonal.
Latta and Ritland (Latta & Ritland, 1993) showed that mixed mating can be stable for selfing diploids when there is a monotonical decline in fitness for serial inbreeding. We followed a similar strategy to Damgaard et al. (1992) to show mixed mating may be stable for selfing diploids. We simulated 21 breeding classes each with reduced fitness relative to the previous class (figure 2.5). We found stable mixed mating for sibmating diploids and sibmating haplodiploids at similar costs of inbreeding to the selfing individuals (figure 2.5). Specifically, selfing individuals switched from exclusive outbreeding to mixed mating when b became smaller than 1.5 (figure 2.5), and this was not surprising that here the fitness of the inbred classes was slightly more than 50% of the outbred class ($W_1 = 0.53$ at $b = 1.25$, see also figure 2.2b).

The higher kin advantage that selfing diploids obtained from inbreeding as compared to sibmating individuals, led to the expectation that they will have higher levels of inbreeding. This apparent predisposition to inbreeding was, however, cancelled by the rapid increase of the inbreeding coefficient of selfing compared to sibmating (see figure 2.2). Comparing the sibmating genetic systems, haplodiploid individuals once more had a lower level of mixed mating than diploid individuals (figure 2.5) due to their lower inclusive benefits of inbreeding. All three genetic systems reached exclusive outbreeding at $b = 2$ and exclusive inbreeding at $b = 0.1$.

Populations in nature show a wide range of inbreeding costs. In a meta-analysis, Crnkrok & Roff (1999) found that plants have an average b of 0.552 (SE ± 0.106). At this low inbreeding cost we would expect more than 85% of all matings to be selfing (figure 2.5), suggesting that the average plant will inbreed on a regular basis. Crnkrokack and Roff found average b for homeotherms to be 0.818 (SE ± 0.472) and 0.661 (SE ± 0.121) for poikilotherms, suggesting mixed mating to be common in animals (although a wide range of inbreeding costs is present in homeotherms). The cost of inbreeding in mammals is, however, much higher, with an average b of 1.98 and with some species reaching values as high as 14 (Greeff & Bennett, 2000) and 15.16 (Ralls et al., 1998). We found that inbreeding was prevented at $b = 2$ and expected, therefore, that although sibmating could occur in mammals it would be infrequent. Much lower inbreeding depression was found in insects with $b = 0.29$ for diploids and $b = -0.014$ for haplodiploids which would lead to chronic inbreeding as is often found in haplodiploids (Hamilton, 1967; Werren, 1993).
Figure 2.5. Probability of inbreeding (α), for different cost of inbreeding (b). For selfing diploids (triangles, dotted line), sibmating diploids (diamonds, dashed line), and sibmating haplodiploids (squares, solid line). Error bars indicate standard deviation of the four repeats.
In conclusion, we showed that stable mixed mating readily evolves when intermediate inbreeding is optimal for a number of mating systems. We also find, in agreement with previous models, that mixed mating may be stable even with low levels of inbreeding depression but show that a minimum of three fitness classes are required. The benefits of inbreeding increases as the females’ relatedness to her mate increases. By comparing observed values of inbreeding depression in nature to our results it seems that some inbreeding should occur in a fair number of species, but that many species also lay close to the switch between outbreeding and a mixed mating system.
3. Sex ratio dependant dispersal when sex ratios vary between patches

Abstract

Theory predicts that sex ratio is affected by dispersal. In turn, individuals will disperse when the cost of dispersal is low or their relatedness is high. However, dispersal has been shown to be unaffected by sex ratio. This is most likely due to the assumption of identical sex ratios between patches in the whole population. In natural populations the sex ratios produced at different sites by different mothers are expected to be binomially distributed. We show, using individual-based simulations, realistic population sizes and variation in sex ratios between patches, that the dispersal of males increases when the sex ratio in their local environment increases. In addition, our results corroborate analytical models that show that relatedness and the cost of dispersal are important factors driving the evolution of dispersal. Lastly, we highlight the decrease in dispersal when offspring, rather than parents, determine when to disperse.
Introduction

Several models consider the coevolution between sex ratios and dispersal (Hamilton, 1967; Perrin & Mazalov, 2000; Taylor, 1994; Taylor & Bulmer, 1980; Wild & Taylor, 2004). Interestingly, these models do not predict any feedback effect of sex ratio on dispersal. This means that while sex ratio evolves in response to kin conflict and dispersal, dispersal evolves in response to kin conflict only and not in response to sex ratio. This is most likely because these models assume a homogenous population where all patches have the same sex ratio. In reality however, sex ratios often vary between patches. Analytical models dealing with dispersal also assume all females will be mated, as well as, very large clutch sizes so that sex ratio may be treated as a continuous trait (Frank, 1986; Gandon, 1999; Gandon & Michalakis, 2001; Leturque & Rousset, 2003; Motro, 1982; Ronce, 2007; Taylor, 1988; Taylor, 1994). These three simplifying assumptions have good heuristic benefits but they may oversimplify the problem. To address these problems, we develop a simulation model that allows males to disperse conditionally, depending on their local sex ratio, with realistic clutch sizes, and with the additional requirement that females must mate to produce offspring.

Analytical models clearly explain how dispersal is promoted by high relatedness of individuals competing for a resource, while being hindered by high costs of dispersal (Clobert et al., 2001; Frank, 1986; Gandon, 1999; Hamilton & May, 1977; Motro, 1983; Motro, 1991; Taylor, 1988). Here, individuals may increase their inclusive fitness by leaving their native patches, thereby providing their siblings with additional mating opportunities when the cost of dispersal is low. As the cost of dispersal increases, the advantage to remain in the native patch and to mate locally increases, due to the lower chance of dispersing successfully and finding a mate. In these models the mothers often determine the rate of dispersal.

However, when dispersal is determined by the offspring, optimal dispersal rates are lower, indicating parent-offspring conflict (Gandon, 1999; Hamilton & May, 1977; Motro, 1983; Taylor, 1988). This makes intuitive sense as parents gain more if enough offspring remain in the native patch to mate each other, while the remainder disperse (thereby reducing local mate competition and increasing the chance of finding additional mating opportunities). On the other hand, offspring would like to
remain in the native patch and not pay the cost of dispersal if mating opportunities are locally available.

Inbreeding depression and a number of other environmental factors (such as variable environmental conditions, predation and parasitism), have also been proposed to affect dispersal (Bengtsson, 1978; Clobert et al., 2001; Perrin & Mazalov, 2000). Reduced dispersal could give rise to structured populations, which in turn will affect the sex ratio of the local patches (Hamilton, 1967). A number of studies have examined the effect of assortative mating on dispersal directly or its influence on sex biased dispersal (Greeff, 1995; Gros et al., 2008; Leturque & Rousett, 2003; Perrin & Mazalov, 2000; Wild et al., 2004; Wild & Taylor, 2004).

To model complex natural processes, such as dispersal, phenotypic variation of a trait is often excluded (Mitchell & Valone, 1990). However, proper understanding of the mechanisms influencing dispersal requires refinement of these models by including realistic life history parameters with normal variation (Gros et al., 2008; Judson, 1994; see also: Lenormand et al., 2009; Ronce et al., 2001). In this chapter we use individual-based simulation modelling to explore how sex ratio variation may affect the evolution of dispersal. We also corroborate current models of dispersal where the cost of dispersal varies. We simulated offspring-determined dispersal in a haploid population where: males determine their dispersal and disperse before mating; all the females disperse from their natal patches after mating; and there are a finite number of males and females in the population and in each patch.

Model description

State variables and scales

The model comprised three structural levels: individual, patch and population. Each individual is characterised by the following state variables: identity number, sex, mating status (mated or unmated), patch number (identity of the patch where the individual reside), dispersal genes (an array of genes each responding to a different range of sex ratios) and male sperm (genes obtained by the females after mating). It is important to note that each dispersal gene has a value from 0 to 1 indicating the
probability of dispersal. However, each dispersal gene responds to a different range of
sex ratios, and therefore only one gene at a time determines if an individual disperses
from a patch. For example: if the first gene of a male individual has a value of 0.1 and
responds to a sex ratio from 0 to 0.33 the male will have a 10% chance of dispersing.
If the sex ratio is not within this range another gene, with its own probability of
dispersal, will affect the individual’s dispersal. This enables us to obtain optimal
dispersal rates for a number of different sex ratios. In addition, the dispersal genes
determine only male dispersal (all the females disperse after mating, irrespective of
their dispersal genes). We assume that males have unlimited matings, while females
can mate only once, and the mating status variable is therefore only utilised by female
individuals.

Each patch has the following variables: patch identity number, number of
foundresses, foundress identity numbers, patch size (number of individuals within
patch), number of males, offspring identity numbers, expected sex ratio, observed sex
ratio and patch viability. Sex ratio is defined as: (males)/(males + females). Only
offspring (i.e. the current generation) are considered as members of the patch, and
used in the determination of the observed sex ratio or patch viability. The expected
sex ratio is set before the start of each simulation. The observed sex ratio is
determined after the offspring are created but before male dispersal takes place (figure
3.1). Two modes of sex ratio production were simulated: In experiment 3.1, the sex of
each offspring was assigned with a certain probability (i.e. the expected sex ratio).
The sex ratio’s produced at each patch were binomially distributed around the
expected sex ratio. Consequently, the observed sex ratio for each patch was calculated
as the proportion of males in that patch. In experiment 3.2, all the foundress females
produced the expected sex ratio and the observed and expected sex ratio were
therefore the same. A patch is considered as viable when at least one male and one
female are present and is evaluated after offspring creation, male migration and each
mating event.

The population is composed of an array of individuals and an array of patches.
The population is furthermore characterised by the following variables: population
size (i.e. the size of the individual array), number of patches (i.e. the size of the patch
array), clutch size, number of generations, number of genes, number of alleles,
Figure 3.1. Life history of individuals (process sequence of model).
mutation rate and cost of dispersal. From these variables the fraction of reproducing females are calculated as: population size/clutch size. Patch viability is determined at every generation and the simulation continues only if viable patches remain.

Simulation process and scheduling (population life history)

The model process sequence is depicted in figure 3.1. The simulation proceeds in discreet generational time steps (i.e. no overlapping generations). In each generation step the events are processed as follows: Females are selected at random from the population to mate. Each female mates once with a male from her local patch (chosen at random from that patch). After mating, the mated females disperse to colonize new patches where offspring are created. Females produce exactly the same clutch size. The offspring sex ratio of each patch is determined. Male offspring have a single chance to disperse from their natal patch in response to their natal patch’s sex ratio. Males that disperse are assigned a new patch at random. Finally, the offspring in the new patches replaces the old population and their patches and the whole process starts anew. The process is repeated a number of generations (see table 3.1). Mutation is a sub-step that proceeds mating (see below).

