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ABSTRACT 

 

The global over-the-counter derivatives market reached a staggering 14.5 trillion US 

dollars in gross market value at the end of December 2007. Although OTC derivatives are 

extremely useful and versatile in transferring risks, it appears to be a double-edged sword. 

For every derivative transaction concluded in the OTC market, there are two parties 

involved – each of which is exposed to the other defaulting on the agreed terms and 

conditions of the contract. Counterparty credit risk is defined as the loss that will be 

incurred in the event that a counterparty fails to honour its financial obligations.  

 

This dissertation provides an overview of counterparty credit risk measurement from a 

theoretical point of view and puts an emphasis on the demonstration of the current 

solutions used in practice to address this problem. The author applies a bottom up 

approach to the problem by defining counterparty credit risk exposure on a contract 

(single-trade) level and expands this definition on a step-by-step basis to incorporate 

portfolio effects, such as correlation among underlying market variables as well as credit 

risk mitigation techniques, such as netting and collateral agreements, in measuring 

counterparty credit risk exposure on a counterparty level. 

 

The author also discusses related concepts which impact counterparty credit risk such as 

wrong-way risk and proposes an enhancement to the framework introduced by Finger 

(2000) for incorporating wrong-way risk into existing measures of counterparty credit 

risk exposure. Finger‟s framework is enhanced by the introduction of a structural model 

approach which can be used in establishing a functional and intuitive relationship 

between the probability of default of the counterparty and the underlying market variable 

to the derivative contract under consideration. This approach is also applied to a typical 

South African situation through the use of Monte Carlo simulation. The topic of 

counterparty credit risk modelling is a very relevant topic in modern finance, especially 

since the advent of Basel 2 which this dissertation also touches on in terms of the 

applications of counterparty credit risk modelling and how this relates to the minimum 

regulatory capital requirements set by bank regulators. 
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“...when you can measure what you are speaking about, and express it in numbers, you 

know something about it; but when you cannot measure it, when you cannot express it in 

numbers, your knowledge is of a meagre and unsatisfactory kind: it may be the 

beginnings of knowledge but you have scarcely, in your thoughts, advanced to the stage 

of science...” 

 

Lord Kelvin, 1883  
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NOMENCLATURE  

Collateral 

Properties or assets that are offered to secure a loan or other credit. Collateral becomes 

subject to seizure on default. Collateral is a form of security to the lender in case the 

borrower fails to pay back the loan. 

 

Confidence Interval 

An interval estimate of a population parameter. Instead of estimating the parameter by a 

single value an interval likely to include the parameter is estimated. Confidence intervals 

therefore indicate the reliability of an estimate. The likelihood of an estimated confidence 

interval to contain a parameter is given by the confidence coefficient. Increasing the 

confidence coefficient will widen the confidence interval. For more information refer to 

any elementary text book on statistical inference. 

 

Counterparty Credit Risk 

Counterparty credit risk is the risk of loss as a result of a counterparty being unwilling or 

unable to fulfil their contractual obligations relating to some financial agreement, prior to 

the expiration of such financial agreement. 

 

Credit Value Adjustment (CVA) 

The difference between the risk-free market value of a derivative (or portfolio of 

derivatives) and the smaller value that results from taking credit risk into account. 

 

Exposure at Default (EAD) 

A total value that a bank is exposed to at the time of default. Each underlying credit 

exposure is given an EAD value and is identified within the bank's internal system. Using 

the internal ratings based (IRB) approach, financial institutions will often use their own 

risk management models to calculate their respective EAD estimates.  
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Exposure at default, along with loss given default (LGD) and probability of default (PD), 

is used to calculate the credit risk capital of financial institutions. The expected loss that 

will arise at default is often measured over one year. 

 

Loss Given Default (LGD) 

The amount of money that is lost by a bank or other financial institution when a borrower 

defaults on a loan. LGD is related to the recovery rate (RR) in the following manner: 

. 

 

Mark-to-Market (MTM) 

The term refers to the practice of valuing derivative (or similar) financial contracts by 

using the most recent market-observable prices as inputs and in so doing obtaining a 

market-based value. MTM is a measure of the current market value of a derivative 

contract. 

 

Netting Pool 

A netting pool is a collection of contracts (or trades) covered by the same netting 

agreement. This collection of contracts can be legally offset in the event of default 

according to the specifications of the netting agreement. 

 

Over-the-Counter (OTC) Derivatives 

Over-the-counter derivatives are derivative contracts which are customised according to 

the client‟s needs in almost all respects.  OTC contracts are therefore tailored in terms of 

size, underlying, maturity and pay-off profile. 

 

Primary Risk Exposure (Traditional Credit Risk Exposure) 

Traditionally, credit risk is defined, and understood in the context of lending products or 

loans. Primary risk exposure is straightforward to measure and is normally taken to be the 

outstanding balance of the loan. 
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Probability of Default (PD) 

The degree of likelihood that the borrower of a loan or debt will not be able to make the 

necessary scheduled repayments. Should the borrower be unable to pay, they are then 

said to be in default of the debt, at which point the lenders of the debt have legal avenues 

to attempt obtaining at least partial repayment. Generally speaking, the higher the default 

probability a lender estimates a borrower to have, the higher the interest rate the lender 

will charge the borrower (as compensation for bearing higher default risk). 

 

Wrong-Way Risk 

Wrong-way risk arises where there is a significant unfavourable correlation between the 

value of a derivative contract and the likelihood of default of a counterparty. 
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LIST OF SYMBOLS 

 

Symbol Description 

 The state space containing the universe of all possible prices for all 

risk factors required to calculate the mark-to-market for derivative i at 

time t 

 

 Denotes the mark-to-market value function for derivative i applied on 

the price(s) of the underlying market variable(s) with . 

 

 The actual marked-to-market value of derivative i at time t. 

 

Α The statistical level of confidence. 

 

 The notional amount of the underlying asset that the derivative is 

based on. 

 

 The present value function, used to represent the value of a future 

cashflow discounted to time t=0. 

 

 The forward exchange rate. 

 

 The strike price of the derivative contract. 

 

 The (local) drift term of the geometric Brownian motion stochastic 

process or the local mean rate of return of .
1
 

 

 A random variable representing the value of the underlying asset 

(stock) of the derivative contract at time t. 

 

 The diffusion term of the Geometric Brownian Motion process or the 

volatility of .
2
 

 

 A Wiener process. 

 

 Reversion speed in the CIR (Cox, Ingersol, Ross) model. 

 

 The mean parameter in the CIR model. 

 

 The short rate of interest. 

                                                 
1
 Often a subscript will be used to distinguish between the parameters of specific GBM processes. 

2
 See footnote 1. 
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 The maximum PFE at time  given a statistical confidence level of  . 

 

 The expected exposure at time . 

 

 The effective expected exposure at time . 

 

 The expected positive exposure at time . 

 

 The effective expected positive exposure at time . 

 

 The Credit Value Adjustment (CVA). 

 

 The effective maturity. 

 

 Represents the function .  

 

 An indicator variable. The variable is equal to 1 if a netting agreement 

is in place for the portfolio under consideration and 0 if a netting 

agreement is not in place. 

 

 Represents the portfolio-level MTM value at time t taking into account 

the effect of a netting agreement where applicable. The portfolio 

consists of H derivatives. 

 

 Denotes the actual (unkown) value of the portfolio of H derivative 

positions. 

 

 Denotes the number of derivatives in the portfolio under consideration. 

  

 Represents the linear correlation between two variables. 

 

 A random variable from the N(0,1) distribution. 

 

 The mean of the risk factor in Finger‟s model. 

 

 The standard deviation of the risk factor in Finger‟s model. 

 

 The Merton-Model survival function. 

 

 The CreditGrades survival function. 

 

 The mean of the lognormal distribution assumed to be followed by the 

average recovery rate of the CreditGrades model. 

 

 The volatility of the average recovery rate process in the CreditGrades 

model. 

 
 
 



xv 

 

 

 

 

 The initial stock price in Finger‟s calibration method of the 

CreditGrades model. 

 

 The reference stock price in Finger‟s calibration method of the 

CreditGrades model. 

 

 The volatility of the reference stock price in Finger‟s calibration 

method of the CreditGrades model. 

 

 The debt-per-share ratio of the company in Finger‟s calibration method 

of the CreditGrades model. 

 

 The global debt recovery rate in Finger‟s calibration method of the 

CreditGrades model. 

 

 A stochastic variable denoting the price of the underlying market 

variable under the proposed enhancement to Finger‟s model. 

 

 A stochastic variable denoting the price of the equity price of the 

counterparty under the proposed enhancement to Finger‟s model. 
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1 Introduction 

 

This chapter serves as an introduction to counterparty credit risk measurement and a 

general introduction to this dissertation. Counterparty credit risk is introduced on a 

conceptual level, and the need for measuring counterparty credit risk is motivated by an 

overview of the development and immense growth of the over-the-counter (OTC) 

derivatives market. This is followed by an overview of the role of counterparty credit risk 

in a typical investment banking organisation. The chapter concludes with an overview of 

the structure and scope of the rest of this dissertation. 

 

1.1 Background 

 

The development and proliferation of the over-the-counter (OTC) derivatives market has 

arguably been one of the most important events in finance over the last 25 years. 

Moreover, OTC derivatives, being negotiated directly between counterparties, can be 

tailored to the counterparties‟ specific needs and thus offer unlimited possibilities for risk 

transferral. Although a very powerful risk transference mechanism, each OTC derivative 

is in a way a double-edged sword in that it results in an increase in counterparty risk 

which, in turn, needs to be managed by each of the counterparties. 

 

Counterparty credit risk is the risk that a counterparty to a financial contract will default 

prior to the expiration of the contract and will not make all the payments required by the 

contract (Pykhtin M., 2005). If the contract value for the surviving (non-defaulted) 

counterparty is negative this counterparty will experience no loss as it has to honour the 

contract regardless of the default status of its counterparty. If the contract value is 

positive for the surviving counterparty, it will receive nothing from the defaulted 

counterparty (in the worst case) and has to pay the contract value in order to replace the 

„defaulted‟ contract with a similar contract involving some high credit quality 

counterparty. Counterparty credit risk is therefore bilateral and credit exposure (on a 

 
 
 



2 

 

 

 

single contract) is the maximum of the contract‟s risk-free value and zero. Since the 

contract value changes unpredictably over time, only the current exposure is known with 

certainty while future exposure is uncertain. Note that, throughout this document, we will 

be focussing on modelling credit exposure conditional on default as opposed to modelling 

credit exposure conditional on credit migration events which are often used in mark-to-

market credit portfolio models such as CreditMetrics.
3
 

 

Although counterparty credit risk is relatively easy to define, it is certainly not trivial to 

quantify or manage – especially when there are complex derivative instruments involved 

with different maturities and underlying assets which need to be aggregated, taking into 

account credit risk mitigants such as netting agreements and collateral agreements, in an 

attempt to measure a counterparty level exposure and make decisions relating to expected 

or unexpected losses. In practice, a significant amount of resources are spent annually by 

Banks and other financial institutions on developing and implementing extremely 

expensive systems to address this problem. 

 

1.2 Motivation for counterparty credit risk management 

 

There are various reasons why it is important for a financial institution such as an 

investment bank, to be able to record (calculate) and continually monitor and manage the 

credit risk exposure against its trading counterparties resulting from activities in the OTC 

derivatives market. The size of the OTC derivatives market alone should indicate the 

importance of managing counterparty credit risk accurately. The global OTC derivatives 

market reached a staggering 14.5 Trillion US Dollars in gross market value at the end of 

December 2007 according to the Bank of International Settlements‟ Semi-annual OTC 

Derivatives Statistics released in May 2008.  

 

                                                 
3
 J.P. Morgan, (1997). 
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Figure 1.1 - Gross Market Values in Billions of US Dollars (BIS, May 2008) 

 

A recent report by the Counterparty Risk Management Policy Group (CRPMG), 

comprised of senior officials from major financial institutions, identified counterparty 

risk as “…probably the single most important variable in determining whether and with 

what speed financial disturbances become financial shocks, with potential systemic traits” 

(CRMPG 2005). It is therefore quite clear that any active member in the OTC derivatives 

market needs to be aware, at all times, of the risk that it is exposed to as a result of 

counterparty credit risk through sound risk management processes. This financial 

institution should also be able to demonstrate to its regulator (in the case of regulated 

financial institutions like banks) that it is capable of determining what the level of capital 

is that it is required to hold in order to cover the unexpected losses which may result from 

counterparty credit risk. 

 

This is not only important from a shareholder‟s point of view but also for general stability 

in financial markets. In order for a financial institution to function optimally it is crucial 

to have a clear, accurate and up to date picture of all the major risks that it is exposed to. 

It should also be noted that it is of crucial importance that a bank measures these risks as 

accurately as possible since the measurement results directly impacts the return on capital 

from a bank‟s perspective. Capital which is increasingly scarce. 
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1.2.1 The Credit Crisis in 2007, 2008 

The current financial crisis which is wreaking havoc through financial markets worldwide 

originated in the United States as a result of the bursting of the US housing bubble and 

financial losses as a result of high default rates on sub-prime mortgages. The problem, 

although originating in the US spread globally as a result of the participation of global 

financial institutions in securitised assets backed by sub-prime mortgages. Traditionally, 

banks lent money to home owners for their mortgage and retained the risk of default 

(often referred to as credit risk) on their own balance sheet. However, through the use of 

financial innovations such as securitisation banks are now able to transfer these default 

risks to other financial institutions by repackaging these risks into debt instruments with a 

credit rating. This so-called originated and distribute model used by banks has 

consequential impacts on the global financial system as a result of the increased 

connectedness and inter-dependency of global financial institutions. Major banks and 

other financial institutions around the world reported losses of approximately US$ 435 

billion as of 17 July 2008
4
 as a result of losses from the sub-prime mortgage crisis. Some 

very well-known large financial institutions have had to file for bankruptcy as a result of 

this financial crisis including Bear Sterns and Lehman Brothers. 

 

The above mentioned financial crisis highlights the importance for any participant in the 

global over-the-counter derivatives markets of being able to understand the credit risk 

which it is exposed to and measure this risk appropriately. 

 

1.3 Counterparty Credit Risk Measurement in the Organisation 

 

Counterparty credit risk measurement plays an important role in the more sophisticated 

players in the OTC markets, especially in investment banks. The information resulting 

from this risk measurement impacts the business from a micro
5
 to a macro

6
 level. 

 

                                                 
4
See: http://www.federalreserve.gov/newsevents/speech/bernanke20071015a.htm 

5
 As in the case of business origination in the form of new deals. 

6
 As in the case of credit portfolio management. 
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1.3.1 Pre-Deal Analysis 

 

When a bank originates new business it normally conducts a credit assessment of a 

potential client in order to assess the ability of the client to repay debt. This assessment 

involves the analysis of the financial statements of the client and sometimes, dependent 

on the size of the potential business, interviews with key management staff of the client. 

In the event of a successful credit application, the outcome of such a process is an 

approved credit limit which is an indication of the credit exposure which the bank is 

willing to take on against this counterparty reflective of the ability of the counterparty to 

repay or service such debt. 

 

These activities are common in most financial institutions and in essence comes down to 

a process which determines a level at which the bank is comfortable that the counterparty 

will still be able to fulfill its financial obligations based on the strength of its balance 

sheet. It is specifically for this reason that it is often important that a bank is able to 

determine the impact of an additional trade or transaction on the credit exposure against a 

particular counterparty. In order to do this, it is obvious that the bank would need to be 

able to estimate the credit exposure on the specific proposed trade and the impact thereof 

on the current portfolio of trades already in place and active with the counterparty. 

 

1.3.2 Credit Risk Management (Monitoring) 

 

Once a trade is concluded the bank would need to monitor the credit exposure against the 

counterparty up to and including the maturity date of such a trade. The reason for this is 

that the credit risk (assuming a derivative transaction) could be quite volatile. If the 

market moves against a counterparty – i.e. the trade moves more and more into the 

money for the bank it could mean that there is an increased likelihood that the 

counterparty could not meet its obligation upon final settlement and (worst case) perhaps 

default. 

 

 
 
 



6 

 

 

 

Up to date monitoring and accurate estimation of the credit exposure could result in 

improved credit risk management. Normally, the portfolios are updated at least daily in 

order to take account of the impact of market movements on the current and potential 

future exposure of the different portfolios. This process also ensures that new transactions 

are added in a timely manner. 

 

1.3.2.1 Regulatory Methodologies for Credit Risk Monitoring and 

Capital Adequacy 

 

The Basel 2 regulations have been adopted by most regulators in the banking industries 

worldwide and contain different approaches to calculating regulatory capital in various 

degrees of sophistication. The most basic approach, called the standardised approach, has 

certain prescribed „risk weightings‟ which are to be applied for calculating the regulatory 

capital required for different types of credit exposures. More advanced banks can apply 

for approval to use the more advanced “Foundation Internal Ratings Based Approach” 

according to which the bank uses its own estimate for the probability of default for the 

counterparty. The most advanced approach “Advanced Internal Ratings Based Approach” 

allows banks to use its own models to estimate PD, EAD and LGD in order to calculate 

its regulatory capital requirements. Some banks use the EAD estimates produced for 

regulatory capital purposes as the measure for their internal credit risk management 

needs. This is normally only done by relatively unsophisticated banks. The most 

sophisticated banks use a measure called Effective EPE (Expected Positive Exposure) 

which will be discussed later on in this document
7
. 

 

1.3.2.2 Internal Methodologies for Credit Risk Monitoring 

 

Although some of the regulatory approaches offered in the Basel accord are quite 

sophisticated, most banks still have their own internal credit risk measurement 

methodologies over and above the regulatory-prescribed methods. These methods are 

typically used for credit risk monitoring (i.e. monitoring credit exposure against credit 

                                                 
7
 See section 5.4.3. 
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limits) as well as pre-deal analysis and are typically quite advanced from a mathematical 

point of view. Some banks have methodologies which they apply for exposure estimation 

only and which are not even used for capital adequacy purposes but merely for internal 

credit risk management purposes.  

 

1.3.3 Credit Risk Distribution and Mitigation 

 

Many banks manage their counterparty credit risk through various risk mitigation and 

distribution mechanisms. One very simple way of distributing credit risk is through credit 

derivatives such as Credit Default Swaps (CDS). A CDS is a financial contract under 

which the protection buyer pays a regular (typically quarterly) premium to the protection 

seller in return for the commitment by the protection seller to compensate the protection 

buyer for credit losses resulting from pre-defined credit events such as default. A CDS is 

therefore similar to an insurance contract with the insured risk being the event of default. 

In order to sell or transfer credit risk it is not only important to be able to know with a 

certain level of confidence what the current level of credit risk exposure is but also what 

the impact of the proposed „hedge‟ is on the existing credit exposure. These different 

trades and associated hedges would therefore need to be reflected against the appropriate 

limits in order to have a complete picture of the most current state of affairs with regards 

to the credit exposure. 

 

In practice, banks also have various risk mitigation techniques which serves to reduce 

counterparty credit risk. Standardised netting agreements and collateral support annexes 

(CSAs) are typically used between derivative trading counterparties in an attempt to 

minimise counterparty credit risk. It is therefore extremely important that such risk 

mitigation methods are taken into account when determining a consolidated counterparty 

credit risk exposure against a particular counterparty. Credit risk mitigation techniques 

and the effect thereof on counterparty credit risk exposure will be discussed in Chapter 3. 
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1.3.3.1 Dynamic Credit Risk Management 

 

A recent development in the management of counterparty credit risk is what is referred to 

as “Dynamic Credit Risk Management”. The more sophisticated global investment banks 

which operate in well developed financial markets are able to manage their counterparty 

credit risk dynamically through the use of credit derivative technology. This practice 

enables such institutions to incorporate counterparty credit risk into the „pricing‟ of their 

OTC derivative transactions. These prices are therefore counterparty specific since the 

counterparty credit risk charge is based on the costs involved to transfer or mitigate such 

risks through the use of credit derivatives. 

 

1.4 Outline of the Dissertation 

 

From the discussions above it is clear that counterparty credit risk measurement plays an 

important role in any major financial institution active within the global over-the-counter 

derivatives markets. This dissertation discusses the challenges involved in estimating 

counterparty credit risk on derivative counterparties and, specifically, the methodologies 

used in practice for addressing this issue. Related applications of these measures are also 

discussed, and where appropriate, practical examples or applications of such methods are 

provided. 

 

In Chapter 2 we introduce the concept of potential future exposure (PFE) which is often 

used in practice for the measurement of counterparty credit risk. This measure is also 

important from a practical point of view since it is typically used for measuring 

counterparty credit risk against limits set by credit officers. The estimation of potential 

future exposure is demonstrated using practical examples of typical derivative 

instruments. These examples also yield PFE profiles which are significantly different in 

terms of shape. The differences are highlighted and explained through an intuitive 

argument. The Chapter concludes with a summary of other useful PFE profile statistics 

and related risk measures. These statistics and measures are referred to and applied 

extensively throughout this dissertation. 
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Chapter 3 builds on the discussions and definitions from Chapter 2. The concept of 

potential future exposure is enhanced to provide a measure of counterparty credit risk 

exposure on a counterparty level. This concept and the calculation thereof is 

demonstrated on a simple set of derivative contracts assumed to be traded with a single 

counterparty. Two different portfolios of derivative contracts are used in this 

demonstration. Firstly a portfolio with two derivatives on the same underlying market 

variable is used, followed by a more complex example of a portfolio of derivatives on 

two correlated underlying market variables. In the process the effect of correlation 

between underlying market variables on the resultant measurement of counterparty-level 

PFEs are discussed in detail. Related concepts which impact counterparty-level PFE 

estimation are introduced such as netting agreements, collateral agreements and other 

credit risk mitigation techniques. Practical examples are once again used to demonstrate 

the estimation of counterparty-level PFEs under these conditions. The chapter concludes 

with considerations around consistency in the estimation of counterparty credit risk on a 

counterparty-level which are often problematic in practice. 

 

Chapter 4 introduces the concept of wrong-way risk. A detailed introduction to wrong-

way risk is given followed by an overview of a Finger‟s framework for measuring wrong-

way risk
8
. The structural model introduced by Merton is discussed and provides some 

background to more recent enhancements to in this field by Moody‟s KMV and 

CreditGrades, both of which are also discussed on a high level. The structural model 

provides an interesting link between the equity price of a company and its probability of 

default. This link is exploited and applied in a proposed enhancement to Finger‟s model 

for measuring wrong-way risk exposure. This proposed enhancement to Finger‟s 

approach is the author‟s contribution to this field of research and provides and intuitive 

method for measuring the impact of wrong-way credit risk exposure using information 

observable in the market. The model is demonstrated through examples which are typical 

in the South African market. 

 

                                                 
8
 See Finger C. C., (2000). 

 
 
 



10 

 

 

 

Chapter 5 provides a brief overview of the Basel 2 capital accord focussing on the aspects 

relating to counterparty credit risk. A detailed overview of the treatment of counterparty 

credit risk measurement is given with a focus on the internal models method (IMM) and 

the current exposure method (CEM) used for the measurement of exposure at default 

(EAD). The majority of South African banks employ the CEM for measuring EAD and 

this approach is therefore compared to the more advanced IMM. Calculations of EAD 

under these two approaches are demonstrated. Observations relating to the differences in 

results are discussed in detail. 

 

In Chapter 6 a brief overview of the pricing of counterparty credit risk is given. The 

concept of credit value adjustment (CVA) is introduced and discussed. This is followed 

by a short overview of the hedging and transferral of counterparty credit risk. 

 

Chapter 7 focuses on some practical considerations and approximations relating the 

measurement of counterparty credit risk. The validation and calibration of counterparty 

credit risk models is discussed briefly followed by an approximation approach often used 

in practice: the add-on approach. The add-on approach is discussed in some detail 

followed by a demonstration of a practical application of this approach. 

 

The dissertation concludes with Chapter 8. A summary of the dissertations main findings 

are presented as well as suggestions for potential areas of future research.  
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2 Contract-Level Counterparty Credit Exposure 

2.1 Background 

 

There is a significant difference between the measurement of credit risk resulting from 

normal lending activities by a bank and that resulting from derivative trading activities in 

the OTC derivative market. The former is relatively easy to measure or quantify (Pykhtin  

, 2005): the credit exposure is merely the amount outstanding on the loan with accrued 

interest. In the case of credit exposure on derivative contracts however, it is not as 

straightforward since the value of the contract (and therefore the credit exposure) is 

dependent on some underlying market (random) variable (De Prisco and Rosen, 2005). 

The exposure on such a derivative is also dependent on time. The further one looks into 

the future the more the underlying variable‟s potential dispersion (Wahrenburg, 1997). In 

other words, the range of possible values that the underlying market variable can assume 

becomes larger the further one looks into the future. 

 

The quantification of the exposure at default on derivative contracts is clearly a non-

trivial exercise and sometimes, in practice, quite subjective. In attempting to formalise an 

approach to solving this problem it is quite useful to note that typical derivative contracts 

could be seen to have a „current exposure‟ and a „potential future exposure‟. This 

approach is widely used in practice (De Prisco and Rosen, 2005). 

 

2.1.1 Current Exposure 

 

The current exposure is defined as the amount at risk should the counterparty default now 

and is normally (for a single derivative trade) assumed to be the mark-to-market (MTM) 

value of that trade. The MTM value of the trade(s) is a measure of the replacement cost 

of the trade and is therefore appropriate for this purpose.  
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2.1.2 Potential Future Exposure 

 

The potential future exposure, in turn, is much more difficult to quantify due to its 

stochastic or random nature and one would need to make quite a number of assumptions 

in order to derive such an estimate. The value of a derivative contract is per definition 

dependent on some underlying market variable. In order to estimate the future value of 

such a derivative contract we need to make some assumptions around the evolution of the 

underlying variable(s) over time over the life of the contract. In other words, we would 

need to derive (or make an assumption regarding) the probability distribution of the 

underlying risk factor(s) impacting the value of the trade over the life of the contract. 

Note that for some derivatives, such as interest rate swaps, the potential future exposure 

profile is not a strictly increasing function. Therefore it is crucial that the PFE is 

estimated at various points in time through the life of the contract and not just at the point 

before maturity in order to estimate a peak PFE. More formally, we refer to the graphical 

representation of the collection of the  values, estimated for various values of t, as 

a PFE profile. There are two main factors which determine the shape of a PFE profile
9
:  

 

1. The combined effect of the volatility of the underlying risk factor and the future 

time point at which this estimate is calculated increases the estimated exposure. 

This is because there is greater variability and uncertainty of market variables the 

further one looks into the future. In the text that follows we will refer to this as the 

dispersion effect. 

2. The effect of amortisation counteracts the previous force and has a decreasing 

effect on the exposure profile as periodic payments are realised. This reduces the 

remaining cash flows exposed to default risk. This effect is especially relevant in 

the case of interest rate swaps as will be seen in a later section. 

 

The argument above is merely an intuitive discussion on the problem – a more rigorous 

mathematical approach follows later. 

                                                 
9
 Pykhtin and Zhu, 2007. 
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2.2 PFE – An Estimate of Exposure at Default 

 

2.2.1 Overview 

 

In defining a measure for counterparty credit risk exposure we draw upon the notion of a 

confidence interval. Using this tool we are able to define the concept of Potential Future 

Exposure (PFE). This measure of counterparty credit risk exposure enables a risk 

manager to make statements such as
10

 “According to our model we can be 95% certain 

that the exposure to counterparty A will not exceed x rand in one year‟s time – assuming 

that the portfolio of trades with such counterparty remains static (no new contracts are 

entered into).” 

 

2.2.2 Definition of Contract-Level PFE 

 

Potential future exposure is defined as being a time-dependent function, . We 

present an adaptation from the definition of maximum peak exposure presented in De 

Prisco and Rosen, (2005). 

 

Let 

  represent the state space containing the universe of all possible prices for all 

risk factors required to calculate the mark-to-market for derivative i at time t; 

  denote the mark-to-market value function of derivative i calculated 

using the prices  , where  is one of an infinite number of possible risk factor 

states at time t in  - i.e. ; 

  be the actual mark-to-market price of derivative i at  time t. (Note that this 

quantity is unknown); 

 α be the level of confidence. 

 

                                                 
10

 Wahrenburg, 1997. 
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Then: 

 

.   (1) 

 

PFE is therefore defined as the smallest possible value for derivative i at time t such that 

the probability of the actual value of the derivative at time t exceeding this value is less 

than α.
11

 Note that the mark-to-market function is essentially that function which gives 

the no-arbitrage price of the derivative given the prices of the underlying assets (and 

other relevant market information) required in determining the value of the derivative. 

Often practitioners insist that a credit exposure number should be strictly positive. In this 

document, however, we allow PFEs to be any real number. 

 

The definition of the contract-level PFE given in (1) is an estimate of future market 

values for a specific transaction (or set of transactions in the case of counterparty-level 

PFEs). There is no mention of probability of default – in fact, the concept of PFE is an 

attempt to quantify what the market value of a derivative could be at some point in the 

future and therefore represents the potential loss that could be suffered given the 

counterparty defaults at that specific point in time. In other words, the exposure 

represented by the PFE measure at t assumes that default occurs at t. 

 

2.2.3 Estimation of Contract-Level PFE: Some background 

 

Potential Future Exposure as defined in (1) can be estimated using various techniques – 

some which are more complex than others and each with its own advantages and 

disadvantages (Wahrenburg, 1997). In general, more complex methods are not only more 

involved from a mathematical point of view, but also more resource intensive from a 

computational point of view.  

 

Counterparty credit risk modelling has come a long way over the past few years and has 

recently demanded much more attention from financial institutions as a result of the 

                                                 
11

 Given that the assumptions relating to the statistical distribution of the underlying risk factors hold. 
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dramatic downfall of several notable institutions such as Barings, Long Term Capital, 

Enron, WorldCom and Parmalat which resulted in significant credit losses to other 

financial institutions (De Prisco and Rosen, 2005). The evolution of exposure 

measurement methodologies are summarised in the following diagram
12

: 

 

 

Figure 2.1 - Evolution of Counterparty-Risk Exposure Measurement Methodologies 

 

Banks initially used the percentage of notional approach in estimating credit exposure. 

The results were not only very crude but also, due to them only being a number (as 

opposed to an exposure profile), failed to incorporate roll-off risk. Roll-off risk is the risk 

that a sudden increase in credit exposure occurs as a result of an exposure-reducing 

contract maturing („dropping off‟). 

 

The following example illustrates this point. Suppose that there are two OTC contracts 

with counterparty A. The first contract has an estimated credit exposure (using the 

„percentage of notional‟ approach) of -500 rand and a maturity of 11 months. The second 

contract has an exposure of 450 with a maturity of 18 months. The exposure number that 

would have typically been calculated by banks using the „percentage of notional‟ amount 

would have been -50.
13

 The following graph illustrates the information provided by an 

exposure profile. The exposure profile is forward-looking in that it shows sudden 

increases in exposure in the future and allows mitigating action to be taken by the 

responsible credit officer. 

 

                                                 
12

 Wahrenburg, 1997. 
13

 Note that this calculation assumes that there is a netting agreement in place and that the two contracts 

under consideration are both covered by this same netting agreement. For more information on netting 

agreements see chapter 3. 
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Figure 2.2 - Illustration of Roll-Off Risk 

 

The exposure profile therefore gives insight into the exposure which lies ahead whereas 

the representation of credit exposure as one number (scalar) is very limited and may lead 

to unexpected „jumps‟ in exposure as a result of offsetting trades maturing as illustrated 

in Figure 2.2. 

 

The next step in the evolution of counterparty credit risk measurement was breaking 

down the credit exposure into current exposure and potential future exposure and treating 

the potential future exposure as an add-on based on remaining maturity. This is certainly 

more advanced than the „percentage of notional‟ approach but failed to incorporate the 

fact that different underlying assets had different characteristics (such as volatilities) 

which should ideally be incorporated into the measurement methodology (Wahrenburg, 

1997). The reasoning behind the “current exposure plus volatility-based add-on” was the 

principle from statistics which states that the largest value that a variable can take on can 

always be expressed as its mean value plus a multiple of its volatility (Wahrenburg 1997). 

This method yields results that are relatively accurate on a contract-level
14

 but all of the 

add-on approaches, irrespective of the degree of complexity, failed to encapsulate on very 

important portfolio effect: correlation. This resulted in grossly overstated and overly 

                                                 
14

 When compared to results using Monte Carlo simulation. See section 7.2.2.2. 
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conservative counterparty-level exposures. This problem was solved by the introduction 

of PFE profiles estimated using Monte Carlo simulation techniques. 

 

A number of financial institutions still use some form of “current exposure plus add-on” 

approach. It is commonly accepted that Monte Carlo simulation is the preferred approach 

due to the accuracy and flexibility that it provides. For certain complex derivative 

products it is impossible to estimate a PFE using add-ons. For these reasons we will focus 

on Monte Carlo simulation techniques throughout this dissertation. Section 7.2 discusses 

add-on approximation methods in some detail. 

