
Implementing a Small talk to Java Translator

Submitted in fulfilment of the requirements for the degree Magister Scientiae

in the Faculty of Natural & Agricultural Science

University of Pretoria

Pretoria

June 2002

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.1. SMALLTALK 11
2.1.1. Objects and Associated Concepts 13
2.1.2. Lambda closures, Smalltalk blocks and deferred execution 19
2.1.3. Execution Flow Control 20
2.1.4. Generating output 22

2.2. JAVA 24
2.2.1. Objects and Associated Concepts 24
2.2.2. Inner Classes 29
2.2.3. Exceptions 32
2.2.4. Reflection 39

2.3. SUMMARy 39

3.1. METHOD SELECTORS 40
3.2. CLASSES AND THE CLASS HIERARCHY 43
3.3. DYNAMIC TYPES VERSUS STATIC TYPES 44

3.3.1. Type inference 45
3.3.2. Reflection-based runtime method binding 47
3.3.3. Superclass-based runtime method binding 51

3.4. SIMULATING SMALLTALK CLASSES 53
3.4.1. Static Java class methods 54
3.4.2. Dynamic Java class methods 57
3.4.3. Smalltalk class variables 64
3.4.4. Smalltalk class instance variables 71
3.4.5. Smalltalk global variables 77
3.4.6. Java main methods 78

3.5. TRANSLATING BLOCKCONTEXT OBJECTS 79
3.5.1. Simple block 81
3.5.2. Block with references to variables 83
3.5.3. Block with block arguments 86
3.5.4. Block contexts 88
3.5.5. Blocks with non-local retums 91

3.5.6. Nested blocks 98
3.5.7. Reference to self in block 103
3.5.8. Performance of blocks using exceptions 105

3.6. SUMMARy 106

4.1. THE SMALLTALK GRAMMAR 110
4.1.1. Method definition 110
4.1.2. Statements 111
4.1.3. Expressions 112
4.1.4. Blocks 112
4.1.5. Messages 113
4.1.6. Terminals 114
4.1.7. Reserved Identifiers 114

4.2. LEXICAL AND SYNTAX ANALySIS 115
4.3. RECURSIVE DESCENT PARSER 119

4.3.1. MethodNode 122
4.3.2. BlockNode 124
4.3.3. AssignmentNode 125
4.3.4. VariableNode 127
4.3.5. MessageNode 128
4.3.6. SelectorNode 129
4.3.7. CascadeNode 129

4.4. GENERATION OF JAVA CODE 131
4.4.1. MethodNode 132
4.4.2. Block Node 133
4.4.3. AssignmentNode 134
4.4.4. VariableNode 134
4.4.5. MessageNode 135
4.4.6. SelectorNode 136
4.4.7. CascadeNode 136

4.5. OTHER TARGET LANGUAGES 137

5.1. RELATED WORK 138
5.1.1. Bistro 138
5.1.2. Smalltalk/JVM 138
5.1.3. Talks2 139
5.1.4. SmalltalkIX 139

5.1.5. Comparison with STJ 140
5.2. FuwRE WORK 142

5.2.1. Smalltalk features 142
5.2.2. Translating the Translator 142

5.3. SUMMARy 143

A number of essential issues in translating Smalltalk to Java are addressed. The fIrst chapter gives
a brief overview of Smalltalk and Java with respect to the relevant language features that will be
translated. In the next section a convention is proposed for mapping Smalltalk method selectors to
Java method names. The dynamic nature of Smalltalk instance methods is compared with Java's
static type model as well as a solution to simulate the dynamic nature of Smalltalk in Java. A Java
class hierarchy that parallels the Smalltalk class hierarchy (including the metaclass objects) is
suggested. A further proposal is given for translating the dynamic attributes of Smalltalk class
methods to the same behaviour to Java. These proposals are used to support ways of mapping
both Smalltalk instance methods, as well as Smalltalk class methods to their Java counterparts.
Ways of translating Smalltalk class variables, Smalltalk class instance variables and Smalltalk
global variables are illustrated.

A method for translating Smalltalk blocks to Java inner classes is implemented using Java
exceptions to unwind the call stack. Various types of Smalltalk blocks are translated with
increasing complexity. The various types of blocks translated are simple blocks; blocks with
references to variables in the enclosing context; blocks with block arguments; blocks that need to
refer to their own context executed from other contexts; blocks with mUltiple exit points as well
as nested blocks. Some performance tests to illustrate the impact of using exceptions in Java are
also reported.

The next section introduces the Smalltalk grammar with the necessary productions used to
implement a parser. Lexical and syntax analysis are explained. A brief overview of a recursive
descent parser is given where an example of Smalltalk source code is parsed and all the relevant
parse nodes illustrated. The encoding in each parse node to Java source is shown.

The last section focuses on similar initiatives being pursued and compares the solutions in the
dissertation against them. This dissertation focuses on key areas of the Smalltalk to Java
translation process, but a few peculiar and unique Smalltalk features are not addressed. These are
discussed in the last section and some suggestions are made on how the translations can be
achieved.

Samevatting

Verskeie probleme in die vertaling van Smalltalk na Java word ge-adresseer. Die eerste hoofstuk
gee 'n kort oorsig oor Smalltalk en Java met klem op die relevante taal eienskappe wat van
toepassing is op die vertaling. In die volgende afdeling word 'n oplossing voorgestel om die
Smalltalk metode name te vertaal na Java metode name. Die dinamiese eienskappe van Smalltalk
se instansiemetodes word verge1ykmet Java se statiese tipe model so wel as 'n oplossing om die
dinamiese eienskappe van Smalltalk in Java te simuleer. 'n Java klas-hierargie wat die Smalltalk
klas-hierargie parallel (insluitend die metaklas-hierargie) word voorgestel. Nog 'n oplossing word
voorgestel om die dinamiese eienskappe van Smalltalk klasmetodes na Java te vertaal en te
verseker dat die vertaalde Java kode dieselfde gedrag openbaar as die Smalltalk kode. Hierdie
voorstelle word gebruik om Smalltalk instansiemetodes, so wel as Smalltalk klasmetodes te
vertaal na die gelyke Java kode. Verskillende maniere om Smalltalk klasveranderlikes,
klasinstansieveranderlikes and Smalltalk globale veranderlikes te vertaal word ook geillustreer.

'n Oplossing om Smalltalk blokke te vertaal na Java binne klasse is geimplementeer deur Java se
uitsonderingshanteringsmeganisme te gebruik. Verskeie tipes Smalltalk blokke word in trappe
van toenemende kompleksiteit vertaal. Die verskeie bloktipes wat vertaal is, behe1sdie volgende;
eenvoudige blokke: blokke met verwysings na veranderlikes in die omsluitende konteks; blokke
met blok argumente; blokke wat na hul eie konteks verwys en in ander kontekste uitgevoer word;
blokke met verskeie uitkeerpunte sowel as geneste blokke. Spoedtoetse illustreer die impak wat
die Java uitsonderingshanteringsmeganisme het op die vertaalde Java kode.

Die volgende afdeling stel die Smalltalk grammatika voor met die nodige produksies wat 'n
herkenner implementeer. Leksikale- en sintaksanalise word verduidelik. 'n Kort oorsig van 'n
rekursiewe herkenner word gegee waar 'n voorbeeld van Smalltalk kode herken word en al die
relevante herkenningsnodes beskryf word. Die enkodering van e1ke herkenningsnode na Java
kode word verduidelik.

Die laaste afdeling fokus op soortgelyke inisiatiewe wat besig is om dieselfde oplossings na te
speur en vergelyk die oplossings in die verhandeling teen die huidige inisiatiewe. Die
verhandeling fokus op sleute1areas van die Smalltalk na Java vertaalproses, maar 'n paar unieke
Smalltalk eienskappe word me geadresseer me. Hierdie eienskappe word in die laaste afdeling
bespreek en 'n paar voorstelle word gemaak oor hoe hierdie eienskappe vertaal kan word.

Acknowledgements

I would like to thank my supervisor, Prof Derrick Kourie for all the necessary encouragement that
made this work possible. It was his continuing support and enthusiasm that kept driving me
towards completion. Without his drive, energy and immaculate talent for continuously picking up
mistakes in the dissertation and pointing me in the right direction, this work would not have
achieved the quality it has today.

Thanks are due to my wife, Natasha and my parents, Roelof and Loraine, who always believed in
me, in what I wanted to achieve and kept on supporting me through this period.

I would also like to thank other parties at the University of Pretoria who at some stage interacted
with me in my academic endeavors and played a major part in my education: Prof Roelf van den
Reever with his sundowner topics and rich discussions, Prof Judith Bishop who lectured me on
various topics throughout my undergraduate and postgraduate studies, Prof Jan Roos who showed
me the interesting side of network architectures, Justine van den Bergh and Petra Ie Roux who
had to put up with me in my years of undergraduate study and lastly but not least, Carel Bekker
who mentored me through my undergraduate studies and introduced me to Smalltalk on a sunny
Friday afternoon in April 1994.

Because of the availability of standardised Java Virtual Machines (JVM's) across a variety of
platforms, languages other than Java are becoming as portable as Java itself. All that is required is
a mechanism for translating source code written in the particular language into Java byte code
(JBC). The resulting JBC can then be interpreted on any platform running a JVM. (See Lindholm
and Yellin (1996), and Meyer and Downing (1997) for a comprehensive specification of the
JVM.) Terekhov and Verhoef (2000) argues in general that the complexities of source-to-source
translations of programs are underestimated.

Translators to JBC as well as interpreters already exist for many source languages, including Ada
(AppletMagic), COBOL (Synkronix), C++ (Tilevich), Forth (Misty Beach Software), Python
(JPython), Scheme (Bothner) and SmallJava (Fussel). For a more current and comprehensive list
of languages translating to JBC / Java refer to Tolksdorf (2002). Other translation to JBC / Java
studies include Bothner et al. (1996), Odersky and Wadler (1997) and Hardwick and Sipelstein
(1996).

However, because of Smalltalk's unique characteristics, several challenging issues come to the
fore when implementing a Smalltalk to JBC translator. The work of Chambers (1992) and
Piumarta (1992) might offer some clues as to how certain problems might be resolved. More
recent work is that of Boyd (2000) in which a few changes have been made to the Smalltalk
grammar, the resulting language being renamed to Bistro. Bistro is thus a derivative of Smalltalk
with support for types and there is a release of a translator that translates Bistro into Java source
code. Another promising example of a Smalltalk to Java translator environment (named
SmalltalklJVM) has recently been released by Mission Software (2000). SPiCE by Yasumatsu
and Koi (1995) is a solution for translating Smalltalk to C source. Waddington describes how the
Java backend for GCC1 is implemented. Section 5.1 addresses and compares various solutions for
translating Smalltalk to other languages. The present dissertation supplements translation studies
to date by proposing solutions to key issues that have either not yet been resolved, or that have
been resolved differently by other authors.

Smalltalk is a dynamically typed programming language. Alan Kay, the chief architect of
Smalltalk, summarises five basic characteristics of Smalltalk as follows (cited in Bergin and
Gibson (1987»:

1. Everything is regarded as an object.

1 GNU C Compiler - An open source C compiler for UNIX based operating systems

2. A program specifies a sequence of messages to be sent and received by a collection of
objects, each object carrying out whatever action is implied by a message it receives.

3. Each object has its own memory that may be made up of other objects.

4. Every object has a type.

5. All objects of a particular type can receive the same messages.

Full details on Smalltalk may be found in Goldberg (1981), Goldberg and Robinson (1983),
Goldberg and Robinson (1989), Lalonde and Pugh (1990) and Pinson and Wiener (1988).

In contrast, Java is a relatively new, strongly typed language from Sun Microsystems, Inc. Java
has been recognised as one of the most popular languages chosen by software engineers due, inter
alia, to its simplicity in comparison to C/C++. The fact that Java is associated with the Internet
through the inclusion of Java virtual machines in Web browsers has helped as well. Another area
in which Java is gaining strong support is on the server side.

There are a number of similarities between the Smalltalk and Java environments, of which the
following are perhaps the most pertinent.

1. Object-oriented: Smalltalk and Java are both object-oriented, dynamic languages.

2. Interpreted: Code produced in each of the environments is interpreted by a virtual machine.
The standardised virtual machine used in Java is called the JVM and has already been
mentioned above. There are also compilers in both environments that compile to native
machine code for a specific platform.

3. Garbage collection: Objects that need no longer be retained in memory do not need to be
specifically removed by the programmer in order to free up memory. The environment
automatically takes care of such memory management.

4. Comprehensive class library: Both Smalltalk and Java are released with an extensive set of
classes available for reuse.

5. Object references: In general, objects are passed by reference (not by value) when a method
is invoked. Java has an exception in that when an object is one of a few primitive types (e.g.
integer, double and float) then the object is passed by value.

Proposals put forward below were implemented in a Smalltalk to Java translator, which is in turn
implemented in Smalltalk. Broad design issues are discussed as well as the details of the
implementation. The general style of presentation is:

1. to state a particular Smalltalk to JBC translation problem in generic terms;

2. to provide examples of Small talk code that illustrate the problem;
3. to suggest general Smalltalk to Java translation rules that resolve the problem;

4. to give Java code that illustrates the results of applying these rules; and finally

Clearly, all derived Java code has its JBC equivalent. However, it is conceivable that a subset of
Smalltalk code cannot be reasonably mapped onto Java code per se, but has to be mapped directly
onto JBc. The present study excludes consideration of Smalltalk code that may be constrained in
this way.

This dissertation focuses on the following translation issues in turn. In Chapter 2 the Smalltalk
and Java languages are introduced with examples illustrating the differences between the two
languages. Chapter 3 introduces the following: a convention for mapping Smalltalk method
selector names to Java method names; simulating Smalltalk objects in the Java typed
environment; the translation of Smalltalk instance methods to Java instance methods; the
translation of Smalltalk class methods to Java static methods and most importantly; the mapping
of Smalltalk block closures to Java inner classes and Java exceptions. In Chapter 4 the Smalltalk
grammar is explained with an explanation of a recursive descent parser. The chapter also
describes how the Smalltalk front-end parser was modified and how a new back-end (translator)
for the parser generating Java code was implemented.

It is assumed that the reader of this document has a good understanding of object-orientation and
a background in an object-oriented language. The differences and nuances of Smalltalk and Java
will be explained, but any further clarification should be sought in the references.

A simple introduction to object-oriented software is given here. For a more comprehensive
explanation refer to Meyer (1997).

An object consists of a set of attribute values and a set of operations that can be performed on the
object. The state of the object is maintained by the attributes values stored in some private
memory associated with the object. Depending on the nature of the object it will have different
operations. For example, numeric objects will allow computational operations while data objects
will allow operations for modifying and displaying information. The power of object-oriented
computing lies in modeling the problem domain closely to the way it is defined in the real world
without an additional mapping layer.

In the following two subsections, a brief overview is given of the two object oriented languages
dealt with in this dissertation: Smalltalk and Java. The discussion focuses on the language
features most relevant to the dissertation.

Smalltalk originated at Xerox PARC in the early 1970's. The roots of Smalltalk can be traced
back to applications like Sketchpad in 1962. Sketchpad implemented the concepts of clones and
instances. In 1965 Simula was designed and built at the Norwegian Computing Center in Oslo by
Ole-Johan Dahl and Kristen Nygaad. Simula was originally designed and implemented as a
language for discrete event simulation, but was later expanded and re-implemented as a full-scale
general purpose programming language. Although SIMULA never became widely used, the
language has been highly influential on modern programming methodology. Among other things
SIMULA introduced important object-oriented programming concepts like classes and objects,
inheritance, and dynamic binding.

Smalltalk is based on principles of the Simula language. In 1972, Alan Kay (who had designed
and built the first OOP-based personal computer called FLEX in 1967-68) and others at Xerox
Palo Alto Research Center (PARC) created Smalltalk 72. This was later followed by Smalltalk
76, a completely object-oriented programming language. In 1980, Smalltalk 80, a uniformly
object-oriented programming environment became available as the first commercial release of the
Small talk language

Alan Kay had a vision for a simple, easy to understand language with the power of an object-
oriented system. Kay's vision included making computers easier to use and in subsequent years
he spent some time teaching Smalltalk to children and studied their problem solving skills being

applied to a visual development environment. The Apple Computer Vivarium Project was another
project initiated by Ann Marion and Alan Kay and investigated the phenomena of learning. The
system was called Playground. For an in depth discussion see Beck (1999:25-49).