Design Concepts

Optimal male dispersal strategies emerge from the population dynamics and their stochastic nature since there is no direct fitness assessment of an individual (i.e. there is no fitness value assigned to the individuals, rather, their fitness becomes apparent through the amount of offspring they have). At each gene, an allele defines the probability that a male disperse. There are 101 possible alleles, each of which is a value from 0 to 1 at regular intervals. As mentioned, each dispersal gene only responds to a specific sex ratio range (see response intervals below). All genes are unlinked and new alleles arise in the population through mutation only. Therefore, each simulation needs to run for a number of generations to ensure that the mutational space is adequately searched and equilibrium reached. Ultimately, males should have a dispersal strategy in response to their local sex ratio that will maximise their
inclusive fitness. It should be noted that kin selection do not have to be introduced explicitly as kin-advantage will emerge by default in any individual-based simulation (Gros et al., 2008; Poethke et al., 2007). The probability of dispersal, mutation and the offspring sex ratio are all drawn from binomial distributions. Data gathered for analysis included the dispersal probability for each gene (averaged for all the individuals in the last generation). The complete genotype for each of the individuals in the last generation is also recorded to ensure each gene reached a single optimum (i.e. at each gene only one allele was found throughout the population). In addition, a graph displaying the average value for each gene at every generation is also saved from which stability of the strategies can be evaluated. All gene values stabilised long before data was recorded from the simulation.

Initialization Input

The simulation input values are given in table 3.1. The following variables were kept constant for all the simulations: The initial probability of dispersal (0), number of possible alleles per simulation (101), mutation rate (0.0005). During all the simulations the number of reproducing females (1000) was kept constant, irrespective of the population size or number of foundress per patch. Each set of variables in table 3.1 was simulated 10 times.

Sub models

Mutation rate: The mutational model was a combination of stepwise and jumping mutations. Once an allele was selected to undergo a mutation there was an 80% chance of the allele to step to either of the adjacent alleles and a 20% chance for it to step to any of the other 101 possible alleles.

Dispersal cost: Each male that dispersed had a probability of being excluded from the mating population given by the dispersal cost. All the settling costs and transit costs are subsumed in the single dispersal cost parameter.
Table 3.1. Population and patch parameters for each simulation. *Average number of males per patch when binomial variation was introduced. Each parameter set was simulated 10 times.

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Population parameters</th>
<th>Patch parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Population size</td>
<td>Patches</td>
</tr>
<tr>
<td>Experiment 3.1</td>
<td>100000</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>100000</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>100000</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>30000</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>15000</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>10000</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>8000</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>7000</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>60000</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>30000</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>20000</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>15000</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>12000</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>90000</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>45000</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>30000</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>23000</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>18000</td>
<td>1000</td>
</tr>
<tr>
<td>Experiment 3.3</td>
<td>30000</td>
<td>1000</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>30000</td>
<td>1000</td>
<td>30</td>
</tr>
<tr>
<td>500</td>
<td>30</td>
<td>30000</td>
</tr>
</tbody>
</table>
Mating: During mating only one of the parents, chosen at random, transferred an allele to the new offspring. This donating parent was selected separately for each of the genes enabling normal Mendelian inheritance for unlinked genes.

Response intervals: For simulations where individuals had more than one gene (experiment 3.1) a response interval for each gene was calculated. These intervals were chosen so that the area under the binomial expectation roughly divided into equal parts (as many parts as there were genes). As a result each gene will be expressed with equal frequency and will be under equal selection strength. A specific gene will thus be “switched on” if the observed sex ratio is within the interval. The gene specifies the probability of dispersal for the individual. (Note that the intervals were not assigned from the median of the distribution but started from 0. This skewed the intervals but ensured that the area of each interval were exactly the same size).

Experiments

Experiment 3.1: Binomial sex ratios

Variation in the sex ratio between the patches was caused by enabling the foundress females to produce binomial sex ratios with an average of 0.25 males. Male dispersal could therefore evolve to respond to a range of sex ratios. Five genes, each responding to a different sex ratio range, were optimised per simulation (see above for response interval). To change the number of foundress females per patch the number of reproducing females was kept constant while the number of available patches was reduced. To test the effect of kin selection, simulations were done for 1, 2 and 3 foundress females (see table 3.1 for full parameter set).

Experiment 3.2: Exact sex ratios

To show that dispersal is not affected by the sex ratio when all the females in the population produce the same sex ratio, exact sex ratios were simulated. In each simulation all the foundress females produced the same sex ratio (the expected sex
ratio) and no variation between patches was produced. We therefore had only one dispensal gene that was optimised per simulation. Sex ratios were however different between simulations (table 3.1). Three sets of simulations were performed where the sex ratio was different but the males per patch were kept constant (5, 10 and 15 males respectively for sex ratio range, table 3.1). The sex ratio within each set was therefore changed by keeping the number of sons constant and increasing the clutch size with extra daughters (see table 3.1 for full parameter set).

Experiment 3.3: Different cost of dispersal

To test the effect of dispersal cost when dispersal is under offspring control, we simulated different costs of dispersal (table 3.1). In each simulation all the foundress females produced the exact sex ratio (0.5), and therefore only a single dispersal gene was optimised per simulation. To test the effect of kin selection at different dispersal costs, simulations were performed for 1 and 2 foundress females (see table 3.1 for full parameter set).

Statistics

All statistics on the generated data were performed in R version 2.4.1. For each simulation we recorded the average allele value (i.e. the probability of dispersal) from all the individuals at the final generation for each of the sex ratio ranges. Most genes had only one, or a few similar alleles (e.g. 0.53 and 0.54), fixated throughout the population. The average would therefore reflect the common dispersal strategy.

In experiment 3.1, dispersal was modelled with the following linear model:

\[\text{dispersal} \sim \text{foundress:sexratio}^2 + \text{foundress:sexratio} + \text{sexratio}^2 + \text{foundress} + \text{sexratio}; \]

where foundress was a factor depicting the number of foundresses in each patch. All the higher order terms were tested for significance (see table 3.2). For each of the 5 genes we used the weighted midpoint of the gene range, with weighting equal to the frequency of each class, (from the binomial distribution) as the explanatory variable.

The following linear model was used to model the data from experiment 3.2:

\[\text{dispersal} \sim \text{sexratio}^2 + \text{sexratio} + \text{males}^2 + \text{males}; \]

where males indicated the number of
males in the patch (table 3.1). The model was reduced to the minimum adequate model by removing non-significant terms, starting with the higher order terms (table 3.3).

The following models were fitted to the data from experiment 3.3: dispersal ~ cost$^2 + \text{cost}$; for the 1 foundress simulations and: dispersal ~ cost$^3 + \text{cost}^2 + \text{cost}$; for the 2 foundress simulations (see table 3.4). All the data was untransformed.

Results and Discussion

When variation between patches was present, our results indicated that males will disperse more from patches where there are more males (figure 3.2, table 3.2). The data was best explained by the following model, where each row represents the estimates for 1, 2 and 3 foundress simulations respectively:

\[
\begin{bmatrix}
-10.014 \\
18.597 \\
51.120
\end{bmatrix} \times \text{sexratio}^2 +
\begin{bmatrix}
7.049 \\
-7.852 \\
-25.288
\end{bmatrix} \times \text{sexratio} +
\begin{bmatrix}
-0.406 \\
0.363 \\
2.451
\end{bmatrix}
\]

It was also apparent that dispersal increased when the relatedness of the males in a patch was higher, as males from single foundress patches dispersed more readily than males from two foundress patches, followed by males from three foundress patches (figure 3.2, see also figure 3.4), as has been found in previous studies (Clobert et al., 2001; Frank, 1986; Hamilton & May, 1977; Motro, 1982; Taylor, 1988). In other words, when there are fewer founding mothers per patch the competing males have a higher average relatedness and will disperse more to reduce local mate competition.

When the sex ratio variation between the patches was removed (experiment 3.2), we found that sex ratio had no effect on the evolution of dispersal (figure 3.3, table 3.3, dispersal = -0.002males$^2 + 0.045\text{males} + 0.373$). In these circumstances emigration from the natal patch on account of sex ratio does not pay because, 1) the
Table 3.2. ANOVA table for model from experiment 3.1.

<table>
<thead>
<tr>
<th>df</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adjusted $R^2 = 0.946$</td>
<td></td>
</tr>
</tbody>
</table>

Retained terms

<table>
<thead>
<tr>
<th>df</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8.056</td>
<td><0.001</td>
</tr>
<tr>
<td>2</td>
<td>7.707</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 3.3. ANOVA table for model from experiment 3.2.

<table>
<thead>
<tr>
<th>df</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adjusted $R^2 = 0.579$</td>
<td></td>
</tr>
</tbody>
</table>

Retained terms

<table>
<thead>
<tr>
<th>df</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33.513</td>
<td><0.001</td>
</tr>
<tr>
<td>1</td>
<td>57.930</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Deleted terms

<table>
<thead>
<tr>
<th>df</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.510</td>
<td>0.2211</td>
</tr>
<tr>
<td>1</td>
<td>1.550</td>
<td>0.2151</td>
</tr>
</tbody>
</table>

Table 3.4. ANOVA table for models from experiment 3.3.

<table>
<thead>
<tr>
<th>df</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Foundress Model: Adjusted $R^2 = 0.861$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Retained terms

<table>
<thead>
<tr>
<th>df</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120.743</td>
<td><0.001</td>
</tr>
<tr>
<td>1</td>
<td>17.994</td>
<td><0.001</td>
</tr>
</tbody>
</table>

2 Foundress Model: Adjusted $R^2 = 0.975$

Retained terms

<table>
<thead>
<tr>
<th>df</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50.278</td>
<td><0.001</td>
</tr>
<tr>
<td>1</td>
<td>127.822</td>
<td><0.001</td>
</tr>
<tr>
<td>1</td>
<td>516.601</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Figure 3.2. Modelled relationships between dispersal and sex ratio with binomial variance (from experiment 3.1, see table 3.2). Diamonds and solid lines: 1-foundress simulations; circles and dashed lines: 2-foundress simulations; triangles and dotted lines: 3-foundress simulations. Dash-dot line indicates the binomial distributed sex ratio with an average of 0.25 males. The response intervals for each of the simulations are indicated above the graph.
Figure 3.3. Modelled relationships between dispersal and sex ratio with no variation between patches (from experiment 3.2, see table 3.3). Solid line: 5 males per patch; dashed line: 10 males per patch; dotted line: 15 males per patch. Dash-dot line indicates the predicted level of dispersal (0.833) at for one-foundress patches at dispersal cost of 0.2 (see text).
Figure 3.4. Modelled relationship between dispersal rate and cost of dispersal (from experiment 3.3, see table 3.4). Diamonds and solid lines: 1 foundress; circles and dashed lines: 2 foundresses. Bold lines indicate our results, thin lines from predicted dispersal if under maternal control (see text).
amount of competitors are exactly the same, 2) the amount of mating opportunities are exactly the same and 3) there is a cost to dispersal. However, here we found that the more males present per patch (irrespective of the sex ratio), the higher the dispersal rates (figure 3.3, table 3.3).