 

2.2.4 Example: Contract-Level PFE on FX Forward (1) 

 

We now consider a simple example to illustrate the process of calculating a contract-level 

PFE profile: 

 

A bank enters into a foreign exchange forward
15

 contract with counterparty A. The detail 

of the contract is as follows:  

 

The bank agrees to take delivery of 1,000 USD (US Dollars) in 6 months time in 

exchange for 8,170 ZAR (South African Rand). The following table summarises the 

specific details of this contract: 

 

 

Underlying Notional (USD) Maturity (yrs) Strike
16

 

USD/ZAR 1,000 0.5 8.17 

 

Table 2.1 - Contract details: Example FX Forward 1 

 

The first step is to determine the current value of the derivative contract, for which we 

require the latest 6 month forward USD/ZAR exchange rate. Let‟s assume that the value 

                                                 
15

 An FX forward contract is a contract whereby to parties agree to exchange a fixed amount of currency A 

for a fixed amount of currency B at a future point in time. 
16

 Quote in number of ZAR per USD. 
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for this variable is currently 8.17. In order to calculate the current value, we use the 

following formula: 

 

,   (2) 

 

where 

 

  is the notional amount that the transaction is based on, measured in USD 

  is the present value function, in this case discounting cash flows using 

ZAR interest rates 

  is the appropriate 6-month forward exchange rate, quoted USD/ZAR. 

  is the strike price of the forward contract, quoted USD/ZAR – in this 

case 8.17 

 

Let‟s assume the current value is zero. Note that the forward exchange rate is the main 

risk driver in the case of FX Forwards and this is therefore the variable which we will 

need to simulate in order to generate a PFE profile. It is crucial to note, however, that in 

order to calculate the PFE at time t (t>0) one would need to know the value of the then 

prevailing (T-t) forward exchange rate – T being the original maturity of the contract. In 

practice, forward exchange rates are determined using no-arbitrage assumptions and are 

calculated using the current spot exchange rate and the associated interest rates. 

 

For simplicity we will assume that interest rates remain constant but that the current spot 

exchange rate follows a Geometric Brownian motion (GBM) process. This is equivalent 

to assuming that the forward-exchange rate curve will retain the same shape over time, 

but that there will be parallel shifts up and down driven by changes in the spot exchange. 

The sport exchange rate is assumed to follow a GBM process, with SDE
17

: 

                                                 
17

 We have made the simplifying assumption that the volatility parameter is constant which normally fits 

the behaviour of spot prices well over the short term but yields long term volatilities that are too large. One 

way of addressing this problem is to use the GBM Term Structure of Volatility model which treats the 

volatility parameter as a deterministic function of time, typically σ(t) is treated as a decreasing function of t. 

The SDE becomes:  

 with solution  
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     (3) 

 

We now proceed to the actual PFE calculation. Let‟s divide the duration of the contract 

into 10 time steps. The first step is to simulate, for the ten time steps over the life of the 

contract, values for the USD/ZAR spot exchange rate. Note that, as mentioned before, the 

shape of the forward exchange curve will be assumed to be static. The volatility and drift 

parameters in the GBM process was estimated using a one year history of USD/ZAR spot 

exchange rates. 

 

The duration of the contract (6 months) is divided into 10 equally-sized time intervals and 

at each one of the time steps, the MTM value is calculated using the MTM formula 

above. This procedure is repeated 10,000 times – i.e. there will be 10,000 MTM values 

for each of the 10 time steps. The final step is then to take the 95
th

 percentile of the 

10,000 values at each time step in order to yield the 95-percent contract-level PFE 

profile. Figure 2.3 shows the resulting 10,000 scenarios as well as the resulting 95% PFE 

profile indicated by the dashed line. 

 

 

Figure 2.3 - Contract-Level PFE on FX Forward 
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The shape of the graph in Figure 2.3 makes intuitive sense, in that the resulting PFE 

profile is strictly increasing as one would expect from a forward contract. The reasoning 

behind this is that, during the life of the trade, the mark-to-market value could continually 

increase (as a result of the „dispersion/diffusion effect‟) as the exchange rate, which 

drives the MTM, moves higher and higher. There is therefore no „amortisation effect‟ 

(only one final payment at maturity). Obviously, since we are making use of a 95% 

confidence interval the extent to which this increase in mark-to-market can materialise is 

limited
18

.  

 

2.2.5 Example: Contract-Level PFE on FX Forward (2) 

 

Let‟s now compare the PFE on two FX forward contracts that are slightly different. Let‟s 

assume that FX forward 1 is as specified below, and FX forward 2 is different from FX 

forward 1 only in that the strike is higher, at 8.25. 

 

 

Figure 2.4 - Contract-Level PFE for FX Forwards with Different Strikes 

 

                                                 
18

 If the assumed statistical distribution of spot prices holds true. 
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As expected, the current value (MTM) of FX forward 2 is lower than that of FX forward 

1. The PFE of FX forward 1 is also higher than the PFE of FX forward 2 since the strike 

is lower in the 1
st
 case and it is therefore more likely that the strike of FX forward 1 will 

be exceeded, compared to the strike of FX forward 2.  

 

Note that both contracts have exactly the same underlying market variable and exactly the 

same maturity. We are therefore considering exactly the same probability distributions 

when we estimate the PFE profiles of these two contracts. 

 

2.2.6 Contract-Level PFE Algorithm for Monte Carlo Simulation 

 

We have looked at an example and performed the calculation of a PFE for a simple 

product using Monte Carlo Simulation. Let us now consider a more generic and formal 

approach to the problem of estimating a PFE on a contract level using Monte Carlo 

Simulation. We will also use the symbols as in the definition of PFE above. The steps are 

as follows: 

 

1. Identify the risk driver(s) of the contract under consideration. In our example 

above this was the forward exchange rate. Note that it is sometimes possible to 

break a risk driver down into its constituent parts and that this may lead to 

simplified scenario-generation (e.g., using the FX Spot exchange rate instead of 

simulating the whole FX Forward curve). There may, however, be more than one 

risk driver which could significantly increase the complexity of PFE estimation.
19

 

 

2. Divide the time interval between time zero (today) and the maturity date of the 

contract into M time steps. Note that these time steps need not be of equal size. In 

fact, it would be preferable to have time steps fall on so-called „significant dates‟ 

of the particular contract. 

                                                 
19

 The main objective of the simulation model is to project, as realistically as possible, the potential future 

state of the market being simulated. In that sense the model should operate under the real probability 

measure. 
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Significant dates are dates, during the life of the derivative contract, on which 

certain events pertaining to the cash flows of the contract take place – for example 

reset-dates on swap agreements. These significant dates typically have an impact 

on the shape of the PFE profile. In the estimation of the PFE on a fixed for 

floating interest rate swap with quarterly payments one would typically have the 

time steps be quarterly, just before each cash flow, in order to illustrate and 

capture the amortisation effect and to ensure that the PFE is not under-estimating 

the real exposure. 

 

3. Using an appropriate stochastic process, simulate N scenarios of the underlying 

risk driver identified in step 1. For each scenario M values need to be generated – 

one value for each time step. This step will result in a grid of simulated risk driver 

values which represent the possible values that the underlying risk driver may 

take on in the future. Note that this step simulates values which will be used to 

estimate 
 
in the context used in the definition of PFE above. 

 

It is important to bear in mind that using Monte Carlo Simulation is 

computationally intensive and that one needs to weigh up the time taken to 

perform the calculations with the accuracy obtained through using the particular 

number of simulations. More specifically the error in Monte Carlo Simulation has 

the order  convergence, and one would therefore need to quadruple the number 

of simulations (and typically need to wait four times longer) in order to increase 

the accuracy by a factor of two. 

 

4. On each of the time steps for each scenario, calculate the  value of the 

contract at that point in time. This step therefore calculates  for various 

simulated states of . The resultant values are simulated values from the 

probability distribution for , the actual yet unknown MTM of the contract at 

point t. 
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5. For each of the time steps, calculate the α
th

 percentile of the calculated MTM 

values in step 4. This will yield the estimated contract-level PFE profile as 

defined above. 

 

 

We now consider another example of a contract-level PFE calculation. The estimation of 

a PFE on a fixed-for-floating interest rate swap is slightly more complex than that of a 

simple FX forward. We will follow the steps set out above. 

 

2.2.7 Example: Contract-Level PFE on IR Swap 

 

We now consider a bullet
20

 fixed-for-floating interest rate swap. Firstly, from an intuitive 

point of view one would expect the PFE profile on a vanilla fixed-for-floating interest 

rate swap with quarterly resets to be increasing initially but then decreasing after some 

. This is as a result of the „amortisation effect‟ discussed above. In fact, the 

MTM on an interest rate swap tends to zero as time tends to maturity because of the 

realised quarterly payments. We proceed to a formal and detailed step-by-step process for 

estimating the PFE on a ZAR fixed-for-floating interest rate swap. 

 

1. Firstly we need to identify the main risk driver in this contract. In order to value 

an interest rate swap, we need to determine the difference in the present value of 

the fixed-leg and the present value of the floating leg. The formulae below is 

typically used: 

,

 

, 

 

where  is the swap rate (the fixed rate),  is the number of fixed/floating 

payments,  is the notional amount and  is the number of days in period  and  

                                                 
20

 The notional of the swap is constant over the life of the swap. 
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is the number of days according to the day count convention and  is the 

discount factor used to discount a cash flow from time  to the valuation date. 

 

The MTM of an interest rate swap is therefore heavily dependent on the value of 

the floating leg of the swap, which in turn is dependent on the floating interest 

rate. The main risk driver is therefore the floating interest rate
21

. 

 

2. Let‟s assume that we are calculating the PFE on a 5 year interest rate swap from 

the point of view of the fixed payer. Let‟s assume that the payments are quarterly 

and that this is a ZAR interest rate swap. Due to the fact that the payments are 

quarterly, let‟s divide the duration of the contract into quarterly intervals.  We will 

therefore be calculating the PFE on 4 × 5 = 20 time points. 

 

Instrument Fixed Rate Maturity Notional in Rand 

Interest Rate Swap 10.5% 5 years 100,000,000 

 

Table 2.2 - Contract Details: Example Interest Rate Swap 

 

3. We now need to simulate paths of the underlying risk driver using a „suitable‟ 

stochastic process. In this example we will consider a CIR (Cox, Ingersoll and 

Ross) model, calibrated using historical zero-coupon ZAR interest rate data 

obtained from the Bond Exchange of South Africa (BESA)
22

. Note that the CIR 

model is a model for the short rate – i.e. the instantaneous interest rate. We will 

use this model and, analogous to the FX Forward example, shift the zero curve up 

and down in line with the up and down shifts of the short rate of interest. This 

model therefore does not in any way capture changes in the shape of the yield 

curve. More advanced models can be used for capturing these risks – this example 

is merely for illustrative purposes. 

 

 Model Specification 

                                                 
21

 Typically, in this case, the 3 Month Jibar rate. 
22

 See www.bondexchange.co.za 
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The CIR model is a stochastic process for the short rate of interest of which 

the stochastic differential equation is: 

 

    (4) 

 

 

It can be shown that the following closed form solutions can be obtained for 

the price, at time t, of a zero coupon bond that pays 1 at time T under the CIR 

model (Hull , 2002): 

 

, 

 

where 

 

 , 

 

 , 

 

 

 . 

 

Using the following discrete approximation, we apply Monte Carlo simulation 

in generating a set of simulated paths for the short rate of interest.  

 

 

 

 Model Calibration 
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Using zero curve data obtained from BESA, it is possible to calibrate the CIR 

model
23

 to fit the current market conditions. More specifically, we can observe 

prices of bonds and other similar instruments, with various maturities, in the 

market and use the formula for  above in order to mimic the current 

market prices by changing the values for the model parameters. In derivative 

pricing it is possible to calibrate the model to the real-world measure and to 

the risk-neutral measure. For a more complete discussion on this topic see 

Section 7.1.2. 

 

There are two possible approaches to follow in calibrating the model to the 

current market: 

 Observed bond prices can be used in order to construct a zero-coupon 

yield curve which is representative of current market conditions. Using the 

formula for  above it is possible to construct a zero-coupon yield 

curve with the CIR model. Using an error-minimising technique
24

 one can 

then proceed to change the model parameters and minimise the difference 

between the market-observed zero-coupon yield curve and the model-

derived zero-coupon yield curve by adjusting the parameters of the model. 

 Similar to the above approach, one can use the observed bond prices 

directly and compare them to the model produced bond prices (using the 

formula for  above) and minimise the error by adjusting the 

model parameters appropriately. 

 

In this example, we use the second approach and obtained the following values 

for the model parameters. 

 

 

 

                                                 
23

 Change the parameters a, b and σ in order to have model-predicted values as close as possible to market-

observed prices. 
24

 In this example specifically, we have calculated the model parameters by minimising the squared error of 

the model-predicted zero-coupon bond prices and the actual observed zero-coupon bond prices. 
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Parameter Description Value Source 

a Reversion Speed 0.2417 Calibrated 

b Mean 0.0809 Calibrated 

σ Volatility 0.0212 Observed 5yr Cap Volatility
25

 

r0 Start Rate 0.1186 From Zero-Coupon Yield Curve 

 

Table 2.3 - CIR Model Parameters used in the PFE Estimates 

 

 Model Fit 

The graph below illustrates the calibrated CIR model and how the model-

produced bond prices compare to the market-observed bond prices.  

 

 

Figure 2.5 - CIR Model-Produced Bond Prices vs. Market-Observed Bond Prices 

 

4. Using the calibrated model it is possible to simulate the required paths of the short 

interest rate and then to calculate the simulated MTM values at various points in 

                                                 
25

 The cap volatility is assumed to be a forward-looking view of the volatility of the underlying floating 

interest rates. 
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time over the life of the swap. The graph below shows the simulated paths for the 

short rate produced by the CIR model using Monte Carlo Simulation. 

 

 

Figure 2.6 - Simulated Paths using CIR Process 

 

The reason for the downward sloping effect on the above simulation profile is the 

fact that the model parameters are such that the model tends to revert to the long-

term average rate of 8.09%. Figure 2.7 below shows the simulated MTM values 

of the swap.
26

 

                                                 
26

 Note that the code used to generate the simulations for this example is given in the appendix. 
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Figure 2.7 - Simulated MTM values in R’000 for Interest Rate Swap in Table 2.2. 

 

5. Using the calculated MTM values calculated in step 4 it is possible to calculate 

the 95
th

 percentile at each time point which yields the PFE profile of the swap 

below: 
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Figure 2.8 - Simulated MTMs of Interest Rate Swap in Table 2.2 and 95% PFE 

 

As expected the profile in Figure 2.8 above clearly illustrates the amortisation effect 

present in the PFE profile of an interest rate swap. The CIR model used above works 

relatively well for capturing the credit exposure resulting from general changes in the 

level of interest rates, but fails to capture higher order risks such as changes in the shape 

of the yield curve. In practice, more advanced models are used for the evolution of 

interest rates, and specifically models which also incorporate changes in the shape of the 

yield curve
27

. 

2.2.8 Interpretation of and uses for Contract-Level PFE 

For individuals with a mathematical or statistical background the concept of PFE is quite 

straightforward and easily understood. One should however always bear in mind that the 

individuals typically involved in the decision making which relies on such PFE numbers 

(typically Credit Officers) do not necessarily have the same quantitative or statistical 

                                                 
27

 The interested reader is referred to Jamshidian and Zhu (1996) for detail on the so-called principal 

components model which models several individual zero coupon rates on the rate curve and reduces the 

number of factors through principal component analysis. 
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background as those individuals developing these models. It is of utmost importance that 

the „users‟ of information are appropriately trained not only to understand and interpret 

the results but also to understand its limitations. 

 

2.3 Other useful PFE Profile Statistics and Risk Measures 

 

There are other statistics that can be obtained from the same data that a PFE profile is 

estimated from which are used in, for example, regulatory and economic capital 

calculations. The following table
28

 is a summary of these: 

 

Measure Definition Formula 

Maximum PFE 

Maximum peak exposure 

that occurs at a given date 

or any prior date over all 

scenarios 

 

Expected 

Exposure 

Average of the distribution 

of exposures at a particular 

future date 

 

Effective Expected 

Exposure 

Maximum expected 

exposure at a given date or 

any prior date 

,  

EPE (Expected 

Positive Exposure) 

Weighted average over 

time of expected exposures 
 

Effective EPE 

Weighted average over 

time of effective expected 

exposure  

CVA 
Credit risk premium of a 

counterparty portfolio 
 

Effective Maturity 

Ratio of discounted EPE 

over the life of the portfolio 

divided by the EPE over 

one year 

 

 

Table 2.4 - PFE Profile Statistics and Risk Measures 

 

Example calculations in Chapter 5 will give more background to the meaning and 

application of the formulae in Table 2.4. Quantile PFE measures are typically used in risk 

                                                 
28

 Pykhtin (2005) 

 
 
 



32 

 

 

 

management and monitoring of credit exposure against credit limits. Measures of 

expected exposure on the other hand, are used for credit pricing
29

 and calculations of 

regulatory capital requirements. This is part of the internal ratings based models 

discussed in the new Basel II Accord
30

. 

 

 

                                                 
29

 As in the case of Credit Value Adjustment (CVA). 
30

 See Chapter 5. 
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3 Counterparty-Level Credit Exposure 

 

In practice, it is not only of importance to quantify the potential future exposure on a 

single contract but also on a collection or portfolio of contracts. Typically, banks set 

credit limits against trading counterparties and use PFE exposure estimates to monitor the 

exposures against these set limits. In order to monitor counterparty-level PFEs a bank 

needs to be able to apply the effects of netting (i.e. take account of netting agreements 

appropriately), collateral and other credit risk mitigation techniques successfully. This 

chapter looks at the measurement of counterparty credit exposure on a counterparty-level 

and related issues such as the incorporation of risk mitigation techniques into the 

measurement of exposure. In addition, we discuss related issues such as the impact of 

credit derivatives on counterparty risk measurement. A is also devoted to the issue of 

consistency in counterparty credit risk exposure models. 

 

3.1 Aggregation of Exposures and Applying Netting 

 

Potential Future Exposure on a portfolio of trades with a counterparty (counterparty-level 

PFE) is a very important concept and is not just a matter of aggregation of the PFEs of 

the underlying trades in the portfolio. In fact, the counterparty-level PFE will always be 

smaller than or equal to the sum of the underlying PFEs of the trades in the portfolio. The 

reasoning behind this is that, if one merely adds up the constituent parts of the portfolio 

one would not take into account the dependence
31

 that exist between some of the 

underlying market variables and therefore over-estimate the exposure on the counterparty 

level.
32

 

 

When we consider defining the potential future exposure on a counterparty-level one 

firstly would need to be familiarised with the concept of netting. In practice, derivative 

trading counterparties use netting agreements in order to mitigate counterparty credit risk. 

                                                 
31

 Correlation is typically used as a measure of dependence. 
32

 See Gibson (2005). 
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Netting agreements are legal contracts which are standardised (generally, for example 

ISDA Master Agreements
33

) and allow counterparties to offset amounts owed in the 

event of default through so-called close-out netting. As an example, assume that a Bank‟s 

counterparty defaults at time t and that at this time there are two derivative contracts 

between these two parties that have not yet matured and that the mark-to-market values 

of these derivatives, at time t, are -25 and 10 for the bank respectively (a positive mark-

to-market means that the derivative has economic value for the bank and a negative 

mark-to-market means that the derivative has economic value for the counterparty). Now, 

in this default scenario, let‟s consider what the effect of a netting agreement is on the 

economic result for the bank: 

 

 Assuming there is no netting agreement, the bank would need to pay the 

counterparty 25 for the value of the first derivative but will receive nothing on the 

second derivative immediately. In fact, the bank will have to wait in line with all 

other concurrent creditors of the counterparty for any recovered value from the 

bankruptcy proceedings – which could take a long time and also does not 

guarantee that the bank will in fact recover anything. There is therefore an 

outflow of 25 for the bank and an inflow of an amount less than or equal to 10 and 

potentially an amount of zero (at an unknown date). 

 In the case where there is a netting agreement between the bank and the 

counterparty the situation is much different. The bank will now not pay over 25 to 

the counterparty but only 25-10=15 since the bank is „owed‟ 10 by the 

counterparty on the second derivative. 

 

3.2 PFE on a Portfolio of Trades with a Counterparty 

 

Bearing the introduction to netting in mind, let us now turn to defining the concept of 

PFE on a portfolio of derivatives with a single counterparty taking into account the effect 

of netting. 

                                                 
33

 See www.isda.org 
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Let 

  

 

   

 

 34 

 

  denote the actual (unknown) value of the portfolio of N assets at time t. 

 

Then we define the counterparty-level potential future exposure ( ) at time t, of a 

portfolio of H derivatives as: 

 

. 

 

In other words, the counterparty-level PFE is the smallest value of  such that  

 is not larger than that value of  with probability . Furthermore, it is 

very important to note that the  measure is not the sum of the PFEs of all the 

individual derivatives in the portfolio under consideration. 

 

In fact, the is calculated using the distribution of possible portfolio values at t and 

then obtaining the (1- α)
th

 percentile of this counterparty-level distribution. This means 

that, in order to calculate the , one would have to estimate the joint distribution 

function of the prices of the underlying portfolio of derivatives and then price the 

portfolio of derivatives on each of these scenarios (applying netting appropriately) and 

then proceed to determine the  percentile at each calculation step. 

 

                                                 
34

 This formula assumes that all trades covered by a netting agreement is covered by the same netting 

agreement and therefore forms part of the same netting pool. This is not necessarily always the case, and in 

practice one would firstly apply netting to each netting pool individually and then apply netting across 

netting pools using the resultant netted exposures. 
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3.2.1 Example: Counterparty-Level PFE (Single Underlying) 

 

Let us now consider a simple portfolio consisting of four derivatives. Let‟s, for 

simplicity, assume that the portfolio consists of only foreign exchange derivatives – two 

FX Forwards and two FX Options
35

 with the following characteristics
36

:  

 

 

No. 

 

Contract Type 

 

Underlying 

Notional 

(USD) 

Strike 

(ZAR) 

Maturity 

(Yrs) 

1 Forward USD/ZAR 1,000 8.17 0.75 

2 Forward USD/ZAR -850 5.83 1.50 

3 Call Option
 

USD/ZAR 1,000 7.77 2.00 

4 Put Option
 

USD/ZAR 1,000 7.77 2.00 

 

Table 3.1 - Example Portfolio 1 

 

In order to be able to calculate the PFE on this portfolio of trades one needs to simulate 

scenarios for all the underlying risk drivers which impact the market value of the 

positions in the portfolio. In this example the main risk driver is the USD/ZAR exchange 

rate. 

 

Let‟s assume that the spot exchange rate follows a GBM process. We proceed exactly as 

before (see section 2.2.4) in generating scenarios for the USD/ZAR Exchange rate and 

once again we assume that interest rates remain constant. In other words, we will be 

simulating values for the spot exchange rate and assume that the forward exchange rate 

curve moves up and down in parallel shifts as the spot exchange rate moves. 

 

For the FX options, however, we will be requiring the following inputs (at each time step) 

in order to calculate the PFE profile: 

 

 σ – The implied volatility. We make the simplifying assumption that this 

parameter remains constant throughout the life of the contract. 

                                                 
35

 The two options in this portfolio form a „straddle‟ volatility trading strategy.  
36

 For simplicity we assume that all the derivatives in the portfolio have the same underlying. This 

assumption will be relaxed in section 3.2.2 where the effects of dependency (measured by correlation) will 

be taken into account. 
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 S – The spot price for the USD/ZAR exchange rate. This is the variable which 

will be simulated using Monte Carlo simulation as in section 2.2.4. 

 

 

 K – The strike price of the option as given in the table above. 

 

 r – The appropriate interest rate used to discount the cash flows from the maturity 

of the option back to the mark-to-market date. Note that, in assuming that the 

relative shape of the forward exchange rate curve remains constant, we are 

implicitly assuming that interest rates remain constant and that in moving forward 

in time the zero-curve moves with us (as opposed to us moving into the curve). 

 

Figure 3.1 shows the contract-level PFE (in ZAR) of each of the individual deals in the 

portfolio: 

 

 

Figure 3.1 - Contract-Level PFE on Individual Deals 
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Figure 3.2 compares the aggregate PFE
37

, measured in ZAR with the Netted 

Counterparty-Level PFE (Netted ) and the Non-Netted . 

 

 

Figure 3.2 - Counterparty-Level PFEs: A Comparison 

 

Let‟s briefly discuss each of the elements in Figure 3.2 above: 

 

 Aggregate Contract-Level PFE: Not Netted vs. Counterparty PFE: Not Netted 

The calculation of „Aggregate Contract-Level PFE: Not Netted‟ is very simple. 

„Aggregate Contract-Level PFE: Not Netted‟ is an aggregate of the contract-level 

PFEs illustrated in Figure 3.1 with the exception that negative PFE values are 

taken to be zero (i.e. netting is not applied). In contrast, „Counterparty PFE: Not 

Netted‟ is calculated within each of the 20,000 scenarios used in calculating the 

MTM(t) values at each of the t values during the life of the transactions by 

aggregating (again using zeros where negative MTMs are observed) the 

individual MTMs of each of the underlying deals forming part of this portfolio. 

Finally the 95
th

 percentile of the resultant aggregate values at each of the time 

steps is calculated. It is clear from Figure 3.2 that the „Aggregate Contract-Level 
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 The PFE yielded by adding each of the underlying PFEs illustrated in Figure 3.1. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

 

 

Counterparty-Level PFE: Netted

Counterparty-Level PFE: Not Netted

Aggregate Contract-Level PFE: Not Netted

Aggregate Contract-Level PFE: Netted

 
 
 



39 

 

 

 

PFE‟ grossly overstates the Counterparty-Level PFE ( ) assuming there is 

no netting agreement in place. 

 

 Aggregate Contract-Level PFE: Netted vs. Counterparty PFE: Netted 

The „Aggregate Contract-Level PFE: Netted‟ is simply calculated by the addition 

of the contract-level PFEs shown in Figure 3.1. Again, the result is clearly an 

overestimate of the netted counterparty-level PFE as illustrated in Figure 3.2. 

 

It is clear from Figure 3.2 how effective a netting agreement can be in reducing or 

mitigating counterparty credit risk. It should be noted, however, that a netting agreement 

is only effective if there are economically offsetting positions in a portfolio – for example 

long and short positions in derivatives with the same or highly correlated underlying 

assets. If the portfolio does not have economically offsetting positions, a more effective 

credit risk mitigant is a collateral or margining agreement which is discussed in detail in 

section 3.3. Figure 3.2 also clearly illustrates the potential over-estimation of exposure 

that could occur by adding the contract-level PFEs instead of calculating the PFE using 

the counterparty-level MTMs (calculated under each scenario). 

3.2.2 Example: Counterparty-Level PFE (Two Correlated Underlyings) 

We now move on to a more complex example. Let‟s consider a portfolio of trades with a 

counterparty consisting of the following contracts: 

 

 

No. 

 

Contract Type 

 

Underlying 

 

Notional
38 

 

Strike
39 

Maturity 

(Yrs) 

1 Forward USD/ZAR 1,000 8.17 0.75 

2 Forward GBP/ZAR -490 20.75 1.50 

3 Call Option GBP/ZAR -500 15.45 3.00 

4 Call Option USD/ZAR 1,000 7.50 3.00 

 

Table 3.2 - Example Portfolio 2 

                                                 
38

 The notional is expressed in the primary currency. In other words, if the currency pair is ABC/DEF then 

the Notional is expressed in ABC. Note that a negative sign indicates a short position. 
39 

The strike is represented in terms of DEF (using the above example) and therefore has the meaning: “how 

many DEF for one ABC”. 
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Note that the above portfolio has more than one underlying variable and therefore, in 

estimating the profile we would need to incorporate a measure of dependence in 

order to take account of the fact that the USD/ZAR and GBP/ZAR exchange rates are not 

statistically independent. The most widely used measure of dependence, also used 

extensively in practice, is linear correlation usually represented by ρ. 

 

In our calculations, we use linear correlation as our measure of dependence, and the value 

for the correlation between the USD/ZAR and GBP/ZAR exchange rates is estimated 

from historical daily USD/ZAR and GBP/ZAR spot exchange rates. The following graph 

shows the daily spot exchange rates for the last 3 years: 

 

 

Figure 3.3 - USD/ZAR and GBP/ZAR Historical Spot Rates 

 

Using this data, the estimate for ρ (the correlation between the USD/ZAR and GBP/ZAR 

exchange rates) is ρ=92.89% when using a 3 year history of spot prices. The estimated 

correlation value increases to 96.81% when based on only the last year‟s data.
40

 We will 
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 The correlation estimates were calculated using the log-relative returns of the daily spot exchange rates. 

See Hull (2002). 
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estimate the counterparty-level PFE initially using ρ=92.89%, but also in a separate graph 

illustrate the impact of the correlation estimate on the counterparty PFE. 

 

We now turn to the simulation of the underlying correlated market variables. In order to 

estimate the counterparty PFE for this portfolio, which is dependent on correlated 

underlying market variables, we need to be able to simulate correlated market 

movements. This is achieved by the application of the following approach
41

: 

 

Generating Two Correlated Random Variables 

Let x1 and x2 denote independent samples from a univariate standardised normal 

distribution. Then one can obtain e1 and e2 which are correlated standard normal variables 

with correlation ρ using the following: 

 

 

 

The Figure 3.4 shows the contract-level PFE profiles of the individual transactions that 

make up the portfolio described above. 

 

                                                 
41

 The most widely used method for generating correlated random variables is the Cholesky decomposition 

approach.  
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Figure 3.4 - Contract-Level PFEs of Individual Contracts 

 

Using the correlation estimate above (ρ=92.89%), it is now possible to estimate the 

portfolio-level PFE. The resultant netted counterparty PFE is illustrated in Figure 3.5, 

together with the aggregate contract-level PFE with netting appropriately applied (as 

specified in section 3.2.1 above). 

 

 

Figure 3.5 - Netted Counterparty Level PFE and Aggregate Contract-Level PFE (Netted) 

 

0 0.5 1 1.5 2 2.5 3
-3000

-2000

-1000

0

1000

2000

3000

4000

5000

 

 

Derivative 1: USD/ZAR FX Forward

Derivative 2: GBP/ZAR FX Forward

Derivative 3: GBP/ZAR FX Call

Derivative 4: USD/ZAR FX Call

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

 

 

Counterparty-Level PFE (Netted)

Aggregate Contract-Level PFE (Netted)

 
 
 



43 

 

 

 

In general, it is crucial to be able to interpret PFE estimates in order to make informed 

decisions. It is often important to understand under what economic circumstances a PFE 

profile would realise. In other words, it is important to ask the question: “Under what 

economic (market) conditions would the estimated 95% PFE occur or realise?” This is 

not only an important question on the contract-level, but also (if not more so) on a 

counterparty or portfolio level. For example, if one looks at the portfolio defined in Table 

3.2 the value
42

 of derivative 1 will increase if the USD/ZAR exchange rate
43

 decreases 

beyond the strike – in other words, the PFE will occur on a ZAR appreciation against 

USD. However, for derivative 2 the PFE will occur in the case of the Rand depreciating 

against the British Pound. Therefore, if one looks at these two positions, it would be quite 

unexpected, considering a correlation of more than 90%, to have the two positions not 

offsetting each other economically. The same holds for the two option positions. 

 

The counterparty-level PFE estimate for the portfolio under consideration therefore has a 

very high dependency on the accuracy of the correlation estimate between the two 

underlying risk drivers – i.e. the USD/ZAR and the GBP/ZAR exchange rates. Figure 3.6 

shows the PFE profile for various values of ρ and illustrates the importance of the 

correlation estimate in the calculation of PFEs on a counterparty level. The significant 

impact on the correlation estimate is evident from this illustrative example. 

 

                                                 
42

 The value of a derivative contract is typically measured as the MTM. 
43

 Technically speaking the T-day forward exchange rate determines the MTM value of a forward contract 

maturing in T days from today. 
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Figure 3.6 - Counterparty-Level PFE (Netted) using Various Correlations 

 

It is interesting to note that, in Figure 3.6, the PFE profile corresponding to a very high 

correlation between the USD/ZAR and the GBP/ZAR exchange rates is very similar to 

the „Counterparty PFE (Netted)‟ in Figure 3.5. Similarly, the PFE profile corresponding 

to a level of assumed correlation of ρ=-1 corresponds to the profile „Aggregate Contract-

Level PFE (Netted)‟ in the same figure. This result is not entirely unexpected, since the 

PFE calculated using a correlation of ρ=-1 assumes that the USD/ZAR and GBP/ZAR 

exchange rates will, throughout the simulated period
44

, always move in opposite 

directions. Moreover, if one considers the individual contract-level PFEs in Figure 3.4, 

these profiles represent the „worst case PFE‟
45

 of each of the individual contracts based 

solely on the movement of the underlying market variable impacting that specific 

contract. The simulated exchange rate values that resulted in the estimated contract-level 

PFE profiles illustrated in Figure 3.4 are depicted below: 

 

                                                 
44

 Since we assume that ρ is constant throughout the life of the transaction. 
45

 Strictly speaking this is not a worst case PFE but rather a worst case PFE assuming a 95% confidence 

level. 
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Figure 3.7 - Simulated Exchange Rates Resulting in Estimated Contract-Level PFEs 

 

The different contracts each have their „worst case PFE‟ occurring at scenarios which 

would normally not occur simultaneously
46

. Previously, we have mentioned the fact that 

the different contracts constituting this portfolio are exposed to different movements of 

the underlying market variables. As is evident from Figure 3.7, the estimated contract-

level PFEs materialise on scenarios where GBP weakens against the Rand (contracts 2 

and 3) and where USD strengthens against ZAR (contracts 1 and 4) – and these two 

scenarios are only likely to materialise simultaneously if the two exchange rates exhibit a 

perfectly negative correlation. 