The research carried out by Xerox (PARe) culminated in a seminal publication in the August
1981 issue of Byte magazine (Goldberg, 1981). The published articles described a Windows,
Icon, Menu, Pointer (WIMP) based system, also known as a Graphical User Interface (GUl)
where Smalltalk was introduced to the mainstream. Subsequent to the release of Smalltalk, Apple
released a personal computer in 1983 called LISA. This model was modeled after prototypes at
Xerox's PARC and featured a GUl and a mouse.

A group of employees at Xerox PARC persisted in developing a commercial implementation of
Smalltalk in 1988 and so ParcPlace systems was formed. At the same time another company,
Digitalk, created their own flavour of Smalltalk called SmalltalkIV and until the mid 1990's these
two companies were the main providers of Smalltalk. ruM entered the Smalltalk market in 1994
with their VisualAge Smalltalk product aimed at corporate users.

Another interesting product called GemStone/S and based on Smalltalk is developed by
GemStone Systems (formerly known as Servio Corporation). GemStone provides its own version
of Smalltalk and implements a transparent object database.

Today Smalltalk is still in use, mostly at financial companies such as JP Morgan, Rand Merchant
Bank, Equinox2 and Numera Securities. These companies have a considerable investment in
Smalltalk and more specifically, in GemStone. Smalltalk is regarded as one of the most efficient
development environments for complex applications by those who use it.

Smalltalk never achieved the popularity of C/C++. Because of its characteristic of being an
interpreted language, some people shied away from Smalltalk, making it not as popular as C++
andlor Java. The other hurdle could be that its different syntax makes people familiar with the
ClPascal syntax uncomfortable. The last aspect that probably prevented the wide adoption of
Smalltalk is its unfamiliar, albeit powerful, working environment in which the focus is on
defining messages that are sent to objects instead of an environment in which the focus is on
compiling and executing source files.

2 See http://www.equinox.co.za for an example of online financial transactions that are handled
by GemStone Smalltalk

http://www.equinox.co.za

An open source implementation of Smalltalk called Squeak Smalltalk is available for all
platforms at http://www.squeak.org.This is a close copy of the original Smalltalk-80 released in
1980 with plenty of modem class libraries. It provides a useful learning environment for those
interested using Smalltalk. In the dissertation Squeak Small talk was used as the development
environment while implementing the translator and the internal Squeak Small talk parser was
modified and extended with an extra back-end producing translated Java code.

In Smalltalk almost everything that can be manipulated is represented as an object: the integers
used to do numeric calculations; the strings used to display the result of the calculations; even the
paragraphs and fonts used to store this document are represented as objects. In the following
section, 2.1.1, the main concepts associated with Smalltalk objects are explained. The next
section, 2.1.2, focuses on Smalltalk blocks, while section 2.1.3 deals with Smalltalk control
structures. For a concise introduction to the Smalltalk grammar and syntax refer to section 4.1.

In Smalltalk, objects are "first class citizens". Objects may be classes, instances, abstract classes,
meta-classes or even meta-objects. They are related to one another in an inheritance hierarchy and
communicate with one another via messages. The subsections below elaborate on these themes.

Each object belongs to a class - a certain type. This class describes the structure of all of its
objects as well as their functionality. We refer to an object of a particular class as an instance of
that class.

It is common practice to describe a class in terms of data and behaviour. In Smalltalk every object
is an instance of a class. The data structure and behaviour (methods) defined on a class will be
automatically assumed by the instances of the class.

The example below shows part of the definition of a class called Rectangle. It has four instance
variables and two class variables. The instance variables characterize each instance of the class.
Instance variables are encapsulated within their respective instance - i.e. they can only be
manipulated from methods within the instance. An instance of this class would typically be used
to represent some real-world rectangle, and its instance variables would define the properties (or
attributes) and boundaries (dimensions) of the real-world rectangle.

http://www.squeak.org.This

Object subclass: #Rectangle
instanceVariableNames: 'leftx rightx bottomy topy'
classVariableNames: 'MaxWidth MaxHeight'

The class definition in Figure 1 specifies that a class named Rectangle is subclassed from a
class named Object. The next line lists all the instance variables and the last line lists all the
class variables.3

II rectangle I
rectangle := Rectangle new.

This declares a temporary variable rectangle. The next line specifies that a method new, is sent
to the Rectangle class and the result is assigned to the rectangle variable. The next section
elaborates on this idea of sending messages to objects.

An instance method is a piece of code belonging to a class that all its instances can execute. In
this sense, the set of instance methods on a class defines the behaviour of the class instances. A
class may also specify class methods. These methods defme the behaviour of the class, as
opposed to the behaviour of a class instance. A typical class method causes the class to create an
instance of it.

In general, computation in Small talk is achieved by asking an object to perform a method by
sending a corresponding message to the object. A simple message might be to ask a rectangle for
its width. The object (the rectangle) that receives the message is known as the receiver. The
message being sent, "width", is known as the selector.

3 Keeping to the fundamental principles of Smalltalk where everything is an object and all
operations are performed by messages sent to an object; the class Object is an object that
understands the message subclass: instanceVariableNames: classVariableNames :.
The arguments of the message are thus #Rectangle, 'leftx rightx bottomy topy' and
'MaxWidth MaxHeight'.

Continuing with the Rectangle example above, two instance methods of the Rectangle class
are illustrated: width and ini tialiseLeft: right: top: bottom:. The width method
computes and returns the width of a Rectangle instance, while
initialiseLeft: right: top: bottom: provides a rectangle instance with initial values.

In Figure 3 below the syntax for defining instance methods is introduced. The name of the class,
being Rectangle, is specified first. It is followed by the "»"separator. The "»"separator is
followed by the name of the method. In Figure 3 the instance method named width is defined on
the class named Rectangle as can be seen on the first line. If a class method needs to be
defmed, Rectangle is substituted with Rectangle class as illustrated in Figure 6 where a
class method initialise is defined.

The second line in Figure 3 declares a temporary variable width used for temporary
computations. One or more temporary variables can be defmed inside the" I "separators. In the
third line in Figure 3 the message abs is sent to the Integer object resulting from "rightx -
leftx". The resulting absolute value is assigned to the instance variable called width. In the
next statement, the value of width is returned to the sender of the message "width" to the
rectangle instance.

Rectangle»width
I width I
width := (rightx - leftx) abs.
"width

A useful instance method to define on Rectangle is a method that accepts all the initial values for
a rectangle instance, which in turns initialises all the instance variables. Figure 4 below shows the
implementation of initialiseLeft: right :bottom: top:.

Rectangle»initialiseLeft: left right: right bottom: bottom top: top
leftx := left.
rightx := right.
bottomy := bottom.
topy := top.

The following few lines in Figure 5 instantiates a Rectangle object. A new rectangle called
rectangle is created by sending the message new to the class Rectangle, thereby invoking a
class method (possibly inherited from a super class - see section 2.1.1.3) called new. The new
rectangle instance, rectangle I is then initialised and asked for its width.

I rectangle I
rectangle := Rectangle new.
rectangle initialiseLeft: 10 right: 100 bottom: 10 top: 100.
rectangle width.

The convention in Smalltalk is to implement a class method or methods for instantiating objects
and for initializing class variables. The following example defines a class method called
newLeft:right:bottom:top: which creates a new instance of Rectangle. This allows
validation to be performed on maximum rectangle sizes. An addition to this example is the use of
class variables. Class variables are visible in both class and instance methods and serve to hold on
to data that are available to all instances of a class. The first class method is named ini tialise
and is called only once in the system to initialise the MaxWidth and MaxHeight variables. From
then on all class and instance methods can access MaxWidth and MaxHeight. Note that the
initialise class method has the same name as the instance method previously defined without
conflicts.

Rectangle class»initialise
MaxWidth := 200.
MaxHeight := 100.

The class method in Figure 7 creates an instance and then sends it the
initialiseLeft:right:bottom:top: instance method. After the instance is initialised the
instance is then returned to the sender of the message.

Rectangle class»newLeft: left right: right bottom: bottom top: top
I instance I
instance := self new.
instance

initialiseLeft: left
right: ((right - left) > MaxWidth

ifTrue: [left + MaxWidth]
ifFalse: [right])

bottom: bottom
top: ((top - bottom) > MaxHeight

ifTrue: [bottom + MaxHeight]
ifFalse: [top]).

An instance of the Rectangle class can now be created with one message to the class as can be
seen in Figure 8.

I Rectangle newLeft: 10 right: 100 bottom: 10 top: 100.

Figure 8. Creating an instance of Rectangle

Classes are arranged in a tree called the class hierarchy. This class hierarchy provides both a
structural hierarchy and a functional hierarchy. A class inherits all variables (structure) and all
methods (behaviour), from its superclass. This is in contrast with many later object orientation
languages where inheritance is controlled by a variety of modifiers such as "private", "protected",
etc. In Smalltalk the root class of all classes is Obj ect. All classes are ultimately derived from
Object. All classes that immediately inherit from Object are known as subclasses of Obj ect. The
complete structure of the Smalltalk class hierarchy is rather complicated and will be discussed in
further detail in section 3.4

Structural inheritance means that a subclass of the Rectangle class discussed above, say
RoundedRectangle, will inherit all the instance variables of Rectangle. Behavioural inheritance
means that all the messages understood by Rectangle will also be understood by
RoundedRectangle. The result is that RoundedRectangle will be able to be initialised with
default values and return a width. A developer of a subclass may choose to redefine any inherited
methods if so desired.

Encapsulation is an important attribute of object-orientation and enforces a discipline where
instances may only be modified via methods on the instance. The methods to be used are known
as the object's interface.

It is common practice to define some classes in an object-oriented system to be abstract. These
classes serve the purpose of abstracting behaviour and locating it in a common class. This
abstract class is made the superclass of all the subclasses that are required to exhibit the same
behaviour. The useful feature is that an abstract class prevents the duplication of common code. A
good example is the class Magni tude and its subclasses Number and Date. (Note: These and
many other classes are provided by the Smalltalk system.) Magnitude is an abstract class and
implements the max method. This instance method is invoked with one parameter. If the instance
represents some value greater than the parameter, then the instance is returned, else the parameter
is returned.

Magnitude»max: aMagnitude
"Answer the receiver or the argument, whichever has the greater
magni tude. "

self> aMagnitude
if True: [Aself]
if False: [AaMagnitude]

There is no need for the subclasses of Magni tude, Number and Date, to implement the max
method as well since they inherit it from Magnitude. Date, Number or anything else that
inherits from Magnitude need only implement the greater than (» method. Date and Number
instances will then automatically respond to the max: message.

The greater than (» method for Date below complements the implementation of max: on
Magni tude subclasses.

Date» > aDate
"Answer whether aDate precedes the date of the receiver."

year = aDate year
if True: [Aday > aDate day]
if False: [Ayear > aDate year]

Abstract classes do not have instances. It is meaningless to create an instance of Magni tude or
for that matter, even of Object. Object is thus another abstract class in the system and will stay
an abstract class in the translated system.

Classes themselves are objects and are instances of the class Metaclass. A metaclass describes
the class and the messages to which the class can respond. The messages invoke the methods that
are known as class methods. To the compiler there is no difference between compiling instance
and class methods. Instance methods are compiled in the context of the class and class methods
are compiled in the context of the metaclass. This feature will be used in the same way when
designing the translator and the generation of Java code.

Blocks are Smalltalk's version of closures. They are similar to Lisp's anonymous lambda
functions (Abelson, Sussman and Sussman, 1996:62-63). They are ftrst class objects representing
a piece of unevaluated code. These blocks can be executed at any time when needed.

Blocks can appear in any place where an expression is allowed. They can be assigned to
variables, passed around and evaluated. They are instances of the class BlockContext. The
syntax for deftning a block looks like this:

I [1 + 2]

I
x[lx~=ll.
, := x + 1]

To evaluate the block it is sent the message value. Once the block has been evaluated the
returned result is the result of the last statement executed in a block. A block can also accept
arguments:

I [: arg I x := x + arg]

Figure 13. Creating a block accepting one argument (arg)

When evaluating the block above, the result will be the value of the last statement executed, in
this case, x, after assigning "x + arg" to x. This block will add 7 to the variable x when sent the
message, value: 7.

In the section on translating Smalltalk blocks to Java, a number of additional features of a block
will be explained. A good deal of effort has been spent in simulating this powerful feature of
Smalltalk in the translated Java code.

Small talk provides two types of flow control: conditional execution and looping. Conditional
executions is provided by complementary definitions in the boolean classes. Looping is achieved
by a combination of conditional execution and recursion.

Every object in Smalltalk is represented as an object of which true and false are prime
examples. The following class hierarchy in Figure 14 shows True and False classes inheriting
from Boolean. Boolean is an abstract class implemented with the common behaviour of
True and False.

The true and false objects are each implemented as instances of True and False. There is
only one instance ofthe True class, that being the true object. The same applies for the false
object. This interesting artifact satisfies Smalltalk's principle of everything being an object and
helps in implementing True and False.

I x = 0 if True: ["'Funds depleted']

Figure 15. Conditional execution based on the value of x

The example above shows how the variable x is compared to o. The result of the = message
returns a boolean instance of the type True or False. This boolean instance is then sent the
message i fTrue: and depending on the type of the instance a different implementation of
i fTrue: is selected to execute. For example in class True we have

I True»ifTrue: aBlock
"aBlock value

so that the value of ['" Funds depleted'] is returned if x
class False we have the complementary definition

I False»ifTrue: aBlock
"nil

Ibo ~Lt ~ :::tX

\-0 \ ~U ?"Z...Z-~t-

Looping is provided by conditional recursion in messages understood by blocks. A simple loop
that executes five times can be written as

I x I
x := O.
[x < 5] whileTrue: [Transcript4 cri show: x printString. x .- x + 1]

The message whileTrue: is sent to a BlockContext instance ([x < 5]). The whileTrue:
method is implemented recursively in BlockContext as

BlockContext»whileTrue: aBlock
"self value

if True: [self whileTrue: aBlock].

Thus, the value of the block [x < 5] is evaluated, serving as the conditional of the i fTrue :
method. If the result evaluates to true, then the value of the parameter block, [Transcript cr i

show: x printString. x := X + 1] is evaluated, and the whileTrue: statement is
executed recursively using the new value of x.

When a Smalltalk program is required to output results to the standard output the following few
lines of code are used:

I Transcript cri show: 'Hello World'

The Transcript variable is a reference to an instance of a TextCollector whose contents
will be written to the graphical interface in a window.

The fIrst message that it is sent is cr. This tells it to start on a new line. The next message is
show: which expects an object of type String. If numbers are to be written out then a simple
printString message to the number object will return a String representation of it, ready for
output. The next example prints a 3.

I Transcript cr; show: 3 printString

In the implementation it was decided to implement a subclass of TextCollector that
transparently sent all requests to a fIle as well. This was useful in the testing framework where the
output of all the Smalltalk classes was compared against that of the generated Java code to ensure
the translator worked consistently. This new instance of TextCollector was named
STJTranscript.

Java, whose original name was Oak, was developed as a part of the Green project at Sun. Patrick
Naughton, Mike Sheridan and James Gosling started it in December 1990. They were frustrated
by the complexity and limitations of the C and C++ programming languages. At first the team
thought to create an object-oriented development environment based on C++. In April 1991 the
team decided on embedded systems software for smart consumer devices. James Gosling wrote
the compiler called "Oak" and worked with the team to develop a runtime interpreter for what is
known today as the Java language.

The first target for the Green project was to penetrate the smart consumer electronics market with
an embedded operating system focusing on interactive television in particular. After failing to win
a bid with Time Warner, the Green project was put on hold. At the same time the World Wide
Web was starting to become popular and the Green team realised that the World Wide Web could
be used as a delivery platform for applications based on their operating system. This meant that
applications could be downloaded from a web server and executed in a web client.

Naughton implemented the first version of a Java based World Wide Web browser, named
HotJava. It was wholly developed in Java and could execute Java applets. The HotJava browser
was a showcase of the abilities of the Java language. It proved that Java could provide a secure,
cross-platform execution environment for code to be downloaded and executed on the client.
(SunWorld (1995)).

Java is similar to ClC++ in syntax. This section will explain only the features of Java necessary
for the translation process by using the same examples as in section 2.1. An important aspect of
Java is that it supports primitive types and object types. The primitive types are int, long,
double, float, boolean, byte, short and char. In Smalltalk these types would be
implemented as first class objects in the runtime environment.