Most models dealing with dispersal assume infinite clutch sizes and exact population-wide sex ratios (Frank, 1986; Gandon & Michalakis, 2001; Leturque & Rousett, 2003; Motro, 1982; Ronce, 2007; Taylor, 1988; Taylor, 1994) to make these models tractable (Greeff, 1998; Mitchell & Valone, 1990; Ronce, 2007). It is however known that stochastic demographic conditions may affect the evolution of many traits under selection (Lenormand et al., 2009), including dispersal strategies (Gros et al., 2008; Ronce, 2007) and even that facultative dispersal may reduce the fitness impact due to inaccurate sex ratios (Greeff & Compton, 2002). When we included variation in our simulation, we found that males responded differently in populations where there was variation between patches compared to populations with homogenous patch sex ratios (compare figures 3.2 and 3.3). In figure 3.2 we observe that sex ratio had a significant, positive relationship, with increased dispersal, but was significantly different for each of the foundress treatments (table 3.2). In this experiment we had foundress mothers (irrespective of the amount of foundress mothers per patch) produce an average sex ratio of 0.25 males but with a binomial distribution as indicated by the dash-dot line in figure 3.2. Males had 5 dispersal genes, each responding to, and optimised for, one sex ratio range (indicated above the graph in figure 3.2).

Our results are supported by field observations. Moore et al. (2006) showed that pollinating males had higher dispersal rates when fewer females were available in a patch. Similarly, Lawrence (1987) observed a significant increase in dispersal flights of male milkweed beetles as the sex ratio became less female biased.

High levels of dispersal are observed in all our results in response to high levels of local mate competition (Perrin & Mazalov, 2000). The model from Wild & Taylor (2004) predicts the amount of dispersal for all our simulations in experiment 3.2 to be 0.833 (where male dispersal = (C-1/N)/(C^2 -1/N), with the cost (C = 0.2), the number of foundress (N = 1), and mothers determining the dispersal rate of their sons). There are two possible explanations for the lower dispersal rates relative to the predicted rate. First, as the number of males per patch decreased the chance that all the males disperse from that patch increased. When this happens the females from that patch

58
would either be unmated and die or be mated by a complete stranger thereby negating the possible advantage obtained from sibmating. For example, if the average dispersal rate is 0.833, the chance that all males will disperse away from a patch with 5 males is 47%. In a patch with 10 males it is 16% and in a patch with 15 males it is only 6.5%. It is clear that this risk is much larger in patches with realistic numbers of males, and lower dispersal rates in these patches are expected.

A second reason for lower dispersal rates than predicted is that mothers are often in control of the offspring dispersal rates in these models (Clobert et al., 2001; Frank, 1986; Gandon, 1999; Hamilton & May, 1977; Motro, 1983; Motro, 1991; Taylor, 1988). This is sometimes justified when the mothers control the morphology and thus the dispersal tactic of her sons (Pienaar & Greeff, 2003). In our simulations the males ‘decided’ to disperse or not. From experiment 3.3 it is clear that females would want their sons to be more altruistic towards each other and disperse more than they are willing to (figures 3.4, table 3.4, one foundress model: dispersal = 0.337cost2 - 0.905cost + 0.859; two foundress model: dispersal = -3.869cost3 + 7.397cost2 - 4.551cost + 0.893). This parent-offspring conflict has been noted before by several authors (Gandon, 1999; Hamilton & May, 1977; Motro, 1983; Taylor, 1988).

Our results from experiment 3.1 and 3.3 also confirm that higher relatedness increased the willingness to disperse from a natal patch (figures 3.2 and 3.4). From experiment 3.1 we observed that when the males were less related (i.e. more foundress mothers) they had a larger reaction to changes in the sex ratio (note also the steeper slopes of the models). In spite of this, less related males had a lower dispersal probability in general (figure 3.2). From experiment 3.3 we found that males from 2-foundress patches had much lower dispersal rates than those of 1-foundress patches. As the cost of dispersal increased less related males rejected dispersal as a strategy completely (figure 3.4). This was in agreement with theory, mentioned previously, as related males do not only disperse to increase their own fitness directly but also their inclusive fitness from the extra matings their brothers may have by not competing with them (Frank, 1986; Hamilton & May, 1977; Motro, 1982; Taylor, 1988). Note however, that if the cost of dispersal is 1, that males from 1-foundress patches vary highly in their dispersal rates (figure 3.4, cost = 1). At this high cost, no males from neighbouring patches can invade and only brothers compete for mating opportunities. There is thus no selection on the trait and drift is the only evolutionary force in
operation. The only motivation for reduced dispersal is the risk of all males dispersing from the patch and that none of the sisters are mated.

In conclusion, most models show that dispersal is mainly affected by the cost of dispersal and the relatedness of the competing individuals (Clobert et al., 2001; Frank, 1986; Hamilton & May, 1977; Motro, 1982; Taylor, 1988). Additionally we know that inbreeding depression increases the rate of dispersal (Bengtsson, 1978; Clobert et al., 2001; May, 1979; Motro, 1991; Perrin & Goudet, 2001; Perrin & Mazalov, 2000). However, in our simulations the cost of dispersal is kept constant, and there are no negative fitness effects due to inbreeding. Lastly, sex ratios in natural populations are often binomially distributed (Hardy, 1992), and we highlight the feedback of this variation on the evolution of dispersal. We show that if males are able to estimate the sex ratio in their own patch that they will disperse if the sex ratio is high, but only if there is sex ratio variation between the patches.
4. Adequate sample sizes for accurate detection of population subdivision: a simulation based exploration of summary statistics

Abstract

Accurate estimates of genetic population subdivision are of importance, not only for the understanding of population dynamics in biological systems, but also for identification of unique populations that need to be conserved. Various factors affect the accuracy of these estimations including the sampling scheme employed. Here simulation modelling of microsatellite loci in diploid individuals for a structured population has been used to estimate the optimal number of loci and individuals necessary for accurate estimation of population subdivision. A surprising finding is that more individuals and loci need to be sampled in smaller populations than for larger populations to obtain the same accuracy. I also show that the actual genetic structure of the population does not affect the accuracy of the estimation except when there are very low levels of population subdivision. In these cases fewer individuals are necessary to obtain the same level of accuracy. Lastly, sampling different numbers of loci and individuals showed that a few of each might be adequate to accurately determine population subdivision.
Introduction

Genetic population structure inferences have developed significantly in recent years. It is relatively inexpensive to develop molecular markers for most organisms and obtain data to be used for assigning genetic population structure (Sunnucks, 2000). In addition, analysis of molecular data has become easier through the development of programs that cluster a population into various subpopulations or that test differentiation amongst predefined subpopulations (Luikart & England, 1999; Pearse & Crandall, 2004). Notwithstanding the development of molecular and analysis tools, there is still a shortage of user-friendly experimental design programs. Using the wrong experimental design results in an excess of time and money spent on obtaining redundant samples or genotyping a surplus of loci per sample while the accuracy of the population inferences remains unchanged. Additionally, obtaining high quality DNA often requires invasive sampling of wild animals, while both invasive and non-invasive sampling are labour intensive (Taberlet et al., 1999). Accurate estimation of population structure using the minimum number of individuals and loci is not only beneficial in reducing the cost of excessive data collection but is also important in conservation genetics as these estimates are often used in management and conservation strategies.

Population structure and gene flow estimated from molecular data are routinely used to identify distinct subpopulations (Palsbøll et al., 2006; Waples, 1998; Waples & Gaggiotti, 2006). A classical and often used method to detect population structure is through the use of summary statistics, such as Fst. Fst, as defined by Weir and Cockerham (1984). Although more powerful methods of estimating population substructure are available, summary statistics are still often used as initial indicators of structure, to supplement other indicators or even as a comparative benchmark for other methods (Balloux & Lugon-Moulin, 2002; Neigel, 2002; Pearse & Crandall, 2004). Previous studies found that more loci, rather than more individuals, will increase the accuracy of the estimated population structure (Felsenstein, 2006; Pluzhnikov & Donnelly, 1996). Both Felsenstein’s (2006) and Pluzhnikov & Donnelly’s (1996) studies used sequence data and showed that 8 individuals (long sequence reads of only one locus) were sufficient for accurate population structure estimation. It is ideal to provide the minimum requirements (i.e. the least number of
loci and individuals necessary, to accurately detect the presence or absence of population structure). These minimum sampling requirements would therefore indicate the optimal sampling strategy by reducing cost and effort in obtaining and typing individuals. They are also likely to be sufficient for more advanced methods (Luikart & England, 1999; Pearse & Crandall, 2004).

I developed the program POPSTAT, which uses individual-based simulation modelling to construct a population from user specifications. The unique feature of POPSTAT, however, is the implementation of repeated sampling from the simulated populations. From the simulated population the repeated sampling schemes may then be tested by the user to determine the number of molecular markers and individuals needed to obtain an accurate estimate of population subdivision. In this chapter I describe how different sampling schemes from simulated populations affect the detection of accurate population structure and provide general guidelines for developing a sampling scheme. I found that simulations of different population sizes show that more individuals, or more loci, are necessary for accurate population structure estimates in small populations compared to large populations. This finding is counterintuitive and it is very important to devise appropriate sampling schemes for small populations, as these are often required for conservation purposes of endangered species. In addition there is a trade-off between the minimum number of individuals and the minimum number of loci necessary to obtain accurate estimates of population structure.