 

Since a correlation assumption has such a significant impact on a counterparty PFE 

profile it is fair to question the accuracy and also the validity of the approach taken in 

estimating the PFE above. The first questionable assumption in the approach followed is 

the estimation of correlation from historical data – obviously the time period used plays 

an important role. Secondly, we have assumed that correlation is constant – which again 

is probably not a very realistic assumption when one considers the historical distribution 

of correlations. 

 

                                                 
46

 More specifically, we expect that these not occur simultaneously based on our observed historical 

correlation. 
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A natural way of extending the modelling technique used in terms of correlation is to 

assume that correlation is, in itself, a stochastic process
47

. Although the idea of modelling 

correlation as a stochastic variable is a natural progression from what we have done so far 

it is far from a trivial exercise to implement and still a an active area of research in the 

quantitative finance arena. The interested reader is referred to Van Emmerich, (2006). 

 

3.3 Other Methods of Credit Risk Mitigation 

 

We have discussed the impact of netting agreements as a form of credit risk mitigation. 

There are other risk mitigation techniques which also impact the measurement of 

counterparty credit risk (see Gibson, (2005) and Pykhtin M. ,(2005)). We will discuss two 

of these techniques: Collateral Agreements and Transaction-Specific Provisions. 

 

3.3.1 Collateral Agreements 

 

Often in the OTC derivatives markets, market participants agree to enter into ISDA 

Master Agreements which, among other details, contain provisions which specify close-

out netting. In addition to this netting agreement certain counterparties also sign a Credit 

Support Annex (CSA). CSA agreements further permit parties to an ISDA Master 

Agreement to mitigate their credit risk by requiring the party which is „out-of-the-money‟ 

to post collateral
48

 corresponding to some agreed amount based on the current mark-to-

market value of the agreements between the relevant counterparties. Normally, if the 

collateral is not cash its value will be reduced by a hair-cut to account for the risk 

inherent in the collateral itself
49

. 

 

In general, a collateral agreement contains the following parameters which each have a 

direct impact on the resultant counterparty credit risk mitigation effect: 

                                                 
47

 As opposed to assuming that the correlation parameter is constant. 
48

 Normally cash, government securities or other highly rated bonds. 
49

 For example, if non-government bonds are used as collateral, the party receiving the collateral is exposed 

to fluctuations in the market value of the collateral. This may result in the collateral decreasing in value and 

not covering the original risk the collateral was posted for. 
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 Threshold Amount 

This amount specifies the mark-to-market amount beyond which a collateral call 

will be made. For example, if this amount is 100 a collateral call will be made by 

counterparty A once the MTM value on its contracts with counterparty B exceeds 

100. Let‟s denote the threshold amount by CT (short for Collateral Threshold). 

 

 Minimum Transfer Amount 

This amount specifies the minimum amount by which the collateralised exposure 

can exceed the threshold amount before a collateral call is made. The reason for a 

minimum transfer amount is purely for cost purposes since in practice there is a 

cost associated with posting as well as receiving collateral. 

 

Continuing with the above example, if this amount is 5, then counterparty A will 

only call for collateral if the collateralised exposure exceeds the threshold amount 

by at least 5 rand. For example, if the collateralised exposure is 104 no collateral 

call will be made but if the collateralised exposure is 105 a collateral call will be 

made. We denote the minimum transfer amount by MTA. 

 

 Close-Out Period 

The close-out period specifies the number of days from the last collateral call until 

the positions with the defaulted counterparty will be closed out and the resultant 

market risk is re-hedged. 

 

 It is important to note that the longer this period the more risk the parties are 

exposed to, since the trades could potentially move more and more into the money 

for the counterparty which called for collateral increasing the exposure to loss. 

The close-out period generally covers the time it takes to recognise the default 

event, the decision to act and physically close out the positions and liquidate the 

collateral. Some agreements explicitly state waiting periods whereas some 
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jurisdictions require statutory periods. We will denote the close-out period by 

COP. 

 

 Barrier Amount 

The barrier amount refers to the maximum amount of collateral that a party is 

willing to receive from its counterparty. This will impact the exposure, in that, 

once the collateral held exceeds this amount, no further collateral will be called 

and the resultant exposure will increase if the positions are not closed out. We 

denote the barriers amount by BA. 

 

 Collateral Call Frequency 

The collateral call frequency specifies the frequency (i.e. daily, weekly etc.) at 

which collateral calls will be made. Practically, this refers to the frequency at 

which the parties will compare their collateralised exposure (i.e. current exposure 

less collateral held) with the threshold amount (TA). If the collateralised exposure 

exceeds the TA by the MTA then a collateral call will be made. 

 

Incorporating the effects of collateral agreements into PFE estimation is relatively 

straightforward (in the case of cash-collateral) since it is logic which is applied to the 

Counterparty-Level PFE profile simulated as normal. The most basic approach is to 

assume that the exposure of a collateralised portfolio cannot exceed the threshold amount. 

The resultant collateralised counterparty-level, , will therefore be 

calculated as follows: 

 

, 

 

with  as defined in 3.2. 

  

The equation for  above implicitly assumes that collateral is received 

instantaneously following a collateral call and that positions can be closed out 

immediately following the failure to post such collateral called. In reality, however, there 
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is a significant lag in the time between when collateral is called and when collateral is 

received. During this time lag, the collateralised exposure can increase significantly.  

There are, however, three possible approaches to incorporating the lag effects of 

collateral agreements into a PFE profile
50

: 

 

 Full Simulation 

 Analytical Lag Add-Ons 

 Post Simulation Sampling. 

 

We demonstrate the full simulation approach in an example. The approach involves 

augmenting the original time steps of the simulation to also include the time steps at 

which collateral is received, taking account of a time lag between the time at which a 

collateral call is made and the time at which the collateral is assumed to have been 

received. 

 

For example, if the close-out period is k days it is reasonable and prudent to assume that 

the collateral that was called at time tj will only be received at time tj+k. The effect of 

such an assumption is that the PFE profile will potentially continue to increase beyond 

the threshold amount after time tj, and only be reduced by the collateral called at time tj, 

at time tj+k. The PFE profile will therefore have to include values for the portfolio on t as 

well as on tj+k. 

 

                                                 
50

 De Prisco and Rosen (2005) 
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Figure 3.8 - The Lag Period in Collateral Agreements 

 

3.3.1.1 Example: Counterparty-Level PFE, the effect of cash collateral 

 

We now consider the effect of a collateral agreement on the portfolio discussed in Table 

3.2 using the full simulation approach
51

. Firstly, let‟s assume that the parameters of the 

collateral agreement are as follows: 

 

Parameter Value 

Threshold Amount 1,500 

Minimum Transfer Amount 275 

Close-Out Period (in days) 10 

Barrier Amount 2,500 

 

Table 3.3 - Assumed Parameters of Collateral Agreement 

 

Considering the netted, uncollateralised PFE profile in Figure 3.5 it is clear that the 

threshold amount is significantly lower than the general level of the PFE profile. It is 

expected that the collateralised PFE profile should be very close to this threshold 

                                                 
51

 See De Prisco and Rosen (2005) for details on the simulation approach. 
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amount
52

, since this is at the end of the day what the collateral agreement aims to achieve. 

In order to make the calculations in this example more practical
53

, we have adjusted the 

calculation algorithms used in calculating the PFEs in Section 3.2.2 slightly so that the 

time steps in the PFE profile are in daily intervals. 

 

Figure 3.9 demonstrates the effect of the collateral agreement specified in Table 3.3 on 

the counterparty-level PFE profile. The graph also illustrates the mechanics of the 

collateral agreement which is discussed in detail below. 

 

 

Figure 3.9 - Collateralised Counterparty-Level PFE 

 

At first glance Figure 3.9 appears quite complex. There are, however, quite a number of 

very valuable insights that can be obtained from closer inspection. Firstly, let‟s discuss 

the three horizontal lines:  

 

 the CT line  represents the Threshold Amount, 

                                                 
52

 The longer the COP, the more time allowed for the uncollateralised exposure to increase beyond the 

threshold amount. 
53

 With the use of the word practical it is not intended to imply that in practice simulations are run using 1 

day time steps, rather that the time steps are usually in multiples of one day (as opposed to the time steps of 

0.05 years ≈ 18.25 days used in Section 3.2.2 which make the application of collateral agreements 

unnecessarily complicated). 
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 CT+MTA line represents that barrier that the collateralised PFE needs to exceed 

before a collateral call is made, the 

 

 Barrier Amount line indicates the collateral held amount beyond which no more 

collateral calls will be made. 

 

These lines aid in the understanding of the collateralised PFE profile. We now discuss the 

other elements of the graph in detail: 

 

 Uncollateralised PFE (Netted) 

This profile is the result from the example portfolio with correlated underlyings in 

3.2.2 with netting and correlation taken into account. 

 

 Collateral Held 

The collateral held represents the total collateral that is assumed to have been 

received at a point in time. Recall that we assume that collateral called at time t 

will only be received at time t+COP. In the calculations which produced Figure 

3.9 we have also assumed that collateral refunds (i.e. when the collateral held is in 

excess of what is required, typically following a sudden decrease in exposure) are 

instantaneous (i.e. no lag). 

 

 Collateralised PFE 

The most important element in Figure 3.9 is the collateralised PFE which is an 

estimate of what the counterparty credit exposure could be at each point in time 

over the life of the portfolio. The collateralised PFE profile in relation to the 

threshold amount and the CT+MTA line gives insight into the mechanics of the 

collateral agreement and its effectiveness in reducing the counterparty-level PFE. 
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In the event that the collateralised PFE exceeds the CT+MTA line
54

 a collateral 

call is made. 

 

Since the close out period is 10 days, the collateralised PFE could potentially 

increase from the date at which the collateral call was made until such time as the 

collateral is received. This situation is demonstrated in Figure 3.10 and Figure 

3.11 below, followed by a discussion. 

 

 

Figure 3.10 - Collateralised Counterparty-Level PFE, (208<t<285) 

 

It is clear from Figure 3.10 that, at point t=209 (indicated by arrow A), the collateralised 

PFE exceeds the CT+MTA line, indicating that a collateral call is justified. From the 

assumptions regarding the close-out period, however, the collateral is only assumed to be 

received at time t=219 (indicated by arrow B). Therefore, between t=209 and t=219 the 

exposure has the potential to increase as illustrated by the collateralised PFE. Figure 3.11 

illustrates the timing and extent of the collateral calls for the same interval as in Figure 

3.10. 

                                                 
54

 When the current collateral held is not adequate and the collateralised exposure exceeds the threshold 

amount by an amount larger than the minimum transfer amount. 
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Figure 3.11 - Collateral Agreements: Projected Collateral Calls 

 

It is clear from the discussion above that the close-out period as a parameter of the 

collateral agreement has a significant impact on the resultant collateralised credit risk 

exposure as illustrated by the estimated collateralised PFE profile. We will now look at a 

few examples which illustrate the impact of some of the other parameters of a collateral 

agreement. Figure 3.11 illustrates the impact that a change in the assumed close-out 

period has on the resultant collateralised PFE profile. The graph illustrates the 

collateralised exposure profiles for different values of COP. 
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Figure 3.12 - Collateralised PFE for Various Close-Out Periods (0<t<400) 

 

3.3.1.2 Treating the Value of Collateral as Stochastic 

 

We have thus far assumed that the collateral that was posted remained constant (i.e. we 

have assumed that the collateral is cash) through time. This is a simplifying assumption 

and, in practice, it is often not the case. Modelling collateralised PFE profiles assuming 

risky collateral, and thereby treating the collateral as a stochastic process, is significantly 

more complex than what has been demonstrated so far. The reader is referred to Cossin 

and Hricko (2005) who propose a model for stochastic collateral. In the model, the price 

of the asset given as collateral is assumed to follow a GBM process. 

3.3.1.3 Credit State Dependent Collateral 

 

Some CSA agreements define thresholds, upfront collateral amounts and minimum 

transfer amounts as a function of both the counterparty‟s and the bank‟s credit states. If 

the counterparty is not rated, thresholds may be defined as a function of some financial 

ratio (e.g. debt to cash-flow) typically used as proxies for its credit state or financial 

health. The modelling of collateralised PFE profiles with credit-dependent collateral 

agreement parameters is significantly more complex than the simple case demonstrated in 

Section 3.3.1.1 above. This typically requires an integrated market and credit risk model 
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to capture the exposures that are market dependent as well as the collateral balances 

which are dependent on the current market levels and the credit states of both parties.  

 

Therefore, in addition to the simulated future market values of the risk drivers which 

determine the potential future exposure of the underlying portfolio, one would also need 

to simulate the joint credit-state probabilities of both parties at each time-step. A Markov 

process approach for the case of a one-sided collateral threshold with a publicly-rated 

counterparty can be used in this case
55

. The Markov process assumes as input a credit 

migration matrix often published by the credit rating agencies
56

. 

 

3.3.2 Transaction-Specific Documentation 

 

So far we have discussed netting agreements and collateral agreements which both affect 

the counterparty-level exposure directly and reduce potential future exposure as a result. 

There are, however, other techniques of credit risk mitigation which impact the contract-

level exposure directly. 

3.3.2.1 Contract-Level Credit Risk Mitigation 

 

In some derivative contracts, it is possible to make relatively small changes to certain 

terms and conditions of „vanilla‟ derivative contracts and significantly reduce the 

counterparty credit risk associated with these contracts. Although it could be argued that 

this is merely an application or an extension of the collateral agreement technology. The 

following is a high-level overview and the purpose is merely to give the reader an 

overview of the effect of contract-level credit risk mitigation techniques. The absolute 

values of the exposures are therefore entirely fictitious and are for illustrative purposes 

only. 

 

Let‟s consider an example of a 20 year cross-currency interest rate swap (CC Swap). 

Consider a USD/ZAR cross-currency interest rate swap based on a notional amount of 

                                                 
55

 De Prisco and Rosen, (2005). 
56

 E.g. Fitch, Moody‟s and Standard and Poor‟s (S&P). 
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1,000,000 USD. A vanilla cross-currency swap involves an exchange of principal at 

outset with an agreement to swap the principal back at maturity. During the life of the 

contract – i.e. between the original exchange of principal and the final exchange of 

principal at maturity each party pays the other interest on the principal held, in the 

appropriate currency (i.e. each party pays the other interest on the notional it holds, in the 

currency of the notional it holds. The interest rate used to calculate the payments due, is 

also typically the 3 month inter-bank rate prevalent in that particular currency). Since the 

payments are in different currencies these amounts are not netted. 

 

Certain banks have altered the terms and conditions of the standard cross currency swap 

agreement yielding what is sometimes referred to as a mark-to-market reset cross-

currency interest rate swap or a pull-to-par cross currency swap. In the case of the MTM 

reset cross currency swap the two parties exchange principal at outset (as is the case in 

the vanilla case) but also at each quarterly reset date, thereby reducing the major 

contributing risk: the foreign exchange risk. Let‟s now compare the cash flow profiles of 

a typical vanilla cross currency interest rate swap with that of the mark-to-market reset 

cross currency interest rate swap to highlight the major differences between the two 

derivatives: 

 

 At outset, principal is exchanged based on the most current exchange rate in the 

market at that point in time. This is true in both the vanilla and MTM Reset 

derivatives. 

 

 During the life of the contract, in the case of the vanilla trade and the MTM Reset 

derivative, there are quarterly interest payments by each party. In other words, the 

party receiving the USD principal at outset will pay interest payments on the USD 

principal at the appropriate USD 3 month inter-bank floating rate. In the case of 

the MTM reset CC Swap there is also a principal payment at each interest rate 

reset date (i.e. quarterly). The purpose of this principal payment is to extinguish 

any mark-to-market value which developed since the last reset as a result of 

(mainly) exchange rate movements. The result of this exchange in principal is 
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that, following each quarterly interest and principal payment, the mark-to-market 

value on the CC Swap will be zero (at least for a short period). 

 

 At maturity, in the case of both the swaps, principal is exchanged based on the 

most current exchange rates. 

 

Although a small change in the terms and conditions of the CC Swap, it has a significant 

impact on the counterparty credit risk exposure – especially for swaps with long 

maturities. The reason for this reduction is that, in the case of the vanilla swap, the 

potential impact of exchange rate moves during reset dates is much larger than in the case 

of the MTM reset CC Swap. In essence, both the vanilla cross currency swap and the 

MTM reset swap exposes both parties to a 20 year exchange rate movement – but the 

MTM reset cross currency swap does so in quarterly intervals. The following figure 

illustrates the typical contract-level PFE profiles for the two swaps. 

 

 

Figure 3.13 - Contract-Level PFE of MTM Reset and Vanilla Cross-Currency Interest Rate Swaps 
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3.4 Impact of Credit Derivatives on Counterparty Credit Risk 

 

Due to the significant expansion of the OTC Credit Derivatives market over the past 

decade banks often are faced with the challenge of measuring counterparty credit risk on 

portfolios which not only include a large number of OTC contracts on equities, interest 

rates and other underlying assets but also often a significant amount of credit derivatives. 

Including credit derivatives into a portfolio of non-credit derivatives contracts 

significantly adds to the complexity of measuring counterparty credit risk. 

 

To illustrate this point, let‟s consider a bank which buys credit protection, from 

counterparty ABC, in the form of a credit default swap (CDS) on one of its other 

counterparty‟s, DEF. Also, let‟s assume that the bank already has credit exposure against 

DEF and ABC in the form of loans (traditional primary risk) and other derivative 

contracts (counterparty credit risk).  

 

Conceptually, a credit default swap achieves very much the same as a standard insurance 

contract. In this example, the bank agrees to pay a fixed premium (typically quarterly), to 

ABC, and in return receives a commitment from ABC to compensate the bank for credit 

losses in the event of a credit default by DEF. In practice, however, a CDS typically has a 

specific reference asset (i.e. for example a publicly traded bond issued by DEF) upon 

which events constituting a credit event (typically restructuring of the debt or defaults on 

the payments under the debt issued, etc.) are based. CDS contracts are also typically over-

the-counter and so can be tailored to the specific needs of the protection buyer. Since the 

bank already has some credit exposure against DEF, it is reasonable to assume that this 

credit exposure should, at least to a certain extent, be offset by the amount of credit 

protection bought. The big question is “by how much?” and also “which credit exposures 

can one offset?” If we consider the counterparty to the CDS, ABC, it is also important to 

realise that the bank has a reliance on ABC to honour its obligation under this CDS – in 

very much the same way as the bank relies on any other counterparty to a non-credit 

derivative contract. The bank therefore has counterparty credit risk exposure to ABC as a 

result of the CDS. 
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The situation above adds a considerable amount of complexity to the modelling of a 

counterparty-level PFE profile for ABC. The source of the added complexity is the fact 

that the simulated scenarios would now need to include scenarios of a risk driver which 

drives the MTM of the CDS. The MTM value of a CDS is influenced by the credit 

quality of the reference asset – the more likely the reference asset (or name) is to default, 

the higher the mark-to-market value for the protection buyer. The diagram below 

illustrates the dynamics of this CDS contract and indicates the resulting credit risk 

exposure impact. 

 

 

Figure 3.14 - Dynamics of CDS and Impact on Credit Risk Exposure 

 

In our definition of PFE (Section 2.2.2 and Section 3.2) we defined  to contain all 

prices of market variables required to calculate the value of the derivative(s) under 

consideration. This can be extended to include credit spreads which are used to value 

credit default swaps and other credit derivatives. This is necessary for the calculation of 

counterparty-level PFE profiles on portfolios of derivatives which include credit 
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derivatives. The difficulty is, however, that one would need to make an assumption 

regarding the evolution of credit spreads
57

. 

 

Let‟s firstly consider the problem of modelling the counterparty credit risk associated 

with the counterparty to the credit derivative and then proceed to discuss the calculation 

of the impact to the credit exposure to the issuer (or referenced name
58

). 

 

3.4.1 Counterparty Credit Risk Associated with the Credit Derivative 

Counterparty 

 

In the examples of counterparty credit risk estimation thus far the credit exposure was 

relatively easy to estimate since the underlying risk drivers are assumed to be 

independent of the counterparty‟s financial health (i.e. credit state). For credit derivatives, 

however, this is not the case since there is more often than not a positive correlation 

between the credit quality of the referenced credit and the counterparty to the credit 

derivative. We will look at two models which attempt to address the problem of 

estimating the counterparty credit risk under a credit derivative. 

 

3.4.1.1 The Hazard Rate Model 

 

The term „hazard rate‟, denoted by h(t), originated in survival analysis and can be 

interpreted as the instantaneous probability of default at t.
59

 Often, practitioners make use 

of a model for the hazard rate. There are a number of motivations for modelling  the 

hazard rate
60

: 

                                                 
57

 Assume a stochastic process which can be used to simulate credit spreads in a similar way in which we 

have applied GBM in modelling the FX spot exchange rate and the CIR model to simulate the short rate of 

interest. 
58

 It is possible for a CDS contract to merely reference a name and a level of debt seniority. For example, a 

CDS can be tailored to have as default event any default on debt of the class Senior Unsecured. Clearly this 

is more general than merely referencing a specific bond and the prices and the risks associated with such 

contracts is therefore different. 
59

  McNeil and Embrechts (2005) 
60

 Li (2000) 

 
 
 



62 

 

 

 

 The hazard rate, h(t), provides information on the immediate default risk of each 

non-defaulted counterparty, at time t. 

 

 The comparisons of groups of individual counterparties are most incisively made 

via the hazard rate function, 

 

 

 A model based on hazard rate can be easily adapted to more complex situations 

such as multiple-underlying credit derivatives (e.g. basket CDS contracts
61

). 

 

 There are a lot of similarities between the hazard rate function and the short rate 

of interest. Many modelling techniques for short rate processes can, as a result, be 

readily applied to modelling  the hazard rate. 

 

The relationship between the hazard rate, h(t), the forward hazard rate, h(t,T), and the 

survival probability S(t,T) is: 

 

 

and 

 . 

 

Where  denotes expectation in the risk-neutral measure conditional on the information 

at time t
62

. 

 

It is possible to treat the hazard rate similar to an interest rate and use models such as the 

Hull-White model or the exponential Vasicek model to simulate the hazard rate process 

h(t) and logarithm of the hazard rate ln[h(t)] respectively. One very important draw-back 

of the hazard rate model is the fact that the model is not very applicable to less liquid 

                                                 
61

 Basket CDS contracts are CDS contracts where the underlying is a group („basket‟) of names. The pay-

out trigger can be a first-to-default or even n
th

 to default event. 
62

 For a detailed derivation of the hazard rate function and some background on the motivation for this 

approach refer to Li (2000). 
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credit derivative markets such as in South Africa. When the market is not liquid, it is very 

difficult to estimate the required model parameters since the observable credit spreads are 

not always reliable or frequently updated. 

 

3.4.1.2 The Ratings Transition Model 

 

Hille, Ring, and Shimamoto (2005) propose a model for CDS counterparty credit 

exposure which uses innovative ideas. In summary, the model involves the following 

steps (for each market scenario and time step): 

 

 Calculate spread curves and risk-neutral default probabilities for each possible 

credit state (usually credit ratings are used as credit states) of the underlying issuer 

 

 Calculate a set of CDS contract values using the risk-neutral probabilities 

 

 Calculate the probabilities of the issuer being in each credit state (conditional 

upon the counterparty defaulting at that point in time) 

 

 Enhance the original market scenarios with the new distribution of CDS values 

and probabilities 

 

 Calculate all exposure measures using this enhanced distribution. 

 

The key model features, which are important to take into account when modelling 

exposures from credit derivatives, are: 

 

 The underlying risk drivers are not independent of the counterparty‟s financial 

health. The joint credit process is modelled and credit quality correlation is an 

integral part of the model. 

 

 Exposure is conditional on a marginal default window. 
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 The joint ratings transition is modelled through a combination of Markovian 

transition matrix evolution and a structural asset-value model. The latter 

introduces credit quality correlation through correlated asset values, equivalent to 

using a Gaussian copula credit risk model originally introduced by Li (2000). 

 

This model is semi-analytical, which is an advantage since it enables fast and reliable 

computation of counterparty credit risk. Another major appeal of this model framework is 

the use of the credit ratings transition matrices. The short-coming of the hazard rate 

model in terms of its application to markets which are less developed and less liquid can 

be overcome to a certain extent in this approach. 

 

Hille, Ring, and Shimamoto (2005) mention the possibility of incorporating a 

representative or average par spread curve for each rating state (credit rating) from a 

generic rating-spread-table. This generic rating-spread-table can be constructed by using 

the average of the credit spreads of credits which are actively traded and publicly rated. 

This approach is quite a rough approximation since it assumes that changes in credit 

spreads are only due to changes in credit rating which underestimates credit spread 

volatility. The one major advantage is that the model can be applied to instances where 

the reference asset or reference name is not actively traded and does not have an 

observable and reliable credit spread curve by applying the average par spread curve 

mentioned above. 

 

3.4.2 The Reduction in Credit Exposure to the Referenced Issuer/Name 

 

As discussed in Section 3.4 above, it is clear that buying protection on DEF from ABC 

should, in some way, result in a reduction in the credit exposure that the bank has to DEF. 

The most important motivation for determining such an impact is a practical one. In a 

bank it is very important to be able to reflect and monitor the credit exposure that the 

bank has to its various counterparties. It is therefore crucial to the bank to be able to 
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reflect the impact of the protection bought, through the CDS, on its exposure to DEF. 

One simple approach to capturing this impact within a limits system is through the 

creation of an offsetting instrument for the CDS. This answers the question of how this 

impact will be reflected. The more important aspect is the problem of quantum. How big 

should this offset be? It‟s important to highlight that using CDS contracts to offset 

existing exposures in general is not entirely clean. 

 

It is very important to determine to what extent the CDS will, in reality, mitigate the 

current and future credit exposures to the particular counterparty. If the bank, for 

example, bought the credit protection on a specific bond issued by DEF one would need 

to determine the seniority of the bond in relation to the other existing exposures and also 

the impact that this possible mismatch in seniority between the credit protection and 

credit exposure will be
63

. If the bank does not hold the exact reference asset but one with 

the same issuer but different seniority, then the net exposure to the issuer is not 

completely eliminated and can be calculated using the following
64

: 

 

, 

 

where  is the recovery rate estimated
65

 for the reference asset and  is the 

recovery rate estimated for the asset (or exposures) held. The full exposure amount is 

therefore offset if the CDS is contracted on a reference asset that is of equivalent or more 

junior quality to the exposure held.  

 

3.5 Other Counterparty-Level Issues to be considered 

 

                                                 
63

 Seniority relates to the „pecking order‟ in the event of default. If one bond 1 is senior to bond 2 then, in 

the event of default, holders of bond 1 have claim on the defaulted counterparty‟s assets before the holders 

of bond 2. It is therefore expected that holders of senior bonds will have a higher recovery rate. 
64

 De Prisco and Rosen (2005) 
65

 In practice some CDS contracts have a specified recovery rate, sometimes referred to as a digital or 

binary CDS. In this case the rrCDS would therefore be known. 
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3.5.1 Consistency in Modelling across products 

 

It is very important to apply a general and consistent approach to the problem of 

counterparty credit risk measurement. The interpretation of an exposure estimate should 

always be consistent across products and should, as far as possible, achieve results which 

are expected (from an economic and financial perspective). For example, if one measures 

the contract-level PFE of an FX Forward (Section 2.2.4, pp 17) and, in a separate 

exercise, measure the counterparty-level PFE with netting applied on a portfolio 

consisting of two FX Options (using Put-Call Parity) achieving the exact same payoff as 

the FX Forward one should yield the same resultant PFE. This concept is an extension of 

the no-arbitrage assumption in derivative pricing. Let‟s consider the following two 

portfolios
66

 to illustrate this point: 

 

Portfolio 1: Long FX Forward on 1000 USD Portfolio 2: 2 FX Options on 1000 USD 

Contract 

Details 
Payoff at Maturity Contract Details Payoff at Maturity 

Long Forward  
Long Call  

Short Put  

Portfolio 1  Portfolio 2  

 

Table 3.4 - Portfolios Used in Cross-Model Consistency Example 

 

Figure 3.15 illustrates the payoff profiles for the individual derivatives in Portfolio 2, 

followed by the payoff profile of Portfolio 1. This also shows (visually) that the payoffs 

under the two portfolios are equal under all scenarios. 

                                                 
66

 All derivatives in the portfolios have the same, 6 month maturity, and all options are European-style. 

Also note that 4947.8/ ZARUSDK , the 6-month forward exchange rate. 

 
 
 



67 

 

 

 

 

Figure 3.15 - Payoff Profiles of the Derivatives in Portfolio 2 

 

When the payoff of the call and the payoff of the put are added it results in the same 

payoff under all scenarios as that of the long FX Forward, shown in Figure 3.16 below. 

 

 

Figure 3.16 - Payoff Profile of the Derivative in Portfolio 1 

 

This is expected since, as shown in Table 3.4 above: 
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. 

 

The approach followed in the generation of future spot exchange-rate scenarios is that 

derived in section 3.5.3.2 below, which ensures economic consistency. We have also 

applied the same method of perturbing the forward exchange rates (implicitly assuming 

that interest rates remain constant) as in section 2.2.4 above. The resulting counterparty-

level PFEs are given in Figure 3.17. 

 

 

Figure 3.17 - Counterparty-Level PFE Comparison: Synthetic Forward vs. Regular Forward and 

Associated Differences in Estimates 

 

The results above are satisfactory from a practical point of view since the errors, in 

relative terms, are not great considering that the contracts are based on a USD 1,000 

notional. From a theoretical point of view though, it would be good to understand the 

reasons for the differences in the estimates. The following points are some of the main 

reasons for the differences between the counterparty-level PFE estimates in Figure 3.17 

above: 

 

 Firstly, we have assumed that there is a flat 12% interest rate for discounting 

purposes. In addition to that, we have assumed for the sake of pricing the FX 
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forward through time that the relative shape of the forward FX curve remains 

constant. This second assumption implies that the interest rate differential for all 

maturities remains constant. This interest rate differential is however observed 

from data from the actual market which means that the interest rate curves are 

certainly not flat. The two assumptions regarding the interest rates are therefore 

slightly inconsistent and therefore contribute to the disjoint results between the 

portfolios. 

 

 Secondly, we have assumed that the implied volatility in the Black Scholes 

pricing formula remains constant. This, again, is unrealistic and should ideally be 

adjusted according to some volatility smile as the simulated mark-to-market 

values move in or out of the money over the life of the contract. 

 

 Lastly, the time steps used for valuation were purely for ease of exposition and 

therefore the forward exchange rates had to be interpolated from the actual 

market-observed curve. Linear interpolation was used and could therefore also 

have an impact on the marked differences between the counterparty-level PFE 

results. 

 

Another elementary method of testing consistency in the modelling of PFEs across 

products would be the case of the relationship between an Interest Rate Swap (IRS) and a 

string of Forward Rate Agreements (FRAs). Essentially, a vanilla fixed for float interest 

rate swap can be broken down into a string of consecutive FRAs. The PFEs of the IRS 

and the string of FRAs should therefore be equal. 

 

3.5.2 Consistency in Modelling across Risk Drivers 

 

In all the portfolio-level PFE examples we have discussed so far we have only had 

portfolios which consist of contracts based on very similar risk drivers. For example, we 

have considered portfolios consisting only of currency derivatives, which make the 

modelling of the future risk driver scenarios relatively easy. Unfortunately, in practice, 
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we are less fortunate and the situations in real life can be exponentially more difficult. If 

one considers, for example, a portfolio which, not only consists of foreign exchange 

derivatives but also interest rate derivatives and perhaps even a few commodity trades. 

All of the underlying risk drivers are, to some extent, correlated which would ideally 

need to be incorporated into the modelling. Moreover, some of the risk drivers in the 

portfolio are also directly related in practice. An example is the relationship between the 

exchange rates between two countries and the relative difference between their interest 

rates (commonly referred to as the interest rate differential). It is therefore of utmost 

importance that care is taken in the modelling of these various underlying risk drivers and 

that the impact of one risk driver on another seemingly unrelated risk driver is carefully 

considered. Failure to do so may result in a gross overstatement, or even worse, 

understatement of credit exposure. 