Java differs from Smalltalk in that not every type is treated as a first class object. Java has a few
primitive types, i.e. int, long and char. It is also not possible to send a message to a class object as
in Small talk and expect the same behaviour as in Smalltalk. The normal response is to think that
Java static methods will behave the same way as Smalltalk class methods, but they do not and
section 3.4 discusses the issues with using static Java methods and why they do not behave in the
same way as dynamic Smalltalk class methods. With the Java Reflection API introduced in Java

1.1 it became possible to load classes and create instances of a specific class via the Reflection
API. An example of using the Reflection API is provided in section 2.2.4.

For comparitive reasons the same examples will be used as in section 2.1. The class definition for
Rectangle in Java is as follows

public class Rectangle {
int leftx, rightx, bottomy, tOPYi
static int MaxWidth, MaxHeighti

In contrast to Smalltalk where variables are dynamically bound, when declaring variables in Java
it is required to specify the type5 of the variable as well. To instantiate6 an instance of Rectangle
the following code is used

5 In Smalltalk classes playa similar role to types in Java. No distinction is made between types
and classes in the translation process.

6 It is not necessary to have a constructor for a Java class. If there is no constructor a default
constructor is used that does nothing except for calling a superclass constructor.

Java has the concept of packages where any class belongs to a certain package. To specify that
Rectangle should be part of the graphics package the fIrst line (before any class definitions)
will have the package statement. Figure 24 shows the use of the package statement.

public class Rectangle {
int leftx, rightx, bottomy, tOPYi
static int MaxWidth, MaxHeighti

To access the Rectangle class in another area of the Java program the import statement must
be used as illustrated below in Figure 25 and Figure 26.

I import graphics. Rectangle i

I import graphics. * i

The class that is importing the graphics package can simply refer to Rectangle as if it was
defined locally. If there is already another Rectangle definition in the local package then the
reference to the Rectangle class must be fully qualified by the package name as shown below.

When the package statement is omitted from a class definition the class belongs to the default
package.

To define a method in Java the definition of the method is included in the class definition as
follows:

public class Rectangle extends Object {
int leftx, rightx, bottomy, topy;
static final int MaxWidth = 200;
static final int MaxHeight = 100;

public int width()
{

return abs(rightx - leftx);

public initialise()
{

leftx = 10.
rightx = 100.
bottomy = 10.
topy = 100.
}

Instance and class variables are defined in the class definition. The static modifier in the
variable declaration indicates that the variable will be available to the class and instance methods.
Any variable declared final (as in Figure 28 - MaxWidth and MaxHeight) in Java is a
constant. A final (constant) variable may never be changed.

The following few lines declare a Rectangle reference, creates an instance, initialises it and
asks it for its width.

Rectangle rectangle;
rectangle = new Rectangle();
rectangle.initialise();
rectangle.width() ;

In the translation process discussed in Chapter 3 all generated Java classes need to be accessible
and the translator will generate the public class modifier by default. The other modifiers,
private, protected and final will not be used in the context ofthe translated Java classes.
More information about these modifiers can be found in Flanagan (1997: 19-21).

The same principle of abstract classes in Smalltalk is found in Java. It is possible to define an
abstract class in Java by using the abstract keyword as a modifier in the class declaration. Simply
declare a class in the normal way and take care not to define any abstract methods with a method
body. The abstract class declaration below has one abstract method and one normal method.

public abstract GraphicsObject extends Object {
public abstract int cornputeArea();
public boolean isViewable() {return true;};
}

To use the class above will mean inheriting from it and overriding the abstract method, which can
be done by a Rectangle class.

public class Rectangle extends GraphicsObject {
public int cornputeArea() {return (rightx-leftx) * (topy-bottorny);};
}

The effect of using abstract classes is that all subclasses of an abstract class, in this instance
GraphicsObject, are required to implement the abstract method, in this case cornputeArea ().

It is not possible to treat a class in Java as a first class object. In other words, it is not possible to
locate the class object at runtime and send messages to it in the same dynamic way as can be done
in Smalltalk. In Java it is only possible to refer to the class at compile time and to invoke a static
method on it. The reason for this is that in Java the reference to the class instance7 is bound at
compile time and will not be resolved dynamically at runtime as in Smalltalk. For a more
complete discussion and examples of this problem and the challenges it poses in the translation
process see section 3.4.

Java does not have the powerful feature of Smalltalk known as blocks, but it does have inner
classes that could be used to simulate Smalltalk blocks. Inner classes alone do not provide all the
features that are required to translate Smalltalk blocks. As will be seen below, Java exceptions
will be used in conjunction with inner classes.

Inner classes were added to the Java language specification as of version 1.1. With this addition
to the language, an inner class can be defined as a member of another class, just as fields and
methods can be defined as members of a class. It is possible to define a class within a block of
Java code in the same way that local variables are defined in a block of code. Figure 33 will
illustrate this with an example of an inner class. The four different types of inner classes are:

• Nested top-level classes
• Member classes
• Local classes

• Anonymous classes

For a complete explanation of the differences between all the different types of inner classes see
Flanagan (1997:102-103). For the purpose of the translation the focus will be on local classes and
anonymous classes.

7 As will be explained in 3.4.2 each class in the virtual machine of either Smalltalk or Java can be
modelled as an instance of another class - Metaclass.

A local class is an inner class defined in a block of Java code. The local class is only visible
within the scope of the block of Java code. Because the local class is defined in a block of code it
is similar to a local variable. The local class definition can thus be assigned to any other variable,
as long as the types are compatible.

A local class has the following features:

• It is only visible and usable in the block of code in which it is defined - similarly to local
variables.

• It can use any final variables or method parameters that are visible from the scope in which
it is defined, be it a local, instance or global variable. It is not allowed to refer to any
variable that is not declared final. The final variable can be referred to in assignment
statements, but not assigned any other values.

In the following example a local class, LocalClass, is defined in the method,
createLocalClass,ofRectangle.

public class Rectangle extends Object {
int leftx, rightx, bottomy, topy;
public int width () {...} -defined as before
public initialize () {...} -defined as before
public createLocalClass() {

class LocalClass {
public localClassMethod() {

return ("LocalClass method");

}

LocalClass aClassObject
return aClassObject;

After creating an instance of Rectangle called rectangle and sending it the message
createLocalClass a local class is defined and an instance of it is returned. Invoking
localClassMethod on the returned instance will of course return the string "LocalClass
method". The code below illustrates the example.

Java has the concept of final variables. A final variable is very similar to a constant in other
programming languages. When a variable is declared as final in Java its value cannot be
changed. The use of final variables was necessary in translating Smalltalk blocks to Java inner
classes.

There is one important aspect of local classes that involves accessing variables defined in the
enclosing scope. The local class can only read the contents of the defined variables in the outer
scope. It is not allowed to assign new values to it in the local class.8 This restriction forces the use
of an extra level of indirection as can be seen in section 3.5.2 on translating Smalltalk
BlockContexts, by declaring an array variable as final and changing the contents of the array
and not the array itself thus satisfying the constraint of final variables.

An anonymous class is essentially a local class without a name. Thus the variable restrictions
discussed in section 2.2.2.1.1 apply as well. Instead of declaring a local class with one statement
and then instantiating an instance of it to use in another statement, an anonymous class combines
the two steps. Because it is not named it does have a side effect - it is instantiated and assigned
once only.

The following code shows how the previous local class example can be rewritten to use an
anonymous class.

8 This makes the Java compiler's task easier by not allowing local classes to change the values of
variables outside the declaration of a local class. The local class can only refer to final variables.

public class Rectangle {
[previous code here ...]

public createLocalClass() {
~Iass aClassOb:rE:;ct-';;;'~>-n--ew--L--o-c'a--1C-lass(){

public localClassMethod() {
return ("LocalClass method");
}

Once again, the code in Figure 35 will return the string "LocalClass method". Anonymous
classes will be used extensively when translating Smalltalk blocks in section 3.5 where the
translator is explained.

Java has exceptions built into the language that makes for powerful, robust code. Exceptions are
used to signal that some sort of exceptional condition has occurred. For a more in-depth overview
of exception handling in object oriented systems see Miller and Tripathi (1997:85-103). In Java
the throw keyword is used to signal such an exception. To handle such an exception the catch
keyword is used.

Exceptions propagate up through the lexical block structure of a Java method. If it is not handled
then it will propagate up through the stack of method calls. An exception that is not handled by
the block of code that throws the exception is propagated to the enclosing block of code. If the
exception is not caught in the enclosing block of code it continues to propagate upwards. If it is
not caught anywhere in the method then it is propagated to the invoking method, where it is again
propagated through the block structure. If an exception is never caught it propagates all the way
to the main () method of the running program. Depending on the Java virtual machine it may
then cause the printing of an error message and a stack trace before causing the program to
terminate.

The advantage of using exceptions is that it makes error handling more logical by grouping all the
exception handling code in one place. Instead of testing the return value on every method
invocation and handling it after every line, the code can be written more cleanly as shown in
Figure 37. Compare traditional error handling given in doSomethingl in Figure 36 below with
the exception based error handling equivalent in doSomething2 in Figure 37.

public int doSomethingl() {
file tempFile = new File("tempFilename");
if (tempFile == null) {return -l;}
result = tempFile.write("Test");
if (result == null) {return -l};
}

public int doSomething2() {
try

{

File tempFile = new File("tempFilename");
result = tempFile.write("Test");
}

catch (FileNotFoundException el) {return -l;}
catch (FileAccessException e2) {return -l;}
}

In the case of doSomething2 the error handling is not very complicated. It simply returns an
error. For an interesting discussion of Java exceptions and their role in helping to free up
resources acquired earlier in the code see Hunt and Thomas (2000:132-134).

An exception is an object that is an instance of a subclass of java .lang .Throwable.
Throwable has two standard subclasses: java.lang.Error and java.lang.Exception.
The convention in Java is that subclasses of java. lang .Error are related to linkage, virtual
machine or memory problems from which the system cannot recover gracefully. An application
program should not catch these errors, but should merely terminate as these exceptions are related
to errors outside the scope of the application program. Those errors that can be caught and
recovered from gracefully are dealt with in predefined or user-defined exception subclasses of
java.lang.Exception.

Since exceptions are objects, they contain data and define methods. Exceptions inherit from the
Throwable class a String variable that is used to display explanatory messages about the
exception that occurred. The fact that exception objects can contain data is used in the translation

process to be explained later, where exception objects are used to return BlockContext
execution results.

A combination of try/catch/finally statements in Java are used to handle exceptions. The
try statement encloses the block of code that needs to have its exceptions handled. The try
block is followed by zero or more catch clauses that catch and handle specific classes of
exceptions. The catch clauses are optionally followed by a finally block. The statements of
the finally block are guaranteed to be executed.

Java requires that any method that can cause an exception must either catch the exception or
specify the type of the exception with a throws clause in the method declaration - otherwise the
compiler will not compile the method. This is useful if the code in the method does not want to
handle the exception and simply wants to pass on the exception to the method where it was
invoked. The method openFile below is an example

public void openFile() throws FileException {
// Statements that might cause a FileException and not catch it.
}

Note that the exception class specified in a throws clause may be a superclass of all exception
types thrown in the method's code. If a method throws either exception A or exception B, both of
which are subclasses of C, then the method may specify both A and B in the throws clause or
just C.

Custom exceptions may be defined and later generated by the throw keyword. The throw
keyword must be followed by an instance of Throwable or an instance of one of its subclasses.
The code to create and throw an exception is seen in Figure 39.

This example creates an object of type CustomException and passes a string to the default
constructor where the string is assigned to an internal instance variable, in this case the default
variable inherited from Throwable.

Because exception handling is used extensively in the translation process from Srnalltalk
BlockContext object to Java anonymous classes it was considered desirable to test the
performance impact of this translation method on the generated target Java code.

The tests that were done involved a simple case where methods were enclosed in a try statement
and followed by one or more catch clauses. They are described below.

A class TestExceptionHandlingPerformance class is defined with a constructor as well as
with methods testMethod, testMethod2, testMethodWithException and
testMethodWithException2; testMethod is a method without an exception, a clean
invocation. The method testMethodWithException is a method that throws a
TestException. The invocation ofthis method is wrapped in a try statement.

A variation on the test is to add a second level of method invocation without a try statement and
declare the exception in the method declaration. The method testMethod2 is invoked by
testMethod. The same is done in the exception case with testMethodWithException
invoking testMethodWithException2. The example in Figure 40 is the implementation of the
performance test.

public class TestExceptionHandlingPerformance {
long counter = 0;
public TestExceptionHandlingPerformance()

super();
counter = 0;
}

public static void main(java.lang.String[] args) {
TestExceptionHandlingPerformance

t = new TestExceptionHandlingPerformance();
long start = 0;
long end = 0;
start = System.currentTimeMillis();
for (long index = 0; index < 10000000; index++) {

t.testMethod();
}

end = System.currentTimeMillis();
System.out.println(

"Method calls: " + (end-start) + " ms");
start = System.currentTimeMillis();
for (long index = 0; index < 10000000; index++)

try {t.testMethodWithException();}
catch (TestException e) {};
}

end = System.currentTimeMillis();
System.out.println(

"Method calls with exception: " + (end-start) + " ms");
}

public long testMethod() {
counter = counter + 1;
testMethod2();
return counter;
}

public long testMethod2()
return 0;
}

public long testMethodWithException() throws TestException {
counter = counter + 1;
testMethodWithException2();
return counter;
}

public long testMethodWithException2() throws TestException {
return 0;
}

On a machine with the IBM JVM (JDK 1.2) the same code was executed 3 times and is noted as
run 1 to run 3. The following results are returned - the time in milliseconds of invoking the
methods 10 million times:

Type of method invocation Run I Run 2 Run 3

Normal method invocation 4060 4060 4070

Exception wrapped method invocation 4060 4170 4060

The discrepancies in the numbers above are so small that they can be attributed to the VM
overhead of maintenance and garbage collection between the different runs that is difficult to
predict.

It is reassuring to see that simply wrapping statements in a try clause and adding catch clauses for
handling the exceptions does not add any performance impediments. In the next test the impact of
throwing an exception is measured by replacing the return statement with a throw statement as
seen below.

public long testMethodWithException2() throws TestException {
throw new TestException();

In the throw statement an exception is thrown which is caught by the top level method call. The
effect of embedding exceptions is also tested by throwing an exception after n levels deep in the
call stack. In the next table test 1 shows the result of 1 level, test 2 shows the effect of 2 levels
and so on until test 4. All the results are shown in milliseconds.

Return method Test I Test 2 Test 3 Test 4

Normal method return 3570 4170 5000 5930

Returninl! via throwinl! an exception 67990 71620 74810 77720

Plotting the results (see below) shows a linear relationship between the number of levels in the
call stack and the time taken to return for both a normal return and returning via an exception.
Note that the scale for the "Normal" graph is given on the left hand side vertical axis while the
scale for the "Exception" graph is on the right hand side vertical axis.

7000 80000
6000 78000

76000
5000 74000
4000 72000 • Normal
3000 ", 70000 - .- Exception",", 680002000 •

66000
1000 64000

0 62000
Test 1 Test2 Test3 Test4

Figure 44. Graph showing the linear relationship between normal method exits and methods
exiting via exceptions

From the above it is thus clear that a performance problem arises when throwing and handling an
exception. This is due to locating the catch clause every time when throwing an exception and
could pose an efficiency problem in certain circumstances. For more information about the
performance issues with respect to exceptions in Java and optimising exception handling in Java
see Ogasawara, et al (2001).

With the introduction of Java 1.1 and later another API called the Reflection API was added to
allow powerful constructs like instantiating classes at runtime or performing methods on objects
without the virtual machine knowing at compile time what classes or methods will be needed.

Below is an example of instantiating an instance of NewClass which is not known at compile
time. The string representation of it is printed on the standard output object.

java.lang.Class theClass = null;
Object theObject = null;

try { theClass = java.lang.Class.forNarne("NewClass"); }
catch (java.lang.ClassNotFoundException e) {};

try { theObject = (Object) theClass.newInstance(); }
catch (java.lang.InstantiationException e) {}
catch (java.lang.IllegalAccessException e) {};
Systern.out.println(theObject.toString());

Figure 45. Using the Java Reflection API to load a class dynamically and invoke a method
toString () on it

This chapter dealt with fundamental elements of the present study. It gave an overview of
relevant Smalltalk and Java features. With this background, it is now possible to describe the
approach that was followed in to translating Smalltalk code to Java code.