General conclusions on optimal sampling schemes, from this study, do not necessarily apply equally to all populations. It would therefore be advisable to estimate adequate sample sizes individually for each study population. The program POPSTAT (version 2) is freely available for this purpose at: http://www.bi.up.ac.za/software/popstatwin.zip (also available in the electronic appendix).
Materials and methods

Model description

The program POPSTAT (version2) was designed to investigate how different sampling schemes affect accurate detections of population structure from two subpopulations. The program is able to simulate the subpopulations as well as importing data from populations simulated by other applications. A detailed description the program can be found in the POPSTAT help file, available in appendix A. However, a brief description of key of the features of the program follows.

The model has two hierarchical levels, namely individual and population. Each individual is diploid and is therefore characterised by two arrays of loci variables, and also an identity number. All loci are unlinked and the user defines the number of loci. The program is a forward-time simulation program that simulates a single, panmictic population for a user-defined number of generations. The population is then separated into two subpopulations and simulated for a number of generations that is also defined by the user (it should be noted that the population homogeneity can be evaluated before it is divided into two subpopulations and the simulation extended to reach equilibrium if necessary, see also appendix A). The population has the following variables that can be defined by the user: population size of each subpopulation, migration rate and mutation rate.

After the simulation of two subpopulations, different sampling schemes can be employed, which allows the user to vary the number of individuals sampled as well as the number of loci used. From these sampling schemes the Gst (Nei, 1987), Fst (Weir & Cockerham, 1984) and Rst (Slatkin, 1995) are calculated. The sampling from each subpopulation is completely random. Any sampling scheme can automatically be repeated from which the accuracy of the summary statistics for that population may be determined.
General parameters

As the aim of this study is to investigate the number of individuals and loci necessary to accurately detect population structure between subpopulations, it is important to create populations with a known structure. For this reason all the individuals and all the loci were used in calculation of the summary statistics after every run. In all the simulations the number of generations since the population split were varied to obtain the desired level of population structure. However, required levels of population structure may also be obtained by changing the migration or mutation rate. In this study all the simulations were performed with no migrants between the two subpopulations, a mutation rate of 0.0001 per gamete per locus per generation (all mutations were stepwise) and 50 loci for each individual in the population. In some cases sampling per subpopulation may indicate a non-integer number of individuals sampled (i.e. 32.5 individuals per subpopulation sampled). This means that a total of 65 individuals were sampled from both populations and one population (chosen at random) contributed 32 while the other contributed 33 individuals to the whole sample.

Experiments

Experiment 4.1: Simulation of different Fst values

To obtain a dataset with increasing Fst values the following simulation parameters were used. A single, random mating population of 20,000 individuals was divided after 5,000 generations into two equal subpopulations and simulated for another 10,000 generations. The subpopulations were sampled at the 5,000-generation interval and at each following 500 generations thereafter.

The following sampling schemes were used: each time 500 re-samplings of 10, 32.5, 55, 77.5 individuals per subpopulation were performed. For each sample the Fst for the population was calculated (using all 50 loci in each case). For the different sample sizes the 500 calculated Fst values were used to determine the standard
deviation at each sample size. In addition, to obtain the actual genetic differentiation for comparison, all the individuals in the two subpopulations were sampled at every 500-generation interval and the actual Fst, Gst and Rst calculated.

Experiment 4.2: Simulation of different population sizes

To investigate the effect of population size on the accuracy of Fst estimation populations of different sizes were simulated. The details of the parameters used for each simulation are given in table 4.1 as well as the Fst calculated using all the individuals and all the loci.

Although the Fst value itself should not have an effect on the accuracy of estimation (see Discussion), all the populations were simulated until a similar Fst value was reached. An exception was however the largest population (population size 100,000) simulated to a final Fst of only 0.2 due to computing time constraints. A high level of subdivision was chosen to reduce the effects produced on the standard deviation when most of the sampled Fst values are 0.

The following sampling scheme was used for all the different population sizes simulated: 500 re-samplings of 5 individuals per subpopulation, increasing stepwise with 5 individuals up to 100 individuals at the final generation. The Fst per sampling was calculated separately for an increasing number of loci from 1 to 50. A standard deviation of the Fst was calculated for each of the 500 repeats per number of individuals sampled per number of loci used. To obtain the actual genetic differentiation, all the individuals were sampled, and all the loci used to calculate the final Fst of the population (table 4.1).

Experiment 4.3: Simulation of a single population for estimates of optimal sampling

A final simulation was performed to demonstrate the effect of number of individuals and loci number sampled on the accuracy of the Fst measure. A total population size of 5000 individuals was simulated as one population for 5000 generations and then as two equal subpopulations for another 1000 generations. The same sampling scheme
Table 4.1. Parameters used for each simulated population in experiment 4.2. The Fst value for all the simulations at the separation of the single population into two sub populations was 0. Final Fst was calculated using all individuals and loci.

<table>
<thead>
<tr>
<th>Population size (total)</th>
<th>Number of generations</th>
<th>Final Fst</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before separation</td>
<td>After separation</td>
</tr>
<tr>
<td>1000</td>
<td>5000</td>
<td>100</td>
</tr>
<tr>
<td>2000</td>
<td>5000</td>
<td>200</td>
</tr>
<tr>
<td>10000</td>
<td>5000</td>
<td>1200</td>
</tr>
<tr>
<td>20000</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>100000</td>
<td>15000</td>
<td>50000</td>
</tr>
</tbody>
</table>
as for the 5 populations from experiment 4.2 was used. The final Fst for this population was 0.428.

Results

Experiment 4.1: Effect of the Fst values on the standard deviation of the Fst

The actual Fst value of the population did not have an influence on the standard deviation of the Fst (figure 4.1). An exception of course was when the Fst is 0 or very small (figure 4.1). The Fst values (as well as the Gst and Rst) increased in successive generations between the two separated subpopulations (figure 4.2). This can be seen at generation 5000 where the population was still un-separated and the Fst was 0, and to some degree at generation 5500 (Fst 0.0933, compare figures 4.1 and 4.2). The Fst values for the repeated samplings were not normally distributed at very low levels of population structure and as most values were 0 or close to 0, the standard deviation was also lower. A similar effect will be observable at Fst values that are 1 or very close to it.

It could also be observed that there was less variation in the standard deviation of larger sample sizes as well as a lower standard deviation in general than for small sample sizes (figure 4.1).

From figure 4.2 it was interesting to note that there was a marked difference between the different summary statistics as the two subpopulations became more different. Both the Gst and Fst plateau earlier and at a lower level than the Rst even after long separation times. All the summary statistics at their respective plateaus in this experiment were however indicative of genetic structure in the subpopulations.
Figure 4.1. Standard deviation of Fst over a number of generations (calculated using repeated sampling of different sample sizes, from 10 to 100). It can be seen that the variation over generations was very small except at generation 5000, where the populations were separated (also figure 4.2 for actual Fst values).
Figure 4.2. The increase in summary statistics when a population was separated into two subpopulations. The summary statistics were calculated using all the loci from all the individuals at different generations and a clear increase in the population structure can be seen.
Experiment 4.2: Effect of population size on the standard deviation of the Fst

The standard deviation of the Fst decreased as the population size increased, as observed in figure 4.3 (reported only a subset of the data, i.e. for 5, 10, 25 and 50 loci). This trend was observed at all sample sizes and different numbers of loci genotyped except in a few cases when only 1 or 2 loci were used in the determination of the Fst value. From this we can see that accurately estimating the Fst in large populations require smaller sample sizes, while small populations require larger sample sizes to obtain the same accuracy (figure 4.3).

Experiment 4.3: Effect of sample size vs. number of loci on the accuracy of the Fst

The accuracy of the estimated Fst increased with an increase in either the sample size or number of loci used (figure 4.4). It is clear that every additional locus used in the determination of the Fst decreased the standard deviation of the Fst and that this decrease was larger when sample sizes were very small (figure 4.4). Similarly, a large decrease in the standard deviation of the Fst was seen with every additional sample used, with a larger decrease when only a few loci were typed (figure 4.4). Using the standard deviation of the Fst, plotted against the number of loci and individuals sampled (as in figure 4.4) provided a quick and easy way to determine the optimal sampling scheme. For example, if an adequate level of accuracy is where the standard deviation of the Fst is less than 0.02 (figure 4.4) then for 20 loci typed, one can read from the graph that 15 individuals per subpopulation would be sufficient to get that accuracy.
Figure 4.3. Decrease in standard deviation of the Fst as the number of individuals sampled increases for an increasing number of loci sampled for different sized populations (subpopulation size indicated in the legend from 1000 to 10000 with the Fst of the population when all individuals and loci are used). Larger populations have a lower standard deviation for all combinations of loci and individuals sampled.
Figure 4.4. Contour plot of the standard deviation of the Fst. The standard deviation decreases when either the number of loci genotyped or the number of individuals sampled increases.
Discussion

Investigation of the simulated data led to inferences of four factors that may affect the accuracy of the Fst value. First, smaller populations require larger sample sizes to have the same accuracy as large populations. Second, the degree of structure itself (or the actual value of the Fst) does not seem to influence the accuracy of the inferred structure. The last two factors are the number of loci and the number of individuals sampled. Increasing both these factors increases the accuracy of the estimated population structure.

Effect of population size on accuracy

A general trend in statistics is to increase sample size as the study population size increases. However, from figure 4.3 we see that the standard deviation of the Fst is smaller in large populations at the same sample size used for small populations. This leads to the counterintuitive argument that we need fewer individuals from large populations to accurately detect population structure.

The reason for the inverse in adequate sample size vs. population size is because there is a larger probability of sampling unique genotypes when the population and sample size is small (see also Paetkau et al., 2004). Because big subpopulations have many individuals, who we expect to be randomly distributed, average genotypes are expected to be sampled more often. If this is not the case the subpopulation may need to be sub-structured even further and the sampling scheme re-evaluated. The resampling experiments in this chapter support this result (figure 4.3). This has the following implications for once-off sampling schemes in field experiments: small populations need more samples than large populations to get an accurate estimate of population substructure.

In the simulations the subpopulations were always equal in size, but the same reasoning as above can provide some guidelines to unequal subpopulations. Sampling from a small subpopulation may provide a skewed view of the uniqueness of the subpopulation, and enough samples should be obtained to circumvent this. The same
number of individuals, sampled from the larger subpopulation (assuming the large subpopulation to be truly panmictic), should then be sufficient to accurately detect population subdivision.

All the arguments used for sample sizes also hold for the number of loci used in calculating the Fst value, i.e. smaller populations need more loci per individual to reduce the bias that may arise from, by chance, sampling only the unique loci in the population.