 

A good example of a method currently used in practice to overcome related issues is the 

following: Let‟s assume a portfolio contains currency derivatives and also some interest 

rate derivatives. More specifically, let‟s assume that the portfolio contains a ZAR interest 

rate swap as well as a few USD/ZAR FX Forward contracts. As we have seen in 

numerous examples above, the most obvious risk driver to model in the case of the 

forward contracts is the spot price, but some assumption needs to be made regarding the 

evolution of the forward exchange rate curve. In contrast to the approach that was taken 

above (i.e. assuming the forward exchange rate curve moves up and down in parallel 

shifts) one can use the GBM model to model USD/ZAR spot exchange rates and use a 

model for the short rate (e.g. the CIR Model used in Section 2.2.7, pp 23) in order to 

evolve the forward exchange rate curve. In this way there will be a consolidated 

framework in which the interest rate swaps and the FX forwards can be valued under the 

same set of simulated scenarios in a consistent fashion. 

 

3.5.3 Consistency in Conversion Rates in Simulated Future Scenarios 

 

In the foreign exchange derivative examples above, we have consistently used exchange 

rates which are quoted against the Rand, and proceeded to refer to the Rand exposures in 
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our discussions. This avoided a very important and often underestimated complexity 

which often exists in converting future simulated exposure numbers between different 

currencies while maintaining economic and financial consistencies and realities. An 

example will illustrate this point. 

 

Let‟s consider the FX forward contract in Section 2.2.4 (pp 17) under which the bank is 

due to receive USD 1,000 in exchange for paying ZAR 8,170 in 6 months‟ time. The 

credit exposure from the bank‟s perspective will materialise when there is a positive 

mark-to-market value for the bank. This, in turn, will happen if ZAR weakens against 

USD during the life of the contract. If, for example, ZAR weakens to a level of USD 1 = 

ZAR 10 in six months‟ time then the bank is in a fairly good position since it will pay 

only ZAR 8,170 for USD 1,000 worth ZAR 10,000 at that point in time. If we take this to 

the extreme, the best situation that the bank could be in just before the maturity date 

(purely from a MTM point of view) is if ZAR becomes close to worthless. ZAR being 

„worthless‟ would result in an almost unlimited
67

 MTM (in ZAR terms) of this contract. 

If, however, the bank monitors this exposure in USD, the amount that can be lost is 

limited, from an economical point of view, to USD 1,000,000. 

 

We have stated the formula for the MTM (in ZAR) of this type of contract before 

(Section 2.2.4, pp 17). For the sake of completeness, the formula for the MTM (in ZAR 

and USD, respectively) from the perspective of the bank (as USD notional receiver/ZAR 

payer) is given below:  

 

 

 

Let‟s consider the simple PFE calculation similar to that in the example in Section 2.2.4 

(pp 17). In section 2.2.4 we measured and illustrated in the PFE in ZAR terms and also 

concluded that the maximum contract-level PFE value occurs just before maturity (since 

                                                 
67

 The value of the amount to be received, if measured in ZAR terms could be as large as the exchange rate 

allows it to be. This is in contrast to the economic reality that this amount, in USD terms, will never exceed 

the notional amount. 

 
 
 



72 

 

 

 

there is no amortisation effect and essentially only the one settlement amount at 

maturity). What happens if we change the measurement currency to USD? 

 

At first glance one may be tempted to assume that this is trivial and convert every ZAR 

number in the PFE profile to USD using the current USD/ZAR spot exchange rate. This, 

as will be shown below is incorrect. Before proving this, it should be highlighted that the 

modelling of an exchange-rate as risk driver for PFE purposes can be done using both 

quoting directions. In the example above, this means that we can model the exchange rate 

as a USD/ZAR rate or as a ZAR/USD rate – the same volatility will apply etc. There is 

one major requirement though: the two models should yield consistent results, and most 

importantly, it should not matter which quoting direction we use – we should be able to 

convert the results presented by the one and arrive at results that would have been 

produced by the other. More simply, we need to establish which exchange rate we need to 

convert at throughout the life of the contract into the future in order to achieve 

economically consistent results (without having to be selective about the quoting 

convention used in the modelling of the scenarios). It turns out, as will be shown below, 

that the rate that should be used to convert a time t>0 ZAR exposure produced by a 

USD/ZAR model in scenario i should be converted to USD using the time t spot rate 

produced by the USD/ZAR model under that same scenario and not the spot rate at time 0 

(today). 

 

This may seem very trivial to some readers but is, nonetheless, a very important result 

demonstrating the importance of consistency in PFE modelling and financial modelling in 

general. 

 

3.5.3.1 Example of Consistency in the Conversion of Future Exposures 

 

Let‟s now apply what we have conceptually deduced, and in the process show more 

formally the motivation for this result. Let‟s consider the value of the contract at maturity 
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(T)
68

. If we choose to calculate the PFE (or exposure) in ZAR using a model for the 

USD/ZAR exchange rate we will calculate MTM values under each simulated scenario 

using the following formula (subscripts indicate the currency or quoting convention 

used): 

. 

 

Also note that  

 , with  the random 

sample from the N(0,1) distribution in scenario i. 

  

 . 

 

Now, if we were to simulate the PFE using the model for the ZAR/USD we will use: 

 

.  

 

If we attempt to convert the result from the USD/ZAR model to a USD exposure using 

the approach motivated above
69

 we get: 

 

                                                 
68

 This is purely for ease of exposition and the approach and result can be extended to any hold at any t 

(0≤t≤ T). 
69

 Converting using the applicable simulated spot price produced by the model, at that point in time. 
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This shows that the motivation above is accurate and produces the correct result. We have 

thus shown that it is possible to apply the model proposed for the estimation of FX 

Forward PFEs consistently from an economic point of view
70

. We now show that this 

method also implicitly enforces the reality observed in the real world, also explained 

above, with regards to the fact that the bank‟s exposure is capped at the notional amount 

if the notional amount it receives at maturity is quoted in the currency that it monitors its 

exposure in.  

 

3.5.3.2 Example of Consistency between the Model Results and Real 

World Expected Results 

 

Let‟s look at the specific example in Section 2.2.4 (pp 17) and again consider the 

exposure at maturity (just before final settlement). In addition we consider this under 

different assumptions of volatility and maturities in order to illustrate the required result 

effectively. The following graph shows the 95% contract-level PFE estimates, at maturity 

(before settlement) for USD/ZAR FX Forwards with various maturities and different 

assumed USD/ZAR volatilities which are then converted, to USD, using the approach 

above. 

 

                                                 
70

 The model will yield the same results whether the USD/ZAR exchange rate is modelled or whether the 

ZAR/USD exchange rate is modelled. 
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Figure 3.18 - Contract-Level PFE at Maturity for FX Forwards with Different Volatilities and 

Maturities 

 

Clearly this is not exactly the result we had hoped for since the above graph shows that 

for certain volatilities and certain maturities the model could produce results which could 

never materialise in real life. The problem lies in the fact that the function: 

 

. 

 

is not strictly increasing, for a fixed choice of  (in general). A clever choice for μ, 

however, does overcome this problem. If we choose μ=0.5σ
2
, we get the following: 

 

. 

 

Using this choice for μ in reproducing Figure 3.18, we get Figure 3.19 which satisfies our 

criteria of consistency between results produced by our model and the results expected in 

practice. What‟s also comforting is the fact that such a result is possible within the model 

framework without explicit intervention (in the form of explicitly capping the produced 

exposure amounts) to suit real-world requirements. 
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Figure 3.19 - Contract-Level PFE at Maturity for FX Forwards with Different Volatilities and 

Maturities, Using Drift Adjustment Term 
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4 Measuring Wrong-Way Risk Exposure 

 

Many financial institutions were caught by surprise during the financial crises in South-

East Asia and Russia when corporate and sovereign defaults, as well as downgrades, were 

accompanied by severe declines in currency values, driving exposures and losses well 

beyond their expectation. Wrong way exposure (WWE) occurs when counterparty 

exposure is highly negatively correlated with the counterparty‟s credit quality, i.e. 

counterparty exposure increases simultaneously with a weakening of the counterparty‟s 

credit quality. For example  

 

 when a bank enters into a cross currency swap agreement with an emerging 

markets counterparty seeking inexpensive US Dollar funding referencing its 

domestic currency; or 

 

 When a highly leveraged counterparty seeks to receive fixed payments on an 

interest rate swap. 

 

Both of these examples are wrong-way in that the situations which would have the 

derivatives be in the money for the bank, are those situations which coincide with 

scenarios where the counterparty will have difficulty in fulfilling their obligations under 

those agreements (rising interest rates or a strengthening dollar). 

 

In the modelling examples discussed so far we have consistently assumed that the 

exposure is independent of the counterparty‟s credit quality. More formally, we have 

defined PFE (in 2.2.2) such that 

 

. 

 

Implicitly, we have in fact assumed that 
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, 

 

where CSCP denotes the credit state of the counterparty and  denotes the default state. 

 

We have therefore assumed the market factor distributions can be used directly to 

generate or project the set of (unconditional) scenarios which are used to compute the 

distribution required to estimate the PFE, and finally compute measures of credit 

exposure. This completely ignored the dependence between the level of the market 

factors and the impact thereof on the likelihood of the counterparty to default. From a 

purely conceptual point of view, this problem can also be explained as follows: Instead of 

saying “at each future scenario of the market price
71

, what would the value of the 

derivative be?”, one should rather be asking: “Under which scenarios
72

 does the 

counterparty actually default
73

” and then, focusing on those scenarios, determine the 

value of the derivative and finally computing the measure of exposure as required. This 

is, from a more technical perspective, the equivalent to approaching the problem of 

exposure measurement using a conditional-distribution approach. More specifically, a 

conditional distribution of exposure would give the exposure profile conditional on 

default. 

 

It is often suggested that stress tests should be used to handle wrong-way exposures
74

, but 

stress test measures cannot be used for pricing and limit setting in the same way as the 

standard measures. It should also be highlighted that in using stress testing to specify the 

conditional distribution by assuming that counterparties default only when the market 

significantly moves against them, the cases where the counterparties default for other 

reasons would be ignored. According to the CRPMG
75

 report, produced by executives 

                                                 
71

 This market price being simulate as we have done in all examples so far – i.e. unconditional of 

counterparty default. 
72

 These scenarios, in order to be determined, would need to have some relation to the probability of default 

of the counterparty. 
73

 Or, equivalently, “...are the counterparty more likely to default” 
74

 Rowe (1999). 
75

 Counterparty Risk Management Policy Group, see http://www.crmpolicygroup.org/ 
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from twelve of the largest commercial banks, the typical assumption
76

 used by banks was 

heavily critisised. Duffee (1996) investigates the validity of this assumption empirically 

and concludes that between 1971 and 1992 corporate defaults in the U.S. tended to 

cluster during periods of falling interest rates. For the „receive fix‟ side of U.S. interest 

rate swaps this produced a significant positive correlation between the size of exposure 

and counterparty default events. Duffee demonstrates that an exposure measure which 

accounts for wrong-way risk is on average 65% higher than a comparable measure 

assuming independence. 

 

Typical exposure measures which assume independence between the counterparty default 

and the value of the contract allow us to determine expected losses quite easily. For 

example, for a contract with an expected exposure
77

 of R1000,000 and a default 

probability of 1% we must assume that the default event and exposure amount is 

independent in order to conclude that the expected loss, as a result of default, is 

1%×R1000,000 = R100,000. Ideally, we would also want to be able to make such 

statements when it comes to situations where wrong-way risk is present. In other words, 

we would like to have an exposure measure incorporating wrong-way risk which, when 

multiplied by the probability of default of the counterparty, will yield the expected 

default loss on the transaction. Finger (2000) proposes a framework which achieves this 

desired property in an exposure measure incorporating the effects of wrong-way credit 

risk. This approach is summarised below. 

 

4.1 Finger’s Model 

 

4.1.1 Definition of the Framework 

 

                                                 
76

 The assumption of the independence of the counterparty exposure and the counterparty‟s credit quality – 

i.e. ignoring wrong-way risk. 
77

 See Table 2.4. 
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Firstly, we assume that only one risk factor underlies our derivative contract under 

consideration. Let‟s define some notation: 

  is a stochastic variable and denotes the risk factor at time t. Note that this is a 

value in  (as defined in Section 2.2.2 above)
78

. 

  denotes the probability density function of Rt. We assume that this is known
79

. 

  denotes the mark-to-market value of the contract assuming that the 

price of the underlying risk factor is . 

  denotes the exposure
80

 at time t, given that  at t. 

 

Then we have the expected exposure
81

 defined as: 

 

. 

 

The contract-level PFE
82

 at t using a confidence level of α is the x satisfying: 

 

 

 

We define  as the conditional probability of default – i.e. the probability of default 

given that . For example, if we are assume our contract is an interest rate swap the 

function  would be the relation between the counterparty‟s default probability and the 

swap‟s underlying interest rate – presumably  would increase for an increase in the 

interest rate. In contrast, when default is independent of the underlying factor  would be 

constant. For consistency, the following condition is introduced: 

 

                                                 
78

 Note the suppression of the „i‟ in the notation here (compared to ). This is purely for simplicity 

because we are only considering one contract at this stage. 
79

 For more information on exposure measurement, see Zangari, (1997). 
80

 As mentioned previously, some practitioners define exposure as being strictly positive. This is an 

example of such a definition. 
81

 This is merely the continuous case of the definition in Table 2.4.  

 
82

 In Finger (2000) this is referred to as the maximum exposure given confidence α. 
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where  denotes the unconditional probability of default of the counterparty. 

 

The conditional probability that  lies below a fixed value y, given that default has 

occurred, is
83

: 

 

 

 

And therefore, the conditional density ( ) is easily computed: 

 

 

 

It‟s important to highlight here that the conditional density does not depend on the 

absolute level of the default probability – only on how the conditional default probability 

is related to the risk factor
84

. This feature makes this framework very appealing from a 

practical point of view. The reason for this is that two counterparties which have the same 

dependence on the risk factor (through ), but a different , would have the same 

conditional density
85

. It is therefore possible to have certain groups of counterparties with 

the same ‟s and it would only be necessary to compute one  irrespective of their 

different levels of . This is very appealing from a systems and computational 

efficiency point of view. 

 

                                                 
83

 Using Bayes‟ Rule.  
84

 This point is very important and one which we will build on in the next section. 
85

 More specifically, if the two companies have different unconditional probabilities of default, but react 

similarly in the relative impact to their conditional probability of default for a given change in r the 

companies will have the same conditional probability of default. 
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It is now possible to define the conditional expected exposure in this framework: 

 

 

And similarly, we can define the conditional contract-level PFE, using a confidence level 

of α, as the x satisfying: 

 

 

 

Note that  and  can be evaluated using Monte 

Carlo simulations of Rt. This means that it is not necessary to simulate scenarios from the 

conditional distribution in order to calculate the conditional expected exposure, which is a 

very useful result from a practical perspective. 

 

4.1.2 Calibration of the Model: Finger’s Approach 

 

Finger proposes a function for  as follows: 

 

 

 

where 

  is determined by , the consistency condition defined 

above. 
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 , 

 μ is the mean of the risk factor at t, 

 σ is the standard deviation of the risk factor at t, 

 β1 and β2 are numbers to be specified through calibration. 

 

The approach followed by Finger in the calibration of  β1 and β2 is to specify values for 

the mean ( ) and standard deviation ( ) of the conditional distribution and find 

values for β1 and β2 such that: 

 

 

and 

 

 

The above set of equations can be solved numerically. The challenge is defining the 

values for  and . Finger proceeds to apply a methodology specified in Levy 

(1999) for obtaining a so-called “residual currency value upon counterparty default” in 

order to derive values for  and .
86

 

 

4.2 A Proposed Enhancement to Finger’s Model 

 

In the framework developed by Finger the link between the level of the underlying risk 

factor which causes the wrong-way risk and the probability of default of the counterparty 

is crucial. One criticism of this model is the fact that, although very flexible and intuitive, 

the  function proposed by Finger almost seems arbitrary and is not transparent. In 

short, it is not clear what the relationship between the underlying risk driver (causing the 

wrong way risk) and the level of the probability of default of the counterparty is. 

                                                 
86

 See Finger (2000) and Levy (1999) for more information. 
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Moreover, this functional link, , directly impacts the conditional default distribution 

from which the conditional PFE or EPE is estimated. 

 

The proposed enhancement to Finger‟s model is a specification of this  function 

through a simulation approach employing a structural model which results in an 

intuitively appealing framework for the incorporation of wrong-way risk measurement 

into existing counterparty credit risk simulation models. We will first present an overview 

of structural models, followed by a detailed specification of the proposed framework for 

measuring the impact of wrong-way risk exposure on counterparty credit risk measures. 

 

4.2.1 Structural Models of Default Risk 

 

4.2.1.1 Merton’s Structural Model 

 

The first version of the structural model appeared in a paper by Merton in 1974. Merton 

argued that, fundamentally, a firm would default if the value of the firm decreases beyond 

a certain threshold level. Merton‟s work relates credit events to economic fundamentals 

by modelling the dynamics of the assets of the firm.  

 

Merton considers a firm with the following characteristics: 

 

1. The firm has two funding resources: 

a. Equity 

b. A single class of debt in the form of a zero-coupon bond with a par value 

D and maturity T 

2. If the firm defaults on the repayment of the debt at time T, the bond holders take 

control of the firm leaving the equity holders to receive nothing 

3. It‟s assumed that the firm cannot issue any senior claims, pay cash dividends 

repurchase shares prior to T. 
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It is further assumed that there are no transaction costs or taxes and that short selling is 

permitted. Also, there is no problem with the divisibility of assets
87

. Merton‟s model 

relates the default risk of a firm to a firm‟s capital structure. The assumption is that the 

value of a firm‟s assets follows lognormal diffusion process with constant volatility, i.e. 

 

     (5) 

 

where At the value of the firm‟s assets at time t, Et represent the value of equity at time t 

and μA and σA denote the asset drift and volatility respectively.  is a standard Wiener 

process. Note that (5) has the unique solution: 

 

, 

 

with  given and 

 

. 

 

As per our argument above, if the firm defaults on its debt at time T the bond holders take 

control of the firm leaving the equity holders with nothing. Conversely, if at time T the 

debt is repaid the equity holders will receive the remaining value of the firm. Therefore, 

under these assumptions, the following relationship (at time T) will hold: 

 

  
    (6) 

 

The relationship above is then equivalent to equating the equity price of a firm to the 

value of a call option on the firm‟s assets with strike price equal to its debt repayment at 

T. If r denotes the risk free interest rate (which, together with σA, is assumed to be 

constant) we have
88

: 

 

                                                 
87

 See Merton (1974) for detailed assumptions. 
88

 By application of the famous model by Black and Scholes. 
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    (7) 

where 

   (8) 

 

The one difficulty with (5) is the fact that the asset volatility is not directly observable in 

the market. Since the equity value is a function of the assets, it is possible to apply Ito‟s 

lemma to determine the instantaneous volatility of the equity from the volatility of the 

assets
89

: 

 

,     (9) 

 

with  the instantaneous volatility of the firm‟s equity at time zero. 

 

It is therefore possible to estimate the volatility of the assets of a firm by using (9) 

together with the equity price of the firm observable in the market. As mentioned above, 

if the asset value of the firm falls below the value of the firm‟s debt payment at time t, the 

firm is assumed to be in default which implies that the bond holders will take control of 

the firm, and in practice, make some recovery on the unpaid debt. From (7) it is possible 

(under the assumptions made) to make statements surrounding the probability of default 

of the firm. In fact, the probability of default can be seen as the probability of not 

surviving up to a certain point in time which is equivalent to the probability of the option, 

with pay-off as in (6), not being exercised. 

 

The motivation for this is that, if the option under consideration is not exercised, then the 

firm‟s assets are less than its debt payment due implying that it has defaulted. In short, we 

can write the survival function
90

 as follows: 

 

                                                 
89

 See:Jones, Mason and Rosenfeld (1984),Hull, Nelken and White (2004). 
90

 The survival function, i.e. S(t), denotes the probability that the firm will not default before time t. 
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.  (10) 

 

Therefore, the probability that the firm defaults before t is given by: 

 

 ,    (11) 

 

with  representing the cumulative standard normal distribution function. 

 

The approach followed above in deriving the probability of default is intuitive and adds a 

insight into the basic motivations for using structural models of default. The practicality 

of the approach is however questionable since the variables in (5) are not directly 

observable in the market and one would therefore need to make certain assumptions in 

order to apply the approach in practice. To this extent there have been numerous 

extensions
91

 of Merton‟s model since 1974.  

 

4.2.1.2 The Moody’s KMV Model 

 

One of the most widely used extensions of Merton‟s model is the Moody‟s KMV model 

which defines the statistic called „Distance to Default‟ which is essentially the number of 

standard deviations that the asset-value of the firm is away from default and is calculated 

as: 

 

. 

 

The Moody‟s KMV (MKMV) model is essentially a structural Merton model which, 

using the Distance to Default (DD) measure defined above, has been calibrated to 

                                                 
91

 See  Haworth (2004) for a comprehensive overview of the evolution of the structural model. 
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historical default data from Moody‟s database. In summary, the MKMV model uses the 

Moody‟s database
92

 and, for a given DD value of a firm, looks up the number of 

companies in the database which have, given that DD, defaulted within the next year. 

Through this approach the MKMV model is able to provide a framework which is 

attractive from a theoretical point of view, but also takes account of empirical data 

addressing some of the known problems associated with using the normal distribution for 

credit risk modelling. One of the most important shortcomings of the normal distribution 

in the application of default risk estimation is the fact that empirical data suggests that a 

fatter tail distribution would be more applicable
93

. Although a very appealing framework, 

the MKMV model is proprietary and therefore not free to use because of the Moody‟s 

database which is used in the model calibration. The reader is referred to Crosbie and 

Bohn (2003) for more detail on the Moody‟s KMV structural model. 

 

4.2.1.3 The CreditGrades Model 

 

Another well known extension of the Merton framework (which is entirely free and 

transparent) is CreditGrades. The CreditGrades (CG) model was developed by three 

major international investment banks
94

 in association with RiskMetrics Group. The 

motivation for the development of the model is to provide a transparent model relating 

relevant model parameters to market observables and, in the process, attempt to provide 

transparency in the credit markets. It should be mentioned that, in contrast to the MKMV 

model, which has been „trained‟ using a proprietary default database to model the 

probability of default of a firm as accurately as possible, the CG model‟s main goal is “to 

track credit spreads well and to provide a timely indication of when a firm‟s credit 

becomes impaired”(Finger, 2002). 

 

                                                 
92

 This database includes more than 250,000 company-years of data and over 4,700 incidents of default or 

bankruptcy. 
93

 See  Crosbie and Bohn (2003) 
94

 Deutsche Bank, JP Morgan and Goldman Sachs. 
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Although the CG model‟s main purpose is not to derive a probability of default for a firm 

the model does produce satisfactory results in relative credit assessment
95

, i.e. the model 

is able to distinguish between relative levels of probability of default quite successfully. 

The basic approach is very similar to the original Merton Model, and the assets of the 

firm under consideration is assumed to have the dynamics specified in (5) with the only 

exception that the asset drift is assumed to be zero, i.e. . The motivation for the 

asset-drift being set to zero is that it is not the drift of asset itself that is important but 

rather the drift of the asset value relative to the default barrier
96

. 

 

The CG model defines default as the first time that the assets of the firm cross the default 

barrier
97

. The default barrier is defined as the amount of the firm‟s assets that remain after 

the firm defaults, and is represented by: 

 

, 

 

with 

     

  . 

 

The main difference in model assumption is as a result of the observation that defaults 

produced by the traditional Merton model are „expected‟ when the model is used in 

simulating default events using Monte Carlo Simulation. In simple terms, the diffusion 

model used in the traditional Merton model results in defaults being „predictable‟ in the 

sense that it does not happen „unexpectedly‟ because of the default barrier being fixed. 

This also leads to credit spreads of zero in the short term – which is not observed in 

practice. As a result, the CG model assumes that the average recovery rate ( ) is 

stochastic. More specifically, it is assumed that the average recovery rate follows a 

lognormal distribution with mean  and volatility of , i.e. 

                                                 
95

 Finger (2002). 
96

 It is assumed that, on average over time, a firm issues more debt in order to maintain a steady level of 

leverage or else pays dividends such that the debt has the same drift as the stock price. 
97

 The default barrier in this case is defined as the amount of the firm‟s assets that remain after default. This 

is merely the recovery value that the debt holders receive, . 
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, 

, 

and 

 

with 

. 

 

The random variable  is independent of the Brownian motion in (5)
98

. From an intuitive 

point of view, by letting  be random, the model captures the uncertainty in the actual 

level of a firm‟s debt-per-share ratio. There is therefore some true recovery rate which 

evolves through time which we are unable to observe with certainty (Finger , 2002). 

 

With the uncertain recovery rate, the default barrier can be hit unexpectedly leading to a 

jump-like process of default. The probability that the firm, given the assumptions above, 

survives to time t is then given by
99

 

 

   (12) 

where 

 

and 

 

 

The probability of defaulting before time t is therefore trivially given by . 

 

Note that Finger (2002) also suggests a practical method of calculating the parameters 

used in (11) using observable market variables: 

                                                 
98

 Also note that Z is unknown at t=0 and only revealed at the time of default. More specifically, there is a 

filtration F to which W is adapted such that F is independent of F0 but . 
99

  Finger (2002) 
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      (13) 

     (14) 

 

where 

  is the initial stock price 

  is the reference stock price 

  is the reference stock volatility 

  is the debt-per-share 

  is the global debt recovery rate 

  is the percentage standard deviation of the default barrier. 

 

4.2.2 A Structural-Model Approach to the Measurement of Wrong-Way 

Exposure 

 

We have discussed in some detail the dynamics of the traditional, as well as some 

extensions of the, Merton structural model. One very useful application of structural 

models, often used in practice, is that of default simulation using a Monte Carlo method. 

This technique is often employed, most notably by the rating agencies
100

, in estimating a 

default credit loss distribution on a portfolio level. 

 

The main reason for the popularity of this approach is the ease of implementation through 

the fact that equity data is readily available in the market, as well as the fact that 

correlation is easily incorporated into the simulation approach. Another major appeal is 

the intuitive nature of the approach due to the use of financial fundamentals. 

 

In a similar fashion, the author proposes to apply very similar technology in introducing a 

relationship between the underlying risk driver in an OTC derivative, which causes 

                                                 
100

 Especially in the rating of Collateralised Debt Obligations (CDOs). 
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wrong-way risk, and the likelihood of default
101

 of such a firm. This is achieved through 

Monte Carlo simulation of the underlying risk driver of the OTC derivative and by 

calculating expected values of the equity price of the counterparty given the simulated 

underlying price. These simulated conditional expectation values are then used, through 

the structural model framework, in estimating conditional probabilities of default. The 

resultant distribution
102

 of values can then be used to establish the link between 

movements of the underlying risk driver of the OTC derivative and the likelihood of 

default of the counterparty through the application of the structural model on the 

simulated equity price(s). Of most interest is the relative change in probability of default 

given changes in the price of the underlying asset.
103

 

 

For example, let‟s consider the a typical situation where wrong-way risk exposure arises 

as mentioned on page 77: “when a bank enters into a cross currency swap agreement 

with an emerging markets counterparty seeking inexpensive US Dollar funding 

referencing its domestic currency”. In this case it is possible to calculate a measure of 

dependence (e.g. correlation) between the equity price of the counterparty of the bank and 

the underlying risk driver of the OTC contract (the counterparty‟s domestic currency‟s 

exchange rate against the dollar). This dependence estimate can be used to simulate 

future scenarios of the conditional expected equity price and the exchange rate. The 

simulated conditional expected equity prices, in turn, can be used to derive the implied 

conditional probability of default of the counterparty under each of these simulated 

scenarios, yielding the  function specified in Section 4.1.1 above. The estimated 

 function can then be applied, using Finger‟s framework, to yield a relative impact 

on the probability of default of the counterparty as a result of the changes in the 

underlying variable. Finally a conditional exposure calculation determined the 

counterparty exposure incorporating wrong way risk. 

 

                                                 
101

 Also referred to as the probability of default. Typically banks measure the probability of default over a 

one-year horizon for regulatory capital reasons although some banks have a so-called term structure of PDs. 
102

 As we will see, this distribution is a multivariate lognormal distribution. 
103

 More specifically, the ratio between the conditional probability of default and the unconditional 

probability of default. 
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This approach is very intuitive and extremely flexible in that it can be applied in almost 

any market. More specifically, in the South African context where the credit derivative 

market contains only a few names which are actively traded, this framework can be 

applied to almost
104

 any counterparty as it does not rely on the availability of observable 

credit spreads. 

 

4.2.2.1 Formal Definition of the Proposed Framework 

 

Consider a single OTC derivative with a single underlying market variable. The 

counterparty to the OTC derivative has a listed equity. The following stochastic 

differential equations describe the dynamics of the price processes of the underlying 

market variable price, , and the equity price, , respectively: 

 

 

 

 

 

In other words, we assume that the underlying price of the OTC contract, as well as the 

equity price of the counterparty follows Geometric Brownian motion. Moreover, we 

assume that there is a correlation between these Brownian motions, denoted by . Note 

that this is equivalent to saying that the underlying asset price at time t, ,and the equity 

price at time t, ,have a bivariate correlated lognormal distribution. This, in turn, is 

equivalent to saying that the natural logarithm (ln) of the prices at time t has a bivariate 

normal distribution as follows: 

 

                                                 
104

 The counterparty needs to have an observable equity price in the market – i.e. the counterparty needs to 

be listed. However, often in practice some proxy can be used in order to get an approximation of the 

correlation estimate required. Specifically in South Africa there are fortunately some sector-based indices 

on the JSE that can may be suited to be used as a proxy for unlisted companies in the same industry. 
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The structural model used in CreditGrades provides a useful mechanism for deriving a 

probability of default from an observed equity price. We use the function  to 

represent the structural model which derives a 1-year probability of default for a given 

equity price. More specifically, we define  

 

, 

 

where  and  as in (13) and (14) above. 

 

In Finger‟s framework, a seemingly arbitrary function is chosen for , the conditional 

probability of default, given . In our setup,  

 

From an intuitive point of view there are two major requirements from the function 

chosen for :
105

 

 

 Firstly, the function needs to provide a relationship between the level of the 

underlying asset ( ) and the probability of default of the counterparty 

 Secondly, when there is no correlation between the underlying asset and the 

probability of default of the counterparty (i.e. when there is no wrong-way risk) 

then the function  must equal the unconditional probability of default for all 

values of . 

 

                                                 
105

  denotes a realisation of the random variable . 
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We propose the following function for , the conditional probability of default of 

the counterparty at time t given  , a stochastic variable denoting the value of the 

underlying asset of the OTC contract: 

 

 

 

In short, we are defining the conditional probability of default to be the probability of 

default derived by the structural model using the conditional expected value of the equity 

price of the counterparty. In addition, we propose the following function for , the 

unconditional probability of default at time t:
106

 

 

 

 

Therefore, we define the unconditional probability of default of the counterparty at time t 

to be the probability of default derived by the structural model using the expected equity 

price at time t. It is easily shown that: 

 

 

if 

. 

 

In other words, if  the unconditional probability of default in the proposed 

framework yields an unconditional probability of default which is constant over time. The 

proposed approach is therefore similar to Finger‟s approach under this condition (i.e. 

). 

 

Note that in the absence of wrong-way risk, i.e.  we have 

 

                                                 
106

 Note that the unconditional probability of default in Finger‟s framework is represented as  and is 

assumed to be constant. In our approach we assume a more general case and allow the unconditional 

probability of default to be time dependent. 
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and therefore 

 

 

which is expected and desirable. 

 

It follows that the conditional distribution of the random variable  has 

a normal distribution as follows: 

 

, 

 

where 

 

and 

. 

 

Therefore, the conditional expected value of the equity price at time t given the price of 

the underlying asset is  can be calculated by: 

 

. 

 

To summarise, the proposed method for estimating counterparty credit risk exposure, 

taking into account the effects of wrong-way risk, can be broken down into the following 

steps: 

 

1. Estimation of the dependence (typically through correlation, ) between the 

underlying asset and the equity price of the counterparty. This will typically done 

using historical data. In other words, an estimate  will be calculated from 
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historical prices for the equity of the counterparty and prices for the underlying 

asset. 

2. Estimation of the parameters of the structural model. This involves financial data 

of the counterparty which is observable in the market – for example from a data 

provider like Bloomberg. 

3. Monte Carlo simulation of future prices for the underlying asset, , of the 

derivative contract as well as conditional expected values of the equity, , of the 

counterparty. These two variables are assumed to have a deterministic correlation 

of . N scenarios will be simulated for M time steps over the interval [0,T]. For 

time step  under each scenario  there 

will be a simulated value for the underlying asset, , as well as a conditional 

expected value of the equity price
107

, i.e. . The unconditional 

expected value of the equity price (i.e. ) will also be calculated, 

although this will be time-dependent and not dependent on the scenario under 

consideration. 