3. Translating from Smalltalk to Java

The purpose of this Chapter is to explain the mapping from Smalltalk source code to Java source
code. It is divided into 5 subsections. The first 3 subsections are taken from a previously
published article by Engelbrecht and Kourie (1998) with minor adaptations of paragraphs and
diagrams. These sections deal with method selectors, classes and simulating a dynamically typed
language (Smalltalk) in a statically type language (Java) respectively. Section 4 has been
extensively rewritten. It deals with translating dynamic Smalltalk class methods into Java static
methods and proposes alternative solutions. A few subsections have been added to section 4 to
deal with different types of Smalltalk variables and the difference between Smalltalk and Java
with respect to main methods. The rest of this chapter develops material that the article did not
address. Specifically, section 5 discusses the different Smalltalk block closures and the problems
associated with translating Smalltalk block closures into Java inner classes.

In Smalltalk the method names are divided into three message groups: unary messages; binary
messages; and keyword messages. A unary message is a message without arguments. A binary
message is a message with a single argument and a selector that is one of a set of special single or
double characters. A keyword message has one or more arguments and a selector made up of a
series of identifiers with trailing colons, one preceding each argument.

The first three examples in Figure 46 illustrate messages belonging to each of the three respective
message groups. The fourth example illustrates a keyword message with two arguments.

It is relatively easy to devise rules for translating messages in each of the three message groups
from their Smalltalk format to a suitable Java format. In general, each Smalltalk message sent to
an object should be mapped to a Java invocation of the object's method using the Java notation
<object>. <method_invocation>. The following rules are proposed for unambiguously
translating the messages and their associated arguments and selectors to Java method invocations,
including actual arguments where appropriate.

Note that these rules can also be used to deduce partially the corresponding Java method's
declaration, although names for the formal parameters must be found with reference to the
corresponding Smalltalk method's definition. Furthermore, for reasons that will later become
clear, in declaring Java methods translated from their Smalltalk counterparts, it will be convenient
to specify that they all return objects of type s t j .Objec t.

Rule 1: A unary message is mapped directly to the equivalent Java method name without any
arguments, i.e. minimize in Smalltalk maps directly to the invocation minimize () in Java.

Rule 2: The selector of a binary message maps to a specially defined Java method name, the
argument of the binary message becoming the actual argument of the corresponding Java method
invocation.

For example + argument1 maps to an invocation plus (argument1), where plus is a
specially defined Java method name. In Smalltalk it is possible that the Integer class could
redefine the behaviour of the + message. In Java, however, it is not possible to redefine the +
keyword as it is part of the language definition. To provide for this Smalltalk functionality a
lookup table will be used where + maps to plus () and - maps to minus () I etc.

Methods such as plus () and minus () have to be inserted into a specially created Java class
named stj . Integer. Each Smalltalk integer is mapped to an instance of this class. As a result
the Smalltalk expression 1+2 will be mapped to the Java invocation
stj . Integer (1) .plus (stj . Integer (2)). Operations on other primitive Java types will be
similar.

Rule 3: The sequence of identifiers in a selector of a keyword message maps to a single Java
method name. This name is composed by joining the sequence of selector identifiers together as
one long name, but replacing each occurrence of ':' by '_'. Furthermore, each argument of the
keyword message becomes an actual argument (of type stj .Object - see below) of the Java
method invocation. Thus, translations from Smalltalk methods to Java invocations will be as
follows:

I moveTo: aNewLocation

I moveTo_ (aNewLocation)

If rule 2 or rule 3 maps to one of the reserved Java keywords, for example new or class,
resulting in a method being named; class () or class (argument), it will be prefixed with '_'
resulting in _class () or _class (argument) .

Note that these rules are indeed unambiguous. For example, if a unary Smalltalk message called
plus existed, it would map to a Java invocation plus (),by the first rule. If a binary Smalltalk
message + existed, it would map to a Java invocation plus (argumentl) by the second rule. If a
Smalltalk keyword message plus: argumentl existed it would map to the Java invocation
plus_ (argumentl), by the third rule. In neither case is there any ambiguity with respect to the
mapping.

Whenever one of the above Smalltalk messages is sent to the Smalltalk object frame, this
corresponds to the invocation of a corresponding Java method using the syntax illustrated in
Figure 47 respectively:

Smalltalk code Java translation
frame minimize frame.minimize();
frame plus frame.plus() ;
frame + field frame.plus(field);
frame plus: field frame.plus (field);
frame moveTo: aNewLocation frame.moveTo (aNewLocation) ;
frame replace: bl with: b2 frame.replace with (bl,b2) ;

3.2. Classes and the class hierarchy

It will be convenient to distinguish between Java objects derived from the Smalltalk translation,
and other Java objects. In a Smalltalk system, all the objects have one root type, called Object.
In the Java translation, this root type corresponds to a Java class denoted by stj .Object. It is a
subclass of j ava. lang .Object and serves as the root class of all other Smalltalk-translated-to-
Java objects. An arbitrary Smalltalk subclass of Object, say SomeClass will thus be translated
to be a subclass of the Java class stj .Object and will be named SomeClass. The translation
algorithm should assure that this is done in a way that the structure of original Smalltalk
program's class hierarchy is retained in the translated Java hierarchy.

Since Java classes are each translated to a file it is worth illustrating how the translated classes
interact with the runtime classes. All the classes with an stj prefix belongs to the STJ runtime
system and will be kept in the stj package. In contrast, translated classes will have no prefix and
will thus be kept in the default package. Figure 48 illustrates the location of a translated class,
SomeClass. j ava I with respect to the STJ runtime classes in the stj package.

metaclass\
SomeClass.java

stj\
Object . j ava
Boolean. j ava
Integer. java

stj\metaclass
Object . j ava
Boolean. j ava
Integer. java

Note that the foregoing implies the existence of a package named stj. When declaring a class the
prefix stj is not needed to qualify the class name. However, if a translated class inherits from or
refers to a class in the stj package it needs to prefix the given class name with an stj. The
references to metaclass\ and stj\metaclass in figure 48 will be further explained in section 3.4.

The structure of the resulting Java class hierarchy is depicted in Figure 49 below. Several
advantages to be gained from this scheme will become apparent in later sections.

3.3. Dynamic types versus static types

One of the matters to confront when translating Smalltalk code to Java code is the fact that
Smalltalk is a dynamically typed language whereas Java is statically typed.

In the case of Small talk, therefore, local variables are not restricted to a specific class or type
when they are declared. During runtime, an object of one class may be assigned to a local
variable at some stage, and then an object of an entirely different class may be assigned to the
same variable at a later point in the computation. Whenever a variable is used to represent an
object that receives a message, then the message should obviously correspond to a method in the
object's class or superclass. Since there is no restriction on what the object's class or superclass
may be during runtime, non-compliance with the foregoing results in a runtime error rather than a
compile-time error.

In the Java case, the class of a variable is fixed at declaration: during runtime the variable can
only be assigned an object of either its declared class, or of a subclass of its declared class. The
variable's class declaration thus constrains the way in which the variable may be used to represent
an object, and a violation of this constraint will be identified at compile time. In particular, if a
variable representing an object is used as part of the syntax to invoke a Java method, and the
method is not in the object's class or superclass (or superclass hierarchy), then a compile-time
error results.

I Smalltalk class I

In summary, then, when a message is sent to an object in Smalltalk, the method to be executed is
only determined at runtime by the virtual machine. In Java, the compiler restricts the callable
methods by referring to the declared type of the object. As a consequence, two problems arise
when doing a direct translation to Java: deciding what Java type should be assigned to Smalltalk-
translated variables; and deciding how Java code should be constructed to simulate Smalltalk's
runtime binding of methods. A solution to the first of these problems, and two solutions to the
second problem are discussed below.

While it might be possible, in some limited contexts, to infer a Java type that tightly constrains a
Smalltalk variable, it is not possible to come up with a general scheme to do this. Consider, for
example, the Small talk code in Figure 50.

This purely hypothetical example consists of a method that accepts a Boolean argument i sBag
and an object as parameters. If isBag is true then an instance of Bag is assigned to the variable
aCollection. The type of aCollection will be Bag. If isBag is false then aCollection
will be assigned an instance of Set. The type of aCollection is then Set. Clearly, this runtime
determination of the type of aCollection cannot be handled directly in Java. A solution in Java

would be to declare the variable aCollection as the type of the most specific common
superclass of both Bag and Set. In Smalltalk, Collection is the most specific superclass.
However, it is not feasible to identify, as part of the translation process, the set of possible classes
that a variable might be typed as during runtime, and then to determine the most specific common
superclass of classes in this set. It is far simpler merely to use the common superclass of all the
Smalltalk objects in Java, namely stj .Object as the Java type of all Smalltalk local variables.

SarnpleClass»coll: isBag with: anInteger
I aCollection I
isBag

ifTrue: [aCollection := Bag new]
ifFalse: [aCollection := Set new] .

aCollection add: anInteger
"aCollection

The translated Java code of the above Smalltalk method is given in Figure 51. Note that the
translation rules lead to typing both isBag and anInteger as stj .Obj ect. In order to carry
out the test of the conditional statement, a Java class stj .True is defined. In the stj .Object
class a variable with the name _true of type stj .True is initialized to a value equivalent to
the Smalltalk object true. (Note: In Smalltalk there is one instance of the class True (namely
true) and one instance of the class False (namely false). For a concise overview, refer to
section 2.1.3.1.

public class SampleClass extends stj.Object
{
public stj.Object coll_with_(stj.Object isBag, stj.Object anlnteger)

{
stj.Object aCollection;
try

{

if (((stj.Boolean)isBag) .isTrue()
aCollection new stj.Bag()

else
aCollection new stj.Set();

}
catch(_) { /* isBag is not a standard boolean, lose */ }
aCollection.add_(anlnteger);
return aCollection;
}

In Figure 51 aCollection has been declared as type stj .Obj ect. Since, by virtue of section
3.3, stj .Bag and stj .Set are both subclasses of stj .Collection, which in turn is a subclass
of stj .Object, the respective assignments to aCollection will be accepted as correct by the
compiler, provided that stj. Obj ect or an appropriate subclass has a method defined as
add_ (stj .Obj ect) .The Java translation above is simplified to illustrate the issues of dynamic
types in Smalltalk , thus the simplified translation of the ifTrue :ifFalse : Smalltalk keyword
message and the naIve translation of the Smalltalk block. Section 3.5 will handle these
translations in detail.

The Java code in Figure 51 also contains an invocation to a method
Collection. add_ (anlnteger) that has been directly translated from the Smalltalk code in
Figure 50, using the translation rules of section 2. The assumption is that if and only if there was
a Smalltalk instance method of add: in the Smalltalk class Set (and/or Bag, and/or Collection
and/or Object), then the same method would be translated into a Java instance method in the
Java class stj .Set (and/or stj .Bag, and/or stj .Object respectively). The Java translated
code should behave as closely as possible in the Java environment to the original Smalltalk code
in the Smalltalk environment, both at compile time and at run time. In particular, the Java
environment should report an error at exactly the same point (compile time or run time) at which
the Smalltalk environment would report it.

One possible approach to achieve this close simulation in Java would be to make use of
reflection. (For an introduction to reflection refer to Bekker (1993) and Maes (1987).) With the
release of the Java Development Kit (JDKl.l) by Sun Microsystems, Inc. a reflection API has
been added whereby the Java program can interrogate and act upon itself in various ways
(JavaSoft (1997». For example, a class can be interrogated for a list of all its methods; and an
arbitrary method name can be assigned to a variable and used as a parameter in a call that, in turn,
invokes whatever method that variable represents. All of this occurs at runtime. It is therefore
possible to invoke methods of objects in a dynamic way.

Smalltalk incorporates Object»perform: and Object»perform:with: messages,
whereby a message name can be constructed dynamically at runtime and then be sent to an
object. Relying on the reflection API, the same functionality can be implemented in Java by
adding matching methods to stj .Object called perform_(), perform_with_() etc. As an
example, code for the perf orm_wi th_ () method is given in Figure 52.

public stj.Object perform_with_(String methodName, stj.Object argl)
{
stj.Object result = nulli
java.lang.reflect.Method method = nulli
java.lang.Class theClass = nulli
java.lang.Class[] argClasses = new java.lang.Class[l]i
java.lang.Object[] args = new java.lang.Object[l]i
theClass = this.getClass() i
args[O] = argli
argClasses[O] = stj.Object. __nil.getClass()i
try {method = theClass.getMethod(methodName, argClasses)i}
catch (NoSuchMethodException e)

{System.out.println("Error: NoSuchMethod")i}
catch (SecurityException e)

{System.out.println("Error: SecuritY")i}
try {result = (stj.Object) method.invoke (this, args)i}
catch (NullPointerException e)

{System.out.println("Error: NullPointer")i}
catch (IllegalArgumentException e)

{System.out.println("Error: IllegalArgument")i}
catch (IllegalAccessException e)

{System.out.println("Error: IllegalAccess")i}
catch (InvocationTargetException e)

{System.out.println("Error: InvocationTarget") i}
return (resul t) i

}

In essence, perform_wi th_ makes use of two reflection API methods within two try
statements: getMethod and method. invoke respectively. The various associated catch
statements are required by the language definition, and should not distract from the overall
understanding and logic of the perform_wi th_ method in Figure 52.

Consider the use of this reflective method in the context of the previous example (i.e. adding an
element to a collection that may either be a bag or a set). Use of the perf orm_with_ () method
means that the translation of the Smalltalk code aCollection add: anlnteger should be
rendered as:

instead of as aCollection. add_ (anlnteger). The resulting Java system behaves exactly as .
its Small talk counterpart in the following senses:

At compile time, no attempt is made to check that the arguments of perform_wi th_ make run-
time sense, except to verify that actual argument types match those of the formal arguments.
Compilation could be successful, even if there was no add_ (anln teger) method in the entire
system.

If, at run time, aCollection is instantiated as an stj .Set object, then an stj .Set method,
aCollection. add_ (anlnteger) is invoked via the call in Figure 53. If such a method had
not been defmed in the stj . Set class, or in any predecessor class, then an appropriate run time
error message is issued.

The foregoing remark applies pari passu, should aCollection have been instantiated as an
stj .Bag object.

It might be anticipated that the above way of sending messages to objects in a truly dynamic way
would be slow. In fact, tests done with the Sun JDK and Microsoft JDK confirm this. They
indicate that it takes at least 100 times longer to invoke a method in this fashion, as compared
with a normal method invocation. The code in Figure 54 tests the difference in performance
between normal method invocations and reflection based method invocations:

public class TestPerformance extends stj.Object
{
public stj.Object testMethod(stj.Object argl) {return argl;}

public static void main(java.lang.String[] args)
{
TestPerform t = new TestPerform();
stj.Object argl = __ true;
long start = 0;
long end = 0;
start = System.currentTimeMillis();
for (long index = 0; index < 100000; index++) {

t.testMethod(argl);
}

end = System.currentTimeMillis();
System.out.println("Normal methods: II + (end-start) + II ms");
start = System.currentTimeMillis();
for (long index = 0; index < 100000; index++)

t.perform_wi th_ (II testMethod II I argl);
}
end = System.currentTimeMillis();
System.out.println("Reflection methods: II +(end-start)+ II ms");
}

Type of method invocation Result in milliseconds

Normal method invocation 155

Reflection based method invocation 123985

The table above shows the results and it can be clearly seen that the reflection based invocation is
about 800 times slower than a normal method invocation. Until the JVM vendors provide
optirnised versions of the above methods used in the reflection API, this approach for ensuring
run-time method binding does not seem practical. Nevertheless, the approach may be legitimately
be used to translate perf orm: wi th: messages that occur in Smalltalk code.

This section discusses an approach to simulate Smalltalk's run-time instance method binding that
is both simpler and more efficient than the reflection approach just discussed. It is therefore the
preferred approach for use in implementing the translator. Two categories of methods are placed
into the Java system:

As before, it is assumed that each method of Obj ect and each method of its subclasses is
translated into an equivalent Java method of stj .Obj ect and its subclasses respectively.

In addition, for every message sent in the code of the Smalltalk system, a corresponding "default
handler" method of the Java class stj .Obj ect is constructed (provided that the message does
not already have a corresponding method in stj .Obj ect by virtue of rule 1 above in 3.1.) This
default method invokes the doesNotUnderstand method implemented on stj .Object. The
implementation of doesNotUnderstand raises an exception to notify a debugger that an error
occurred. This implies that the complete Smalltalk program to be translated needs to be present
during translation.