Effect of the Fst on the accuracy

We do not expect the true population Fst to affect the accuracy of its estimation (figure 4.1). It is however important to verify this as general inferences on the sampling scheme may be affected if there is an effect. From figure 4.1 we see that the standard deviation of the Fst was lower only when the Fst value itself was still very small (also shown by Ryman et al., 2006). This effect was seen because the subpopulations were still very similar and even with repeated sampling the calculated Fst values will mostly be very small or 0. However, as soon as the Fst value approaches 0.1, the level at which the application STRUCTURE (Pritchard et al., 2000) can detect population subdivision (personal observation), the standard deviation stabilises.

The Fst value or actual subdivision of the population therefore has a number of implications on the sampling scheme. If the population is structured, large sample sizes will detect this structure, irrespective of the degree of structuring in the population. If, on the other hand, the population is not structured, fewer samples are necessary to accurately predict the Fst. It is, however, extremely important to have enough samples to accurately estimate high population subdivision even if the population is suspected to be unstructured, otherwise hidden structure may remain undetected.

Mention must be made of the different rate of change between some of the summary statistics as observed in figure 4.2. All three statistics are indicating population subdivision at the end of the simulation, even though the respective values are different. To put this in context however, the Gst and Fst values are both calculated through the genotype frequencies in the population while the Rst also takes
into account the actual genotype. This specifically refers to stepwise mutation of microsatellite loci, (Slatkin, 1995). The Rst values are therefore more sensitive to any changes in the genotypes and will increase quicker than frequency-based methods, such as Gst and Fst. Furthermore, the Fst is almost always double the Gst in all the simulations performed (personal observation). Inferences of population subdivision should be made by also taking into account the method used to detect this structure. For instance, if an Fst value of 0.3 will be used as an indication of strong population structure, the corresponding Rst value will be much higher. Rst, however has the disadvantage of being specifically applicable only to microsatellites under the generalised stepwise mutation model (Slatkin, 1995). It is therefore advisable to use various methods to infer population structure.

Effect of sample size and loci number on accuracy

When formulating a sampling scheme it is important to consider what would be a sufficient level of accuracy. There are various ways to test the accuracy of different statistical methods or sampling schemes. For this study I chose to use the standard deviation of the Fst from repeated sampling as a measurement of accuracy as it is straightforward to compare and can be readily determined from the data generated by the simulation output. The required level of accuracy of Fst may of course be vary between different species or different populations and sampling schemes with more accuracy can be devised using the same principles and software if necessary.

I find that an increase in either the number of loci or the number of individuals sampled will increase the accuracy of the Fst (figure 4.4). Figure 4.4 also reveals that after the rapid decrease in the Fst, when loci and sample numbers increase, there is a stabilization of the standard deviation. Once the standard deviation has stabilised in this way, increasing the number of loci or individuals would contribute very little to the accuracy of the estimates. The optimal number of individuals used in any sampling scheme is, however, mostly dependent on the number of loci used and *vice versa*. As these two factors are inversely correlated, both need to be estimated simultaneously as in figure 4.4. From this figure it is easy to determine the optimal number of individuals to sample once the loci to be used are developed to obtain
accurate estimates of population subdivision. It is however important to estimate this specifically for the different population sizes that will be sampled.

Guidelines on sampling

According to the results obtained from the simulations in this study, it is important to keep the following in mind when planning a sampling scheme. The program POPSTAT simulates only two populations from which sampling are performed and inferences made. In field studies there are often more than two subpopulations and to reconcile this with the simulation data, the two most diverged subpopulations need to be used for an estimation of the sample size and the number of loci that are necessary to obtain accurate results. Using the sub-populations that are assumed to be most divergent prevents sample size estimates based on an unstructured population, which is the only case where the actual Fst values have an effect on the accuracy of the estimates. Pair-wise comparison of subpopulations is routinely performed in population studies (Kitada et al., 2007) and there are a number of programs used to estimate pair-wise Fst values from genotypic data (Excoffier et al., 2005; Goudet, 1995; Raymond & Rousset, 1995). Starting with a complex simulation model with more than two subpopulations require more assumptions about the population such as differential migration rates and sub population sizes. Moreover the minimum adequate sample size required to differentiate between the most diverged subpopulations would be adequate to reveal any other substructure regardless of the complexity of the population structure. Once the minimum number of samples is determined to accurately detect population structure for the two most unrelated subpopulations, the same number of samples from each of the other assumed subpopulations should be obtained (see Goudet et al., 1996 on balanced sampling). This would provide accurate estimates for differentiation between all pair-wise comparisons of the subpopulations.

In conclusion, when sampling from different populations, the actual population structure does not play a role in the accuracy of the estimations, except when the population is almost completely unstructured. However, smaller sample sizes are required for these populations and the same sampling scheme as for more structured populations would therefore be sufficient. If the population is small, slightly more loci and individuals should be used in determining population structure. The number of
loci to be used depends on the number of individuals that would be sampled and *vice versa*. As a general rule (even for small populations, e.g. 5000 individuals), 20 loci (which are easily obtainable with current molecular tools) and 15 individuals per subpopulation are sufficient to accurately determine population subdivision. It is still extremely important to know the population biology of the study organism. This will determine the assumed population divergence (from isolation by distance or other environmental factors) that will be used in the simulation, the accuracy of simulations as well as the resultant sampling schemes.
5. Inbreeding depression does not promote mixed mating and dispersal in a male pollinating fig wasp, *Platyscapa awekei*

Abstract

Theory predicts that high levels of inbreeding depression or kin competition will promote the evolution of dispersal. Species with mixed mating systems (sibmating as well as random mating) provide strong evidence for the importance of inbreeding depression in determining the mating system. Using the pollinating wasps *Platyscapa awekei* as a model system we investigate the recent evolution of male dispersal in relation to their level of inbreeding depression. Previous work suggested that *P. awekei* suffers from inbreeding depression but possibly also from outbreeding depression. With a much larger sample size we show that *P. awekei* females have low levels of inbreeding depression. We used the program SibMate to determine if this low inbreeding depression could be sufficient to select for male dispersal and mixed mating. We find that the level of inbreeding depression alone is not severe enough in *P. awekei* to cause male dispersal and that other factors, such as the high proportion of male-only broods, kin competition and sex ratio, may be necessary to bring about the evolution of male dispersal.
Introduction

When an individual is faced with the option of mating with a relative, a number of factors play a role in the mating decision. Ultimately, the mating strategy depends on the number of genes (identical to your own), which are successfully transferred to the next generation. In nature, a multitude of different mating strategies are found (Keller & Waller, 2002; Thornhill, 1993) and include inbreeding, outbreeding or a strategy that lies somewhere in-between. Focusing on mixed mating, where individuals frequently outbreed with unrelated individuals, as well as, inbreed with close relatives, leads to the following question: What would cause individuals to stay close to their relatives and mate with them and at other times cause them to migrate and mate with non-relatives?

Due to the chronic inbreeding that occurs in many haplodiploid species (Godfray & Cook, 1997; Hardy, 1994; Werren, 1993), including pollinating fig wasps (Greeff, 2002; Greeff et al., 2003; Herre et al., 1997; Molbo et al., 2002; Molbo et al., 2004; Zavodna et al., 2005), alongside purging in the haploid males (Bruckner, 1978; Werren, 1993), it is expected that haplodiploids suffer less from inbreeding depression (Antolin, 1999; Henter, 2003; Werren, 1993). Despite this expectation, considerable inbreeding depression in haplodiploids has been observed (Antolin, 1999; Henter, 2003).

Inbreeding depression may lead to the evolution of male dispersal (Bengtsson, 1978; Gandon, 1999; Motro, 1991; Perrin & Mazalov, 2000; Ronce, 2007; Waser et al., 1986). Male dispersal, in turn, could lead to mixed mating, if intermediately related individuals are not available, and if the inbreeding depression is not too severe (chapter 2).

In addition to inbreeding depression, a number of other factors may induce male dispersal: Dispersal is often a solution to high levels of local mate competition (Clobert et al., 2001; Frank, 1986; Hamilton & May, 1977; Perrin & Mazalov, 2000; Ronce, 2007; Van Valen, 1971). Moore et al. (2006), have proposed this as the cause of dispersal in Platystaca awekei males. It has also been shown that the sex ratio in P. awekei (which is less female biased than those of other pollinating wasps) could trigger male dispersal (Moore et al., 2006; Nelson & Greeff, 2009; but see also chapter 3).
The presence of mixed mating as a breeding strategy is difficult to explain as factors causing the inbreeding would normally oppose outbreeding and vice versa. In addition to factors that cause male dispersal, a number of factors that cause inbreeding have been identified. An obvious motive for inbreeding is outbreeding depression, which has been observed in *P. awekei* (Greeff et al., 2009). However, the study by Greeff et al. (2009) was based on a small sample and the results were somewhat ambiguous and failed to explain the mixed mating system. Additional factors that might reduce male dispersal and therefore mixed mating include the high cost of dispersal (Clobert et al., 2001; Frank, 1986; Gandon, 1999; Hamilton & May, 1977; Motro, 1983; Motro, 1991; Taylor, 1988) and the kin advantage of inbreeding (Bateson, 1983; Bengtsson, 1978; Fisher, 1941; Kokko & Ots, 2006; Parker, 1979; Pusey & Wolf, 1996; Waller, 1993; Waser et al., 1986; Wolf, 2000; see also chapter 2).

The life history of pollinating fig wasps provides us with an opportunity to test hypotheses that could explain the evolution of mixed mating. The relevant life history details, of the study species *P. awekei*, are as follows: A single or a few mated females enter receptive figs, lay their eggs and die. The larvae develop by feeding on the galled flowers inside the fig. It has been suggested that the success of development depends on the quality of the egg and gall, both of which may be determined by the mother’s genotype (Greeff et al., 2009). After development, the males eclose first and mate with the females, who are receptive only whilst in their respective galls. *Platyscapa awekei* males regularly engage in contest competition (Greeff et al., 2003; Nelson, 2005) and dispersal to other figs (Greeff et al., 2003), often before the depletion of receptive females in their native fig (Moore et al., 2006). Once a female ecloses from her gall she leaves the fig in order to start the cycle anew. This species enable us to investigate three key aspects that may affect the mating strategy: the level of inbreeding depression, the kin advantage to sibmating, and the advantages to male dispersal.

The aim of this study is to determine if there is an optimum between inbreeding depression and outbreeding depression in *P. awekei*, which may lead to mixed mating (Bateson, 1983; Greeff et al., 2009; Price & Waser, 1979; chapter 2). This is done by: 1) Determining the effect of the mother’s inbredness on her ability to produce mature offspring. We find, by using a larger sample than Greeff et al. (2009), that only inbreeding depression is present in *P. awekei*. 2) Using the program SibMate (chapter
2), we simulate the empirical results for *P. awekei* and predict the optimal mating strategy. Our results indicate that inbreeding depression is too low to cause outbreeding and male dispersal is probably not an adaptation to reduce inbreeding depression.