4. At each time step, under each scenario, the probability of default given  is 

determined using the structural model with  as the input for the equity price. 

This step yields the conditional default probability required in Finger‟s 

framework. In other words, for each time step  under each scenario  there will 

be a estimated conditional probability of default, 

 

, 

 

estimated using the structural model. Also, at each time step, the unconditional 

probability of default is estimated through the structural model using  as the 

input for the equity price. 

5. As in the case of calculating any counterparty credit risk exposure through 

simulation, this is followed by calculating the value of the derivative contract at 

                                                 
107

 Note the superscript “c” indicates the expected value is conditional. 

 
 
 



98 

 

 

 

each time step  under each scenario  – i.e. yielding  for 

each i and each j. 

6. Convert the unconditional exposure distribution to a conditional
108

 exposure 

distribution through the application of Finger‟s approach – i.e. multiplying each 

MTMij with the appropriate ratio . Henceforth, we will refer to the term 

 

 

 

as the exposure inflation factor. This results in an estimated conditional 

distribution of values of the contract. 

7. Finally, calculate the desired statistic from the conditional exposure distribution. 

For example, the conditional α% PFE profile is estimated as the α
th

 percentile of 

the conditional distribution yielded by the previous step. 

 

4.2.2.2 Practical Application of the proposed Model 

 

We compare the conditional and unconditional counterparty credit risk exposure 

estimates under a few typical scenarios of wrong-way and right-way risk in order to 

demonstrate the application of the model and to test, from an intuitive level, the viability 

of the results. The following table is a summary of the scenarios under consideration. We 

consider the scenarios from a bank‟s perspective – i.e. the bank is considered to be the 

counterparty to the companies under these hypothetical scenarios in the derivative 

contracts specified in the table
109

. 

 

 

                                                 
108

 Conditional on default. 
109

 All options have strikes equal to the current spot of the underlying. This is for simplicity sake. 
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Scenario Company 
OTC Contract 

Type
110

 
Underlying Asset

111
 

Risk 

Direction 

A Anglo American Long Put Gold (USD) Wrong-Way 

B Sasol Long Call Brent Crude (USD) Right-Way 

C MTN Long Put MTN Shares (ZAR) Wrong-Way 

 

Table 4.1 - Scenarios under consideration for wrong-way risk measurement 

 

Using a 3 year history of daily observed prices the correlation between the underlying 

asset and the equity price of the applicable counterparty is estimated. These results are 

summarised below: 

 

Company Underlying Correlation 

Estimate
112

 

Anglo American Gold (USD) 86% 

Sasol Oil (USD) 95% 

MTN MTN (ZAR) 100% 

 

Table 4.2 - Correlation estimates for wrong-way exposure measurement 

 

We apply the CreditGrades structural model in these examples. The reason for using this 

specific structural model is mainly because of the ease of application and because of the 

fact that the data required in estimating the model parameters are easily obtainable – even 

for companies listed on the JSE. The expressions
113

 in (13) and (14) are used in the 

estimation of the model parameters. 

 

The structural model uses the cumulative normal distribution in deriving a probability of 

default from a given equity price (and other inputs). The fact that the normal distribution 

has very thin tails causes some difficulty in the assessment of relative changes in the 

probability of default resulting from changes in the equity price – especially for 

counterparties with extremely low probabilities of default. For example, for a 

                                                 
110

 The long or short position refers to the position from the bank‟s point of view. We assume that the 

maturity of all contracts is one year. 
111

 The abbreviation in brackets is the currency used to measure the underlying in. 
112

 The correlation estimate is based on 3 yrs of historical daily observations. 
113

 See Finger (2002) for a detailed derivation of these estimates. 
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counterparty with a probability of default of say 3 basis points one would be considering 

the very extremes of the normal CDF (cumulative distribution function). 

 

For the purposes of our model, however, this may lead to situations where, for small 

upward movements in the equity price used to derive the probability of default, one could 

end up with probabilities of default of zero due to the extremely small area under the 

normal CDF at this end of the curve. Anglo American has a long term international-scale 

credit rating from Fitch of A. From historical data this implies a probability of default of 

approximately 3 basis points. It is possible to calibrate the CreditGrades model to 

produce a 3 bps probability of default using the debt-per-share input. If we consider the 

range of possible equity price values over a one year horizon using the distributional 

assumptions made above it is possible to construct a confidence interval for this purpose. 

Using this confidence interval, the following associated probabilities of default are 

returned implied by the CreditGrades model. 

 

 

Figure 4.1 - Implied PDs using calibrated CG model 

 

Note that we are considering the implied probabilities of default for equity prices within 

the 95% confidence interval of possible future values over a one year horizon. More 

specifically, we are concerned with the implied probabilities of default for equity prices 

200 250 300 350 400 450 500 550 600 650 700
0

0.005

0.01

0.015

 

 

X: 412

Y: 0.0003

Implied PD using Calibrated CG Model

current

equity

price

Tail very thin

 
 
 



101 

 

 

 

which are larger than the current equity price leading to lower probabilities of default. 

Under the normal distribution using the CG model calibrated to the probability of default 

implied by the rating these lead (very quickly) to implied probabilities of default of zero. 

This is not only unrealistic but also undesirable from a modelling perspective. 

 

Since we are interested in relative changes in the level of the probabilities of default as 

opposed to absolute levels of the probability of default it is also possible to use a different 

area of the normal CDF as a starting point in order to assess changes in probability of 

default in both directions equally. The only major difference between starting in the 

middle of the CDF (say) as opposed to the end of the curve is the slope of the CDF curve 

at these points. We argue that starting at the middle of the curve will lead to smoother 

credit exposure calculations due to the fact that small changes in the equity price will lead 

to relatively small changes in the probability of default. In Figure 4.2 we illustrate this 

point and show the difference in implied probabilities of default using two different 

methods. The first method uses the probabilities of default implied from equity prices 

using the CG model calibrated to produce the probability of default implied by the credit 

rating if the current stock price is used. This method, as discussed above leads to 

undesirably small PDs for equity prices higher than the current equity price. The second 

method, i.e. the „normalised PD method‟ is calibrated to yield a probability of default of 

50% when the current equity price is used in deriving the PD. The normalised PD is then 

derived by the following conversion: 

 

, 

 

where  

  denotes the historical PD implied by the rating 

  denotes the CG model calibrated to produce a PD of 50% if the function is 

applied on the current equity price ( ). 

 

Note that, if  in the expression above, then the two methods yield exactly the same 

result. 
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Figure 4.2 - Normalised implied PDs and implied PDs using a calibrated CG model 

 

We will apply the normalised PD method in our example calculations. The debt-per share 

value is adjusted in order to ensure that the probability of default at t=0 is equal to 50% 

for each counterparty. The following table
114

 summarises the estimated and calibrated 

model parameters for each of the three companies under consideration: 

 

Company    115 116 

Anglo American 412.00 36.52% 5,457.86 50% 0.3 

Sasol 391.00 35.77% 5,185.16 50% 0.3 

MTN 119.30 39.12% 1,574.42 50% 0.3 

 

Table 4.3 - Estimate Model Parameters for the CG model 

 

Next we consider the simulation of future values of the underlying variable of the OTC 

contract as well as estimates of the conditional expected equity price at each time step 

and under each scenario taking into account the dependence as measured by the 

                                                 
114

 The data was sourced from Bloomberg on 14 August 2008. A 3-year history of daily observed prices 

was used as historical data in the estimation of the volatilities. 
115

 We assume a recovery rate of 50%, as also used in the CG Technical Document. See Finger (2002). 
116

 We use the  parameter to calibrate the CG model to produce the one-year probability of default implied 

by the Fitch credit rating assigned to the company. 
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correlation estimates in Table 4.2. These simulations were performed using M=10 time 

steps and N=10,000 simulations. As described above, the model simulates future 

scenarios for the price of the underlying asset driving the value of the derivative contract. 

For each simulated value, however, there is an associated conditional expected equity 

price which, through the use of the structural model, is used in deriving an estimated 

conditional probability of default for the counterparty, under this scenario. The following 

figure depicts the relationship between the exposure inflation factor ( ) against 

various simulated values at t={0.2,0.5,0.8} of the underlying asset for each of the three 

counterparties under consideration. 

 

 

Figure 4.3 - Effect of changes in the gold price on the exposure inflation factor for AngloGold 
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Figure 4.4 - Effect of changes in the oil price on the exposure inflation factor for Sasol 

 

 

Figure 4.5 - Effect of changes in the MTN equity price on the exposure inflation factor for MTN 

 

The results in Figure 4.3 are intuitive in that the exposure inflation factor decreases for 

increases in the gold price. This affirms the wrong-way risk exposure that we expect to be 

present in this scenario in that the exposure inflation factor is higher when the gold price 

drops since AngloGold is expected to be in a more difficult financial position under that 

scenario. A similar argument holds in the case of Figure 4.4 with the exposure inflation 

factor increasing when the oil price falls. Since the contract with Sasol is such that the 
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bank is exposed to counterparty risk only when the call option that the bank holds is in 

the money, this situation leads to right-way risk. The call option will be more in the 

money the higher the oil price – the higher the oil price the better the economic climate 

for Sasol in which to honour its agreements under the contract with the bank. 

 

The following set of figures show the unconditional and conditional 95% PFE profiles for 

the three counterparties. As expected, the conditional PFE on AngloGold is higher than 

the unconditional PFE. This is illustrated in Figure 4.6. 

 

It‟s also interesting to note in Figure 4.7 that the conditional PFE is lower than the 

unconditional PFE. This is however an intuitive result since the contract with Sasol is 

actually a right-way risk scenario – i.e. under scenarios where the contract is in the 

money (i.e. the oil price goes up) the counterparty is less likely to default. This means 

that the bank has exposure to the counterparty when the counterparty is in an economic 

scenario where it is expected that the counterparty will be more likely to be able to 

honour its obligations. 

 

 

Figure 4.6 – AngloGold Unconditional and Conditional 95% PFE profile in USD 
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Figure 4.7 - Sasol Unconditional and Conditional 95% PFE profile in USD 

 

 

Figure 4.8 – MTN Unconditional and Conditional 95% PFE profile in ZAR 
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Company Increase 

Anglo American 29.79% 

Sasol -41.20% 

MTN 32.68% 

 

Table 4.4 – Increase in maximum PFE as a result of wrong-way risk 
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5 Regulatory Capital for Counterparty Credit Risk 

 

The models discussed so far for measuring counterparty credit risk was mostly presented 

in situations applying to internal credit risk management – i.e. measuring the counterparty 

credit risk exposure against a set limit. This is however only one application of these 

models and we now proceed to another very important field where the measurement of 

counterparty credit risk plays a very important role. 

5.1 Systemic Risk 

Banks (and some other financial institutions) play a very important role of financial 

intermediation and, most importantly provide liquidity to financial markets. This role is 

crucial in ensuring the efficient functioning of an economy. For this specific reason, bank 

failures can be much more disruptive to the economy than the failure of other entities. 

Systemic risk can be defined as the risk of a sudden shock that would damage the 

financial system to such an extent that the whole economy would suffer. Kaufman and 

Scott (2003) refer to systemic risk as: “It matches the fear of a cry of „Fire!‟ in a crowded 

theatre…” They define systemic risk as “the risk or probability of breakdowns in an 

entire system as opposed to breakdowns in individual parts or components and is 

evidenced by co-movements (correlation) amongst most or all of the parts”. In turn, the 

Bank for International Settlements (BIS) defines systemic risk as “the risk that failure of 

a participant to meet its contractual obligations may, in turn, cause other participants to 

default with a chain reaction leading to broader financial difficulties”. 

 

A typical example of a source of systemic risk is the behaviour of panic-stricken 

depositors or investors. The depositors of a bank become concerned about the stability of 

the bank and demand immediate return of their funds. This could lead to the failure of a 

bank. Similarly, a sudden drop in security prices may lead to margin calls forcing 

leveraged investors to liquidate their positions – furthering the downward pressure on 

prices. This may lead to a loss of liquidity or even a credit crunch. 
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The history of systemic risk is profoundly marked with the banking crisis in the United 

States during the 1930‟s. The banking system was subject to bank runs, when depositors 

lost faith in the ability of their deposit bank to make full payment and “ran to the bank” to 

withdraw their funds. In such situations, typically, the bank may be perfectly solvent – 

i.e. have assets (in the form of outstanding loans) which exceed the value of its liabilities 

(in the form of demand deposits). The problem is that these assets are illiquid and so the 

bank cannot meet its redemptions immediately leading to default. Another more recent 

example of such an event is that of Northern Rock Bank. Northern Rock Bank had to turn 

to the Bank of England, as lender of last resort, due to liquidity problems resulting from 

difficulty in raising funds in the money market. These liquidity problems were as a direct 

result of the Sub-Prime crisis in the United States during the summer of 2007.
117

 

 

A prime example of another source of systemic risk, a breakdown in the payment system, 

is that of the 1974 failure of Bankhaus Herstatt – a small German bank active in the 

foreign exchange market. The bank was closed down due to insolvency during German 

banking hours but before the start of the US banking hours. As a result, the bank failed to 

make payments on the US Dollar (USD) legs of its foreign exchange transactions and 

cross-currency swap transactions even where it had already received the Deutsche Mark 

(DM) leg on these transactions. What became known as Herstatt Risk has led to a 

concerted effort by bank regulators to avoid such situations which ultimately gave birth to 

the Basel Committee on Banking Supervision (BCBS). The regulation of banks is 

motivated by two main objectives: 

 

 Minimising Systemic Risk 

 Protecting the depositors 

 

 

 

                                                 
117

 For more information, see: http://en.wikipedia.org/wiki/Northern_Rock 
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5.2 The Basel 2 Capital Accord 

 

The Basel Committee
118

 on Banking Supervision was created by the Central Bank 

governors of the Group of Ten (G-10) nations in 1974 and meets quarterly each year. The 

Basel Committee formulates broad supervisory standards and guidelines. It recommends 

statements of best practice in banking supervision in the expectation that member 

authorities and other nations‟ authorities will take steps to implement them through their 

own national systems (whether in statutory form or otherwise). The main purpose of the 

committee is to encourage convergence toward common approaches and standards. 

 

 Arguably one of the most influential of such standards is the Basel Capital Accord (Basel 

1) published in 1988 which specifies a standard capital adequacy framework for banks. 

The Basel 1 accord represented a landmark financial agreement in terms of the regulation 

of internationally active commercial banks. The framework specifies a standard that 

banking regulators can use in passing regulations on the minimum capital that a bank is 

required to hold to guard against the financial and operational risks and the risks related 

to financial gearing that banks face in their day-to-day activities. The purpose of this 

capital is to serve as a buffer against unexpected financial losses, thereby protecting 

depositors and ensuring the stability of the financial markets. The biggest criticism of the 

Basel 1 accord was that it was not risk sensitive. More specifically, it required the banks 

to hold the same amount of capital against two identical loans even in the case of the 

counterparties (borrowers) being of significantly differing credit quality. This induced 

banks to shift lending to lower rated borrowers since the return was higher, with the same 

capital charge. 

 

In simple terms, the new Basel accord (Basel 2) aims to have banks hold more capital the 

higher their risk exposure. The new accord distinguishes between expected losses (EL) 

and unexpected losses (UL). Capital is supposed to absorb unexpected losses implying it 

cannot support expected losses as well. Banks typically have provisions for expected 

                                                 
118

 The Basel Committee‟s members are senior officials from the G-10 (Belgium, Canada, France, 

Germany, Italy, Japan, the Netherlands, Sweden, the United Kingdom and the United States (plus 

Luxembourg and Switzerland). Its website: http://www.bis.org. 
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losses in the form of funded reserves called general provisions or loan loss reserves. The 

Basel accord is divided into three sections or pillars: 

 

 Pillar 1 

This section deals with the maintenance of regulatory capital calculated for three 

major risks that a bank faces: 

 

o Credit Risk 

This component can be calculated using three different methods varying in 

degrees of sophistication: 

 Standardised Approach 

 Foundation Internal Ratings Based Approach (Foundation IRB) 

 Advanced Internal Ratings Based Approach (Advanced IRB) 

 

o Operational Risk 

This component can be calculated using three different methods varying in 

degrees of sophistication: 

 Basic Indicator Approach 

 Standardised Approach 

 Advanced Measurement Approach 

 

o Market Risk 

For Market Risk the preferred approach is VaR (Value at Risk). 

 

 Pillar 2 

This pillar deals with the regulatory response to the first pillar giving 

regulators much improved „tools‟ over those available to them under Basel 1. 

 

 Pillar 3 

Pillar 3 greatly increases the disclosures that a bank is required to make in 

order to promote transparency in the banking sector worldwide. 
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For the discussions following hereafter we will mostly focus on aspects specific to 

the credit risk section under Pillar 1, and more specifically on the measurement of 

EAD (Exposure at Default) of trading book products as this is related to what we 

have discussed so far in terms of the quantification of counterparty credit risk 

exposure. 

 

Although, strictly speaking, the accord applies only to internationally active banks 

within the G-10, the capital requirements have been accepted and are being applied 

in more than 100 countries, including South Africa. Moreover, all four of the 

major
119

 banks in South Africa have elected to follow the Advanced Internal 

Ratings Based (Advanced IRB) approach. These banks, at the time of writing this 

document, are all implementing the current exposure method for measuring EAD 

(initially at least). We will therefore focus on both the current exposure method 

(CEM) and the internal models method (IMM) in order to illustrate the potential 

benefits to the typical South African bank in using the IMM approach in 

comparison with the CEM. 

 

5.3 Pillar 1: Credit Risk 

Under Pillar 1, there are three main components or inputs to the calculation of the 

required regulatory capital resulting from credit risk. These parameters are: 

 

 PD (Probability of Default) 

The probability of default is the likelihood that the counterparty to an obligation 

with a bank will default over a one year time window and as a result not honour 

its obligation. 

 

 EAD (Exposure at Default) 

                                                 
119

  The four major commercial banking groups in South Africa are: ABSA, First National Bank, Standard 

Bank of South Africa and Nedcor. 
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An estimate of the extent to which a bank may be exposed to a counterparty in the 

event of, and at the time of, that counterparty‟s default. It is a measure of potential 

exposure, in monetary terms, calculated for a period of one year or until maturity 

(whichever is sooner). 

 

 LGD (Loss Given Default) 

LGD is the fraction of the EAD that will not be recovered after default. This is 

also equal to 1-RR (where RR is the recovery rate). LGD is therefore a number 

between (and including) 0 and 1. 

 

The estimation of PD and LGD are, however, beyond the scope of this document. The 

reader is referred to Duffie and Singleton (2003). 

 

In the remainder of this section we will focus on the estimation of EAD under the 

Advanced IRB approach comparing the Current Exposure Method (CEM) and the 

Internal Models Method (IMM). 

 

5.3.1 Advanced IRB Approach 

 

Under the Advanced IRB Approach, the minimum regulatory capital requirement, C, is 

calculated using the following formula: 

 

, 

 

where 

 EAD is the exposure at default (defined in Section 5.3 above). 

 PD is the obligor‟s probability of default (defined in Section 5.3 above), 

floored to 0.03%. 

 LGD is the exposure-level loss given default, conditional on economic 

downturn. 
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 M is the exposure‟s effective remaining maturity (subject to a floor of one 

year and a cap of five years). 

 K(PD,LGD) is the default-only capital factor that is calculated from PD and 

LGD using the following formula: 

 

, 

 

with  the cumulative standard normal distribution and ρ the asset 

correlation dependent on PD as follows: 

 

. 

 

 MA(PD,M) is the maturity adjustment calculated using the following formula: 

 

, 

 

with b(PD) a function of PD defined as: 

 

. 

 

Banks can then further elect to estimate EAD using one of the following three methods, 

in increasing order of sophistication: 

 

5.3.1.1 The Current Exposure Method (CEM) 

 

Under the CEM approach, EAD is calculated using: 

 

, 
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with RC the current replacement cost, typically estimated using the current marked-to-

market value. 

 

Add-on is the estimated amount of potential future exposure. For a single transaction, this 

Add-on is calculated as the product of the notional of the transaction and an Add-on 

Factor determined from the regulatory tables based on the remaining maturity and the 

type of underlying asset of the derivative (e.g. interest rates, foreign exchange etc.). For 

the calculation of EAD on a portfolio of trades within a netting
120

 set (i.e. all transactions 

in a netting set is covered by the same netting agreement) the current exposure is 

calculated as the sum of that of the underlying trades and the Add-on ( , with P 

denoting that the Add-on is calculated on a portfolio level) is calculated using: 

 

,  (15) 

 

where 

  is the Add-on for transaction i, and 

  is the ratio of the current net replacement cost to the current gross 

replacement cost for all transactions within the netting set. 

 

For a collateralised counterparty, however, the credit exposure for transactions within a 

netting set is calculated as: 

 

,   (16) 

 

with  the mark-to-market value of the portfolio and CA the volatility-adjusted 

collateral amount
121

. 

 

                                                 
120

 Note that only bilateral netting agreements are taken into account. If the netting agreement is not 

bilateral the effect of netting is not taken into account. 
121

 This is the value of the collateral reduced by a volatility-dependent haircut. 
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5.3.1.2 Standardised Method (SM) 

 

Under the Standardised Method the EAD under a netting set is defined as follows: 

 

, 

 

where 

 

 NCV is the current market value of transactions in the netting set reduced by the 

current market value of the collateral assigned to the netting set. 

 NRPj is the absolute value of the net risk position in the hedging set
122

 j and 

 CCFj is the Credit Conversion Factor (specified in the Basel 2 Accord
123

) that 

converts the net risk position in the hedging set j into a PFE measure.
124

 

 

5.3.1.3 Internal Models Method (IMM) 

 

The IMM is the most risk-sensitive and most advanced method for estimating EAD under 

the Basel 2 accord (Pykhtin and Zhu, 2006). Under this method, both the EAD and the 

effective maturity (M in the formula for C, the minimum capital requirement, in 5.3.1 

above) are estimated from the output of the bank‟s internal models
125

 of potential future 

exposure. In strong contrast to the other two methods (CEM and SM), the IMM allows 

for cross-product netting. EAD calculated under the IMM therefore benefits from full 

netting. EAD, under the IMM, is calculated using
126

: 

 

                                                 
122

 A hedging set is defined as the portfolio risk positions of the same category (in terms of currencies, 

remaining maturities and market risk factors) that arise from transactions within the same netting set. 

Within each hedging set, offsets are fully recognised i.e. only the net amount of all risk positions is relevant 

in the calculation of EAD. 
123

 Note that these CCFs were derived using a one-year horizon and uses at-the-money volatilities (which 

lead to conservative estimates since volatility impacts at-the-money contracts more significantly). 
124

 Note that long positions in contracts with a linear risk profile carry positive signs while short positions 

carry negative signs. Positions with non-linear risk profiles (e.g. options) are represented by their delta-

equivalent notional values. 
125

 These models do, however, need to be approved by the bank‟s regulators before it may be used for this 

purpose. 
126

 Fleck and Schmidt (2005). 
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, 

 

where 

 

  is the Effective Expected Positive Exposure calculated for each netting 

set from the Expected Exposure (EE) profiles (described in Section 5.3.1.5 

below). 

 α is a multiplier which inflates the EAD number in an attempt to take account of 

the over-simplifying assumptions in the estimation of Effective EPE (see Section 

5.3.1.5 below). 

 

5.3.1.4 Multiplier Alpha (α) 

 

As mentioned above, the reason for holding regulatory capital to ensure that the bank is 

protected against unexpected losses
127

. From a theoretical mathematical perspective, if 

one looks at quantifying unexpected losses on a portfolio of exposures one would need 

(at least an estimate of) the loss distribution of such a portfolio. This, in turn, is quite a 

non-trivial problem to solve since estimating a loss distribution for a portfolio of 

counterparty credit exposures involves the modelling of the changes in the exposures 

together with modelling defaults and timing of defaults of the obligor. From a portfolio 

perspective (i.e. considering the loss distribution as a result of counterparty credit risk to 

multiple counterparties) this problem becomes even more complex in that one needs to 

model dependence among the obligors as well. In other words, the estimation of a 

counterparty-risk portfolio-level loss distribution involves the modelling of market 

variables that drive exposure as well as credit risk factors that impact counterparty credit 

quality. 

 

In an attempt to simplify the Basel 2 framework, the regulators developed the concept of 

„loan equivalent‟ which is used as a fixed exposure profile for each counterparty. The 

                                                 
127

 Theoretically this should be on a portfolio level – i.e. considering all the obligors and the contracts with 

each. 
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„loan equivalent‟ is intended to be an amount which can be used as an exposure on a 

derivative (or portfolio of derivatives) in the same way as a loan balance can be used in 

the context of a loan exposure (or exposure on a portfolio of loans). This allows the Basel 

2 framework to apply the concept of EAD in a relatively consistent manner across the 

trading and banking book products. The problem is, however, to define the „loan 

equivalent‟ amount in such a way as to achieve the desired result. 

 

Canabarro, Picoult and Wilde (2003) showed that, for an infinitely granular portfolio (i.e. 

a portfolio with infinitely many counterparties with infinitely small exposures) with 

counterparty-level exposure independent both of themselves and of the counterparty 

credit quality, EPE becomes the true loan-equivalent exposure. The problem is that real 

portfolios are not infinitely granular and counterparty exposures are not independent 

since they are driven by the same market risk factors. In addition, as we have discussed in 

section 4 above, the existence of wrong-way risk implies that credit exposure may be 

correlated to the counterparty‟s credit quality. EPE is therefore, on its own, not sufficient 

to be used as a loan equivalent for real portfolios and will lead to understated portfolio 

capital. 

 

In 2002, Evan Picoult wrote a proposal
128

 to an International Swaps and Derivatives 

Association (ISDA) working group in which he recommended defining a quantity called 

“alpha” (α) – a scaling factor to transform the EPE into an effective loan equivalent 

taking into account of the fact that the characteristics of real portfolios of counterparty 

risk were quite different from the infinitely granular portfolio assumptions. Picoult 

defined alpha as the ratio of two quantities (a/b) where: 

 

 a is the portfolio capital estimated using full simulation using uncertain exposures 

 b is the portfolio capital estimated using the reduced (simplified) model by 

replacing the uncertain exposures with EPE. 

 

Picoult suggested that alpha should be measured as a function of: 

                                                 
128

 Picoult (2003). 
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 the effective number of independent counterparties 

 the effective number of independent market rates which affect the potential 

exposure 

 the PD of each counterparty. 

 

Since capital estimated by the reduced model is a homogenous function of exposures, 

scaling EPE by the α-factor would match the capital produced by the full model. 

Therefore, α.EPE is the true loan-equivalent exposure since using α.EPE as the EAD 

removes the difference in capital treatment between economically equivalent loans and 

derivatives. 

 

Canabarro, Picoult and Wilde (2003) used a one-factor conditional independence 

framework to study the sensitivity of alpha under various model inputs and parameters 

ignoring the effect of wrong-way risk. The results ignoring wrong-way risk resulted in an 

alpha estimate of α =1.09. After adding the effect of wrong-way risk to the same model, 

Wilde (2005) estimated the value for alpha at α=1.21. The Basel Accord specifies alpha 

at a rather conservative level of α=1.4. Banks using the IMM do however have the option 

of estimating their own value for alpha subject to supervisory approval and floored at 1.2. 

 

In summary the alpha factor can therefore be seen to compensate, albeit in a conservative 

manner, for the over-simplifying assumptions required in using EPE as a loan-equivalent 

amount and also, to an extent, of the effect of wrong-way risk. 

 

We will apply the specified α=1.4 in our calculations. 

 

Using Finger‟s Model presented in Section 4.1 on pp 79, it is therefore possible to deduct 

an implied level of wrong-way risk in the IMM using an alpha of α=1.4. 
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5.3.1.5 Expected Positive Exposure (EPE) and Effective EPE 

 

Banks typically have internal models for measuring counterparty credit risk – either using 

a simple add-on approach or using full simulation as discussed previously. The banks that 

apply the IMM for estimating EAD typically have internal models which are used to 

measure counterparty credit risk and, as a result, these model typically estimate (through 

simulation) portfolio distributions at various points in the future. Calculating an estimate 

for EPE from these distributions is trivial and summarised below: 

 

For each simulation date, tk, the bank computes an expectation of exposure EEk, as a 

simple average of all the simulated realisations of exposure
129

 at that date. In other words: 

 

    (17) 

 

The various values for  for is then referred to the  profile over the first 

year. The EPE is then defined to be the average of the  profile over the first year and is 

practically computed as the weighted average of the  as follows
130

: 

 

   (18) 

 

Now, in practice, generally the number of trades and the number of unrealised cash flows 

decrease over time. Also, trades in the short term mature resulting in a decrease in the EE 

profile. The reality is that these short-term trades are more often than not, in practice, 

replaced by new ones and as a result leads to the EPE (as defined above) to risk. To 

account for this so-called roll-over risk
131

, the EPE profile is used in the following 

recursive formula in defining the Effective EE
132

: 

 

                                                 
129

 In this instance exposure is meant to only represent positive numbers – i.e. negative exposures are 

treated as zero. 
130

 Note that mat denotes the actual maturity of the transaction. 
131

 See Pykhtin and Zhu (2006). 
132

 The initial condition is that  should equal the current mark-to-market. 
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    (19) 

 

The relationship between the Effective EPE and the Effective EE is similar to that 

between the EPE and EE as follows: 

 

  (20) 

 

5.3.1.6 Maturity Adjustment 

 

Banks are required, under the Basel 2 accord, to calculate the EE profile out to the 

expiration of the longest contract in the netting set. For exposures with remaining 

maturity longer than one year, the effective maturity, M, is given by 

 

 

 

with 

 

 

5.4 EAD and its Role in the Calculation of Regulatory Capital 

 

5.4.1 Measuring Exposure at Default (EAD) 

 

As discussed in Section 5.3.1 above, the exposure at default estimates used in calculating 

the minimum capital requirements under Basel 2 differ between the three approaches 

under the Advanced IRB approach. We now proceed to the calculation of the EAD 

estimates using the Current Exposure Method (used by the majority of the leading banks 

in South Africa) and the Internal Models Method (the most advanced method for 

calculating EAD under Basel 2). It is important to note that the results from both of these 
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methods will be applied equally in the determination of the minimum capital requirement 

under Basel 2. Therefore, a higher EAD estimate (in the examples below) will necessarily 

result in a higher capital requirement. 

 

5.4.2 EAD under the Current Exposure Method (CEM) 

 

As discussed in Section 5.3.1 above, the CEM requires, as inputs into the calculation of 

EAD, the following parameters (for the contract-level EAD): 

 

 RC – the replacement cost, typically measured using MTM 

 

 Add-On, which in turn depends on the: 

 

o Type of underlying in the derivative 

o Time to maturity of the contract 

o Notional amount of the contract 

 

Let‟s consider the portfolio of derivative contracts used in the counterparty-level PFE 

calculations in Section 3.2.1 (Example Portfolio 1) and Section 3.2.2 above. Refer to 

Table 3.1 and Table 3.2 for specific details on the portfolios.  

 

Firstly, let us briefly discuss the derivation of and motivation behind our input 

parameters. Throughout we will use the current mark-to-market value for the replacement 

cost (RC) of the individual contracts. In the derivation of the Add-On for each contract, 

we will use the following table
133

 from the Basel 2 Accord: 

 

 

 

                                                 
133

 Source: Basel Committee on Banking Supervision (2005) 
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Maturity 

(T) 

Interest 

Rates 

FX and 

Gold 

Equities Precious 

Metals
134

 

Other 

Commodities 

T<1 0.0 % 1.0 % 6.0 % 7.0 % 10.0 % 

1≤T<5 0.5 % 5.0 % 8.0 % 7.0 % 12.0 % 

5≤T 1.5 % 7.5 % 10.0 % 8.0 % 15.0 % 

 

Table 5.1 - Add-On Factors under the Current Exposure Method 

 

As we are interested in the exposure in Rand (ZAR), all notional amounts will be 

expressed in ZAR when calculating the Add-On amounts. Since the portfolios under 

consideration only contain foreign exchange derivatives only column 3 in Table 5.1 will 

be applicable. 

The following is a summary of the input parameters required in the calculation of EAD 

under the CEM for the example portfolios under consideration: 

 

 

No. 

 

Contract Type 

 

Underlying 

 

Notional
135

 

Maturity 

(Yrs) 

 

RC
136

 

 

Add-On
137

 

1 Forward USD/ZAR 1,000 0.75 97.77 0.00 

2 Forward USD/ZAR -850 1.50 -2,194.66 24.78 

3 Call Option
 

USD/ZAR 1,000 2.00 1,871.54 38.85 

4 Put Option
 

USD/ZAR 1,000 2.00 213.63 38.85 

 

Table 5.2 - Example Portfolio 1 with input parameters for the calculation of EAD under the Current 

Exposure Method 

 

 

No. 