Thus, referring to the SampleClass example in Figure 50, because aCollection add:
anlnteger appears in the Smalltalk code, the above rule specifies that a Java method add_
(stj .Object argl) must be added to the class stj .Object, which in turn invokes the
doesNotUnderstand_ method on Object as illustrated in Figure 56 below.

public class stj.Object
{

public stj.Object doesNotUnderstand_(java.lang.String messageName)
{
System.out.println(U") ;
System. out.println (UObject»doesNotUnderstand: U + messageName);
System.exit(l) ;
return this;
}

public stj.Object add_(stj.Object argl)
{
this.doesNotUnderstand_(uadd:");
return this;

Recalling that the Smalltalk code aCollection add: anlnteger was translated to the Java
method invocation aCollection. add_ (anlnteger) I note that this invocation will always be
regarded as type-correct by the Java compiler, irrespective of the class of object that the variable
aCollection refers to (i.e. as long as the type of aCollection is a subclass of stj .Object).
If, at some point during runtime, the variable aCollection refers to an instance of Set, and Set
has no method called add_, then the add_ method of the superclass stj .Collection will be
used, or the add_ method of stj .Object in that order.

By implementing the Java code in this way, not only are dynamically typed objects simulated, but
the dynamic dispatch of messages at runtime is also simulated. Another important benefit of this
approach is that the speed of the resulting code executes at the same speed of normal Java code
with types in the variable declarations. The table in Figure 57 illustrates the performance of
dynamically typed methods and statically typed methods in milliseconds.

There is a subtle problem in translating Smalltalk class methods to Java. It is rooted in the fact
that in Smalltalk, all classes are treated as first class objects. Java does not fully reflect this
property. It is problematic if a straight translation is attempted that maps Smalltalk class methods
to Java methods. The required static prefix in a Java class method declaration implies that the
method does not possess dynamic properties such as those illustrated in the following Smalltalk
example.

The example is based on a common practice in Smalltalk to write a class method in a superclass
that creates initialized objects for itself and its subclasses. Consider the Vehicle class in Figure
58 below, which is a superclass of the class BMW.

Object subclass: #Vehicle
instanceVariableNames:
classVariableNames: ".

Vehicle class»newInitializedObject
I instance I
instance := self new.
instance initialize.
"instance

Vehicle»initialize
Transcript cr; show: 'Vehicle»initialize called'.

Vehicle subclass: #BMW
instanceVariableNames:
classVariableNames:

BMW»initialize
Transcript cr; show: 'BMW»initialize called'.

Vehicle has the class method newInitializedObject and the instance method
initialize. In the method newInitializedObject, an object is created by sending the
message new to self (in this case self refers to the class object associated with the method)
and a new instance of the class object is returned. Depending on the context in which the method
executes, it returns different types of objects. Evaluating Vehicle newInitializedObject
returns an instance of the class Vehicle and BMW newIni tializedObj ect will return an

instance of the subclass BMW.Furthermore, the former message calls Vehicle initialize,
while the latter calls BMWinitialize. Thus:

Vehicle newInitializedObject will return an instance of Vehicle and print
'Vehicle»initialize called', while

BMWnewInitializedObject will return an instance of BMWand print 'BMW»initialize
called' .

In attempting to simulate the above behaviour in Java, two approaches are outlined below. The
first illustrates the problem caused by a direct translation to Java's static class methods, while the
latter shows an alternative way in which dynamic class methods can be simulated in Java.

The approaches proposed thus far in Chapter 3 to arrive at Java code from the Smalltalk code,
indicate the following Java translations associated with Vehicle (and similar translations for
BMW):

1 a Java class called Vehicle for the Smalltalk class called Vehicle;

2 a Java subclass of Vehicle called BMWfor the Smalltalk class called BMW;

3 in the Java class called Vehicle, a Java class method called newIni tializedObj ect () ;

4 in the Java class called Vehicle, a Java instance method called initialize ();

5 in the Java class called BMW,another Java instance method called ini tialize ();

6 the invocation: Vehicle. newIni tializedObj ect () for any Smalltalk message Vehicle
newInitializedObject;

7 the invocation: BMW.newIni tializedObj ect () for any Smalltalk message BMW
newInitializedObject.

Figure 59 shows these translations, where the Java class methods are declared with the required
static modifier. A further two static methods each called _class (), are provided in
Vehicle and BMWrespectively. The two versions of _class () rely on the reflection API
method forName () to return the class in which they are respectively declared (either Vehicle
or BMW).In newInitializedObject a class to _class () is made, the intention being to
invoke the _class () method corresponding to the class that qualifies
newInitializedObject in a call. Thus Vehicle.newInitializedObject should return
Vehicle and BMW.newInitializedObject .should return BMW.The reflection API method
newInstance () is invoked in the newInitalizedObject () method to generate an instance

of the returned class. In the next line the initialize () method of this generated instance is
then invoked.

package stj;
public class Vehicle extends stj.Object {

public static stj.Object newlnitializedObject()
{

stj.Object instance = null;
instance = (stj.Object) __ class() .newlnstance();
instance.initialize();
return instance;
}

public static java.lang.Class __ class()
{

java.lang.Class thisClass = null;
try { thisClass = java.lang.Class.forName(IVehicle"); }
catch (ClassNotFoundException e)

{System.out.println("Error: Class not found"); }
}

public stj.Object initialize()
{
System. out .println ("Vehicle»initialize called");
return this;
}

public class BMW extends Vehicle
{
public static java.lang.Class __ class()

{

java.lang.Class thisClass = null;
try { thisClass = java.lang.Class.forName(IBMW");
catch (ClassNotFoundException e)

{System.out.println("Error: Class not found");
}

public stj.Object initialize_()
{

System.out.println("BMW»initialize called");
return this;

However, if the following code below in Figure 60 is executed, it will be found that this Java
implementation does not behave as the Smalltalk counterpart.

I car I
stj.Object car = null;
car = Vehicle.newInitializedObject();
car = BMW.newInitializedObject();

In both invocations of newIni tializedObj ect, 'Vehicle»ini tialize called' is
printed out. The reason for this is that Java static methods are truly static, resulting in Vehicle's
_class () being called in the last line, when one might have hoped that BMW'S_class ()
would be called instead. Consequently, an instance of Vehicle is returned and not an instance
of BMW.Clearly then, an alternative approach to simulating Smalltalk class methods is required.

The following indicates how the Java translation of Smalltalk classes can be designed to simulate
dynamic binding of class methods. It is based on approximating in Java the Smalltalk class
hierarchy (including metaclasses). Smalltalk has the following (Goldberg and Robinson (1989,
p269-p271)):

1. There are two kinds of objects in the system: those that can create instances of themselves
(called classes) and those that cannot. Every object is an instance of a class.

2. Every class is a subclass of class Object. Object itself has no superclass.

3. Each class is itself an instance of a class, termed a metaclass. A metaclass has only one
instance. The class Obj ect is not excluded from this and also has a metaclass.

4. The hierarchy of metaclasses is rooted in the metaclass of Object and this hierarchy
mirrors that of the associated class instances. However, whereas Obj ect has no superclass,
the metaclass of Obj ect has a superclass called Class. All metaclasses are therefore
subclasses of Class.

5. Metaclasses also being objects, are instances of a class called Metaclass.

The structure is depicted in Figure 61, and includes the classes and metaclasses for the Vehicle
and BMWclasses as described previously.

The solid lines indicate a subclass of relationship in the class hierarchy, be it on the object level
or the class level. The dotted lines indicate the instance of relationship between objects and their
classes. Note carefully that stj .metaclass. Obj ect is indeed a subclass of stj . Class, in
accordance with (4).

I Class

For the purpose of translating standard Smalltalk code the translated Java code will not have to
simulate the Smalltalk reflection features exactly. This allows the implementation of a much
simpler hierarchy that is illustrated in Figure 62.

To provide for dynamic binding of class methods, it will be helpful to mirror this Smalltalk class
hierarchy structure in the translated Java system, prepending each Java class by "stj ." as before.
However, there will be no need to define the Java class stj. Metaclass. An appropriate
convention might have been to qualify all the metaclass subclasses of stj. Class by
stj .class. Unfortunately the string class is a reserved keyword in Java and another scheme
has to be used. A solution will be to store all the metaclasses in a separate package, calling it
stj .metaclass. Thus, the class in package stj .metaclass named Object will be
referenced as stj .metaclass. Object, the class named Class will be referenced as
stj .metaclass. Class, etc.

I Class

Another method that is needed is _new () to create a new instance of a specified class. This
method is defined in stj.Object and overridden in stj.metaclass.Object since
stj .metaclass .Obj ect inherits from stj .Class which in turn inherits from stj .Object.
As discussed previously the stj .metaclass. Obj ect class inherits from stj .Class and since
all metaclasses inherit from stj .metaclass. Obj ect they will all share the behaviour of the
_newt) method. Figure 63 below shows the implementation of_newt) in stj .Object and
stj .Class as it also provides the class definition for stj .Class, stj .metaclass.Object
and stj .metaclass .Class.

package stji
public class Object

{
II other methods in stj.Object
public stj.Object __ newt)

{

this.doesNotUnderstand_("new")i
return __ nili

package stji
public class Class extends stj.Object {}

package stj.metaclassi
public class Object extends stj.Class

{

public stj.Object __ newt)
{

java.lang.Class theClass = nulli
stj.Object theObject = nulli

try {theClass java.lang.Class.forName(this. __ className())i}
catch (java.lang.ClassNotFoundException e) {}i

try {theObject = (stj.Object)theClass.newlnstance()i}
catch (java.lang.lnstantiationException e) {}
catch (java.lang.IllegalAccessException e) {}i

return(theObject)i
}

package stj.metaclassi
public class Class extends stj.metaclass.Object {}

The Java code is designed to simulate the metaclass of a class that has a class method. This
design allows for dynamically binding a class method that is invoked at runtime. The principle is
illustrated in Figure 64 below, in terms of the previous Vehicle example.

Two classes, metaclass. Vehicle and metaclass. BMW have been defined with instance
methods (which are thus dynamic) replacing the static methods of the previously defined classes
Vehicle and BMW respectively. In the case of stj .metaclass. Vehicle the relevant instance

methods are newInitializedObj ect () and _new (). Note that the classes Vehicle and BMW
are also defined, but each class defines only its original instance methods. (In each of these cases
there is a single instance method, initialize ().)

The _new () method in stj .metaclass. Object expects all metaclass classes to implement a
method called _className (). This will return a Java string being the class name that the
metaclass is to represent.

The result is that a Smalltalk class (such as Vehicle) that has a class method (such as
newIni tializedObj ect) is always simulated by a composite of two classes in Java. The first
Java class named Vehicle deals with the Smalltalk instance methods on the Smalltalk vehicle
class as previously discussed. The second Java class named metaclass. Vehicle deals with the
translated Smalltalk class methods on the Vehicle class in the form of Java instance methods on
metaclass .Vehicle. An instance of the Java class metaclass. Vehicle has to be created
before its instance methods can be used, and in this sense, the Java class behaves similarly to (i.e.
simulates) a Smalltalk metaclass as described in (3) above.

package metaclass;
import stj.*;
public class Vehicle extends stj.metaclass.Object

{

public static stj.Object __ class = new metaclass.Vehicle();
public stj.Object newlnitializedObject()

{

stj.Object instance = null;
instance = this.__new();
instance.initialize() ;
return (instance) ;
}

I?Jdplicj ava.:lang .String~cl~sName (L Jreturn ~":Yehlcle"L;J
}

import stj.*;
public class Vehicle extends stj.Object

{

stj.Object
publlCWstj .

{
STJTranscript.cr() .show_«

new stj.String("Vehicle»initialize called")));
return(this);

}

package metaclass;
import stj.*;
public class BMW extends metaclass.Vehicle

{

public static stj.Object __ class = new metaclass.BMW();
pl.lpl'I'cjpya:laIlg.String ."...",cl~s,NameCL{r~turn("BMW''');'r----
}

import stj.*;
public class BMW extends Vehicle

{

publicwst'f:"OSj'ec-tinitialrzeTr
{
STJTranscript.cr() .show_{{

new stj. String ("BMW»initialize called")));
return (this) ;

It is now possible to invoke the class method newlnitializedObject () on each class and the
correct instance is initialized as illustrated below.

stj.Object car = null;
car metaclass.Vehicle. __class.newlnitializedObject();
car = metaclass.BMW. class.newlnitializedObject();

Functionally, the first line of the code achieves the same as before. The reference
metaclass. Vehicle .__class refers to an instance of the
metaclass .Vehicle (thus, the equivalent of a Smalltalk class). Thus
metaclass.Vehicle. __class.newlnitializedObject() invokes the
newlnitializedObject () method defined in metaclass. Vehicle. This method creates an
instance of Vehicle and assigns it to the variable car. It also prints out
''vehicle»initialize called". In a similar way the second line of code prints out "BMW
initialize called" and assigns it to the variable car. However, the call to the class method
newlni tializedObj ect () is now bound at runtime, resulting in the right methods being
called. Specifically the right implementations of __ class Name() and initialize () is being
invoked respectively.

Note that metaclass. Vehicle .__class relates to an aspect of the Java metaclass translation
where a metaclass instance (class object) is created and class methods are implemented by
implementing instance methods on the metaclass instance. This is the same way that Smalltalk
implements class methods. The only difference is that in the Java translation the metaclass
instance is resolved by referring to a static variable in the Java metaclass, namely __ class,
whereas in Smalltalk the parser resolves the metaclass instance by referring to a global dictionary
in the system.

A static variable called __ class of the class metaclass. Vehicle is thus declared. This
variable is instantiated to reference an instance of metaclass. Vehicle at start up time and may
thereafter be used as in the context above. The single instantiation that occurs in the Java
translation mirrors the fact that a Smalltalk class is a single instance of its corresponding
metaclass. To arbitrarily create multiple instances of metaclass. Vehicle would violate the
Smalltalk paradigm. The same applies in the case of metaclass .BMWinstance.

The translation of Smalltalk class variables is analogous to the translation of Small talk class
methods. The same pattern is applied where properties on a Smalltalk class are mapped onto
properties on the Smalltalk class' metaclass instance. Thus, Smalltalk class variables can be
represented as instance variables in the translated Java metaclass object. The Smalltalk class
defmition for Vehicle is shown in Figure 66 with a class variable Defaul tColour. It is the
convention in Small talk to begin all class variables with a capital to help distinguish class
variables from instance variables when reading the source code. Note that a class variable can be
accessed from instance methods and class methods.

Object subclass: #Vehicle
instanceVariableNames:
classVariableNames: 'DefaultColour'

Using the same translation rules discussed in section 3.4.2 (see Figure 64) the translated Java
class definition is generated in Figure 67. Only the Java metaclass translation is shown, since the
Java class translation does not change from Figure 64.

public class metaclass.Vehicle extends stj.metaclass.Object
{

The Defaul tColour variable definition is available to all instances of Vehicle and its
subclasses. This results in the instances of the BMWclass (subclass of Vehicle) to being able to
access the Defaul tColour variable as welL To initialise the Defaul tColour variable
(assuming Defaul tColour is a string which needs to be initialized) the code in Figure 69 can be
written in all instance methods of Vehicle and BMW.It is necessary to typecast the _class
variable to the class in which the class variable is declared (in this case metaclass .Vehicle)
since stj .metaclass. Object does not have any reference to the DefaultColour variable.

((metaclass.Vehicle) (metaclass.Vehicle. __class)) .DefaultColour new
stj.String("Black") ;

In Figure 70 the Smalltalk classes Vehicle and BMWare defined. Note that the class variable
Defaul tColour in Vehicle has been defined. In addition an instance variable colour is
added in Vehicle for a vehicle to keep track of its colour. A class method
initializeClassVars is defined in both Vehicle and BMWto initialise the colour instance
variable to the default value in all their respective instances. However, the default for Vehicle is
"Black" and the default for BMWis "Red".

Object subclass: #Vehicle
instanceVariableNames: 'colour'
classVariableNames: 'DefaultColour '

Vehicle class»initializeClassVars
DefaultColour := 'Black'.

Vehicle class»newInitializedObject
I instance I
instance := self new.
instance initialize.
"instance.! !

Vehicle»colour
"colour

Vehicle»initialize
colour := DefaultColour.
STJTranscript cr; show: 'Vehicle»initialize called'.

Vehicle subclass: #BMW
instanceVariableNames:
classVariableNames: "

BMW class»initializeClassVars
DefaultColour .- 'Red'

BMW»initialize
colour := DefaultColour.
STJTranscript cr; show: 'BMW»initialize called'.