Materials and Methods

Sample collection

Sampling was performed at the National Botanical Gardens in Pretoria during the summer (February and December) over 2 years (table 5.1). We carried out single foundress introductions of the pollinating fig wasp *Platyscapa awekei* into their natural host *Ficus salicifolia*. Single foundress introductions ensure that the data were from a single mother. This permitted the reconstruction of the mother’s genotype from her offspring. In addition, the clutch-sizes of each mother, which is equal to her total lifetime reproductive success, could be used as a good proxy for her fitness.

Material bags were placed around figs 2-3 weeks prior to becoming receptive for pollination. The bags prevented non-experimental pollinator females from entering the figs as they developed. Once the bagged figs became receptive single wasps were allowed to enter each fig after which the figs were again bagged and allowed to develop. Females used for introductions were obtained one day prior to introduction by collecting releasing figs (from the botanical gardens in Pretoria) and placing each fig in a single glass vial stopped with cotton wool. The next morning females released during the night were placed on a fig (only one female from each vial) and left to enter (manual introduction). Alternatively, bags were removed from the experimental figs as they became receptive and female wasps, arriving naturally, were allowed to enter the figs (one female per fig only, natural introduction). This occurred when trees with releasing figs were hard to obtain. Again bags were placed around the figs and left to develop. The type of introduction (manual or natural) for each tree is indicated in table 5.1.

Once the figs were almost ready to release, the bags were removed and traps were placed on each fig. The traps were constructed from eppendorf tubes with both
Table 5.1. Population source data with averages and standard deviation (SD) for the clutch size and number of underdeveloped individuals as well as the percentage of virgin females (i.e. male only broods) and average homozygosity per tree.

<table>
<thead>
<tr>
<th>Population</th>
<th>Introduction date</th>
<th>Introduction method</th>
<th># Genotypes reconstructed</th>
<th>Clutch size (SD)</th>
<th>Underdeveloped (SD)</th>
<th>% Unmated</th>
<th>Average loci homozygous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree 1</td>
<td>February 2006</td>
<td>manual</td>
<td>37</td>
<td>46.946 (10.724)</td>
<td>0.541 (1.070)</td>
<td>29.730</td>
<td>2.135</td>
</tr>
<tr>
<td>Tree 2</td>
<td>December 2006</td>
<td>manual</td>
<td>22</td>
<td>61.045 (9.105)</td>
<td>0.409 (1.333)</td>
<td>4.454</td>
<td>1.864</td>
</tr>
<tr>
<td>Tree 3</td>
<td>December 2006</td>
<td>natural</td>
<td>50</td>
<td>54.48 (13.380)</td>
<td>0.100 (0.303)</td>
<td>4.000</td>
<td>1.940</td>
</tr>
<tr>
<td>Tree 4</td>
<td>February 2007</td>
<td>natural</td>
<td>29</td>
<td>43.172 (12.048)</td>
<td>0.517 (1.122)</td>
<td>24.138</td>
<td>2.517</td>
</tr>
<tr>
<td>Tree 5</td>
<td>February 2007</td>
<td>mixed</td>
<td>42</td>
<td>51.095 (12.060)</td>
<td>0.952 (1.710)</td>
<td>0.000</td>
<td>2.571</td>
</tr>
</tbody>
</table>
ends removed. This formed a hollow, tapering, tube and a small piece of mesh material was melted to one side (figure 5.1a). A whole range of different sized traps was obtained, depending on where an eppendorf tube was cut (figure 5.1a), to suit the common fig size range of the host species. As the figs ripen, they expand, fitting tightly into the traps and none of the released offspring could escape (the species *P. awekei* only emerge through the ostiole and traps were placed to cover this area). Traps were checked once a day and the figs were picked if any offspring were observed. Each fig was left for two days to release while the offspring were continuously collected and placed in 96% ethanol. After 2 days the remaining wasps were dissected from each fig with the aid of a dissecting microscope. Some of the dissected individuals were considered as under-developed. The criteria for denoting an individual as under-developed were that these individuals were in the larval stage, had less developed features such as reduced wings or legs, or were, in general, too immature to live independent from their galls. Data on the clutch-size, the number of under-developed wasps and mating status of the mother were recorded for each fig (table 5.1). (Note that if only sons were produced the mother was assumed to be unmated as unfertilised eggs develop into males).

Genotype reconstruction

The mothers’ genotypes were reconstructed from the genotypes of her offspring. At least 7 males were typed to reconstruct their mother’s genotype. As the males are haploid they receive their genotype solely from their mother. If the allele for each male (per locus) was the same, the mother was deemed homozygous for that locus. When there were two alleles, the mother’s genotype consisted of the two alleles observed in her sons. The probability of wrongly assigning a mother as homozygous when she is in fact heterozygous is \((1/2)^n\), where \(n\) is the number of males typed. The probability of a wrong reconstruction of the mother’s genotype, using 7 males, is therefore 0.0078. In cases where clutches contained less than 7 males, females were used instead of the males. Here a mother was considered homozygous if all the genotyped daughters had at least one copy of the allele found in their brothers and provided the same confidence.
Figure 5.1. a) Range of traps, constructed from eppendorf tubes, used on different sized fruits. b) Traps fitted on figs of Tree 2. Scale = 1 cm.
Genotyping

DNA extractions of all the individuals to be genotyped were performed using the protocol as described by Estoup et al. (1996). Two males (from one clutch) or one female were placed in an eppendorf tube and grounded using a sterile pestle. 500µl Chelex (10% Chelex in Sabax water), at 60°C was added to the grounded wasps using a wide bore tip. The samples were incubated at 100°C for 15 minutes after which 7.5µl Proteinase K (Fermentas, 20mg/µl) was added. The samples were incubated for 1.5 hours at 55°C (shaken at 15-minute intervals). Incubating the samples at 100°C for 15 minutes stopped protein digestion. PCR reactions were performed directly from these solutions.

Each individual was genotyped at 6 polymorphic microsatellites designed for *P. awekei* (Jansen van Vuuren, 2005), using fluorescently labelled forward primers (table 5.2). (Note that, no null alleles were observed in this study or from a previous study where wasps were individually typed at the six microsatellite loci developed for this species (Jansen van Vuuren, 2005; Newman, 2007)). Table 5.3 provides the PCR conditions for the four reactions necessary to amplify the 6 microsatellite loci. Product amplification was confirmed on 1% agarose gels. PCR products were diluted 1:10 and mixed in the following ratios 2:2:1:1 from pool 1, pool 2, pool 3 and pool 4 respectively. LIZ™ size standard was diluted with formamide (1:10). For each sample, 1µl of the pooled and diluted PCR product was added to 10µl of the formamide-size standard solution and denatured at 95°C for 5 minutes. Samples were subsequently run on a Genetic Analyzer 3100 (Applied Biosystems) and results analysed with GeneMapper v3.5 (Applied Biosystems).
Table 5.2. Primer sequences, label colour, size and number of alleles of the 6 microsatellites loci used to determine foundress genotypes. Reaction pools indicate the combinations of primers amplified together, with their respective annealing temperatures.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence (5'-3')</th>
<th>Label colour</th>
<th>Size (bp)</th>
<th># Alleles</th>
<th>Reaction pool</th>
<th>Annealing temperature</th>
</tr>
</thead>
</table>
| Pa 1 | F: GTA GCG CCG TAT CAA ATT GCA A
R: GGG AGGG CTT GGG ATC TTT AAC GA | Green | 215-266 | 30 | 1 | 50 |
| Pa 4 | F: GGG TGT TGT CGG TTT GTG AGA
R: GGC AAA CAT CCA TCG GAG TGA | Yellow | 188-238 | 27 | 2 | 65 |
| Pa 7 | F: CTG CCG GTC AGA GGA GGA G
R: TAT GAC GTC ATC GGT TTG GCA A | Blue | 277-347 | 45 | 3 | 60 |
| Pa 8 | F: GAG GAA GTC CGA TGA ATG AAC GA
R: GCG AAC AGG AGA CAA AGA CAG A | Blue | 190-225 | 17 | 3 | |
| Pa 21 | F: GCT GTC GAG GCG AAA CAC A
R: GCG CGA GGC ATT GGC AA | Green | 147-215 | 32 | 3 | |
| Pa 32 | F: CGG TGT TCA ATT GCC AAG TGA
R: TCG TGT TCT TCG TAA TCG CGT A | Yellow | 107-192 | 32 | 4 | 60 |
Table 5.3. PCR conditions, and reagents. The denaturing, annealing and elongation steps were repeated 30 times. *quantity for each primer in the pool 3.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Temperature °C</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hotstart</td>
<td>95</td>
<td>10 min</td>
</tr>
<tr>
<td>Denature</td>
<td>95</td>
<td>40 sec</td>
</tr>
<tr>
<td>Annealing</td>
<td>see table 2</td>
<td>1 min</td>
</tr>
<tr>
<td>Elongation</td>
<td>72</td>
<td>2 min</td>
</tr>
<tr>
<td>Hold</td>
<td>4</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Pool 1</th>
<th>Pool 2</th>
<th>Pool 3</th>
<th>Pool 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genomic DNA</td>
<td>1 µl</td>
<td>0.5 µl</td>
<td>0.5 µl</td>
<td>0.5 µl</td>
</tr>
<tr>
<td>Buffer</td>
<td>1 mM</td>
<td>1 mM</td>
<td>1 mM</td>
<td>1 mM</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>2 mM</td>
<td>1.8 mM</td>
<td>2 mM</td>
<td>1.6 mM</td>
</tr>
<tr>
<td>Primer</td>
<td>0.6 µl</td>
<td>0.3 µl</td>
<td>0.3 µl*</td>
<td>0.3 µl</td>
</tr>
<tr>
<td>dNTPs</td>
<td>0.16 mM</td>
<td>0.16 mM</td>
<td>0.16 mM</td>
<td>0.16 mM</td>
</tr>
<tr>
<td>Taq DNA Polymerase</td>
<td>0.1 u/µl</td>
<td>0.05 u/µl</td>
<td>0.05 u/µl</td>
<td>0.05 u/µl</td>
</tr>
<tr>
<td>Reaction volume</td>
<td>10 µl</td>
<td>10 µl</td>
<td>10 µl</td>
<td>10 µl</td>
</tr>
</tbody>
</table>
Statistics

All statistics were performed in R, version 2.4.1. Linear regressions were used to test the effect of the following variables on the clutch-size, mating status, number of under-developed wasps, tree, number of homozygous loci and number of homozygous loci squared. All models were reduced by deleting non-significant terms, starting with the interactions.