 

Contract Type 

 

Underlying 

 

Notional
138 

Maturity 

(Yrs) 

 

RC 

 

Add-On 

1 Forward USD/ZAR 1,000 0.75  0.00 

2 Forward GBP/ZAR -490 1.50  50.84 

3 Call Option
139

 GBP/ZAR -500 3.00  38.63 

4 Call Option USD/ZAR 1,000 3.00  37.50 

 

                                                 
134

 Excluding Gold. 
135

 The notional is expressed in ZAR. The amount is converted using the strike of the transaction since this 

produces the ZAR-equivalent of the underlying notional. 
136

 Measured as the marked-to-market value. 
137

 Calculated as the product of the add-on factor and the notional. See the approach described in section 

5.3.1. 
138

 See pp 135. 
139

 Note that written (sold) options do not result in increased credit exposure. Written options are excluded 

from EAD calculations under the CEM. 
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Table 5.3 - Example Portfolio 2 with input parameters for the calculation of EAD under the Current 

Exposure Method 

 

The tables above allow us to calculate the EAD on a contract level for each of the 

contracts in the respective portfolios using the CEM. The contract-level EAD calculations 

are very simple
140

 and the results are summarised below: 

 

Portfolio Contract Contract-Level EADCEM 

1 

1 179.47 

2 247.78 

3 2,260.04 

4 602.13 

2 

1 297.64 

2 524.54 

    3
141

 - 

4 3,050.53 

 

Table 5.4 - Contract-Level EADs using the CEM 

 

 

We will compare the above estimates of contract-level EAD with the contract-level EAD 

estimates using the IMM below. 

 

We now proceed to the calculation of counterparty-level EAD using the portfolios above. 

We will consider the EAD with a netting agreement in place. Our first portfolio-level 

calculation is that of the term NGR, the ratio of the current net replacement
142

 cost to the 

current gross replacement cost for all transactions within the netting set
143

. This is then 

followed by the calculation of Add-On(P), the portfolio-level add-on. The results from 

the calculations of NGR and Add-On(P) are summarised below, together with the 

resultant counterparty-level EADs using the CEM. 

 

 

                                                 
140

 The contract-level EAD is simply the sum of the current replacement cost (floored at zero) and the add-

on (see Table 5.2 and Table 5.3). 
141

 Excluded: the contract is a written option. 
142

 Floored at zero. 
143

 As defined in BCBS (2005). 
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Portfolio Gross RC Net RC NGR Add-On(P) EADCEM 

1  2,182.94        0.00  0.00                 442.59          442.59  

2  2,907.63   2,907.63            1.00       965.08    3,872.71  

 

Table 5.5 - Counterparty-Level EADs using the CEM 

 

5.4.3 EAD under the Internal Models Method (IMM) 

 

In order to calculate EAD under the IMM, we need to calculate the multiplier alpha 

(α)
144

, Expected Positive Exposure (EPE) and Effective EPE. We proceed with example 

calculations of EPE, Effective EPE and EAD using the IMM. We will, in contrast to 

Section 5.4.2 above apply the IMM method to the example portfolios used in Section 

3.2.1 above and Section 3.2.2 above. 

 

The first step in the process of estimating EAD under the IMM is the calculation of the 

Expected Exposure (EE) profile. As mentioned above, this is done using the simulated 

MTM values of the contract(s) under consideration and simply calculating the average of 

the positive MTM values at each time step. This step is relatively straight forward since 

we are merely calculating a portfolio statistic on an already simulated portfolio 

distribution at each time step. Using the EE profile it is simply a matter of applying (17), 

(18), (19) and (20) in order to derive the EPE and Effective EPE. The following graphs 

illustrate the estimated EE, EPE, Effective EE, Effective EPE and the EAD under the 

IMM for the two portfolios under consideration: 

 

                                                 
144

 In our examples we will use the prescribed alpha of 1.4. 
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Figure 5.1 - Portfolio 1: EAD estimate and related measures using the IMM 

 

 

Figure 5.2 - Portfolio 2: EAD estimate and related measures using the IMM
145

 

 

The following table summarises (analogous to Table 5.4) the contract-level EADs 

calculated using the IMM. 

 

 

                                                 
145

 Note that in this example the EPE=Effective EPE since the EE profile is strictly increasing. 
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Portfolio Contract Contract-Level EADIMM 

1 

1 513.11 

2 7.16 

3 2,751.16 

4 475.77 

2 

1         422.30  

2     1,314.52  

3 0.00 

4     3,933.02  

 

Table 5.6 - Contract-Level EADs using the IMM 

 

 

5.4.4 Comparison of EAD under CEM and IMM 

We have applied the EAD estimates under both the CEM and the IMM to the same 

portfolios of derivatives. Firstly, let‟s compare the counterparty-level EAD estimates and 

see how these compare to the 95% PFEs estimated in Section 3.2.1 above and Section 

3.2.2 above. 

 

 

Figure 5.3 - Portfolio 1: EAD estimates using CEM and IMM 
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Figure 5.4 - Portfolio 2: EAD estimates using CEM and IMM 

 

The following graph combines the results presented in Table 5.4 and Table 5.6 and 

illustrates the differences in the results between the two methods. 

 

 

Figure 5.5 - Comparison of IMM and CEM EAD estimates 

 

The figure above compares the EAD estimates for each contract (numbered 1 to 4) as 

well as the counterparty-level EAD (assigned the number 5) of portfolio 1 and portfolio 2 

under the CEM and IMM methods. It is interesting to note that, in the results obtained 
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than that produced by the IMM. In contrast it appears that the IMM produces lower 

estimates for counterparty-level EADs. It is dangerous to make generalisations based on 

the results from 2 small portfolios, but we can nonetheless make the following valuable 

observations and comments: 

 

 The fact that the IMM produces lower EAD estimates on a portfolio of contracts 

is not unexpected and makes intuitive sense. Since the CEM takes no account of 

correlation it means that it is insensitive to higher or lower correlation 

assumptions between the underlying market variables. Portfolio 2 does contain 

very highly correlated underlying market variables and it is therefore expected 

that the IMM will have significantly lower estimated EAD values. 

 

 In practice some banks incorporate the cost of capital in the pricing of transactions 

in order to ensure an appropriate level of return. Typically, an assessment is made 

with regards to the regulatory capital that a proposed (often individual) transaction 

attracts by calculating a contract-level EAD and determining the resultant 

regulatory capital charge. The results obtained through our analysis (albeit 

elementary examples) highlight some potential pitfalls in the practice of 

calculating capital on a contract-level basis which may lead to undesirably high 

capital charges (leading to potential loss of business through unnecessarily high 

pricing). Let‟s, for example, consider the aggregate EAD (i.e. the sum of the 

EADs of each of the underlying contracts) for each portfolio under each of the 

two methods: 

 

 Current Exposure Method Internal Models Method 

 Aggregate 

EAD 

Portfolio-

Level 

EAD 

A-

EAD/P-

EAD 

Aggregate 

EAD 

Portfolio-

Level 

EAD 

A-

EAD/P-

EAD 

P/folio 1 3,289.41 442.59 743% 3,747.20 205.43 1,824% 

P/folio 2 3,872.70 3,872.70 100% 5,669.84 1,497.84 3,785% 

 

Table 5.7 - Comparison between aggregate and portfolio-level EAD estimates 
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The above table indicates that if we were to charge capital based on contract-level 

EAD estimates that we could on a cumulative basis (in our example portfolios) 

charge up to 2,785% more than what we would need
146

 to charge. 

 

 The impact of the NGR factor, i.e. the ratio of the current net replacement cost to 

the current gross replacement cost for all transactions within the netting set, on the 

CEM EAD estimates is also significant. If the current net replacement value of a 

portfolio is very low compared to the gross replacement cost the NGR factor will 

significantly reduce the EAD when compared to a similar portfolio with an NGR 

factor close to one. This may seem obvious and trivial but the implications of this 

need to be fully understood. Let‟s consider the following two scenarios: 

 

1. A portfolio of two contracts with a single counterparty. The two contracts 

have different but very highly-correlated underlying assets. Furthermore, 

let‟s assume that the current net replacement cost is zero – resulting in 

NGR=0. 

 

2. The same situation as above, except that the underlying assets are not 

correlated. 

 

 

Firstly, let‟s consider what effect the fact that NGR=0 has on the EAD estimate 

under the CEM. By inspection it is clear that the condition that NGR=0 results in 

the following: 

 

.    (21) 

 

      

The effect of a current net MTM of zero therefore implies a 40% reduction in the 

gross add-on. The NGR factor, it would seem, attempts to use current information 

(i.e. current replacement costs) to derive information on future scenarios. Let‟s 
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 Assuming that the internal model EAD is an accurate reflection of the true exposure at default. 
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consider the effect of changing the NGR (which will be achieved by adjusting the 

strikes of the underlying transactions) and the assumed level of correlation. 

Obviously the correlation assumption will have no impact on the CEM EAD 

estimates and therefore we also apply the IMM in comparing the results. The 

portfolio that we will consider is as follows: 

 

No. Contract Type Underlying Notional
147

 Maturity
148

 

1 FX Forward USD/ZAR USD 1,000 1.5 Yrs 

2 FX Forward GBP/ZAR    GBP   -490 1.5 Yrs 

Table 5.8 - Example Portfolio for IMM Correlation Testing 

 

If we assume a high level of correlation between the USD/ZAR and GBP/ZAR 

exchange rates, it implies that these two variables will move in the same direction 

most of the time – i.e. if the USD/ZAR exchange rate moves up, we would expect 

the GBP/ZAR exchange rate to move up as well. Contract 1 in the table above 

will move more into the money if the USD/ZAR rate moves up, whereas contract 

2 will move more into the money if the GBP/ZAR rate moves up. It is therefore 

fair to assume that these contracts will offset each other to a certain extent
149

 as a 

result of this high level of correlation. In other words, the combined marked-to-

market value of the two transactions will be relatively stable. Contract 1, as an 

example would increase in value when contract 2 decreases in value and vice 

versa. One would also expect this offsetting effect to diminish when there is no 

correlation between the two underlying variables and that the offsetting effect will 

reverse
150

 should the correlation be highly negative
151

. In summary we therefore 

expect to see the EAD increase as the assumed level of correlation increases
152

. 

The following chart summarises the resultant EAD estimates using the CEM and 

                                                 
147

 Negative notional amounts reflect a short position. For the first contract the notional is positive which 

represents a contract to receive 1,000 USD in 1.5Yrs. Similarly contract 2 represents a contract to deliver 

490 GBP in 1.5Yrs. 
148

 Remaining maturity. 
149

 Assuming a high correlation between the USD/ZAR and GBP/ZAR exchange rates. 
150

 We expect that the exposure would be amplified. In other words, if contract one is in the money, 

contract two will also be in the money leading to a higher combined exposure than that under the positive 

correlation assumption. It is also possible that both contracts could simultaneously move out of the money. 
151

 Close to -1. 
152

 Since the CEM takes no account for correlation we only expect to see these effects in the EAD estimates 

using the IMM. 
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the IMM for five
153

 different values of the assumed correlation and three
154

 

different values of NGR: 

 

 

Figure 5.6 - Counterparty-Level EADs for different NGRs and Correlations using CEM and IMM 

 

The results presented in Figure 5.6 allow us to make the following observations: 

 

1. As expected, assumptions relating to the correlation of the underlying 

market variables have no impact on the exposure estimates produced using 

the CEM. The IMM on the other hand behaves as expected and the EAD 

estimates decrease as the correlation increases. 

 

2. It is surprising to note that the CEM EAD estimates are mostly lower than 

that of the IMM. In fact, for the portfolio under consideration the CEM 

method grossly understates the EAD when compared to the IMM. The 

following graph shows the relative difference between the results from the 

two methods for different correlations and NGR: 

                                                 
153

 ρ={-1, -0.5, 0, 0.5, 1}. 
154

 NGR={0, 0.5, 1}. Note that these values were achieved by adjusting the strike rate(s) of the contracts in 

the portfolio. More specifically, the strike rate combinations used in achieving the desired NGR values are: 

X1={9, 8.65, 8.65} and X2={20.65, 20.37, 20.75}. The subscripts indicate the contract number. 
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Figure 5.7 - Potential Under-Estimation of EAD using CEM compared to IMM 

 

One possible explanation for this seemingly underestimation of EAD by 

the CEM is the fact that the NGR impacts the method‟s estimation of 

potential future exposure. It is clear from (15) and (16) that the method 

implies that the current effect of netting on the portfolio is an indication of 

what could happen in the future. This example illustrates that this 

assumption is perhaps not always valid. The fact that the current net 

replacement cost on a portfolio-level is close to zero does not imply that 

the underlying contracts, which make up the portfolio, will behave in a 

similar fashion (i.e. in terms of correlation) in the future. Put simply, 

current net exposure should not determine the assumed potential future 

exposure on a portfolio level. 

 

As mentioned above, the analysis on the portfolios conducted is by no means 

comprehensive and therefore it would not be wise to make general comments based on 

the results obtained. The results and discussions above do however give some insight into 

the dynamics of the two methods for calculating EAD under consideration. 

-1 -0.5 0 0.5 1
-50%

0%

50%

100%

150%

200%

250%

300%

 

 

NGR=0

NGR=0.5

NGR=1

 
 
 



135 

 

 

 

6 Pricing and Hedging Counterparty Credit Risk 

 

As with any other risk it would be ideal not only to be able to measure counterparty credit 

risk accurately but also to price and hedge unwanted risk in a liquid market. Counterparty 

credit risk is, however, significantly more complex to measure than for example market 

risk, and also does not yet have (especially in the South African context) a liquid market 

in which it is possible to transfer counterparty credit risk to. There are however some 

interesting developments in global developed markets which may, as often is the case, 

spill over to the local market in some form. Although there are not currently direct ways 

of trading or transferring counterparty credit risk directly (in South Africa) there does 

however exist other techniques of essentially achieving a similar result. This chapter 

gives an overview of some of the current practices of incorporating the effect of 

counterparty credit risk into the pricing of OTC derivative transaction and also discusses 

some techniques and motivations for the transfer of such risks. 

 

6.1 Pricing Counterparty Credit Risk 

 

It is clear from what we have discussed so far in this dissertation that the quantification of 

counterparty credit risk is not trivial. It does however remains a significant risk to an 

investment bank (for example) which needs to be managed. A bank not only needs to 

quantify and manage the risks that it takes on – it also needs to be compensated fairly for 

the risks that it is exposed to. This therefore means that banks need to take into account 

the counterparty credit risk that they are exposed to in making prices for the derivative 

products which they offer to their client. 

 

6.1.1 Credit Value Adjustment (CVA) 

 

In a report published by the Counterparty Risk Management Policy Group (CRMPG) 

mention is made of the emerging practice of so called credit charges or credit transfer 
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pricing. The counterparty credit risk on a swap or other derivative contract traded by a 

bank is transfered, within the institution, to a trading desk which manages and hedges this 

risk out dynamically and actively through the use of credit derivatives technology. In 

essence this practice is similar to the typical management of liquidity risk within a bank 

where an asset and liability management area would be responsible for the management 

of the liquidity risk of the entire bank and also charge a premium or make a price 

internally for funding the various business units. It makes intuitive sense to consolidate 

the counterparty credit risk that the bank is exposed to and to have a dedicated area to 

measure and manage such risks on an active basis. As can be expected, this also has the 

advantage of benefiting from portfolio-effects such as correlation and diversification. 

 

It is interesting to compare the notion of credit risk transfer pricing to that of liquidity 

management as explained above. There is, however, one major difference in that the price 

of money (i.e. what funding costs for the asset and liablity management unit) is more 

transparently observable in the market – whereas the „price‟ of counterparty credit risk is 

not. This is especially true in the South African market where the normal credit 

derivatives market is not very liquid comprehensive in terms of names traded. Regardless 

of the challenges involved in determining a price for counterparty credit risk, it is more 

important to price for it than not. 

 

A related concept to that of credit transfer pricing is credit value adjustment (CVA). CVA 

is an adjustment to the market value of the derivative due to the credit risk of the 

counterparty. More specifically, CVA is the difference between the the risk-free value of 

a derivative with a counterparty and the risk-adjusted value after taking the 

counterparty‟s credit risk into account. For many years the derivatives  portfolios of 

commercial banks were marked to market independent of the credit quality or credit 

rating of the counterparty. In the early 1990s some investment banks introduced the 

notion of a credit value adjustment into the valuation of their derivatives portfolios 

(Sorensen and Bollier (1994))
155

: 

 

                                                 
155

  denotes the MTM of the entire portfolio of trades with counterparty k. 
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. 

 

The potential increase in the CVA of a counterparty is an important component of the 

potential loss of the economic value of the derivative with the counterparty. Hedging the 

credit value adjustment is the essence of hedging counterparty credit risk  (Picoult, 2005). 

 

6.1.2 Definition of CVA 

 

Before we define the CVA formally, let‟s firstly look at a similar concept defined on a 

corporate bond. The market value of a single corporate bond can be expressed as follows: 

 

 

 

It follows that, using a first order approximation, that the CVA of a corporate bond is: 

 

 

 

Based on our knowledge of counterparty credit risk, we can make the following 

statements regarding CVA for counterparty credit risk in relation to the CVA of a risky 

bond: 
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 The CVA has to take into account not only the current expected cash flows but 

also the potential future cash flows that could occur if market rates change. 

Conceptually we can think of the way that the PFE profile is dependent on current 

rates and future rate assumptions. A PFE profile is clearly not deterministic over 

time and so the CVA needs to incorporate this. 

 

 The CVA should be calculated on a counterparty-level across all transactions with 

the counterparty taking into account the effects of mitigating measures and 

techniques such as netting and collateral agreements. 

 

 

 The CVA needs to, ideally, take into account the bilateral nature of counterparty 

credit risk – i.e. each counterparty to a swap (for example) is exposed to 

counterparty credit risk on the other party. 

 

An intuitive approach to the definition of CVA in the case of OTC derivatives is to base 

the CVA on a credit reserve or expected loss-type measure. Moreover, the expected loss 

(EL) over the life of the portfolio of OTC derivatives can be thought of as the sum, over 

all forward periods, of the product of the EPE in the period and the historical forward loss 

norm. The historical loss norm is the product of the probability of default (PD) and the 

loss given default (LGD) for the forward period. This is consistent with how one might 

calculate a credit reserve to cover expected losses assuming that the portfolio were to be 

held to maturity
156

. Specifically, we have: 

 

 

 

In order to derive the CVA from a credit reserve measure we note that we need to make 

two adjustments: 

                                                 
156

 Also assuming that historical losses is a good predictor of future losses. 
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1. Instead of using historical volatilities and correlations in calculating EPE on needs 

to use, as far possible, market implied information. 

 

2. Instead of using historical loss norms in order to predict losses one uses current 

credit spread in order to get a market implied view on the expected future states of 

the world. 

 

We therefore derive the following expression for a market-based measure of unilateral 

CVA: 

 

 

 

Where  denotes the expected positive exposure calculated using implied market 

data – i.e. implied volatilities etc.  is the current credit spread of the counterparty 

in the forward time interval . This form of CVA is typically referred to a unilateral 

CVA due to the fact that the measure is only based on the counterparty credit risk that the 

bank takes on against the counterparty and ignores the counterparty credit risk that the 

counterparty takes on against the bank. 

 

6.2 Hedging Counterparty Credit Risk 

 

As a result of our derivations and discussions above it is possible to view the market 

value of a portfolio of derivatives as being composed of two main components: 

 

 The risk-free value of the portfolio. In other words ignoring counterparty credit 

risk 

 The credit value adjustment (CVA) 
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Hedging the total market value of such a portfolio of derivatives can therefore be 

decomposed into: 

 

 Hedging the risk-free market value of the portfolio 

 Hedging the changes in CVA. 

 

From the expression for  above, it is clear that: 

 

. 

 

This expression tells us that the change in the mark-to-market value of the portfolio of 

derivatives with counterparty k is composed of two components: 

 

 The change in the risk-free value of the derivative portfolio 

 The change in the credit value adjustment. 

 

The second term is therefore the change in the counterparty credit risk component of the 

market value of the derivative portfolio. Hedging counterparty credit risk can therefore be 

considered as the hedging of the CVA. 

 

6.3 Transferring Counterparty Credit Risk 

 

In general it is also possible to transfer credit risk using more traditional means. The 

impact of counterparty credit risk on a bank‟s capital requirements from regulatory, as 

well as an economic point of view, is significant and as a result banks typically try to 

maximise returns and minimise capital requirements in order to increase the return on 

equity for its shareholders. Therefore, as far as possible banks try not to warehouse risk 

on their balance sheets as this is quite expensive and inefficient from a capital point of 

view. To this extent banks have developed various techniques for reducing and 
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transferring the risk from their balance sheets to other parties willing to take on and 

manage the risks. 

 

A very good example of such a technique is securitisation. In securitisations banks sell 

„risks‟ from their balance sheets that are typically not traded in the open market (such as 

home loans) and, by grouping these together and assigning a credit rating to them 

(through a rating agency), transforms a non-traded asset into a recognisable security 

which investors are comfortable investing in. Through this process the bank retains some 

of the margin earned on the home loans (as an example) and passes the rest of the margin 

through to the investor as compensation for the risk assumed in investing in the 

securitised asset. 

 

6.3.1 Motivation for Credit Risk Transferral 

 

Banks typically transfer credit risk for the liberation of regulatory and/or economic 

capital in order to facilitate further loan intermediation. The example of securitisation is a 

very good one in the sense that it explains a number of the related issues surrounding 

credit risk transferral. Banks are typically specialists of asset origination in the sense that 

banks have access to a variety of different markets and market participants who require 

banking services and, more importantly for our example, funding in the form of loans. 

Although the banks have access to all of these potential assets for their balance sheets, 

there at the same time awareness of the scarcity of capital. Banks therefore prefer to focus 

their ability on the origination of the assets as opposed to the „hold to maturity‟ or 

warehousing strategy. 

 

An alternative motivation for the transferral of credit risk is to increase capacity. For 

example, let‟s assume a bank has a client to which it is highly exposed in terms of credit 

risk. Let‟s assume that the client asks the bank for increased credit. The bank may want to 

assist the client in this respect due to relationship considerations. Perhaps due to capacity 

or credit limits constraints, the bank may, however be unable to assist. The bank could 

then consider transferring some of the current exposure to this particular client to a third 
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party. Duffie (2008) argues that diversification and the reduction in the costs of raising 

capital for additional loan intermediation are the two major motivations for banks to 

transer credit risk. 

6.3.1.1 Diversification 

 

In some markets, as in the South African market, there are certain industries which 

dominate the economy in terms of size and contribution to the country‟s GDP. The 

industry which is a good example in South Africa is the mining industry. This often has 

the result that banks (typically all of the big banks) have very large exposures to the 

mining industry. If, as an example, the total term-loan book of a bank contains 40% of 

exposure to mining-related companies then this will be of some concern to the risk 

managers and specifically the portfolio credit risk management division. In order to 

alleviate such a concern the bank could typically sell some of the exposure off to 

potential investors. 

 

One very simple method of doing this is through the use of credit derivatives technology. 

The investor could enter into a credit default swap in which the investor assumes the 

default risk for the loan from a mine and the bank, in turn, pays the investor a spread on 

the nominal amount of the loan. The bank would only do this if the spread that it is 

required to pay on the CDS is less than the cost of the capital that the loan on the balance 

sheet consumes. The bank has in this scenario transferred the credit risk from its balance 

sheet to that of the investor. 

 

It does, however, have an effect on the counterparty credit risk against the investor. The 

reason for this is that, in the case of the mine defaulting, the bank would call on the 

investor to compensate it for its loss. If the investor cannot honour its obligation under 

the CDS the bank would suffer a significant loss. One possible method often used in 

practice in getting around this issue is to use funded CDSs – also known as Credit Linked 

Notes (CLNs). A CLN is exactly the same as a CDS except that the potential payment in 

the event of default is paid upfront instead of upon the default event occurring. This then 
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removes the credit risk associated with the credit derivative transaction (from the bank‟s 

point of view). 

6.3.1.2 Reduction in the costs of incremental capital 

 

Under Basel 2 a bank is required to hold regulatory capital for the credit risk that it is 

exposed to. As mentioned before, banks typically attempt to reduce the amount of 

regulatory capital that it is required to hold and, at the same time, maximise its returns. If 

it succeeds it increases its return on equity and return on capital for its shareholders. It 

often happens that banks have exposures on their balance sheets which consume so much 

capital
157

 that the bank can buy credit protection on the exposure – thereby relieving 

some regulatory capital due to the fact that credit risk is transferred – at a price which is 

lower than the cost of the regulatory capital that the exposure consumes. There are 

however various criteria that such credit protection must meet in order to be eligible 

under Basel 2. The point is that this situation is essentially giving the bank an opportunity 

to raise capital (through the reduction in required regulatory capital) at a relatively low 

price. 

 

6.3.2 Customised Single-Name Credit Default Swaps 

 

It is important to note that credit derivatives such as credit default swaps typically 

reference an underlying asset observable in the market and specifically a debt instrument. 

For example, it is possible to buy credit protection in South Africa on Eskom through the 

use of a CDS. This CDS will then typically reference a bond issued by Eskom and the 

protection buyer will be compensated for a loss in the event that Eskom defaults on this 

referenced bond. It is therefore not correct to use a CDS on an Eskom bond in order to 

offset the counterparty risk that one has against Eskom. One reason for this is that the 

bond is higher in terms of seniority to that of the derivatives exposure and it could 

technically happen that Eskom defaults on a derivative transaction and not on the bond 

                                                 
157

 There are a number of reasons why this may be the case. Generally speaking though, the more risky the 

exposure the more capital it attracts. 
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which would make this hedge redundant
158

. It would therefore be cleaner to have a CDS 

which would be triggered if there is a default on any form of payment due from Eskom as 

there is no more basis risk. This CDS will then cover derivative transactions as well and 

is typically used in practice in transferring counterparty credit risk. 

 

6.3.3 Portfolio-Level Risk Transferral 

 

One very popular way of transferring credit risk is on a portfolio basis. More specifically, 

instead of transferring the credit risk of one name, the credit risk of a list of names is 

transferred at once. A good example of this is a first to default CDS. Under a first-to-

default CDS the protection buyer pays a premium for credit protection on a basket of 

names and receives a contingent payment of the notional amount in the event of a default 

by any one of the names in the basket. Once a reference name has defaulted the CDS 

seizes to exist. 

 

Probably the most widely used method of credit risk transfer is through the use of 

collateralised debt obligations (CDOs). A specific sub-set of CDOs which typically are 

used by banks in managing portfolio credit risk is collateralised loan obligations. These 

structures are complex securitisation structures which transfers the credit risk on a pool of 

loans from the bank‟s balance sheet into a special purpose vehicle (SPV). This SPV then, 

in order to assume this risk, issues notes on the obligations (liabilities) that it has now 

assumed. These issued notes are then typically invested in by institutional investors who 

have an appetite for the typical assets that banks redistribute since these assets are 

normally not available to these investors directly and serve as a source of diversification. 

                                                 
158

 This argument assumes that there are no cross-default clauses which could trigger a default on the bond 

if there is a default on a derivative payment. Also, the argument is for illustrative purposes only. 
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7 Practical Considerations and Approximations 

 

Advanced mathematical tools and models are often employed in an attempt to accurately 

quantify counterparty credit risk exposure requiring significant investments in 

infrastructure and intellectual capital. These complex systems or models may be 

advanced from a technological or mathematical point of view but it is important to know 

and understand the limitations and validity of such models. In this chapter we give some 

thoughts on methods of calibrating counterparty credit risk models. We also discuss an 

approach of assessing the validity of such models using historical data analogous to back-

testing used in market risk value-at-risk systems. The chapter ends with an overview of a 

widely used approximation approach for measuring counterparty credit risk: the add-on 

approach. An example illustrates this method. 

 

7.1 Validation and Calibration of PFE Models 

 

7.1.1 Assessing the validity and accuracy of PFE models 

 

The simulation methods presented and demonstrated in this dissertation has strong 

grounds from a theoretical point of view. The results from the models however are 

meaningless if these estimates are not an accurate reflection of what typically realises in 

actual financial markets. More specifically, the assumptions around the statistical 

distributions of underlying variables form the foundation of the simulation framework 

presented. The validity of these distributional assumptions is therefore essential and 

needs to be tested. 

 

Market risk simulation models for the measurement of value-at-risk (VaR) are validated 

using historical data in a process known as back testing. Back testing is the process of 

testing model-projected results against realised results in a retrospective manner in order 

to assess the model‟s ability of producing accurate predictions. More specifically, the 

tested model is typically used over a specific time horizon (for example 1 year) in 
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predicting VaR estimates for a specific portfolio of trades. At the end of this time horizon 

the model‟s predictions are tested against the actual realised results. If for example the 

estimates are calculated using a 95% confidence level one would expect an accurate 

model to have been „wrong‟ close to 5% of the time. If the model‟s VaR estimates were 

breached more than 5% of the time the model is deemed to be underestimating the true 

VaR and if the model‟s VaR limits are breached less than 5% of the time the model 

produces conservative results. VaR estimates are typically over short periods of time – 

i.e. 5 or 10 days. Counterparty credit risk measurement methodologies typically estimate 

measures such as PFE over the life of the contract which, in the case of interest rate swap 

agreements, may be as far out as 30 years or even further. To estimate future market 

values of underlying market variables over such a long time horizon is significantly more 

challenging and most likely considerably less accurate. Taking into account the effect of 

correlation (or dependence) between different variables introduces even additional 

challenges in terms of complexity. 

 

The models used in the measurement of counterparty credit risk have most application on 

a counterparty-level since this is the exposure level at which credit decisions are made. 

Limits set against counterparties are also monitored on a counterparty level and it is 

therefore important for a bank to be able to accurately measure the counterparty credit 

risk at this level. If one considers the problem holistically, it makes sense to approach the 

problem of model validation from the bottom up. If one starts on a counterparty level it 

may be extremely difficult, or even impossible, to explain differences between the 

realised and estimated measures of credit exposure. The problem of validation of the 

models should therefore be approached in the following stages: 

 

 Contract-level model validation 

It makes sense to validate the counterparty credit risk models on a contract level 

first. In this manner the distributional assumptions of individual underlying 

market variables are tested. Consider, for example, the case of a simple product 

like an FX Forward contract, as discussed extensively throughout this dissertation. 

In measuring the contract-level PFE of this contract we have assumed that the 
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spot exchange rate follows a GBM process, and therefore that the future spot 

prices follow a lognormal distribution. The Chi-squared test for goodness-of-fit 

can be used on historical spot exchange rate data in assessing the validity of this 

assumption. In other words, it is possible to test whether historically a specific 

exchange rate has exhibited the properties of a lognormal distribution on a given 

level of statistical significance. There are, however, some interesting challenges in 

even applying such a simple test in this context.  The problem has a lot of 

dimensions since assuming that future spot exchange rates follow a GBM process 

implies that there is a different statistical distribution for each time-step over 

which one simulates these future spot rates. More specifically, we assume that 

 

, 

 

and therefore, technically speaking, one needs to test the validity of this 

assumption over a number of time-horizons. This could potentially be a very 

laborious task and one would practically only validate the model for a few 

critical
159

 time horizons. 

 

An alternative method of validation, as mentioned above, is through an approach 

often used in the validation of market risk models called back-testing. Our 

definition of contract-level potential future exposure attempts to make predictions 

around the MTM value of the contract under consideration given a certain level of 

confidence. We are therefore, in modelling PFEs, trying to construct confidence 

intervals within which the future values (measured by the MTM) of a derivative 

contract is expected to be, assuming a certain level of statistical significance. It 

follows that it is also therefore sensible to test the ability of a PFE model to 

predict future mark-to-market values accurately. Banks generally value every 

OTC contract on a daily basis for market risk management purposes. These 

realised MTM values can therefore be recorded and used in testing the actual 

MTM values against the PFE values estimated during the life of the contract. 

                                                 
159

 Time horizons which are typically more active in terms of volume of active trades. 
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 Counterparty-level model validation 

Counterparty credit risk measurement results are significantly impacted by the 

assumed dependence between underlying market variables. In section 3.2.2 we 

demonstrate the potential impact that the assumption of correlation can have on a 

simple portfolio consisting of derivatives on two correlated underlying market 

variables. In validating PFE models it is therefore important to realise that the 

most important factor to consider is the assumption of dependence of the 

underlying market variables. 

 

Let‟s consider for example an interest rate swap PFE model which has been 

satisfactorily validated, using the back-testing approach, on a contract level. This 

model is then tested on a small portfolio of trades which consists only of interest 

rate swaps but on a number of different interest rates and the result is significantly 

different from the observed historical results. Under these conditions it would 

make sense to firstly consider the correlation assumptions and perhaps the validity 

of these for the underlying interest rates of this portfolio. Taking this argument 

into account it is fair to suggest that correlation assumptions should be 

independently validated even before the realised MTM values of portfolios of 

derivatives are tested against model-predicted PFE values. 