In Figure 71 below the Vehicle class is initialised and the string 'Black' is assigned to the
DefaultColour class variable. A Vehicle instance (carl) is created and initialised. When
printing the colour of carl 'Black' is printed. In the next section the BMW class is initialised and
the colour 'Red' assigned to the DefaultColour class variable. A BMW instance (car2) is then
created and subsequently the string 'Red' is printed. In the last section another Vehicle instance
(car3) is created and due to the nature of class variables being shared between the class where it
is defined and all the subclasses the Defaul tColour class variable now has the value 'Red' and
car3 will return 'Red' when asked for its colour.

I carl car2 car3 I
Vehicle initializeClassVars.
carl := Vehicle newlnitializedObject.
STJTranscript cr; show: carl colour.
BMW initializeClassVars.
car2 := BMW newlnitializedObject.
STJTranscript cr; show: car2 colour.
car3 := Vehicle newlnitializedObject.
STJTranscript cr; show: car3 colour.

Vehicle»initialize called
Black
BMW»initialize called
Red
Vehicle»initialize called
Red

The translation of Figure 70 is shown below in Figure 73. The Vehicle and BMW metaclasses are
defined as well as the Vehicle and BMW classes.

package metaclass;
import stj.*;
public class Vehicle extends stj.metaclass.Object

{
public static stj.Object __ class = new metaclass.Vehicle();
public stj.Object DefaultColour;

public stj.Object initializeClassVars()
{

((metaclass.Vehicle) (metaclass.Vehicle. __ class)) .DefaultColour
(new stj. String ("Black "));

return (this) ;
}

public stj.Object newlnitializedObject()
{
stj.Object instance = null;
instance = this. __ new();
instance.initialize() ;
return(instance);

}
public java.lang.String _className() {return("Vehicle");}
}

package metaclass;
import stj.*;

public class Vehicle extends stj.Object
{

stj.Object colour;

public stj.Object initialize()
{
colour = ((metaclass.Vehicle)

(metaclass.Vehicle._class)) .DefaultColour;
STJTranscript.cr() .show_(

(new stj. String ("Vehicle»initialize called")));
return (this) ;
}

public stj.Object colour()
{

return(colour);
}

public stj.Object _class() {return(metaclass.Vehicle._class);}
}

package metaclass;
import stj.*;
public class BMW extends metaclass.Vehicle

{
public static stj.Object _class = new metaclass.BMW();
public stj.Object initializeClassVars()

{

((metaclass.Vehicle) (metaclass.Vehicle._class)) .DefaultColour
(new stj. String ("Red")) ;

return(this);
}

public java.lang.String _className() {return("BMW");}
}

import stj.*;
public class BMW extends Vehicle

{

public stj.Object initialize()

{
colour = ((metaclass.Vehicle)

(metaclass.Vehicle. __ class)) .DefaultColour;
STJTranscript.cr() .show_(

(new stj .String("BMW»initialize called")));
return (this) ;
}

public stj.Object __ class() {return(metaclass.BMW. __ class);}
}

stj.Object carl
stj.Object car2
stj.Object car3

null;
null;
null;

metaclass.Vehicle. __ class.initializeClassVars();
carl = metaclass.Vehicle. __ class.newlnitializedObject();
STJTranscript.cr() .show_(carl.colour());
metaclass.BMW. __ class.initializeClassVars() ;
car2 = metaclass.BMW. __ class.newlnitializedObject();
STJTranscript.cr() .show_(car2.colour());
car3 = metaclass.Vehicle. __ class.newlnitializedObject();
STJTranscript.cr() .show (car3.colour());

Depending on the requirements of the program this may be the intended behaviour where BMW
instances share the DefaultColour variable. If the requirement is indeed that BMW instances
should have its own Defaul tColour variable when creating new instances of BMW can be
achieved in two ways:

The solution is by declaring another class variable Defaul tColour in the class definition of BMW
as in Figure 75.

Vehicle subclass: #BMW
instanceVariableNames:
classVariableNames: 'DefaultColour'

If there are many subclasses of Vehicle, it may become tedious to declare class variables in all the
subclasses of Vehicle. Smalltalk has another solution, which is a class instance variable. Section
3.4.4 illustrates the use of class instance variables.

Smalltalk has an interesting type of class variable, called the class instance variable. This variable
is declared in a class in the same way as a class variable and all the subclasses will inherit this
variable with the distinction that every subclass of the class will have its own copy of the class
variable. The example in Figure 76 shows the declaration of the class instance variable
manualOrAutomatic in the super class Vehicle. The two subclasses BMW and Toyota do not
declare anything extra, but inherit implicitly their own copy of manualOrAutomatic. The net
effect is that when a method, (either an instance or a class method), of BMW modifies
manualOrAutomatic it has no impact on the contents of the manualOrAutomatic variable of
the Toyota class, or the manualOrAutomatic variable of the Vehicle class. Another useful
fact is that the class instance variable can be modified by both class methods and instance
methods.

The example below in Figure 76 shows the modified class definition of Vehicle as well as extra
methods that needs to be modified or added to the example in Figure 70.

Object subclass: #Vehicle
instanceVariableNames: 'colour transmission'
classVariableNames: 'DefaultColour '
classlnstanceVariableNames: 'manualOrAutomatic

Vehicle class»manualOrAutomatic
AmanualOrAutomatic

Vehicle class»initializeClasslnstanceVars
manualOrAutomatic := 'Manual'

Vehicle»initialize
colour := DefaultColour.
transmission := self class manualOrAutomatic.
STJTranscript cr; show: 'Vehicle»initialize called'.

Vehicle»transmission
Atransmission

Vehicle subclass: #BMW
instanceVariableNames:
classVariableNames: "

BMW»initialize
colour := DefaultColour.
transmission := self class manualOrAutomatic.
STJTranscript cr; show: 'BMW»initialize called'.

Vehicle subclass: #Toyota
instanceVariableNames: "
classVariableNames: "

Toyota class»initializeClasslnstanceVars
manualOrAutomatic .- 'Manual'

Toyota»initialize
colour := DefaultColour.
transmission := self class manualOrAutomatic.
STJTranscript cr; show: 'Toyota»initialize called'.

Figure 76.
variable

After the enhancements are made for Vehicle, BMW and Toyota to support class instance
variables the code in Figure 77 can be executed.

I carl car2 car3 car4 I
Vehicle initializeClasslnstanceVars.
carl := Vehicle newlnitializedObject.
STJTranscript cr; show: carl transmission.
BMW initializeClasslnstanceVars.
car2 := BMW newlnitializedObject.
STJTranscript cr; show: car2 transmission.
car3 := Vehicle newlnitializedObject.
STJTranscript cr; show: car3 transmission.
Toyota initializeClasslnstanceVars.
car4 := Toyota newlnitializedObject.
STJTranscript cr; show: car4 transmission.

The result of executing the code in Figure 77 is shown in Figure 78 below. Vehicle sets it's
transmission type, then BMW sets it's own transmission type after which Vehicle's transmission
type is still intact.

Vehicle»initialize called
Manual
BMW»initialize called
Automatic
Vehicle»initialize called
Manual
Toyota»initialize called
Manual

Since a class instance variable has the same relationship to a metaclass as an instance variable to
a class it is appropriate to have a translation rule whereby all class instance variables are
translated as instance variables that belong to the metaclass. This allows all the subclasses of the
metaclass where the class instance variable is defined to inherit that class instance variable as
well. The translation of the methods in Figure 76 is shown below in Figure 79. In response to
invocations translated from Figure 77, the output of Figure 78 is obtained.

package metaclass;
import stj.*;
public class Vehicle extends stj.metaclass.Object

{
public static stj.Object __ class = new metaclass.Vehicle();
public stj.Object manualOrAutomatic;
public stj.Object DefaultColour;

public stj.Object initializeClassVars()
{

((metaclass.Vehicle) (metaclass.Vehicle. __ class)) .DefaultColour
(new stj.String("Black"));

return (this) ;
}

public stj.Object manualOrAutomatic()
{
return (manualOrAutomatic) ;
}

public stj.Object initializeClassInstanceVars()
{

manualOrAutomatic = (new stj.String("Manual"));
return(this) ;
}

public stj.Object newInitializedObject()
{
stj.Object instance = null;

instance = this. __ new();
instance.initialize();
return(instance);
}

public java.lang.String __ className() {return("Vehicle");}
}

import stj.*;
public class Vehicle extends stj.Object

{

stj.Object colour;
stj.Object transmission;

public stj.Object initialize()
{
colour = ((metaclass.Vehicle)

(metaclass.Vehicle. __ class)) .DefaultColour;
transmission = this. __ class() .manualOrAutomatic();
STJTranscript.cr() .show_(

(new stj. String ("Vehicle»initialize called")));
return(this);
}

public stj.Object transmission()
{

return(transmission);
}

public stj.Object colour()
{

return (colour) ;
}

public stj.Object __ class() {return(metaclass.Vehicle. __ class);}
}

package metaclass;
import stj.*;
public class BMW extends metaclass.Vehicle

{

public static stj.Object __ class = new metaclass.BMW();

public stj.Object initializeClassrnstanceVars()
{

manualOrAutomatic = (new stj.String("Automatic"));
return (this) ;
}

public stj.Object initializeClassVars()
{

((metaclass.Vehicle)
(metaclass.Vehicle. __ class)) .DefaultColour (new

stj.String("Red")) ;
return (this) ;
}

public java.lang.String __ className() {return("BMW");}
}

import stj.*;
public class BMW extends Vehicle

{

public stj.Object initialize()
{

colour = ((metaclass.Vehicle)
(metaclass.Vehicle. __ class)) .DefaultColour;

transmission = metaclass.BMW. __ class.manualOrAutomatic();
STJTranscript.cr() .show_(

(new stj.String("BMW»initialize called")));
return (this) ;
}

public stj.Object __ class() {return(metaclass.BMW. __ class);}
}

package metaclass;
import stj.*;
public class Toyota extends metaclass.Vehicle

{

public static stj.Object __ class = new metaclass.Toyota();
public stj.Object initializeClassInstanceVars()

{

manualOrAutomatic = (new stj.String("Manual"));
return (this) ;
}

public java. lang. String __ className() {return("Toyota");}
}

import stj.*;
public class Toyota extends Vehicle

{

public stj.Object initialize()
{

colour = ((metaclass.Vehicle)
(metaclass.Vehicle. __ class)) .DefaultColour;

transmission = metaclass.Toyota. __ class.manualOrAutomatic();
STJTranscript.cr() .show_(

(new stj.String("Toyota»initialize called")));

return (this) ;
}

public stj.Object __ class() {return(metaclass.Toyota. __ class);}
}

Declaring a global variable in Smalltalk is straightforward and involves associating a value with a
key in the Smalltalk dictionary. To create an empty list of colours and assign it to
VehicleColours the following code will be used:

Accessing a global variable in Smalltalk can be done in one of two ways: either through the
global Smalltalk dictionary or by referring to the name of the global variable directly. To access a
global variable named VehicleColours via the first method and request its size, the following
Smalltalk code will be used:

I (Smalltalk at: #VehicleColours) size

I VehicleColours size

The method for translating Smalltalk global variables to Java is to use an object to hold on to all
the global variables and access them in the same fashion as the first method above. The following
variable declaration of Smalltalk is added to the stj .Object class definition.

It is now possible to refer to the Smalltalk dictionary in all the methods throughout the system in
the following manner:

I (Smalltalk.at_('VehicleColours')) .size();

9 stj .Dictionary will be an implementation of a Dictionary supplied by the STJ runtime
classes.

To start a routine or program in Smalltalk it is customary to define a class method on a class that
will create an instance of an object and send an initial message to it, as illustrated below in Figure
80. A method called run is defined in the class, say Test, and to start executing the run
message is sent to the class -- i.e. Test run. This creates an instance of Test using the self
new instruction, then sends messages to that instance, eventually printing out the result of the
computation.

Test class» run
I instance function I
instance := self new.
function := instance getBlock: 1.
Transcript cr; show: ((function value: 2) printString).

In Java the same approach is followed as in ac++ by having a main method which is the default
entry point into a program. The translated Java source of Figure 80 is shown in Figure 81.

public Test extends stj.Object {
public static void main(java.lang.String[] args) {

stj.Object instance null;
stj.Object function = null;

instance = metaclass.Test. __ class. __ new();
function = instance.getBlock_((new stj.Integer(l)));
Transcript.cr() .show_(

function.value_((new stj.Integer(2))) .printString());
} ;

_ rest of the class definition

A decision was made to have a convention of the translator searching for a method with the name
javamain on the class side of a Smalltalk class and if encountered it would translate that method
into the Java static main method. Thus by renaming the run method above in Figure 80 to
javamain the Smalltalk source will be translated in the correct fashion.

Small talk defines a block of code as an object. It is possible to assign this object (block of code)
to a variable as well, to pass it around in the system and to ask it to execute (i.e. to evaluate the
block of code). When sent the value message, the block will execute in the enclosing context in
which it was defined. When it executes, it therefore has to hold a reference to its enclosing
context. A simple example of a statement is found in Figure 82.

11 + 2

When inspecting the results of evaluating the statemeneo in figure 3.23 the following is returned:
an object of type SmallInteger with the value 3.

To create a block out of the statement above is very easy - simply enclose the statement in square
brackets as in Figure 83.

I [1+2]

Figure 83. Simple Small talk block

I [1+2] value

Figure 84. Evaluating a block

When the result of Figure 84 is inspected, it returns the same result as the statement 1 + 2, namely
an object of type SmallInteger with value 3.

The result of Figure 83 is an object of type BlockContext with various instance variables. In
Squeak Smalltalk the following instance variables are defined in a BlockContext:

10 Note that most Smalltalk development environments allow the user to select pieces of
Smalltalk code, to request that the code executes (i.e. evaluates) and to then inspect the results of
the code's evaluation.

sender - not used in BlockContext

pc - program counter for keeping track of the VM's program counter

stackp - stack pointer

nargs - the number of arguments being passed to the block

startpc - starting program counter

home - holds on to the enclosing context and scope of where the block was defined

Of interest are the nargs and home instance variables. The nargs variable keeps track of how
many arguments the block must receive as arguments for execution. In this respect, the block can
act as a function in more traditional languages such as Pascal and C.

The discussion that follows below explains how the Java translation of Smalltalk blocks has been
achieved. The discussion begins by giving a translation required for simple blocks (3.5.1). It then
shows to translate a block that refers to variables outside the block (3.5.2) or that has arguments
that are passed to the block (3.5.3). It then proposes a way of translating that ensures that the Java
translation holds on to the enclosing context and scope of where the block was defined in the
same way that Smalltalk does (3.5.4). Finally, it proposes a way of translating blocks that have
multiple exit points (3.5.5). These different translation issues are illustrated in a step by step
fashion from one subsection to the next, in each case requiring an enhancement of the approach
proposed in the previous section.

In the simplest case of a Small talk block it will execute a few statements and return a result, the
result of the last statement executed. In this respect, the Smalltalk block can be treated like a
function. An example of such a block is the following:

simpleFunction I
simpleFunction .- [2 + 3].
simpleFunction value

Inspecting the result of Figure 85 will yield the Small Integer with value 5. To translate Figure
85 it is necessary to introduce new translation rules for the targeted Java source.

Smalltalk has a class BlockContext and it thus follows that the translation should have an
abstract superclass stj .BlockContext for all the behaviour common to the translated Java
source. The implementation for the fIrst iteration of stj .BlockContext will be as follows:

public class stj.BlockContext extends stj.Object
{

public stj.BlockContext() {}
public stj.Object value()

{

return stj.Object. __ nil;

An empty constructor method is needed for creating an instance of stj .BlockContext as well
as a valueO method that, in the present case, simply returns the translated nil Smalltalk object.

In seeking to translate the Smalltalk code in Figure 85, the contents of the value () method has
to be translated differently. It has to be generated by, inter alia, applying the translation rules
defIned in sections 3.1 to 3.4. The resulting translation is shown in the Java excerpt in Figure 87.

stj.Object simpleFunction = null;
simpleFunction = new stj.BlockContext()

{
public stj.Object value()

{
return (new stj.Integer(2)) .add((new stj.Integer(3)));
} / * value () * /

} ;

simpleFunction.value() ;

Note the use of an anonymous inner class (discussed in section 2.2.2.2). It is used to define a class
of type stj. BlockContext that differs from the default stj. BlockContext class.
Specifically, the new class has a customised value () instance method. By virtue of the code
fragment new stj. BlockContext () an instance of the anonymous class is created. This
instance is assigned to the variable simpleFunction. The Java code
simpleFunction. value () corresponds to the last line of the Smalltalk code in Figure 85. See
section 2.2.2.2 for a more in-depth discussion on anonymous classes in Java.