We also tested if any of the measured variables explained the absolute number under-developed individuals with a linear model. Additionally we tested the measured variables against the proportion of under-developed individuals per clutch with a generalised liner model with binomial distribution.

Lastly, we used the parameter estimated from model 5.1 (see below) as input to the program SibMate (see chapter 2). We also determined the 95% confidence intervals for the model 5.1 and derived the maximum and minimum inbreeding depression slopes as input. For each set of parameter estimates we ran 10 simulations to determine the optimal sibmating rate (in 5 simulations the females could decide to sibmate while in the other 5 the males could choose). It should be noted that each extra homozygous locus does not indicate an additional sibmating event directly. To be precise, more than a single locus extra should be homologous to indicate a sibmating event, and we assigned the fitness values in the simulations accordingly (Greeff et al., 2009). Table 5.4, contains the complete parameter sets of all the simulations.

Results

In total, 1260 individuals were successfully typed, and the genotypes of 180 foundress females reconstructed. The average clutch-size, percentage females unmated, average number of offspring under-developed and average heterozygosity per crop is summarised in table 5.1. From the table it is clear that many females are unmated and the average for the whole dataset is 13.207%.
Table 5.4. Parameters used for simulations. The maximum and minimum fitness values are from the 95% confidence intervals of model 5.1. Each parameter set was simulated 5 times. The number of homozygous loci for each successive sibmating was determined from Greeff et al. (2009).

<table>
<thead>
<tr>
<th>Times Sibmated</th>
<th>Fitness values</th>
<th># loci homozygous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>model 5.1</td>
<td>Maximum</td>
</tr>
<tr>
<td>0</td>
<td>55</td>
<td>59</td>
</tr>
<tr>
<td>1</td>
<td>55</td>
<td>59</td>
</tr>
<tr>
<td>2</td>
<td>53</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>52</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>52</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>≥ 9</td>
<td>49</td>
<td>49</td>
</tr>
</tbody>
</table>

General parameters

Ploidy: Haplodiploid

Population size: 10000

Generations: 10000

Mutation rate: 0.0001

alleles: 101

All inbreeding was via sibmating

All simulations were repeated separately with both male and female choice
Clutch-size was best explained, with the following minimum adequate linear model, as a function of tree and the number of homozygous loci (see table 5.5, figure 5.2):

\[\text{Clutch-size} \sim \text{tree} + \text{homozygous loci} \quad [\text{model 5.1}] \]

There was a significant difference in the number of under-developed offspring between the different trees (table 5.6), as well as the proportion of under-developed offspring per tree (table 5.7). However, none of the other variables or any of the interactions had an effect on the number or the proportion of under-developed offspring (deleted terms in tables 5.6 and 5.7).

Simulating the inbreeding depression from \textit{model 5.1} and the maximum and minimum inbreeding depression from the 95% confidence intervals, indicated that sibmating would not evolve when males could decide the mating strategy (table 5.8). However, when the females are able to choose the mating strategy, low levels of sibmating (α) may evolve for the higher levels of inbreeding depression (the slope of \textit{model 5.1} and the maximum inbreeding depression from the 95% confidence interval, table 5.8).

Discussion

We found that a mother’s ability to produce mature offspring decreased significantly as she became more inbred (for every additional pair of homozygous loci 1.5 or 3% fewer offspring are produced). Our results also indicated that the host tree was a major determinant in the number of offspring produced by a mother, accounting for the largest part of the variation in \textit{model 5.1}. However, we showed that the inbreeding depression in \textit{P. awekei} is probably not severe enough to cause mixed mating and male dispersal, which are common behaviours for this species. An alternative reason for male dispersal may be the high proportion of virgin mothers (table 5.1) that produce male-only clutches. These males will have no access to females if they are not able to disperse and could be a large driving factor in the evolution of male dispersal.
Table 5.5. ANOVA table and model estimates for model 5.1 (Adjusted R² = 0.188)

<table>
<thead>
<tr>
<th>Estimates</th>
<th>df</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retained terms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homozygous loci</td>
<td>-1.496</td>
<td>1</td>
<td>8.115</td>
</tr>
<tr>
<td>Tree</td>
<td>4</td>
<td>8.580</td>
<td><0.001</td>
</tr>
<tr>
<td>constant:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree 1</td>
<td>50.141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree 2</td>
<td>63.834</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree 3</td>
<td>57.383</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree 4</td>
<td>46.939</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree 5</td>
<td>54.943</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deleted terms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mating status</td>
<td>1</td>
<td>0.051</td>
<td>0.822</td>
</tr>
<tr>
<td>Under-developed</td>
<td>1</td>
<td>0.378</td>
<td>0.540</td>
</tr>
<tr>
<td>(Homozygous loci)^2</td>
<td>1</td>
<td>0.182</td>
<td>0.670</td>
</tr>
<tr>
<td>Tree:homozygous loci</td>
<td>4</td>
<td>0.944</td>
<td>0.440</td>
</tr>
<tr>
<td>Tree:under-developed</td>
<td>4</td>
<td>2.233</td>
<td>0.068</td>
</tr>
</tbody>
</table>
Figure 5.2. Relationship between clutch size and number of homozygous loci for each tree (model 5.1). Tree 1: dash-dot line, Tree 2: Long-dash line, Tree 3: short-dash line, Tree 4: dotted line, Tree 5: solid line.
Table 5.6. ANOVA table and estimates for the linear model: Under-developed ~ tree (Adjusted $R^2 = 0.045$).

<table>
<thead>
<tr>
<th>Retained terms</th>
<th>Estimates</th>
<th>df</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree</td>
<td>4</td>
<td>3.094</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>constant: Tree 1</td>
<td>0.517</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree 2</td>
<td>0.409</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree 3</td>
<td>0.100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree 4</td>
<td>0.517</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree 5</td>
<td>0.952</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deleted terms</th>
<th>Estimates</th>
<th>df</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homozygous loci</td>
<td>1</td>
<td>2.985</td>
<td>0.568</td>
<td></td>
</tr>
<tr>
<td>Mating status</td>
<td>1</td>
<td>0.145</td>
<td>0.704</td>
<td></td>
</tr>
<tr>
<td>Clutch-size</td>
<td>1</td>
<td>0.252</td>
<td>0.617</td>
<td></td>
</tr>
<tr>
<td>(Homozygous loci)2</td>
<td>1</td>
<td>0.967</td>
<td>0.327</td>
<td></td>
</tr>
<tr>
<td>Tree:homozygous loci</td>
<td>4</td>
<td>0.473</td>
<td>0.755</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.7. ANOVA table and estimates for the generalised linear model: Proportion under-developed per clutch ~ tree (data transformed with logit transformation)

<table>
<thead>
<tr>
<th>Retained terms</th>
<th>Estimates</th>
<th>df</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree</td>
<td></td>
<td>4</td>
<td><0.001</td>
</tr>
<tr>
<td>constant:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree 1</td>
<td>-4.464</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree 2</td>
<td>-5.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree 3</td>
<td>-6.300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree 4</td>
<td>-4.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree 5</td>
<td>-3.983</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deleted terms			
Homozygous loci	1	0.960	
Mating status	1	0.509	
(Homozygous loci)^2	1	0.077	
Tree:homozygous loci	4	0.058	

Table 5.8. Probability of sibmating from simulated parameter estimates (see table 5.4).

<table>
<thead>
<tr>
<th>Probability of sibmating (α)</th>
<th>Females (SD)</th>
<th>Males (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 5.1</td>
<td>0.951 (0.009)</td>
<td>1.000 (0.000)</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.832 (0.017)</td>
<td>0.995 (0.003)</td>
</tr>
<tr>
<td>Minimum</td>
<td>1.000 (0.000)</td>
<td>0.999 (0.001)</td>
</tr>
</tbody>
</table>
A study by Greeff et al. (2009), showed that the number of homozygous loci in *P. awekei* was a good proxy for their inbreeding level, due to the high level of sibmating in this species (see also: Balloux et al., 2004; Pemberton, 2004). They found that *P. awekei* suffer from outbreeding depression and possibly inbreeding depression. However, their results (from 57 mothers and 3 trees), indicated that the effect of inbreeding depression was ambiguous, and they suggested that more data was required to resolve this uncertainty. Using a much larger dataset we clearly show that there is inbreeding depression in *P. awekei*, but in contrast to the study by Greeff et al., no outbreeding depression.

In our results we observed low levels of inbreeding depression in *P. awekei* as the clutch size significantly decreased with every one to two successive sibmatings. Persistence of low levels of inbreeding depression in the face of inbreeding is not uncommon (Antolin, 1999; Henter, 2003). However, to accurately detect low levels of inbreeding depression requires large sample sizes.

The absolute number as well as the proportion of under-developed offspring were significantly different between the different trees. This, in addition to the results from *model 5.1*, showed that the host tree played an important role in how many offspring reach maturity. This means that the tree (i.e. the quality of the fruit) is able to directly affect the development of the wasps, irrespective of the mothers inbreeding level. Additionally, the size of the fruit may also be an indication of the number of flowers within (ovipositing sites), and smaller fruits may therefore reduce the amount of offspring a mother is able to produce. We therefore predict that inbreeding depression in *P. awekei* is more prominent when environmental conditions are harsher while the mortality of developing individuals increase as tree condition decreases.