 

7.1.2 Specification and Calibration of PFE models 

 

The majority of the examples that we have considered have been based on underlying 

market variables which are typically modelled using a GBM process. Different market 

variables, however, require different stochastic processes to characterise their evolution 

through time. In fact, the same market variable can potentially be modelled using 

different stochastic processes depending on the circumstances. Major foreign exchange 

rates are usually modelled using a GBM process which is in contrast to the modelling of 

certain emerging market exchange rates where significant jumps often occur in practice. 

Jump-diffusion processes are generally employed in these situations to characterise the 

movements of the prices of emerging markets or pegged currencies. Sometimes the risk 
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factor to be modelled is not a one-dimensional price but rather a vector such as in the case 

of interest rate curves or the forward price curve of a commodity. In these cases the 

simulation model must be sufficiently elaborate to impose the proper arbitrage-free 

constraints and to take account of possible reshaping and twisting of the curve. Often 

prices in markets also exhibit some form of mean-reversion which is particularly 

important in simulating long-term future scenarios in order to prevent unrealistically high 

exposure estimations. 

 

The calibration of the parameters of the simulation models is an important step in model 

building  (Canabarro and Duffie, 2003). The future values produced by the simulation 

models are fundamentally determined by the calibration scheme applied in the model. An 

important and fundamental decision is whether the models need to be calibrated using 

historical or market-implied parameters. Models calibrated to historical data tend to 

project future market scenarios based on statistical observations observed in the past 

whereas models which are calibrated to market prices (such as forward price curves and 

option-implied volatilities) tend to reflect forward-looking views. 

 

According to Canabarro and Duffie (2003) there are advantages and disadvantages in 

each approach. Historical calibration implies that the process generating future market 

price behaviour is the same that was observed in the past. Such a model is often critisised 

as bein slow to react to changes in market conditions and structural changes in financial 

markets. This problem is however slightly alleviated by the use of time-decay factors to 

weight more recent observations higher in the calibration process. On the other hand, in 

the case of models calibrated on market prices and implied volatilities,  it can be argued 

that market prices contain components that are not only determined by the market 

participants‟ view about the future. These components inlude risk premiums, liquidity 

premiums, carrying costs etc. 

 

The main objective of the simulation model is to project, as realistically as possible, the 

potential future state of the market being simulated. In that sense the model should 

operate under the real probability measure. The only justification for using the risk-
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neutral measure is that, to some extent, it contains the consensus expectations of market 

participants on future prices, volatilities etc. When the simulations are used for pricing, as 

in the case of credit value adjustments (CVA) the risk-neutral measure should be used. 

 

7.2 Add-On Approximation to PFE Estimation 

 

The global market for OTC derivatives is enormous. This market does not only consist of 

big global financial institutions, in fact there are numerous financial institutions that take 

part in this market which are relatively small in comparison. As a result, not all market 

players can afford to spend millions in infrastructure for measuring counterparty credit 

risk. Moreover, these players typically also do not have the skill set to develop or 

implement and maintain such complex systems. 

 

There are other banks which are not small in term of balance sheets but just not yet as 

advanced as other who also typically need to measure counterparty credit risk on a 

consistent and meaningful way. At the end of the day it is more important to measure the 

risk than not to measure the risk at all. One would rather be inaccurate than uninformed 

or ignorant regarding risks that can potentially, when materialised, disrupt global 

financial markets. As a result, it is often required to make compromises when it comes to 

accuracy for the sake of practicality. For example, an emerging markets bank which 

trades in the OTC derivatives markets should preferably measure its counterparty credit 

risk as accurately as possible. It may, however, not be in the position to implement 

advanced simulation based systems to measure such risks due to skills or perhaps even 

financial constraints.  

 

In these and similar cases practitioners often employ simple approximations in an attempt 

to measure its exposure to counterparty credit risks more easily and less costly. These 

approximations methods (often referred to as add-on methods) can vary considerably in 

terms of accuracy and complexity and are significantly less computationally intensive 

than comparable simulation methods. Some internationally active banks also make use of 

add-on methods in the calculation of credit exposure for certain product lines where the 
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volumes of their trades actually make it impractical to estimate the exposures by 

simulation. 

 

7.2.1 Add-On vs. Simulation 

 

In estimating counterparty credit risk exposure using an approximation method it is 

expected that some accuracy will be sacrificed. It is important to, where possible, assess 

such inaccuracies and to understand under which circumstances these inaccuracies may 

materialise. The add-on approach does however have the benefit of being 

computationally more efficient and therefore less costly. We will now formally define our 

version of the add-on approach to PFE estimation and afterwards illustrate how this 

approach may be applied in estimating PFE profiles. 

 

7.2.1.1 Definition of add-on approach to PFE estimation 

 

 

Typically, the PFE estimated using Monte Carlo simulation is taken to be the accurate 

answer and therefore the target to work towards. Banks that typically apply the add-on 

approximation will therefore firstly quantify the PFE profile of a typical contract of the 

type under consideration. The PFE profile can be broken up into two main components: 

 

 Current Exposure 

The current exposure is typically defined as the current replacement cost of the 

transaction under consideration. This is typically measured by the MTM value of 

the contract. This information is also mostly readily available in a bank as a 

product of the market risk or front-office trading systems. 

 

 Potential Future Exposure 

This is the component of the PFE which is estimated under the add-on method. 

The add-on approach is a discretisation of the potential future exposure 
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component of the PFE profile. Let‟s define the potential future exposure at time t 

as the add-on for time t, i.e. 

 

 

 

In general terms, the add-on at a specific time point for a specific contract is 

dependent on the following two components: 

 

o Size of the contract 

o Potential value of the underlying asset 

 

If we compare the approach in estimating a PFE profile using the add-on method to the 

approach using the simulation method some interesting observations can be made. Firstly, 

in applying the simulation method and under the add-on approach the current exposure is 

known. The potential future exposure portion of the PFE profile under the simulation 

approach is estimated using simulations from a known assumed distribution of the 

underlying asset. More specifically, the simulation approach involves drawing random 

samples ( ) from a know distribution ( ) of underlying prices at t – i.e. . The 

derivative is then valued, using this sample price . This process is then repeated in 

order to get an accurate estimation of the distribution of possible future contract values at 

various points in time. The final step is then to calculate a percentile of this distribution at 

each point in time in order to derive a PFE profile. In contrast, the add-on method is an 

attempt to bypass the repetitive random sampling algorithm of the simulation method by 

estimating the percentile of the future distribution of the contract values directly. 

 

More formally, the add-on approach is an attempt to estimate the quantity  with 

 

, 

 

without having to draw samples from the distribution of .  is a random variable with 

the same distribution as the distribution of the prices of the underlying of the contract at t. 
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If we assume that the distribution of  is known, then it is possible, for simple functions 

,  to find  relatively easily.  

 

In practice the add-on method is often used to construct tables of add-on factors which 

can be applied to more than one contract. Typically, there are separate add-on tables for 

different underlying asset and contract type combinations. For example, there would be 

one table of add-on factors for USD/ZAR FX forwards and another table for GBP/USD 

FX forward contracts. These tables allow PFE estimates on a contract level using a very 

simple formula. 

 

The add-on factor is typically a function of the underlying, its volatility and expected 

value
160

, the time step into the future t and the maturity T of the contract under 

consideration. It is however possible that, for certain products, the add-on factor is quite 

complex and dependent on a large number of parameters. 

 

7.2.2 Example of Add-On PFE Estimation 

 

We illustrate the add-on method for estimating a contract-level PFE using a simple 

example of an OTC contract used in Section 2.2.4. We have therefore already calculated 

the PFE estimate using the simulation method and only need to derive an approximation 

using the add-on method approach. 

 

7.2.2.1 Model Derivation 

 

As argued above, the PFE profile of this FX forward contract consists of two main 

components. The first portion, the current exposure, is easy to calculate and is given by 

the expression: 

 

.   (22) 

                                                 
160

 It often happens that the forward prices observed in the market is used as an indication of future spot 

prices. These then serve, from a statistical perspective, as expected future values of the spot price. 

 
 
 



154 

 

 

 

 

The potential future exposure component of the PFE profile is, however, strictly speaking 

a stochastic variable for each time step in the future at which the PFE is to be calculated. 

The reason for this is that the spot USD/ZAR exchange rate is assumed to follow the 

following stochastic differential equation: 

 

. 

 

The SDE above implies that 

 

, 

 

in other words, the stock price at time t is a random variable with a lognormal distribution 

with parameters as above. 

 

In the example in Section 2.2.4 we argued that the main risk driver in the PFE of the FX 

forward is the forward exchange rate at the maturity of the contract. Furthermore, we 

made a simplifying assumption as to the evolution of the forward exchange rate relative 

to the simulated spot exchange rate – essentially assuming that the shape of the forward 

curve remains constant and moves up and down parallel to the spot rate. In order to 

approximate the results from that simulation process as accurately as possible we need to 

make the same assumptions in the add-on model. 

 

From a theoretical point of view, the forward exchange rate is determined by interest rate 

parity. A no arbitrage assumption determines the no-arbitrage forward exchange rate at 

some future point in time, say , through the interest rate differential in the following 

expression: 

, 

where 
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  is the forward exchange rate for time . In other words this is the point 

on the forward exchange rate curve corresponding to time point , 

  is the spot rate observed at time , 

  is the interest rate earned on a  deposit, deposited at  for  

years. The interest rate in this instance is a continuously compounded rate. 

 

In assuming that the shape of the forward exchange rate curve remains constant we are 

therefore implicitly assuming that the interest rate differential remains constant. In 

determining simulated forward exchange rates at some future point in time, , we have 

replaced the  with an  where 

 

. 

 

We can therefore derive an expression (under our assumptions) for the simulated forward 

exchange rate at time  ( , a random variable as a result of  being a 

random variable) as follows: 

 

. 

 

We have expanded our notation to indicate that  is the  year forward exchange 

rate observable at time . The factor  has therefore remained 

unchanged. 

 

Under the simulation method the value of the FX Forward contract at a future point in 

time is calculated using random samples from the distribution of future forward exchange 

rates, of the form . More specifically, the  formula in (22) is applied to a 

simulated future forward exchange rate in order to derive a sample from the distribution 

of future contract values ( ) using the following expression: 

 

 
 
 



156 

 

 

 

.  (23) 

 

Note that  is therefore a random variable with a distribution which is a linear 

transformation of the distribution of . Also,  in turn has a distribution 

which is a linear transformation of that of  which is known.  

 

We define the function  to be a function of a random variable  such that 

 

. 

 

In other words,  is the  percentile of the distribution of . Using this notation, it 

is possible to write the PFE of the FX Forward using the following notation: 

 

 

 

This result is extremely helpful in deriving an expression for an add-on for an FX forward 

contract. It shows that the % PFE of an FX Forward at some future point in time, , 

can be calculated by applying the  formula in (23) using the  percentile 

of the distribution of the future spot exchange rates . 

 

Since the distribution of  is lognormal it is therefore possible to determine 

 using the properties of the standard normal distribution. It follows that the 
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% contract-level PFE of an FX Forward at some future point in time, , can be 

calculated directly (without the need to simulate) using the following expression: 

 

, 

 

with 

 

, 

 

and  such that  

 

, 

 

and 

 

. 

 

In other words,  is the  percentile of the standard normal distribution. For 

example, for  we have . 

 

We now turn to the formal derivation of the add-on factor for the FX Forward contract. 

Recall that we are looking for an expression for the potential future exposure portion of 

the PFE profile in the form: 

 

. 

 

Therefore, we need to consider and solve the following: 
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. 

 

We therefore have
161

:  

 

. 

 

Note that in the expression above the add-on factor depends mainly on the time point, , 

in the PFE profile under consideration, the maturity of the contract ( ) and the strike of 

the specific contract under consideration. As mentioned before, practitioners mostly 

employ the add-on method through so-called add-on tables which are typically generic 

tables which can be used for any contract of a specific type. 

 

In our example, therefore, we are looking for add-on factors for USD/ZAR FX Forwards 

which are as generic as possible
162

. The strike of the forward contract is, however, a very 

contract-specific variable and the add-on factor should therefore ideally be independent 

of the strike of the contract. Moreover, the add-on tables are typically not updated daily 

or often even weekly. It is therefore ideal to have the add-on factors as insensitive to 

short-term market fluctuations as possible. To this extent the following adjustment is 

made to the add-on factor: 

 

. 

 

Although this add-on factor is strictly speaking not independent of the strike of the 

forward contract it is in a more elegant form and easily applied to generic USD/ZAR FX 

Forwards. 

                                                 
161

 Note that for ease of exposition we have suppressed the notation indicating the quoting convention with 

respect to the two currencies. 
162

 Although we are only considering FX Forward contracts on USD/ZAR. 
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If one considers the term 

 

 

 

the add-on factor may be considered as 

 

, 

 

 where 

 

  is a „moneyness‟ factor 

 

  is a „stress factor‟. 

 

Using this expression it is possible to create add-on factors, and more importantly add-on 

factor tables which are very generic in the sense that all parameters in the add-on may be 

thought of as a generic parameter. It also transforms the add-on factor, conceptually at 

least, into a relative number instead of an absolute number since it only depends on a 

relative quantity – the moneyness factor. 

 

A specific organisation will typically use only one value of  for all PFE calculations and 

therefore the stress factor can be treated as deterministic for a specific value of . Also, 

recall from section 3.5.3.1 that . It is therefore possible to simplify 

the expression for the PFE using the add-on method developed above to: 
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This expression enables us to construct a 3-dimensional table of add-on factors using the 

following three factors: 

 

  the time step into the future at which the PFE is to be calculated 

  the maturity of the contract under consideration 

  the moneyness factor of the particular contract under consideration. 

 

Using this add-on factor table it is then possible to calculate the entire
163

 PFE profile for 

any USD/ZAR FX Forward contract. Note that it is, in this specific add-on approach, not 

necessary to know the  value (current exposure) since this is given by 

. 

 

7.2.2.2 Model Application 

 

 

Let‟s construct a typical add-on factor table using the method described above. We will 

focus our efforts on the specific example USD/ZAR FX forward discussed in Section 

2.2.4 (pp17). The details of this particular contract is summarised below: 

 

Underlying Notional (USD) Maturity (yrs) Strike
164

 

USD/ZAR 1,000 0.5 8.17 

 

Table 7.1 - Repetition of Table 2.1 

 

Using the add-on approach described above we construct a table of add-on factors for the 

following ranges of the variables on which the add-on factors depend: 

  

                                                 
163

 Only at certain predetermined points t for which add-on factors exist in the add-on table. 
164

 Quote in number of ZAR per USD. 

 
 
 



161 

 

 

 

  

  

 

The resultant table of add-on factors (in %) is given in Table 7.2 below
165

. These add-on 

factors allow us to calculate the PFE profile of a specific USD/ZAR FX Forward using 

the add-on approximation method. The simulated PFE profile was calculated using 

500,000 Monte Carlo simulations. 

 

Figure 7.1 illustrates the PFE profiles produced using the Monte Carlo and add-on 

methods. We also demonstrate, in Figure 7.2 an example of a deep out of the money FX 

forward with the same contract details as in Table 7.1 except that the strike is 20.43. This 

Strike value coincides with a moneyness factor of approximately 0.4. Linear interpolation 

is typically used in practice in deriving add-ons for between tabulated values. 

 

 

Figure 7.1 – ATM Contract-level PFE: add-on approach vs. simulation approach 

 

 

 

                                                 
165

 Since we have used only one value for T we have essentially reduced the number of dimensions of the 

add-on factor table and it is therefore possible to represent the add-on table as a two dimensional table. 
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 Time Step into the future 

M
o
n

ey
n

es
s 

F
a
ct

o
r 

 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

0
.2

0
 

-74.37 -74.20 -74.17 -74.20 -74.28 -74.39 -74.52 -74.67 -74.83 -75.01 

0
.4

0
 

-53.99 -53.09 -52.45 -51.94 -51.51 -51.15 -50.82 -50.53 -50.27 -50.03 

0
.6

0
 

-33.62 -31.98 -30.73 -29.68 -28.75 -27.91 -27.12 -26.39 -25.70 -25.04 

0
.8

0
 

-13.24 -10.87 -9.01 -7.42 -5.99 -4.66 -3.43 -2.25 -1.13 -0.05 

1
.0

0
 

7.13 10.24 12.70 14.84 16.78 18.58 20.27 21.88 23.43 24.93 

1
.2

0
 

27.50 31.35 34.42 37.10 39.54 41.82 43.97 46.02 48.00 49.92 

1
.4

0
 

47.88 52.46 56.14 59.37 62.31 65.06 67.66 70.16 72.57 74.91 

1
.6

0
 

68.25 73.57 77.86 81.63 85.07 88.30 91.36 94.30 97.14 99.89 

1
.8

0
 

88.63 94.68 99.58 103.89 107.84 111.54 115.06 118.44 121.70 124.88 

2
.0

0
 

109.00 115.79 121.29 126.15 130.60 134.78 138.76 142.57 146.27 149.87 

 

Table 7.2 - Example of a table of add-on factors (in percent) 

 

 

 

The difference between the PFE profiles computed using the add-on and simulation 

approaches are due to two main factors: sample errors due from the simulations and 

errors from interpolation (where applicable) in the add-on approach. 
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Figure 7.2 - OTM Contract-level PFE: add-on approach vs. simulation approach 

 

 

7.2.2.3 Some thoughts on approximation methods 

 

In the examples above the add-on approach is clearly a good method for estimating 

contract-level PFE profiles for FX Forwards when compared to the simulation results. 

The examples were, however, specifically chosen to demonstrate the ability of 

approximation methods for simple products. Also note that we have only considered 

contract-level PFEs and in extending this framework beyond one underlying results in 

significant losses in accuracy. 

 

Approximation methods of the type discussed above are very accurate on a contract level 

but fail to incorporate dependence among correlated underlying assets and therefore 

result in significantly over-stated exposure numbers on a counterparty-level. The extent 

of these errors is the similar to those demonstrated in Section 3.2.2. The reason for this is 

that one typically needs to implicitly assume a worst-case correlation between the 

underlying variables in order to ensure that the estimated exposure result does not 

understate the actual exposure number. 
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This worst-case correlation assumption does ensure that exposure estimates are 

conservative but at a significant cost: a potentially large level of inaccuracy. 

 

7.2.3 Further Considerations 

 

As illustrated above, add-on methods can (under certain conditions) provide extremely 

accurate estimates to contract-level PFE profiles. Although these approximation methods 

fail to incorporate dependence among different underlying assets it still serves as a useful 

tool for institutions that may not have the capacity to support a complex simulation 

system for counterparty credit risk measurement. In short, a conservative measure of risk 

is better than no measure of risk at all. 

 

There are products for which it is not possible to create generic add-on tables which 

accurately estimate, even on a contract level, the counterparty credit risk exposure. A 

typical example of such products include exotic path-dependent options. In practice these 

products are handled using a simulation approach and then manually added onto existing 

counterparty-level exposure profiles calculated using approximation methods. Although 

not ideal, this approach does at least give the risk manager a consolidated, albeit 

conservative, view of the risk position. 

 

Another important aspect of add-on methods from a practical point of view is the 

frequency of add-on factor updates. If the add-on factors are not updated frequently 

enough inaccuracies in estimates become more and more likely and what may have been 

perceived to be conservative measures of risk may become less so. It is therefore of 

crucial importance that the add-on factor tables are updated as frequently as possible as 

this will also ensure that exposure numbers remain „smooth‟ and do not significantly 

increase (or decrease) when add-on factors are updated. 
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8 Conclusion 

The importance of counterparty credit risk measurement is apparent from the sheer size 

of the global OTC derivatives markets. Large financial institutions are increasingly linked 

at a global level as is evident from the credit crises which started in 2007. This 

dependency between market participants introduces a significant amount of systemic risk 

into the global financial industry. This highlights the importance of efforts by banking 

regulators globally to minimise this risk through the enforcement of best practices and 

capital adequacy requirements in order to guard against unexpected losses. 

 

This dissertation discussed in detail the current methods used in practice for measuring 

counterparty credit risk. The concept of potential future exposure was introduced – firstly 

on a contract-level and then on a portfolio-level. In addition, we have also discussed other 

issues relating to the measurement of counterparty credit risk exposure which typically 

require attention in practice. These issues include risk mitigation techniques such as 

netting agreements and collateral agreements which are used extensively in practice for 

mitigating the potential impact of counterparty default events. 

 

One important aspect of counterparty-level PFE calculations which have been simplified 

in this dissertation is the effect of dependency among underlying market variables on the 

resultant counterparty-level exposure estimates. We have used the measure of correlation 

to measure dependency and, in addition, assumed that this correlation is constant through 

time. This assumption is not realistic and often breaks down in practice. It is therefore 

suggested that this issue is addressed in further research. 

 

The model presented in Chapter 4 for measuring the impact of wrong-way risk provides a 

very practical framework for measuring counterparty credit risk in the presence of wrong-

way risk. It should however be noted that the structural model approach to measuring 

probability of default is by no means perfect. The structural model merely provides an 

intuitive link between the market moves in the underlying asset of a derivative contract 

and the potential impact thereof on the probability of default of the counterparty through 
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the correlation between its equity price and the underlying market variable. The model 

has also only been demonstrated for instances where there is a single underlying asset. 

Furthermore, the model has also only been demonstrated in situations where the 

underlying market variable is assumed to follow a GBM process. This scenario leads to a 

simple closed-form bivariate lognormal distribution for the joint process of the 

underlying asset and the equity price of the counterparty. In the case of the underlying 

variable not following a GBM process it may be more complex and may require an 

undesirable and unpractical amount computational time. 

 

The validation of counterparty credit exposure models is an area which is not widely 

discussed in literature. The task of estimating potential future market scenarios over 

significant time horizons is complex from a modelling point of view. The potential 

impact of errors in these models may be significant. It is therefore important to validate 

and test these models frequently in order to ensure that they produce meaningful results. 
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9 Appendix: Matlab Code and Data Files 

This section contains the majority of the Matlab code used in the calculations and 

simulations and calculations performed as part of this dissertation. 

 

9.1 FX Forward Contract-Level PFE Calculation 

 

%This Matlab code calculates the PFE, using Monte Carlo Simulation, of a single 

FX Forward.' 

  

Notional=1000; 

NoSimulations=250000; 

TimeSteps=11; 

T=0.5; 

Mu=0.0; 

InterestRate=0.12; 

Strike=20.4258290193026;%8.17; 

Sigma=csvread('c:\Data Files\Vol.csv'); 

RelFwdCurve=csvread('c:\Data Files\RelativeForwardCurve.csv'); 

RelFwdCurve=RelFwdCurve' ; 

S0=7.77; 

CurrentMTM=Notional*exp(-InterestRate*T)*... 

    (RelFwdCurve(2,TimeSteps)*S0-Strike); 

NormRandVars=randn(NoSimulations,TimeSteps); 

TimeStepVector=0:0.05:0.5; 

Simulations=ones(size(NormRandVars)); 

StressedSpots=ones(size(NormRandVars)); 

StressFactors=ones(size(NormRandVars)); 

StressFwds=ones(size(NormRandVars)); 

StressMTM=ones(size(NormRandVars))*CurrentMTM; 

for I=1:1:NoSimulations 

    StressedSpots(I,1)=S0; 

    for J=1:1:TimeSteps -1 

        StressFactors(I,J+1)=exp((Mu-(Sigma.^2)/2)*... 

            (TimeStepVector(1,J+1)-TimeStepVector(1,J))+... 

            Sigma*NormRandVars(I,J)*sqrt((TimeStepVector(1,J+1)-... 

            TimeStepVector(1,J)))); 

        StressedSpots(I,J+1)=StressedSpots(I,J)*StressFactors(I,J+1); 

        StressFwds(I,J)=RelFwdCurve(2,TimeSteps)*StressedSpots(I,J+1); 

        StressMTM(I,J+1)=Notional*exp(-InterestRate*... 

            (TimeStepVector(1,TimeSteps)-TimeStepVector(1,J+1)))... 

            *(StressFwds(I,J)-Strike); 

    end 

    StressFwds(I,TimeSteps)=StressedSpots(I,TimeSteps);     

end 

FinalPFE=prctile(StressMTM,95); 

t=0:T/(TimeSteps-1):T; 

%This plots all scenarios at once as well as a line indicating the 95% PFE' 

Line1=plot(t,StressMTM,'LineWidth',1); 

grid on; 

Line2=line(t,FinalPFE,'LineWidth',1.5,'Color',[1 1 1],'LineStyle',':'); 
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9.1.1 Data files used in the calculation of the FX Forward Contract-Level 

PFE Calculations 

 

9.1 - RelativeForwardCurve.csv 

 

 
9.2 - Vol.csv 

9.2 Interest Rate Swap Contract-Level PFE Calculation 

 

%This Procedure Generates the short rate paths for the Interest Rate Swap 

%PFE Calculation using the Cox, Ingersoll Ross model. 

I=0; 

J=0; 
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Rates=csvread('c:\Data Files\ZeroCurve.csv'); 

NoSimulations=1000; 

CIRPaths=ones(NoSimulations,21); 

CIRZCYCs=ones(NoSimulations,21,21); 

CIRSimulatedMTMs=zeros(NoSimulations,21); 

PFEProfile=zeros(21); 

CIRa=0.2417; 

CIRb=0.0809; 

CIRvol=0.0212; 

CIRr0=0.1186; 

  

%Initialise the interest rate environment 

RateSpec=intenvset('Rates',Rates,'StartDates',StartDates,... 

    'EndDates',EndDates,'Basis',5,'Compounding',-1); 

LegRate=[NaN 0]; 

LegType=[1 0]; 

LegReset=[4 4]; 

Maturity=1801; 

Settle=91; 

[Price SwapRate]=swapbyzero(RateSpec,LegRate,Settle,Maturity,... 

    LegReset,'Basis',5,LegType); 

LegRate=[SwapRate 0]; 

  

for I=1:NoSimulations 

    CIRPaths(I,:)=cirpath(t,CIRa,CIRb,CIRvol,CIRr0); 

    for J=1:1:21 

        CIRZCYCs(I,J,:)=CIRPaths(I,J).*RelativeZCYC'; 

        %Change the maturity and ZCYC used in the calculation 

        Rates=squeeze(CIRZCYCs(I,J,:)); 

        RateSpec=intenvset('Rates',Rates,'StartDates',StartDates,... 

            'EndDates',EndDates,'Basis',5,'Compounding',-1); 

        if J~=21 

            CIRSimulatedMTMs(I,J)=Principal*swapbyzero(RateSpec,... 

                LegRate,Settle,Maturity,LegReset,'Basis',5,LegType); 

        end 

        Maturity=Maturity-90; 

    end 

    Maturity=1801; 

end 

for I=1:1:21 

    PFEProfile(I)=prctile(CIRSimulatedMTMs(:,I),95);     

End 

 

 

 

9.2.1 Data files used in the calculation of the Interest Rate Swap Contract-

Level PFE Calculations 
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9.3 - ZeroCurve.csv 
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9.3 FX Forward Counterparty-Level PFE Calculation with Netting 

Functionality 

 

%This m-file calculates the Counterparty-Level PFE, using Monte Carlo 

%Simulation, of a portfolio of derivatives with the same counterparty 

Notional1=1000; 

Notional2=-490; 

Notional3=-500; 

Notional4=1000; 

  

%Define the number of simulations and time steps 

NoSimulations=15000; 

TimeSteps=61; 

  

%Specify the parameters of the underlying trades and market information 

T1=0.75; 

T2=1.5; 

T3=3; 

T4=T3; 

T=3; 

Mu=0.0; 

InterestRate=0.12; 

Strike1=8.17; 

Strike2=20.75; 

Strike3=15.45; 

Strike4=7.5; 

SigmaUSDZAR=0.1548; 

SigmaGBPZAR=0.1475; 

Correlation=0.9289; 

RelFwdCurveUSDZAR=csvread... 

    ('c:\Data Files\RelativeForwardCurve_PortfolioPFE2_USDZAR.csv'); 

RelFwdCurveGBPZAR=csvread... 

    ('c:\Data Files\RelativeForwardCurve_PortfolioPFE2_GBPZAR.csv'); 

RelFwdCurveUSDZAR=RelFwdCurveUSDZAR'; 

RelFwdCurveGBPZAR=RelFwdCurveGBPZAR'; 

USDZARS0=7.86; 

GBPZARS0=15.62; 

  

%Initialise the calculations - time zero exposures (current mark to market 

%values 

CurrentMTM1=Notional1*exp(-InterestRate*T1)*... 

    (RelFwdCurveUSDZAR(2,T1/0.05+1)*USDZARS0-Strike1); 

CurrentMTM2=Notional2*exp(-InterestRate*T2)*... 

    (RelFwdCurveGBPZAR(2,T2/0.05+1)*GBPZARS0-Strike2); 

[CurrentMTM3,Dummy1]=blsprice(GBPZARS0, Strike3,... 

    InterestRate, T3, SigmaGBPZAR); 

[CurrentMTM4,Dummy1]=blsprice(USDZARS0, Strike4,... 

    InterestRate, T4, SigmaUSDZAR); 

CurrentMTM3=CurrentMTM3*Notional3; 

CurrentMTM4=CurrentMTM4*Notional4; 

  

%Generate the random variables required for the simulations 

NormRandVarsUSDZAR=randn(NoSimulations,TimeSteps); 

NormRandVarsGBPZAR=randn(NoSimulations,TimeSteps); 

  

%Apply transformation for correlated random vars 

NormRandVarsGBPZAR=Correlation*NormRandVarsUSDZAR+... 

    sqrt(1-(Correlation).^2)*NormRandVarsGBPZAR; 

  

TimeStepVector=0:0.05:T; 
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StressedSpots_USDZAR=ones(size(NormRandVarsUSDZAR)); 

StressedSpots_GBPZAR=ones(size(NormRandVarsUSDZAR)); 

StressFactors_USDZAR=ones(size(NormRandVarsUSDZAR)); 

StressFactors_GBPZAR=ones(size(NormRandVarsUSDZAR)); 

StressFwds_USDZAR=ones(size(NormRandVarsUSDZAR)); 

StressFwds_GBPZAR=ones(size(NormRandVarsUSDZAR)); 

StressMTM1=ones(size(NormRandVarsUSDZAR))*CurrentMTM1; 

StressMTM2=ones(size(NormRandVarsUSDZAR))*CurrentMTM2; 

StressMTM3=ones(size(NormRandVarsUSDZAR))*CurrentMTM3; 

StressMTM4=ones(size(NormRandVarsUSDZAR))*CurrentMTM4; 

NettedPFEArray=ones(size(NormRandVarsUSDZAR)); 

NonNettedPFEArray=ones(size(NormRandVarsUSDZAR)); 

for I=1:1:NoSimulations 

    StressedSpots_USDZAR(I,1)=USDZARS0; 

    StressedSpots_GBPZAR(I,1)=GBPZARS0; 

    NettedPFEArray(I,1)=CurrentMTM1+CurrentMTM2+CurrentMTM3+CurrentMTM4; 

    NonNettedPFEArray(I,1)=max(CurrentMTM1,0)+max(CurrentMTM2,0)+... 

        max(CurrentMTM3,0)+max(CurrentMTM4,0); 

    for J=1:1:TimeSteps -1 

        StressFactors_USDZAR(I,J+1)=exp((Mu-(SigmaUSDZAR.^2)/2)*... 

            (TimeStepVector(1,J+1)-TimeStepVector(1,J))+SigmaUSDZAR... 

            *NormRandVarsUSDZAR(I,J)*sqrt((TimeStepVector(1,J+1)-... 

            TimeStepVector(1,J)))); 

        StressFactors_GBPZAR(I,J+1)=exp((Mu-(SigmaGBPZAR.^2)/2)*... 

            (TimeStepVector(1,J+1)-TimeStepVector(1,J))+SigmaGBPZAR*... 

            NormRandVarsGBPZAR(I,J)*sqrt((TimeStepVector(1,J+1)-... 

            TimeStepVector(1,J)))); 

        StressedSpots_USDZAR(I,J+1)=StressedSpots_USDZAR(I,J)*... 

            StressFactors_USDZAR(I,J+1); 

        StressedSpots_GBPZAR(I,J+1)=StressedSpots_GBPZAR(I,J)*... 

            StressFactors_GBPZAR(I,J+1); 

        if TimeStepVector(1,J+1)<=T1 

            StressFwds_USDZAR(I,J)=RelFwdCurveUSDZAR(2,T1/0.05+1-J+1)*... 

                StressedSpots_USDZAR(I,J+1); 

        end 

        if TimeStepVector(1,J+1)<=T2 

            StressFwds_GBPZAR(I,J)=RelFwdCurveGBPZAR(2,T2/0.05+1-J+1)*... 

                StressedSpots_GBPZAR(I,J+1); 

        end         

        StressMTM1(I,J+1)=(TimeStepVector(1,J+1)<T1)*Notional1*... 

            exp(-InterestRate*(TimeStepVector(1,J+1)-... 