To illustrate how a Smalltalk block holds on to the enclosing context, a block is defined (in
Figure 88) that refers to two variables outside the definition of the block. The one is a variable
that is local to the method that contains the block. The other is an argument to that method.

returnBlock: argument
I simpleFunction localVariable
localVariable := 3.
simpleFunction := [2 * localVariable + argument] .
"simpleFunction

This simple example explains how the block holds on to the necessary variables and when
executed it will refer to them and continue in its defined context. This happens at runtime. The
result of executing the statements in Figure 88 is the block object referenced by the variable
simpleFunction. In the block object, the variable localVariable is bound to 3.Of course,
to execute the statements, one would have to send a returnBlock: message to an appropriate
object with the argument having some value, in which case the variable called argument would
be bound to that sent value. Since the result is a block, it will be evaluated if it receives the val ue
message. Thus the code (returnBlock: 5) value would return 11.

To translate this block will require a slight modification in constructing a BlockContext object in
Java. Because of the restrictions on anonymous inner classes where the class cannot refer to any
variables outside the class unless the variables are declared final (see section 2.2.2.2), it is
necessary to introduce another level of indirection. One way around the restriction is to declare an
array of type stj .Object outside the anonymous class. The dimensions of the array correspond
to the number of variables appearing in the block. For each such variable, an integer with the
modifier final is declared outside the anonymous class, which will be used as an index of the
array. An assignment to a variable outside the block in the Smalltalk code is simulated by an
assignment to the array at the corresponding index in the Java code. Since the array is passed to
the anonymous class as a parameter, and since its indices (being final) can be referenced within
the anonymous class, assignment to the array can also occur within the anonymous class,
simulating assignments to variables that take place within the block and that occur as a result of a
value message to the block. The strategy is the following:

1. Tally the number of variables that are referenced in the block but are declared outside the
block.

2. Create an array of type stj .Object with the name _temp and the number of elements in
the array equal to the tally in step 1.

3. Assign a number to each variable and use this as the index into the array created in step 2. For
this purpose, declare a local integer variable with modifier final and with name defined by
a prefix _idx_ and a suffix corresponding to the name of the Smalltalk variable.

4. Copy the value of the Smalltalk variable into the indexed element of the array whenever a
Smalltalk assignment to that variable occurs.

6. When constructing a block object pass the array in as an argument for the block to use. Due
to Java's garbage collection features the array will be released when no other object
(including the newly created block) refers to the array.

To save space in every method and prevent the generation of different named local temporary
arrays it was decided that every object in the system have access to an array by declaring an array
in stj .Object - called _temp. By referring to this. _temp the translator may keep on
using the same name for the temporary array even when having nested levels of block definitions.
The following declaration was thus added to stj .Object as seen in Figure 89.

I public stj.object _temp[] = null;

Figure 89. Extra declaration added to stj .Object

An additional constructor for stj .BlockContext was also defined, as shown in Figure 90,
allowing for an array to be passed as a constructor argument in order to initialise the _temp
variable.

public class stj.BlockContext extends stj.Object
{

public stj. BlockContext () {oo.} -defined as before
public stj.BlockContext(stj.Object tempList[])

{

_temp = tempList;
}

public stj. Object value () {oo.} -defined as before
}

Figure 90. Augmented definition of stj .BlockContext with new constructor accepting
temporary array

public stj.Object methodl_(stj.Object argument)
{

/* Translation of Smalltalk variable declaration starts here */
stj.Object simpleFunction = null;
stj.Object localVariable = null;

/* Translation that is triggered by the presence of a block */
final int __ idx_localVariable = 0;
final int __ idx_argument = 1;
this. __ temp = new stj.Object[2);
this. __ temp[__ idx_localVariable) = localVariable;
this. __ temp[__ idx_argument) = argument;

/* Translation of localVariable := 3 */
this. __ temp[__ idx_localVariable) = (new stj.lnteger(3));

/* Translation of simpleFunction := [2 * localVariable + argument) */
simpleFunction = new stj.BlockContext(__ temp)

{
public stj.Object value()

{
return (new stj.lnteger(2)) .mul(

this. __ temp[__ idx_localVariable)) .add(
this. __ temp[__ idx_argument));

/* value() */
} ;

/* Translation of AsimpleFunction */
return(simpleFunction);
}

Another example (Figure 92) will show how a variable is passed into a block as an argument and
how the block uses the updated variable (argument) every time.

TestBlock»getBlock: aVar
I complexFunction localVariable
localVariable := aVar * 2.
complexFunction := [:x I x * localVariable].
"complexFunction

TestBlock»test
I function I
function := self getBlock: 1.
STJTranscript cri show: ((function value: 2) printString).
function := self getBlock: 2.
STJTranscript cri show: ((function value: 2) printString).

When executing the code in Figure 92 the Transcript window prints out 4 and 8 respectively.
Note the use of the value: message to a block. If it is necessary to send two arguments to a
block the val ue :val ue: message will be sent. The Squeak Smalltalk implementation caters for
up to four arguments through the value: val ue :val ue :val ue: message and if more than four
arguments are necessary then the valueWithArguments: message can be used which accepts
an array with a variable number of arguments.

Count the number of arguments in the block and choose the appropriate value_(stj .Object
arg) up to value_value_value_value_(stj.Object arg1, stj.Object arg2,
stj .Object arg3, stj .Object arg4) method. If there are more than four arguments use
the valueWi thArguments_ (stj .Obj ect args []) method.

public stj.Object getBlock_(stj.Object aVar)
{

stj.Object complexFunction = null;
stj.Object localVariable = null;

this. __ temp = new stj.Object[l];
final stj.Object __ blocks[] = new stj.BlockContext[l];

this. __ temp[__ idx_localVariable] = aVar.mul((new stj.lnteger(2)));
complexFunction = new stj.BlockContext(__ temp)

{

public stj.Object value_(stj.Object x)
{

return(x.mul(this. __ temp[__ idx_localVariable]));
/* value() */

} ;

return(complexFunction);
}

public stj.Object test ()
{

stj.Object function = null;

function = this.getBlock_((new stj.lnteger(l)));
STJTranscript.cr() .show_(function.value_((new

stj.lnteger(2))) .printString());
function = this.getBlock_((new stj.lnteger(2)));
STJTranscript.cr() .show_(function.value_((new

stj.lnteger(2))) .printString());
return (this) ;
}

In Smalltalk a BlockContext is a first class object, it can be passed around as an argument and it
has its own state. This allows BlockContext objects to be created in one context and to be
executed in another context while retaining their own context. The next example illustrates this
property:

TestBlock»getABlock: aBoolean
I x b I
x := O.
aBoolean

ifTrue: [b := [x+l]]
ifFalse : [b := [x+2]].

x .- 100.
"b

TestBlock»testBlock: aBoolean
I block x v I
block := self getABlock: aBoolean.
x := 200.
v := block value.

TestBlock»run
I tb I
tb := TestBlock new.
Transcript cri show: (tb testBlock: true) printString.
Transcript cri show: (tb testBlock: false) printString

In Figure 94, getABlock: ,creates a block with a reference to a local variable x and it returns
with "b where b is a reference to a block. In another method, testBlock, this returned
object is assigned to the variable called block and is subsequently sent the message value. The
result is returned in the variable v and is eventually printed. The example serves to illustrate that a
block executes in its defining context.

Consider the getABlock: method: In Smalltalk the BlockContext will hold onto the state of
the variable x. This means that if x is modified after a block's definition (as, for example, as a
result of the assignment x : = 100 in Figure 94), then the preceding block containing x will
acquire the modified value of x. This behaviour has to be reflected in the translated Java code.

Because of the translation method, access to the variable x is indirect and through an array.
Furthermore, both the block definition and the method definition hold on to the same array. They
can thus both access and change the same variable.

Even though there is a variable called x in the context where the value message is sent (Le the
testBlock context), the block has already been bound to the variable x in the method
getABlock: . Note, also, that the binding is dynamic. The variable x is changed from an initial
value of 0 to a new value of 100 after the creation of the block and this change is reflected in the
block when it is subsequently executed. As a result TestBlock»run causes 101 and 102 to be
displayed, not 1 and 2 as would have been the case if an x value of 0 was used, nor 201 and 202
as would have been the case if an x value of 2 0 0 was used.

public class TestBlock extends stj.Object
{
public stj.Object getABlock_(stj.Object aBoolean)

{

stj.Object x
stj.Object b

null;
null;

final int __ idx_b 0;
final int idx_x 1;

this. __ temp = new stj.Object[2];
this. __ temp[__ idx_x] = (new stj.Integer(O));

aBoolean.ifTrue_ifFalse_(
new stj.BlockContext(__ temp)

{
public stj.Object value()

{

return (this. __ temp[__ idx_b]=new stj.BlockContext(__ temp)
{

public stj.Object value()
{

return (this. __ temp[__ idx_x] .add((new
stj. Integer(l)))) ;

}) / * value () * /
} ;

/* value() */
} I

new stj.BlockContext(__ temp)

{

public stj.Object value()
{

return (this. __ temp[__ idx_b]=new stj.BlockContext(__ temp)
{

public stj.Object value()
{
return (this. __ temp[__ idx_x] .add((new

stj.lnteger(2)));
} / * value () * /

} ;

} /* value() */
}) ;

this. __ temp[__ idx_x] = (new stj.lnteger(lOO));
return(this. __ temp[__ idx_b]);
}

public stj.Object testBlock_(stj.Object aBoolean)
{
stj.Object block = null;
stj.Object x null;
stj.Object v = null;

block = this.getABlock_(aBoolean);
x = (new stj.lnteger(200));
v = block.value();
return (v);
}

public stj.Object run()
{

stj.Object tb = null;
tb = metaclass.TestBlock. __ class. __new();
Transcript.cr() .show_(

tb.testBlock_(stj.Object. __ true) .printString());
Transcript.cr() .show_(

tb.testBlock_(stj.Object. __ false) .printString());

The example in Figure 96 below shows how a method called range: returns 10 if the argument
amoun t is less than 100 « 1a a) ; otherwise it returns 2o. This method therefore has two exit
points.

range: amount
Aamount < 100 ifTrue: [10] ifFalse: [20]

Suppose a new implementation of range: is required where it returns 10 if the argument amount
is less than 100 « 100), 20 if the argument amount is greater than or equal to 100 (>= 100)
and less than 150 « 150) and 30 if the argument amount is greater than or equal to 150 (>=
150). An implementation is shown in Figure 97.

range: amount
Aamount < 100

ifTrue: [10]
ifFalse: [(amount >= 100 and: [amount < 150])

ifTrue : [2a]
ifFalse: [amount >= 150

ifTrue : [30]

Note that in this code, there are two exit points out if the block following the outer ifFalse:
method: the exit returning 20 and the exit that returns 30. In general, both methods and blocks in
Smalltalk are allowed to have multiple exit points. It frequently happens that an implementation
such as in Figure 97 with multiple exit points can be rewritten to make it more readable,
expressing the intent more clearly and using the minimum number of comparisons. What is
required is the use of a so-called non-local return within blocks. The rewritten implementation is
shown in Figure 98.

range: amount
amount < 100 if True: [A10].
amount < 150 if True: [A20].
30

Note the use of a non-local return statement in the blocks themselves (indicated by the A symbol
immediately following the [symbol). The effect of this is that the block will return immediately
and return out of the enclosing context in which it is defined. Assuming an argument of 95 is
passed to range: If the block only had been executed, i.e. if the block had been defined as [10]
instead of [A 1 0] , then the method would continue execution and the result returned would be 30
and not 10 as expected. This is because Smalltalk always returns the result of the last statement
executed in a method or a block. Even if the last statement was written as amount >= 150
if True : [30] the result of evaluating it would return nil since 95 is not >= than 150.

The next example, figure 99, shows how Smalltalk blocks are bound to their enclosing context
not only in the sense of relying on variable bindings in that context, but also in the sense of
executing the non-local return in that context, no matter where the block was evaluated. In
method1 a block is created which returns the string 'non-local return'. This block is then
passed to method2: where it is evaluated by receiving the value message.

Object subclass: #TestBlock
instanceVariableNames: 'resultVar'

TestBlock»methodl
I block I
resultVar := 'nothing'.
block := [A 'non-local return'].
self method2: block.
resultVar := resultVar , ' methodl'.

TestBlock»method2: aBlock
aBlock value.
resultVar := resultVar , ' method2'

TestBlock»result
AresultVar

TestBlock»run
I tb I
tb := TestBlock new.
Transcript cr; show: tb methodl.
Transcript cr; show: tb result.

When executing the run method of TestBlock the two lines shown in Figure 100 are written to
the Transcript window.

I
non-~ocal return

.nothlng

Thus, the effect of evaluating the block is that the block returns immediately out of the context in
which it is defined. (See the previous section with a similar example related to blocks and
variables.) As a result, neither the assignment statement in method2: nor the last two statements
in methodl are executed. Consequently, tb methodl returns the string 'non-local
return', while tb result returns the initial value of the variable resul tVar, namely
'nothing' .

Had the line self method2: block in methodl been replaced by block value the
outcome would have been the same.

One way of translating this type of Smalltalk block is to make use of the properties of Java
exceptions, discussed in section 2.2.3. What has to be simulated is the fact that when a block
returns, it returns out of the context in which it is defined and does not simply continue executing
the statements that follow after the block evaluation statements. It is thus necessary to make a
small change to the definition of stj. BlockContext. The final version of
stj .BlockContext is shown in Figure 101.

package stj;
public class BlockContext extends stj.Object

{

public stj.Object __ result = null;
public BlockContext() {}
public BlockContext(stj.Object tempList[])

{

__ temp = tempList;
}

public stj.Object value() throws BlockException
{
return stj.Object. __ nil;
}

The important difference is the fact that the value () method can now throw a
BlockException. A BlockException will be used to keep track of which block threw the
exception which will indicate if the method enclosing the block should return or not. The
BlockException object will also hold on to the result of the last executed statement in a block.
Figure 102 shows the definition of stj. BlockException. When a BlockException is
created it expects two arguments in the constructor: the first one is a reference to the block that
throws the exception; and the second one is the result of the last statement executed in the block
before throwing the exception.

package stj;
public class BlockException extends Exception

{

public stj.Object outcome = stj.Object. __ nil;
public stj.Object block = stj.Object. __ nil;
public BlockException(stj.Object aBlock, stj.Object aResult)

{

super ("Block Exception");
outcome = aResult;
block = aBlock;
}

Another few lines of code are necessary in the translation process. Two extra variables,
__ blocks [] and __ resul t will be used. The __ blocks [] variable is an array being used to
refer to all the blocks being created in the translation process in each method. In the case of a
non-local return the __ resul t variable is assigned the result of the statement being returned via
the non-local return and a throw statement is executed with the current block context being
executed as an argument.

The next step is to enclose the code creating the block in a try clause and to provide a subsequent
catch clause. This will allow the block to return (throw an exception) without executing the rest
of the statements in the try block. Once an exception is thrown, the exception's block variable is
compared to the block that was defined in the try clause. If the block variable is equal to the block
variable in the exception object this means that the block defined in the try clause threw the
exception and is signaling a return. This check is necessary for cases where there are multiple
blocks defined and/or the blocks are evaluated a few levels down in the call stack. If there is no
match between the exception's block variable and the blocks created in the try clause, the
exception is passed on to the next level.. Figure 103 shows the necessary code to be added to the
translation.

try {
..J / block is defined - _blocks [0] is assigned to the block instance

block = _blocks[O] = new stj.BlockContext()
{

public stj.Object value() throws BlockException
{

_result = ... /* result of the non-local return statement

throw new stj.BlockException(this, _result);
} /* value() */

} ;

other statements..J /
}

catch
{

(BlockException e)
if (((BlockException)e) .block == _blocks[O])
return ((BlockException)e) .outcome; throwe;

The result of translating Figure 99 is shown below in Figure 104. The shaded areas illustrates the
extra translation rules for blocks mentioned above in Figure 103.

public class TestBlock extends stj.Object
{
stj.Object resultVar;
public static void main(java.lang.String[] args)

{

try {
stj.Object tb = null;
tb = metaclass.TestBlock._class._new();
Transcript.cr() .show_(tb.methodl());
Transcript.cr() .show_(tb.result());
}

catch (BlockException e) {};
} public stj.Object methodl() throws BlockException
{

try {
resultVar = (new stj.String("'nothing'"));
block = _blocks[O] = new stj.BlockContext()

{

public stj.Object value() throws BlockException

} ;

this.method2_(block);
resultVar = resultVar.commaConcatenate

((new stj. String (II'methodl' ")));
return((new stj.String("'end of methodl'II)));
}

catch (BlockException e)
{

}
public stj.Object method2_(stj.Object aBlock) throws BlockException

aBlock.value();
resultVar = resultVar.commaConcatenate

((new stj. String ("' method2' ")));
return(this);

}

public stj.Object result() throws BlockException
{

return(resultVar);
}

It is necessary for the translator to make at two passes through the code. In the first pass, it counts
the number of blocks needed to declare the size of the array _blocks [].In the second pass, the
translator generates the Java code.