As an example, it could be mentioned that Tree 2, which had the largest clutch sizes, had the largest fruits (only the largest traps fitted on these figs, see figure 5.1a). In addition, the general status of the tree during wasp development was noted to be excellent, and probably led to the high quality fruit. (*F. salicifolia* are often shrub-like and vary widely in amount of foliage, cycles of fig production, amount of figs, fig size and even fig colour (Burrows & Burrows, 2003). Tree 2 is more tree-like and was covered with leaves and figs during the study (figure 5.3). Our sampling took place during the summer months as more trees produced figs during this season and access to fruiting trees and therefore pollinating wasps was easier. This may actually lead to an underestimation of inbreeding depression.
Figure 5.3. Different trees used in study: a) Tree 1; b) Tree 2; c) Tree 3; d) Tree 4 and e) Tree 5. Scale = 1 meter, measured from marker attached to each tree.
Once we established that *P. awekei* suffers from low levels of inbreeding depression, the obvious question was: does this inbreeding depression cause mixed mating and male dispersal in this species? When the measured inbreeding depression was simulated, we found that the females would benefit from low levels of outbreeding (~5%). However, it is the males of this species that decide whether to mate with the females in their native fig or to disperse. When we repeated the simulation with male choice, exclusive inbreeding evolved. Simulating the maximum and minimum inbreeding depression in the 95% confidence interval gave the same result for the males, as they would prefer to inbreed rather than disperse. The females, however, would prefer more outbreeding (~17%) when inbreeding depression increases but when the minimum inbreeding depression was simulated they too benefited more from inbreeding. Because *P. awekei* males (rather than the females) have the choice of sibmating and exclusive inbreeding is optimal under most simulated conditions, the level of inbreeding depression in *P. awekei* is probably not the main force driving the evolution of mixed mating and male dispersal.

From the data we see that a factor that might influence the evolution of male dispersal is the high number of virgin females that produced male-only broods. Our results are varied between the different trees but are on average much higher than the published results for most other pollinating wasp species (often between 0-2% but higher numbers have been recorded, see Godfray, 1988; West et al., 1997). When males find themselves in a patch with no females we expect that this would be an incentive for them to disperse and if this occurs frequently may cause the evolution of dispersal.

In conclusion, we show that for the pollinating fig wasp, *P. awekei*, maternal effects cause low levels of inbreeding depression, which is probably more prominent under poor environmental conditions. While inbreeding depression could play a role in the evolution of mixed mating and male dispersal, our simulation results show that the kin advantage to inbreeding, often outweighs the observed inbreeding depression. The level of inbreeding depression in *P. awekei* is on the border of making mixed mating a viable strategy. Factors that may influence the evolution of male dispersal (and provide the necessary additional incentives) are the high proportion of clutches that have male-only offspring, to reduce local mate competition (Moore et al., 2006), higher and varied sex ratios relative to other pollinating wasp species (Nelson &
Greeff, 2009; chapter 3), or as a syndrome coupled with fighting behaviour (Greeff et al., 2003).
6. Conclusions

In this thesis I addressed a number of mating theories with the aid of simulation modelling. With this approach I explained some of the factors that may drive inbreeding or dispersal. Additionally, I investigated how detection of population structure is affected by different sampling schemes. Lastly, I used molecular data from the pollinating fig wasp *P. awekei* to determine how their level of inbreeding affects their mating system. This combinational approach together with analytical models and ecological data help to unravel systems with inbreeding and dispersal, and shows that individual-based simulation modelling plays an important role in evolutionary studies.

Mixed mating

The enigma of mixed mating, where individuals inbreed with close relatives or outbreed with unrelated individuals has been examined in a number of theoretical models (Campbell, 1986; Charlesworth & Charlesworth, 1987; Damgaard et al., 1992; Feldman & Christianson, 1984; Holsinger, 1988; Holsinger et al., 1984; Lande & Schemske, 1985; Latta & Ritland, 1993; Lloyd, 1979; Maynard Smith, 1977; Maynard Smith, 1978a; Taylor & Getz, 1994; Uyenoyama & Waller, 1991a; Uyenoyama & Waller, 1991b; Waser et al., 1986). Using individual-based simulation modelling and assigning different fitness values for different levels of inbreeding, it was possible to predict the optimal mating strategies for a number of genetic systems. I showed that mixed mating is stable when there are low levels of inbreeding depression and when intermediate inbred individuals have the highest fitness. A requirement for the evolution of mixed mating in these models is, however, the presence of at least three inbreeding classes. The evolutionary stable mating strategies for all the fitness levels investigated were stable and were not affected by the initial mating strategy of the population, except for situations that are comparable to purging in natural systems.

The importance of inclusive fitness in the evolution of mating systems is clearly seen in chapter 2. When the fitness of inbred and outbred offspring are equal
exclusive inbreeding is expected to be the prevalent strategy due to the inclusive fitness advantage to inbreeding (Bateson, 1983; Bengtsson, 1978; Fisher, 1941; Kokko & Ots, 2006; Parker, 1979; Pusey & Wolf, 1996; Waller, 1993; Waser et al., 1986; Wolf, 2000). This was found, as well as, exclusive inbreeding in situations where low levels of inbreeding depression are present, similar to previous studies (Maynard Smith, 1977; Taylor & Getz, 1994). In addition, as the relatedness of the mating partners increased, the benefit of inbreeding increased. This was seen when comparing different mating systems and is important to keep in mind when investigating fitness related traits. Here, however, simulation modelling has an advantage over analytical models, as the kin benefit is an emerging property of individual-based simulations. It was therefore possible to extend the model to include sibmating into the simulation model, in addition to selfing, with relative ease.

It was also possible, using the simulation model, to use empirical data as input and predict when mixed mating will evolve. The results indicated that mixed mating found in a number of species may indeed be due to different fitness levels of serial inbred individuals.

Preventing the co-evolution of fitness values with mating strategies allowed the investigation of possible mating strategies given fitness values while ignoring the effect of the fitness response on the mating strategies. This study is an initial step, using simulation modelling, to unravel how mating strategies evolve when optimal mating partners (i.e. intermediate relatives) are unavailable. An interesting follow-up study would be to compare the results in this thesis with a simulation model where co-evolution of mating strategies and fitness values are allowed.

Dispersal

The occurrence of mixed mating and outbreeding often requires individuals to disperse for them to reach unrelated breeding partners. It can therefore be concluded that various levels of inbreeding depression may drive the evolution of dispersal to attain the optimal mating strategy (Bengtsson, 1978; Clobert et al., 2001; Perrin & Mazalov, 2000; Ronce, 2007). However, theory predicts that dispersal also evolves to reduce the competition of relatives competing for matings while it is inhibited if there is a cost to dispersing (Clobert et al., 2001; Frank, 1986; Gandon, 1999; Hamilton &
May, 1977; Motro, 1983; Motro, 1991; Taylor, 1988; Van Valen, 1971). The same results were found using simulation modelling, shown in chapter 3.

Theory was further corroborated when using the simulation model for situations where dispersal rates were lower when offspring, rather than their parents, determined the rate of dispersal (Gandon, 1999; Hamilton & May, 1977; Motro, 1983; Taylor, 1988). In other words, the parent-offspring conflict was revealed by the unwillingness of the sons to disperse as much as their mothers would want them to.

The main conclusion from chapter 3, however, was that realistic population parameters yielded different results from analytical models, which require simplifying assumptions to make them tractable. It is not surprising that dispersal increased when the sex ratio was unfavourable for obtaining mating opportunities locally while other patches may have had readily available mating partners. However, this was only found when stochastic population dynamics were included in the simulation and sex ratios differed from patch to patch. Similarly, when realistic clutch sizes were used, effects that were found in natural situations emerged. For example, the threat that all the males disperse from a patch, leaving the females unmated decreased dispersal in natural conditions, as well as, in the simulation model, when the number of males per patch decreased.

These results point to the necessity to extend current models by increasing their complexity or reducing their simplifying assumptions to obtain a better understanding of forces driving the evolution of certain traits.

Sampling

After any simulation has completed, the complete genotypes of all the individuals in the population (and if necessary, all the individuals from all the previous generations) are available. Unfortunately, this is not the case in empirical studies, and sampling schemes need to be developed to ensure sufficient individuals are sampled to obtain a valid signal. In chapter 4, I take advantage of the readily available data generated during simulation modelling to compare different sampling schemes.

Large or structured populations require fewer samples than small or unstructured populations. This is important for investigations where there are constraints on the amount of samples obtainable. Current programs that calculate
population subdivision do not require prior information on population structure (Falush et al., 2003; Pritchard et al., 2000). However, when only limited sampling is possible it is easy to miss a population when the sampling scheme is not planned correctly. The application and guidelines developed in chapter 4 show that prior information on biology, ecology and population structure together with summary statistics is still valuable when sampling and typing of individuals are difficult or expensive. Even when sampling and typing of individuals is easy and cheap, careful planning may improve the results from current programs and reduce redundant work.

Platyscapa awekei

The molecular data from chapter 5 indicated that the pollinating fig wasp species, *P. awekei*, suffers from low levels of inbreeding depression. It is common to suppose that inbreeding depression leads to dispersal and outbreeding, which is often seen in this species (Bengtsson, 1978; Clobert et al., 2001; Perrin & Mazalov, 2000; Ronce, 2007). However, before this conclusion is made, it is important to investigate the level of inbreeding while taking into account the kin advantage of inbreeding. By comparing the number of offspring a female was able to produce to her level of homozygosity it is shown that, *P. awekei* suffers from low levels of inbreeding depression. For every additional homozygous locus a mother is able to produce 1.5 fewer offspring. Using this empirical data for *P. awekei*, as input in the simulation model, SibMate, it was found that the level of inbreeding depression is not severe enough to cause dispersal and facultative outbreeding (although a slight increase in inbreeding depression may cause mixed mating). On the other hand, the simulation model in chapter 3 indicated that variation in sex ratio between patches might also drive dispersal. It is therefore possible that low levels of inbreeding depression together with the high local mate competition, a high level of male-only broods found in this species and variation in sex ratio between the patches caused *P. awekei* males to evolve the ability to disperse.

The combinational approach used in this thesis to unravel factors causing inbreeding and dispersal, indicated that various methods can be used to study evolution. I focused on the role of individual-based simulation modelling, and how it may be used to extend analytical models, many of which form the basis of our current...
understanding of evolutionary processes. I also showed how empirical data could be used in combination with simulation modelling to clarify processes driving the evolution of traits. There is still much scope for refinement, and a cross-disciplinary approach may not only help but may also be essential to obtain a deeper understanding of natural processes.
7. References

Felsenstein, J. 2006. Accuracy of coalescent likelihood estimates: Do we need more sites, more sequences or more loci? *Molecular Biology and Evolution, 23*, 691-700.

Hamilton, W. D. 1979. Wingless and fighting males in fig wasps and other insects. In: *Reproductive Competition, Mate Choice and Sexual Selection in Insects*

Knight, T. A. 1799. An account of some experiments on the fecundation of vegetables. In a letter from Thomas Andrew Knight, Esq. to the Right Hon. Sir Joseph Banks, K. B. P. R. S. *Philosophical Transactions of the Royal Society of London B Biological Sciences*, 89, 195-204.

Appendix A

Document released with the program POPSTAT. Also available in electronic format as ‘POPSTAT help.pdf’.