            TimeStepVector(1,J)))*(StressFwds_USDZAR(I,J)-Strike1); 

        StressMTM2(I,J+1)=(TimeStepVector(1,J+1)<T2)*Notional2*... 

            exp(-InterestRate*(TimeStepVector(1,J+1)-... 

            TimeStepVector(1,J)))*(StressFwds_GBPZAR(I,J)-Strike2); 

        [StressMTM3(I,J+1),Dummy1]=blsprice(StressedSpots_GBPZAR(I,J+1)... 

            , Strike3, InterestRate, T3-TimeStepVector(1,J+1),SigmaGBPZAR); 

        [StressMTM4(I,J+1),Dummy1]=blsprice(StressedSpots_USDZAR(I,J+1),... 

            Strike4, InterestRate, T4-TimeStepVector(1,J+1),SigmaUSDZAR); 

        StressMTM3(I,J+1)=(TimeStepVector(1,J+1)<T3)*StressMTM3(I,J+1)... 

            *Notional3; 

        StressMTM4(I,J+1)=(TimeStepVector(1,J+1)<T4)*StressMTM4(I,J+1)... 

            *Notional4; 

        NettedPFEArray(I,J+1)=StressMTM1(I,J+1)+StressMTM2(I,J+1)+... 

            StressMTM3(I,J+1)+StressMTM4(I,J+1); 

        NonNettedPFEArray(I,J+1)=max(StressMTM1(I,J+1),0)+... 

            max(StressMTM2(I,J+1),0)+max(StressMTM3(I,J+1),0)+... 

            max(StressMTM4(I,J+1),0); 

    end 

    StressFwds_USDZAR(I,TimeSteps)=StressedSpots_USDZAR(I,TimeSteps);     

    StressFwds_GBPZAR(I,TimeSteps)=StressedSpots_GBPZAR(I,TimeSteps);     

end 

FinalPFE1=prctile(StressMTM1,95); 
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FinalPFE2=prctile(StressMTM2,95); 

FinalPFE3=prctile(StressMTM3,95); 

FinalPFE4=prctile(StressMTM4,95); 

AggregatePFEGross=max(FinalPFE1,0)+max(FinalPFE2,0)+... 

    max(FinalPFE3,0)+max(FinalPFE4,0); 

AggregatePFENet=FinalPFE1+FinalPFE2+FinalPFE3+FinalPFE4; 

NettedPFE=prctile(NettedPFEArray,95); 

NonNettedPFE=prctile(NonNettedPFEArray,95); 

t=0:0.05:T; 

%This plots the Contract-Level PFEs of the 4 Derivatives 

Line1=stairs(t,FinalPFE1,'LineWidth',1.5,'Color',[0 0 1]); 

grid on; 

hold; 

Line2=stairs(t,FinalPFE2,'LineWidth',1.5,'Color',[1 0 0],'LineStyle','-'); 

Line3=stairs(t,FinalPFE3,'LineWidth',1.5,'Color',[0 1 0],'LineStyle','-'); 

Line4=stairs(t,FinalPFE4,'LineWidth',1.5,'Color',[1 0.69 0.39]... 

    ,'LineStyle','-'); 

%This plots the Portfolio-Level PFEs(Netted and Non-Netted) of the 4 Derivs 

figure; 

Line1=stairs(t,NettedPFE,'LineWidth',1.5,'Color',[0 0 1]); 

grid on; 

hold; 

Line2=stairs(t,NonNettedPFE,'LineWidth',1.5,'Color',[1 0 0],... 

    'LineStyle','-'); 

Line3=stairs(t,AggregatePFEGross,'LineWidth',1.5,'Color',... 

    [0 1 0],'LineStyle','-'); 

Line4=stairs(t,AggregatePFENet,'LineWidth',1.5,'Color',... 

    [1 0.69 0.39],'LineStyle','-'); 
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9.4 Counterparty-Level PFE taking into account CSA Agreement 

 

%This M-File applies the effects of a Collateral Agreement to a 

%predetermined counterparty-level PFE profile (NettedPFE) and produces the  

%collateralised PFE. The inputs to the collateral agreement which impact  

%the collateralised PFE profile are: 

ThresholdAmount=1500; 

MinimumTransferAmount=175; 

CloseOutPeriod=10; 

BarrierAmount=2250; 

  

%Define a few variables 

CollateralReceived=zeros(size(NettedPFE));  %represents the collateral 

                                            %received at that point in time 

CollateralHeld=zeros(size(NettedPFE));      %represents the collateral  

                                            %received up to that point in time 

CollateralCalled=zeros(size(NettedPFE));    %represents the collateral  

                                            %called at that point in time 

CollateralCalledNotReceived=zeros(size(NettedPFE)); 

%We now proceed to the calculation of the collateralised PFE: 

CollateralReceived(1)=0; 

NumberOfSteps=size(NettedPFE); 

NumberOfSteps=NumberOfSteps(2); 

for time=2:1:NumberOfSteps 

    %Adjust the balances of the variables to keep track of collateral on 

    %call and in posession 

    if time>CloseOutPeriod 

       CollateralReceived(time)=CollateralCalled(time-CloseOutPeriod);  

       CollateralHeld(time)=CollateralHeld(time-1)+CollateralReceived(time); 

    end 

    CollateralCalledNotReceived(time)=CollateralCalledNotReceived... 

        (time-1)-CollateralReceived(time); 

    %Determine whether a Collateral Call or Collateral Refund should be made: 

    if NettedPFE(time)-(CollateralHeld(time)+... 

            CollateralCalledNotReceived(time))-ThresholdAmount... 

            >MinimumTransferAmount 

       if CollateralHeld(time)+CollateralCalledNotReceived(time)... 

               <BarrierAmount 

           CollateralCalled(time)= NettedPFE(time)-... 

               (CollateralHeld(time)+CollateralCalledNotReceived(time))... 

               -ThresholdAmount; 

       end 

     elseif ThresholdAmount-(NettedPFE(time)-(CollateralHeld(time)+... 

             CollateralCalledNotReceived(time)))>MinimumTransferAmount 

         %We have now established that we have to make a collateral refund 

         %and so we need to firstly establish what the amount is that we 

         %have to refund (i.e. what the excess collateral is) 

         CollateralReceived(time)=min(-((NettedPFE(time)-... 

             (CollateralHeld(time)+CollateralCalledNotReceived(time))... 

             -ThresholdAmount)),-CollateralHeld(time)); 

         CollateralHeld(time)=CollateralHeld(time)+min(-((NettedPFE(time)... 

             -(CollateralHeld(time)+CollateralCalledNotReceived(time))... 

             -ThresholdAmount)),-CollateralHeld(time)); 

    end 

    CollateralCalledNotReceived(time)=CollateralCalledNotReceived(time)... 

        +CollateralCalled(time); 

end 

figure; 

t=0:1:NumberOfSteps-1; 

ThresholdLine=ones(size(CollateralCalled))*ThresholdAmount; 

BarrierLine=ones(size(CollateralCalled))*BarrierAmount; 
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Line1=stairs(t,CollateralReceived,'LineWidth',1,'Color',[0 1 0],... 

'LineStyle','-'); 

grid on; 

hold; 

Line2=stairs(t,CollateralCalled,'LineWidth',1,'Color',[1 0 0],... 

    'LineStyle','-'); 

Line3=stairs(t,CollateralCalledNotReceived,'LineWidth',1,'Color',... 

    [0 0.5 0],'LineStyle','-'); 

  

figure; 

Line4=stairs(t,NettedPFE,'LineWidth',1.5,'Color',[0 0 1]); 

hold; 

Line5=stairs(t,CollateralHeld,'LineWidth',1.5,'Color',[0 0 0],... 

    'LineStyle','-'); 

Line6=stairs(t,ThresholdLine,'LineWidth',1.5,'Color',[1 0 0],... 

    'LineStyle','-'); 

Line7=stairs(t,BarrierLine,'LineWidth',1.5,'Color',[1 0 0],... 

    'LineStyle',':'); 

Line8=stairs(t,ThresholdLine+MinimumTransferAmount,'LineWidth',... 

    1.5,'Color',[0 0 1],'LineStyle',':'); 

Line8=stairs(t,NettedPFE-CollateralHeld,'LineWidth',1.5,'Color',... 

    [0 1 1],'LineStyle','-'); 

grid on; 
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9.5 Wrong-Way Risk Model Implementation 

 
%The purpose of this m-file is to demonstrate the wrong-way risk model 

%proposed by le Roux (2008). The model uses a structural approach 

%(CreditGrades Model) to simulate conditional and unconditional PDs. 

%These equity prices are correlated with another underlying variable and in 

%the process this achieves a models which links the probability of default 

%with the changes in the underlying market variable. In so doing the effect 

%of wrong way risk is encapsulated in the measures for counterparty credit 

%risk. 

%Notional of the underlying asset 

Notional_Underlying=1000;        

  

%Define the number of simulations and time steps                                 

NoSimulations=2001; 

TimeSteps=11; 

  

%Specify the parameters of the underlying trades and market information 

T1=1;                                 

T=T1; 

Mu=0; 

Mu_Underlying=Mu; 

Mu_Stock=0; 

InterestRate=0.12; 

Strike1=826.8; 

Vol_Stock=0.3652; 

Vol_Underlying=0.2103; 

Vol_Barrier=0.3; 

Correlation=0.8614; 

S0_Stock=412; 

S0_Underlying=826.8; 

S0_Barrier=0.4; 

ContractIsCall=false;  

%Determine the MTM at t=0;                                 

if ContractIsCall 

    [CurrentMTM1,Dummy1]=blsprice(S0_Underlying, Strike1, InterestRate,... 

        T1, Vol_Underlying); 

    CurrentMTM1=CurrentMTM1*Notional_Underlying; 

else 

    [Dummy1,CurrentMTM1]=blsprice(S0_Underlying, Strike1, InterestRate,... 

        T1, Vol_Underlying); 

    CurrentMTM1=CurrentMTM1*Notional_Underlying; 

end 

%Generate the random variables required in the simulations                                 

NormRandVars_Underlying=randn(NoSimulations,TimeSteps); 

NormRandVars_Barrier=randn(NoSimulations,TimeSteps); 

                            

%Determine the time-grid                                 

TimeStepVector=0:0.1:T; 

%Initiate the simulates spot price variables                                 

SimulatedSpots_Underlying=ones(size(NormRandVars_Underlying)); 

SimulatedBarrier=ones(size(NormRandVars_Underlying)); 

%Initiate the simulates GBM variables                                 

StressFactors_Underlying=ones(size(NormRandVars_Underlying)); 

%Initiate the simulated MTM variable                                 

SimulatedMTM1=ones(size(NormRandVars_Underlying))*CurrentMTM1; 

SimulatedConditionalMTM1=ones(size(NormRandVars_Underlying))*CurrentMTM1; 

%Determine the Current Undconditional PD                                 

DebtPerShare=243.27 

R_Bar=0.5; 

d=((S0_Stock+R_Bar*DebtPerShare)/(R_Bar*DebtPerShare))*exp(Vol_Barrier^2); 
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At=sqrt((((Vol_Stock*S0_Stock)/(S0_Stock+R_Bar*DebtPerShare)).^2)... 

    +Vol_Barrier^2); 

CurrentUnconditionalPD=1-(normcdf(-0.5*At+log(d)/At,0,1)-d*... 

    normcdf(-0.5*At-log(d)/At,0,1)); 

%Initiate the simulated Conditional PD variable and associated variables 

% 

  

ExposureInflationFactor=ones(size(NormRandVars_Underlying)); 

  

%Define a variable for storing the expected value and conditional expected  

%valueof the stock prices for various values of t 

ExpectedSpot_Stock=ones(size(TimeStepVector))*S0_Stock; 

UnconditionalPD=ones(size(NormRandVars_Underlying))*CurrentUnconditionalPD; 

ConditionalExpectedSpot_Stock=ones(size(NormRandVars_Underlying))*S0_Stock; 

ConditionalPD=ones(size(NormRandVars_Underlying))*CurrentUnconditionalPD; 

MuPrime_Stock=ones(size(NormRandVars_Underlying))*log(S0_Stock); 

SigmaPrime_Stock=zeros(size(NormRandVars_Underlying)); 

MuPrime_Underlying=ones(size(NormRandVars_Underlying))*log(S0_Underlying); 

SigmaPrime_Underlying=zeros(size(NormRandVars_Underlying)); 

MuStar_Stock=ones(size(NormRandVars_Underlying))*log(S0_Stock); 

SigmaSqStar_Stock=zeros(size(NormRandVars_Underlying)); 

  

for I=1:1:NoSimulations 

   SimulatedSpots_Underlying(I,1)=S0_Underlying;  

   SimulatedBarrier(I,1)=S0_Barrier*DebtPerShare; 

   ExposureInflationFactor(I,1)=1; 

   for J=1:1:TimeSteps -1 

      ExpectedSpot_Stock(J+1)=S0_Stock*exp(((Mu_Stock-0.5*(Vol_Stock^2))... 

          *TimeStepVector(J+1))+0.5*(Vol_Stock^2)*TimeStepVector(J+1)); 

      MuPrime_Stock(I,J+1)=log(S0_Stock)+(Mu_Stock-0.5*(Vol_Stock^2))... 

          *TimeStepVector(J+1); 

      SigmaPrime_Stock(I,J+1)=Vol_Stock*sqrt(TimeStepVector(J+1)); 

      MuPrime_Underlying(I,J+1)=log(S0_Underlying)+(Mu_Underlying... 

          -0.5*(Vol_Underlying^2))*TimeStepVector(J+1); 

      SigmaPrime_Underlying(I,J+1)=Vol_Underlying*sqrt(TimeStepVector(J+1)); 

  

      StressFactors_Underlying(I,J+1)=exp((Mu-(Vol_Underlying.^2)/2)... 

          *(TimeStepVector(1,J+1)-TimeStepVector(1,J))+Vol_Underlying... 

          *NormRandVars_Underlying(I,J)*sqrt((TimeStepVector(1,J+1)... 

          -TimeStepVector(1,J))));  

  

      SimulatedSpots_Underlying(I,J+1)=SimulatedSpots_Underlying(I,J)... 

          *StressFactors_Underlying(I,J+1);  

       

      MuStar_Stock(I,J+1)=MuPrime_Stock(I,J+1)... 

          +(Correlation/SigmaPrime_Underlying(I,J+1))... 

          *SigmaPrime_Stock(I,J+1)*(log(SimulatedSpots_Underlying(I,J+1))... 

          -MuPrime_Underlying(I,J+1)); 

      SigmaSqStar_Stock(I,J+1)=((SigmaPrime_Stock(I,J+1)).^2)... 

          *(1-Correlation^2); 

      ConditionalExpectedSpot_Stock(I,J+1)=exp(MuStar_Stock(I,J+1)+0.5... 

          *SigmaSqStar_Stock(I,J+1)); 

       

      SimulatedBarrier(I,J+1)=S0_Barrier*DebtPerShare; 

      if ContractIsCall %Call 

           [SimulatedMTM1(I,J+1),Dummy1]=blsprice(... 

               SimulatedSpots_Underlying(I,J+1), Strike1, InterestRate,... 

               T1-TimeStepVector(1,J+1),Vol_Underlying); 

           SimulatedMTM1(I,J+1)=SimulatedMTM1(I,J+1)*Notional_Underlying; 

      else %Put 

           [Dummy1,SimulatedMTM1(I,J+1)]=blsprice... 

               (SimulatedSpots_Underlying(I,J+1), Strike1, InterestRate,... 

               T1-TimeStepVector(1,J+1),Vol_Underlying); 
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           SimulatedMTM1(I,J+1)=SimulatedMTM1(I,J+1)*Notional_Underlying; 

      end 

      %Calculate the conditional default probability using simulated stock 

      At_Unconditional=sqrt((((Vol_Stock*ExpectedSpot_Stock(J+1))/... 

          (ExpectedSpot_Stock(J+1)+R_Bar*DebtPerShare))^2)+Vol_Barrier^2); 

      d_Unconditional=((ExpectedSpot_Stock(J+1)+R_Bar*DebtPerShare)/... 

          (R_Bar*DebtPerShare))*exp(Vol_Barrier^2); 

      UnconditionalPD(I,J+1)=1-(normcdf(-0.5*At_Unconditional... 

          +log(d_Unconditional)/At_Unconditional,0,1)-d_Unconditional... 

          *normcdf(-0.5*At_Unconditional-log(d_Unconditional)... 

          /At_Unconditional,0,1)); 

       

      At_Conditional=sqrt((((Vol_Stock... 

          *ConditionalExpectedSpot_Stock(I,J+1))... 

          /(ConditionalExpectedSpot_Stock(I,J+1)... 

          +R_Bar*DebtPerShare))^2)+Vol_Barrier^2); 

      d_Conditional=((ConditionalExpectedSpot_Stock(I,J+1)... 

          +R_Bar*DebtPerShare)/(R_Bar*DebtPerShare))*exp(Vol_Barrier^2); 

       

      ConditionalPD(I,J+1)=1-(normcdf(-0.5*At_Conditional... 

          +log(d_Conditional)/At_Conditional,0,1)-d_Conditional... 

          *normcdf(-0.5*At_Conditional-log(d_Conditional)... 

          /At_Conditional,0,1)); 

      %Determine the conditional MTM 

      ExposureInflationFactor(I,J+1)=(ConditionalPD(I,J+1)... 

          /UnconditionalPD(I,J+1)); 

  

      SimulatedConditionalMTM1(I,J+1)=SimulatedMTM1(I,J+1)... 

          *ExposureInflationFactor(I,J+1); 

   end 

   StockPath=1;  

end 

FinalPFE1_Unconditional=prctile(SimulatedMTM1,99); 

FinalPFE1_Conditional=prctile(SimulatedConditionalMTM1,99); 

  

t=0:0.1:T; 

plot(t, FinalPFE1_Unconditional, 'DisplayName', 'Unconditional',... 

    'XDataSource', 't', 'YDataSource', 'Unconditional'); figure(gcf) 

grid on; 

hold on; 

line1=plot(t, FinalPFE1_Conditional, 'DisplayName', 'Conditional',... 

    'XDataSource', 't', 'YDataSource', 'Conditional','Color', 'red');... 

    figure(gcf) 

figure; 

hold on; 

scatter (SimulatedSpots_Underlying(:,9),ExposureInflationFactor(:,9),'o');... 

    figure(gcf)  

grid on; 

scatter (SimulatedSpots_Underlying(:,6),ExposureInflationFactor(:,6),'x');... 

    figure(gcf)  

hold on; 

scatter (SimulatedSpots_Underlying(:,3),ExposureInflationFactor(:,3),'.');... 

    figure(gcf)  

hold on; 

maxincrease=max(FinalPFE1_Conditional)/max(FinalPFE1_Unconditional)-1; 
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9.6 EAD Calculations under the Internal Models and Current 

Exposure Methods 

 
%The following Parameters are used for the calculation of the EAD under the 

%CEM approach in Basel2: 

  

AddOnFactor1=0.01; 

AddOnFactor2=0.05; 

AddOnFactor3=0.05; 

AddOnFactor4=0.05; 

ZARNotional1=abs(Notional1)*Strike1; 

ZARNotional2=abs(Notional2)*Strike2; 

ZARNotional3=abs(Notional3)*Strike3; 

ZARNotional4=abs(Notional4)*Strike4;%Note that in portfolio 1 Strike3=Strike4  

EAD1_CEM=max(CurrentMTM1,0)+ZARNotional1*AddOnFactor1; 

EAD2_CEM=max(CurrentMTM2,0)+ZARNotional2*AddOnFactor2; 

EAD3_CEM=max(CurrentMTM3,0)+ZARNotional3*AddOnFactor3; %Note that contract  

% 3 of portfolio two is a written option and is therefore left out of the 

% EAD calculations under the CEM 

EAD4_CEM=max(CurrentMTM4,0)+ZARNotional4*AddOnFactor4; 

GrossRC=max(0,CurrentMTM1)+max(0,CurrentMTM2)+max(0,CurrentMTM3)+... 

    max(0,CurrentMTM4); 

NetRC=max(CurrentMTM1+CurrentMTM2+CurrentMTM4,0);%CurrentMTM3+CurrentMTM4,0); 

NGR=NetRC/GrossRC; 

AOP=(0.4+0.6*NGR)*(ZARNotional1*AddOnFactor1+ZARNotional2*... 

    AddOnFactor2+ZARNotional4*AddOnFactor4); 

EADCounterparty_CEM=NetRC+AOP; 

  

%The following loop calculates the EAD using the IMM under Basel2 

%Note: TS1Yr are the number of time steps up to one year 

TS1Yr=21; 

Deltat=0.05; %the size of each time step 

ExpectedExposure1=zeros(TS1Yr,1); 

ExpectedExposure2=zeros(TS1Yr,1); 

ExpectedExposure3=zeros(TS1Yr,1); 

ExpectedExposure4=zeros(TS1Yr,1); 

ExpectedExposureCounterparty=zeros(TS1Yr,1); 

EPE1=0; 

EPE2=0; 

EPE3=0; 

EPE4=0; 

EPECounterparty=0; 

PFE1=zeros(TS1Yr,1); 

PFE2=zeros(TS1Yr,1); 

PFE3=zeros(TS1Yr,1); 

PFE4=zeros(TS1Yr,1); 

PFECounterparty=zeros(TS1Yr,1); 

  

  

for I=1:1:TS1Yr %We use the first year only as this is the tenor over which 

                %EE, EPE and Effective EPE is defined 

    for J=1:1:NoSimulations 

        ExpectedExposure1(I)=ExpectedExposure1(I)+max(StressMTM1(J,I),0); 

        ExpectedExposure2(I)=ExpectedExposure2(I)+max(StressMTM2(J,I),0); 

        ExpectedExposure3(I)=ExpectedExposure3(I)+max(StressMTM3(J,I),0); 

        ExpectedExposure4(I)=ExpectedExposure4(I)+max(StressMTM4(J,I),0); 

        ExpectedExposureCounterparty(I)=ExpectedExposureCounterparty(I)+... 

            max(NettedPFEArray(J,I),0); 

    end 

    ExpectedExposure1(I)=ExpectedExposure1(I)/NoSimulations; 
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    ExpectedExposure2(I)=ExpectedExposure2(I)/NoSimulations; 

    ExpectedExposure3(I)=ExpectedExposure3(I)/NoSimulations; 

    ExpectedExposure4(I)=ExpectedExposure4(I)/NoSimulations; 

    ExpectedExposureCounterparty(I)=ExpectedExposureCounterparty(I)/... 

        NoSimulations; 

    EPE1=EPE1+ExpectedExposure1(I)*Deltat; %since our time steps are equal 

    EPE2=EPE2+ExpectedExposure2(I)*Deltat; 

    EPE3=EPE3+ExpectedExposure3(I)*Deltat; 

    EPE4=EPE4+ExpectedExposure4(I)*Deltat; 

    EPECounterparty=EPECounterparty+ExpectedExposureCounterparty(I)*Deltat; 

    PFE1(I)=FinalPFE1(I); 

    PFE2(I)=FinalPFE2(I); 

    PFE3(I)=FinalPFE3(I); 

    PFE4(I)=FinalPFE4(I); 

    PFECounterparty(I)=NettedPFE(I); 

end 

EffectiveEE1=ones(TS1Yr,1)*ExpectedExposure1(1); 

EffectiveEE2=ones(TS1Yr,1)*ExpectedExposure2(1); 

EffectiveEE3=ones(TS1Yr,1)*ExpectedExposure3(1); 

EffectiveEE4=ones(TS1Yr,1)*ExpectedExposure4(1); 

EffectiveEECounterparty=ones(TS1Yr,1)*ExpectedExposureCounterparty(1); 

  

EffectiveEPE1=Deltat*ExpectedExposure1(1); 

EffectiveEPE2=Deltat*ExpectedExposure2(1); 

EffectiveEPE3=Deltat*ExpectedExposure3(1); 

EffectiveEPE4=Deltat*ExpectedExposure4(1); 

EffectiveEPECounterparty=Deltat*ExpectedExposureCounterparty(1); 

for I=2:1:TS1Yr 

    EffectiveEE1(I)=max(EffectiveEE1(I-1),ExpectedExposure1(I)); 

    EffectiveEE2(I)=max(EffectiveEE2(I-1),ExpectedExposure2(I)); 

    EffectiveEE3(I)=max(EffectiveEE3(I-1),ExpectedExposure3(I)); 

    EffectiveEE4(I)=max(EffectiveEE4(I-1),ExpectedExposure4(I)); 

    EffectiveEECounterparty(I)=max(EffectiveEECounterparty(I-1),... 

        ExpectedExposureCounterparty(I)); 

  

    EffectiveEPE1=EffectiveEPE1+Deltat*EffectiveEE1(I); 

    EffectiveEPE2=EffectiveEPE2+Deltat*EffectiveEE2(I); 

    EffectiveEPE3=EffectiveEPE3+Deltat*EffectiveEE3(I); 

    EffectiveEPE4=EffectiveEPE4+Deltat*EffectiveEE4(I); 

    EffectiveEPECounterparty=EffectiveEPECounterparty+Deltat*... 

        EffectiveEECounterparty(I); 

end 

EAD1_IMM=EffectiveEPE1*1.4; 

EAD2_IMM=EffectiveEPE2*1.4; 

EAD3_IMM=EffectiveEPE3*1.4; 

EAD4_IMM=EffectiveEPE4*1.4; 

EADCounterparty_IMM=EffectiveEPECounterparty*1.4; 

  

  

  

x=0:Deltat:1; 

%This plots the Contract-Level PFEs of the 4 Derivatives 

%Contract1 

Line1=stairs(x,ExpectedExposure1,'DisplayName', 'Expected Exposure',... 

    'LineWidth',1.5,'Color','b'); 

grid on; 

hold; 

Line2=stairs(x,ones(TS1Yr,1)*EPE1,'DisplayName',... 

    'Expected Positive Exposure','LineWidth',2,'MarkerSize',5,... 

    'Marker','o','Color',[0 0.5 0]); 

Line3=stairs(x,EffectiveEE1,'DisplayName', 'Effective EE','LineWidth',... 

    3,'Color','b','LineStyle',':'); 

Line4=stairs(x,ones(TS1Yr,1)*EffectiveEPE1,'DisplayName',... 
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    'Effective EPE','LineWidth',2,'MarkerSize',5,'Marker','^','Color',... 

    [0.75 0 0.75]); 

Line5=stairs(x,ones(TS1Yr,1)*EAD1_CEM,'DisplayName', 'EAD under CEM',... 

    'LineWidth',2,'MarkerSize',5,'Marker','s','Color','r','LineStyle','-.'); 

Line6=stairs(x,ones(TS1Yr,1)*EAD1_IMM,'DisplayName', 'EAD under IMM',... 

    'LineWidth',2,'MarkerSize',5,'Marker','*','Color','r'); 

Line7=stairs(x,PFE1,'DisplayName', '95% PFE','LineWidth',2,'MarkerSize',... 

    5,'Marker','v','Color','k'); 

legend show; 

figure; 

  

%Contract2 

Line1=stairs(x,ExpectedExposure2,'DisplayName', 'Expected Exposure',... 

    'LineWidth',1.5,'Color','b'); 

grid on; 

hold; 

Line2=stairs(x,ones(TS1Yr,1)*EPE2,'DisplayName', ... 

    'Expected Positive Exposure','LineWidth',2,'MarkerSize',5,... 

    'Marker','o','Color',[0 0.5 0]); 

Line3=stairs(x,EffectiveEE2,'DisplayName', 'Effective EE','LineWidth',... 

    3,'Color','b','LineStyle',':'); 

Line4=stairs(x,ones(TS1Yr,1)*EffectiveEPE2,'DisplayName',... 

    'Effective EPE','LineWidth',2,'MarkerSize',5,'Marker','^','Color',... 

    [0.75 0 0.75]); 

Line5=stairs(x,ones(TS1Yr,1)*EAD2_CEM,'DisplayName', 'EAD under CEM',... 

    'LineWidth',2,'MarkerSize',5,'Marker','s','Color','r','LineStyle','-.'); 

Line6=stairs(x,ones(TS1Yr,1)*EAD2_IMM,'DisplayName', 'EAD under IMM',... 

    'LineWidth',2,'MarkerSize',5,'Marker','*','Color','r'); 

Line7=stairs(x,PFE2,'DisplayName', '95% PFE','LineWidth',2,'MarkerSize',... 

    5,'Marker','v','Color','k'); 

legend show; 

figure; 

  

%Contract3 

Line1=stairs(x,ExpectedExposure3,'DisplayName', 'Expected Exposure',... 

    'LineWidth',1.5,'Color','b'); 

grid on; 

hold; 

Line2=stairs(x,ones(TS1Yr,1)*EPE3,'DisplayName', ... 

    'Expected Positive Exposure','LineWidth',2,'MarkerSize',5,... 

    'Marker','o','Color',[0 0.5 0]); 

Line3=stairs(x,EffectiveEE3,'DisplayName', 'Effective EE','LineWidth',... 

    3,'Color','b','LineStyle',':'); 

Line4=stairs(x,ones(TS1Yr,1)*EffectiveEPE3,'DisplayName', ... 

    'Effective EPE','LineWidth',2,'MarkerSize',5,'Marker','^','Color',... 

    [0.75 0 0.75]); 

Line5=stairs(x,ones(TS1Yr,1)*EAD3_CEM,'DisplayName', 'EAD under CEM',... 

    'LineWidth',2,'MarkerSize',5,'Marker','s','Color','r','LineStyle','-.'); 

Line6=stairs(x,ones(TS1Yr,1)*EAD3_IMM,'DisplayName', 'EAD under IMM',... 

    'LineWidth',2,'MarkerSize',5,'Marker','*','Color','r'); 

Line7=stairs(x,PFE3,'DisplayName', '95% PFE','LineWidth',2,'MarkerSize',... 

    5,'Marker','v','Color','k'); 

legend show; 

figure; 

  

%Contract4 

Line1=stairs(x,ExpectedExposure4,'DisplayName', 'Expected Exposure',... 

    'LineWidth',1.5,'Color','b'); 

grid on; 

hold; 

Line2=stairs(x,ones(TS1Yr,1)*EPE4,'DisplayName', ... 

    'Expected Positive Exposure','LineWidth',2,'MarkerSize',5,'Marker',... 

    'o','Color',[0 0.5 0]); 
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Line3=stairs(x,EffectiveEE4,'DisplayName', 'Effective EE','LineWidth',3,... 

    'Color','b','LineStyle',':'); 

Line4=stairs(x,ones(TS1Yr,1)*EffectiveEPE4,'DisplayName',... 

    'Effective EPE','LineWidth',2,'MarkerSize',5,'Marker','^','Color',... 

    [0.75 0 0.75]); 

Line5=stairs(x,ones(TS1Yr,1)*EAD4_CEM,'DisplayName', 'EAD under CEM',... 

    'LineWidth',2,'MarkerSize',5,'Marker','s','Color','r','LineStyle','-.'); 

Line6=stairs(x,ones(TS1Yr,1)*EAD4_IMM,'DisplayName', 'EAD under IMM',... 

    'LineWidth',2,'MarkerSize',5,'Marker','*','Color','r'); 

Line7=stairs(x,PFE4,'DisplayName', '95% PFE','LineWidth',2,'MarkerSize',... 

    5,'Marker','v','Color','k'); 

legend show; 

figure; 

  

%Counterparty 

Line1=stairs(x,ExpectedExposureCounterparty,'DisplayName',... 

    'Expected Exposure','LineWidth',1.5,'Color','b'); 

grid on; 

hold; 

Line2=stairs(x,ones(TS1Yr,1)*EPECounterparty,'DisplayName', ... 

    'Expected Positive Exposure','LineWidth',2,'MarkerSize',5,'Marker',... 

    'o','Color',[0 0.5 0]); 

Line3=stairs(x,EffectiveEECounterparty,'DisplayName', 'Effective EE',... 

    'LineWidth',3,'Color','b','LineStyle',':'); 

Line4=stairs(x,ones(TS1Yr,1)*EffectiveEPECounterparty,'DisplayName',... 

    'Effective EPE','LineWidth',2,'MarkerSize',5,'Marker','^','Color',... 

    [0.75 0 0.75]); 

Line5=stairs(x,ones(TS1Yr,1)*EADCounterparty_CEM,'DisplayName',... 

    'EAD under CEM','LineWidth',2,'MarkerSize',5,'Marker','s','Color',... 

    'r','LineStyle','-.'); 

Line6=stairs(x,ones(TS1Yr,1)*EADCounterparty_IMM,'DisplayName',... 

    'EAD under IMM','LineWidth',2,'MarkerSize',5,'Marker','*','Color','r'); 

Line7=stairs(x,PFECounterparty,'DisplayName', '95% PFE','LineWidth',2,... 

    'MarkerSize',5,'Marker','v','Color','k'); 

legend show; 
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