The occurrence of nested blocks in Smalltalk is common and it follows naturally that the
translator must be able to translate it successfully. Since all blocks in Smalltalk are treated as
objects, each with their own executing context it is not necessary in the translation to have
different levels of exception handling, each with its own scope. The following example in Figure
105 illustrates a block accepting one argument being returned from within 2 levels of blocks.

TestBlock»run
I tb I
tb := TestBlock new.
STJTranscript cr; show: ((

(tb testBlock: true arg2: true) value: 1) printString).
STJTranscript cr; show: ((

(tb testBlock: true arg2: false) value: 1) printString).
STJTranscript cr; show: ((

(tb testBlock: false arg2: true) value: 1) printString).
STJTranscript cr; show: ((

(tb testBlock: false arg2: false) value: 1) printString).

TestBlock»testBlock: arg1 arg2: arg2
arg1 = true

ifTrue : [
arg2 = true

Since each block is handled without being dependent on the relative depth to other blocks the
translation is straightforward and follows in Figure 106.

public class TestBlock extends stj.Object
{
public static void main(java.lang.String[] args)

{
try

{
stj.Object tb = null;
tb = metaclass.TestBlock. __ class. __ new();
STJTranscript.cr() .show_(tb.testBlock_arg2_(

stj.Object. __ true, stj.Object. __ true) .value_((
new stj.lnteger(l))) .printString());

STJTranscript.cr() .show_(tb.testBlock_arg2_(
stj.Object. __ true, stj.Object. __ false) .value_((

new stj.lnteger(l))) .printString());
STJTranscript.cr() .show_(tb~testBlock_arg2_(

stj.Object. __ false, stj.Object. __ true) .value_((
new stj.lnteger(l))) .printString());

STJTranscript.cr() .show_(tb.testBlock_arg2_(
stj.Object. __ false, stj.Object. __ false) .value_((

new stj.lnteger(l))) .printString());
}

catch (BlockException e) {};
}

public stj.Object testBlock_arg2_(stj.Object arg1, stj.Object arg2)
throws BlockException

{

this. __ temp = new stj.Object[l];
this. __ temp[__ idx_arg2] = arg2;
final stj.Object __ blocks[] = new stj.BlockContext[lO];

try
{
arg1.equalsValue(stj.Object. __ true) .ifTrue_ifFalse_(

__ blocks [0] = new stj.BlockContext(__ temp)
{
public stj.Object value() throws BlockException

{
__ result = this. __ temp[__ idx_arg2] .equalsValue(

stj.Object. __ true) .ifTrue_ifFalse_(
__ blocks [1] = new stj.BlockContext(__ temp)

{
public stj.Object value() throws BlockException

{
. ~ '._AAAm.mm__ &:JiW_.' ._. ',";;'=-

public stj.Object value_(stj.Object x)
throws BlockException
{

__ result = x.mul((new
stj.lnteger(3))) ;

return (__ result) ;
} / * value () * {

} ;
throw new stj.BlockException(this, __ result);
} /* value() */

}

, __blocks [3] = new stj.BlockContext(__ temp)
{

public stj.Object value() throws BlockException
{

__ result = __ blocks[4] = new
stj.BlockContext(__ temp)
{

'=pu'blicstj .Object value_(st3.0bject x)
throws BlockException
{
__ result = x.mul((new

stj.lnteger(2»));
return (__ result) ;

} ;

throw new stj.BlockException(this, __ result);
} /* value() */

}) ;

return (__ result) ;
} /* value() */

}

, __blocks[S] = new stj.BlockContext(__ temp)
{

public stj.Object value() throws BlockException
{

__ result = this. __ temp[__ idx_arg2] .equalsValue(
stj.Object. __ true) .ifTrue_ifFalse_(

__blocks [6] = new stj.BlockContext(__ temp)
{

public stj.Object value() throws BlockException
{

__ result = __ blocks[7] = new
stj.BlockContext(__ temp)
{

public stj.Object value_(stj.Object x)
throws BlockException
{
__ result = x.mul((new

stj.lnteger(l)));
return(__ result)i
} / * value () *

} ;

throw new stj.BlockException(this, __ result);
} /* value() */

}
, __blocks [8] = new stj.BlockContext(__ temp)

{

public stj.Object value() throws BlockException
{

__ result = __ blocks[9] = new
stj.BlockContext(__ temp)
{

public stj.Object value_(stj.Object x)
throws BlockException
{

__ result = x.mul((new
stj.lnteger(O))) ;

return(__ result)i
} /* value() */

} ;
throw new stj.BlockException(this, __ result);
} /* value() */

}) ;

return (__ result) ;
} /* value() */

}) ;

return(stj.Object. __nil) ;
}

catch (BlockException e)
{

if (((BlockException)e) .block == __ blocks[O])
return ((BlockException)e) .outcome;

if (((BlockException)e) .block == __ blocks[l])
return ((BlockException)e) .outcome;

if (((BlockException)e) .block == __ blocks[2])
return ((BlockException)e) .outcomei

if (((BlockException)e) .block == __ blocks[3])

return «BlockException)e) .outcome;
if « (B'lockExceptionf e;r: block == _blocks [4TJ'-'~~~-'

return «BlockExcepti<;?pJ eJ .out£om~.
if «(BlockException)e) .block == _blocks[5])

return «BlockException)e) .outcome;
if «(BlockException)e) .block == _blocks[6])

return «BlockException)e) .outcome;
if « (B'lockExcepti'oii)'er:blockm;=_blocks [7])

return (JBlockExc~ption) e) .out,S~.9m~.i.~ ~
if «(BlockException)e) .block == _blocks[8])

re~J,<BlockException) e) .outcomei-=
if «(BlockException)e) .block == _blocks[9])

~ .••_~j:. :urn jj B:L9.G!SJiti);S;;,§12J:ion L§L 9JdJ:S;;9,J;!).,§!
throw e;

In the translation process a number of extra rules is formed, one of them being that references to
self in Smalltalk will translate to the this variable in Java. The rule is correct, except for the
case where the self variable is referred to in the context of a block. By replacing the reference to
self with this, the context of the BlockContext is accessed, instead of the outer context of the
object in which the BlockContext is defined. This result in the wrong context being used with
incorrect results. Figure 107 shows an example of referring to self in the block being passed to
the timesRepeat: method.

TestBlock»run
100000 timesRepeat~: _

(self testBlock: true arg2: true) value: 1.

TestBlock»testBlock: arg1 arg2: arg2
"Same definition as before" _

The translation process in this case will involve a call on all BlockContext objects in a method to
test if a reference to self is made. In the case of a reference to self, an extra variable self will
be added to the variable declaration section of the method. Since the self variable will be
accessed in the BlockContext it must be declared final according to section 2.2.2.1.1. In Figure
108 the translation shows the declaration ofthe final self variable as well as the usage.

public class TestBlock extends stj.Object
{

public stj.Object runt) throws BlockException
{

final stj.Object self = this;
(new stj.lnteger(lOOOOO)) .timesRepeat_(

__blocks [0] = new stj.BlockContext()
{

public stj.Object value() throws BlockException
{

self.testBlock_arg2_(stj.Object. __ true
,..§...tj .Obj§ct. true) .valuejjnew s.tj.Integer(l));

return (__ result) ;
} 1* value() *1

}) ;

return(this) ;
}

catch (BlockException e)
{

if (((BlockException)e) .block == __ blocks[O])
return ((BlockException)e) .outcome;

throw e;

}

public stj.Object testBlock_arg2_(stj.Object argl, stj.Object arg2)
throws BlockException
{

II Same definition as before

As discussed in 2.2.3.4 there is a marked difference in the Java VM when returning from a
method via throwing an exception versus a normal return. Performance tests were done on the
normal usage of blocks. The first test involved running the code in Figure 107 in the Squeak
Smalltalk VM. The second test executed the translated Java code in Figure 108 to illustrate the
impact of the return via exception mechanism. The last test measured the performance of
returning via a normal Java return statement with the created block object as an argument. The
results are tabulated below in Figure 109 and illustrates the overhead on the Java VM in locating
the correct exception handler. The tests were executed three times and the average taken.12

Execution strateev Result in milliseconds

Squeak Smalltalk VM 925

Java translation with exception handlim! return 12685

Java translation with method return 985

The results are not surprising since section 2.2.3.4 illustrated the marked difference in speed
between a normal method return and locating an exception handler. The test above shows a
dramatically reduced factor in the overhead between a normal method return and the exception
handling strategy. It is envisaged that in normal Smalltalk examples the factor might even drop
more to more acceptable levels, depending on the number of non-local returns that are translated
and actually executed.

12 The benchmarks were performed on an Intel Pentium 4 - IGHz, running Linux (Red Hat 7.2)
with Squeak 3.0 and version 1.3.1 of the Sun Java Development Kit.

The purpose of this Chapter was to explain the mapping from Smalltalk source code to Java
source code. It is now possible to translate most Smalltalk programs to Java source that will
execute in a Java Virtual Machine. Smalltalk features not translated will be addressed in 5.2.1.
The area where Java is lacking is in its reflection capabilities and to treat a block of code as an
object that will make BlockClosures easier to use. The use of blocks is integral to Smalltalk and
the translated Java source of Smalltalk blocks is quite difficult to follow.

4. Implementing a translator

In order to translate from Smalltalk source code to Java it is necessary to develop a scanner and
parser program to do the lexical and syntax analysis of the Smalltalk code. It was decided to use
the Squeak Small talk system as a development environment. Adapting the already existing
scanner and parser in the Squeak Small talk system shortened the implementation cycle of the new
scanner and parser. The output ofthis code is a parse tree that is used to generate Java code. It is
thus clear that there are two distinct parts in the translation phase from a source language to a
target language. Wirth (1996:3) refers to these modules as the front end and back end.

The diagram above shows the front end generating a parse tree as output and passing it to the
back end. The advantage of de-coupling the source language and target architecture is that
different source languages can have their own front ends generating parse trees for a single back
end. The natural effect is that instead of implementing m * n translators (m source languages and
n targets) only m + n translators need to be built.

The implementation of a front end deals with lexical analysis and syntax analysis. The lexical
analyser reads the input source and groups the input stream into tokens. After the lexical analyser
grouped the input into tokens the tokens are passed to the syntax analyser.
The syntax analyser has two functions. The first one is to verify that the tokens are valid and
permitted by the specification of the source language. For example, assume the following
expression is passed to the lexical analyser:

After the lexical analysis the expression will appear to the syntax analyser as the following token
sequence:

I identifier + * identifier

Although the token sequence consists of valid tokens, the syntax is wrong and will be rejected by
the syntax analyser.

The second function of the syntax analyser is to group the tokens into a hierarchical structure
known as a parse tree. The following expression:

IA+B*C

will be translated into a parse tree where certain parts of the token sequence are grouped together.
Depending on the operator precedence the parse tree will be different. The diagram below shows
the parse tree where the multiplication operator has a higher precedence over the plus operator as
in languages like Java, C/C++ and Pascal. The second parse tree shows how the Smalltalk parser
will generate the parse tree. Since Smalltalk does not have any operator precedence the syntax
analyser parses the messages from left to right, which explains the + message being evaluated
before the * message.

Once the correct parse tree is constructed by the parser it is passed to the back end to generate
code. The code generator will start with the root node and systematically traverse all the nodes in
order to produce code in the target language. In section 4.4 the code generation process will be
discussed. Before doing so however, a brief account of Smalltalk's grammar is presented in
section 4.1, followed by a description of the lexical analyser (section 4.2) and parser (section 4.3)
that were modified and adapted in Squeak Small talk.

It should be emphasised that these discussions are not intended to be detailed description of the
Smalltalk to Java prototype translator that has been built to test the ideas spelt out in previous
chapters. Instead, a CD accompanies this dissertation that contains all the source code of the
Smalltalk to Java translator in a Squeak Smalltalk image, ready to be executed. The source code
of all the samples used for illustrating the translator is contained in the image as well. In
Smalltalk the whole environment with all the source code and runtime objects are persisted in a
single file referred to as the image.

In Squeak Smalltalk all classes (with their source code) belong to a category. The STJ-Translator
category contains the STJTranslator class. STJ-Compiler contains the Scanner (stj.Scanner), the
Parser (stj.Parser) and all the parse nodes produced by the Parser. STJ-Tests contains all the
classes used for testing the translator.

When a class is given to the translator (STJTranslator) instance as an argument the translator
translates the Smalltalk source to two Java source files according to the guidelines discussed
previously. The Java source files are the following: one for the metaclass (with all the class
methods) and one for the class (with all the instance methods).

The Smalltalk language itself is very simple. Kay (1996) reports that the simplicity was spurred
by his challenge to his colleagues in 1968 to produce a clean and simple language with a
grammar that could fit on a napkin. With some effort Kay and his team succeeded in being able to
write down a simple grammar on a single page. This section explains the Smalltalk grammar as it
is implemented today in Extended Backus-Naur Form (EBNF).

A method defmition consists of a method name that is known as the selector or name of the
method. The method name is followed by optional temporary variable declarations and then a
<statements> sequence.

<method definition> ::=
<message pattern>
[<temporaries>]
[<statements>]

<message pattern> ::=
<unary pattern> I
<binary pattern> I
<keyword pattern>

<unary pattern> ::= identifier
<binary pattern> ::= binarySelector identifier
<keyword pattern> ::= (keyword identifier)+

A <unary pattern> which consists only of an identifier. An example is 'print' and an
example of an associated message is 'object print' which sends the print message to an
object.

A <binary pattern> which consists of a binary selector and one argument. An example is
'+ l'and an example of an associated message is 'value + l'which sends the + message to an
Integer object with another Integer object as an argument.

A <keyword selector> which consists of one or more keywords and the same number of
arguments. For example 'value max: y' means sending a message to the value object

requesting the maximum of itself and the argument y. In most other languages it will be written
as'max(value, y)'.

<temporaries> ::= 'I' <temporary list> 'I'
<temporary list> ::= identifier*

After the declaration of temporary variables it is followed by a list of statements. Each statement
except the final statement is an <expression>. The last statement in the <statements>
sequence may be either an <expression> or <return statement>. Each <expression> is
separated from its following <statement> by a '.'. A period is optional following the last
statement. If the last <expression> in a <statements> sequence is preceded by a '1\' the
<expression> forms a <return statement> and the result of the <expression> is the
value of the return statement. For the purposes of the present study, a slight modification was
made to <statements> in to the Smalltalk grammar to allow a <java statement> which
contains lines of Java code. These lines of Java code are output directly in the translated code.
This feature is useful for accessing Java only constructs and/or variables that are not defined in
the Smalltalk system. These statements are used for debugging purposes in translations and are
not part of the translation scheme per se.

<statements> ::=

<return statement> ['.'] I
«expression> ['.' [<statements>]])
<java statement>

<return statement> ::= ,1\, <expression>
<java statement> .. - '{' 'java code to be injected in the generated
code' '}'

An <expression> is either an <assignment> or a <basic expression>. A <basic
expression> consists of a <primary> optionally followed by <messages> or <cascaded
messages>. An <expression> describes a sequence of tokens that refers to an object or a
computation that produces a reference to an object. An <expression> may optionally specify
that its value is to be assigned to one or more variables.

An <assignment> is a variable name that is called the target of the assignment. An
<assignment> may assign its value to multiple target variables by utili sing multiple
<assignment> clauses.

<expression> ::=
<assignment> I
<basic expression>

<assignment> ::= identifier ':=' <expression>
<basic expression> ::= <primary> [<messages> <cascaded messages>]
<primary> :: =

identifier I
<literal> I
<block constructor>
('(' <expression> ')'

A block can be created and manipulated as an object. A block is always defined within another
function, called its enclosing function. The result is that a block is always nested within a method
or another block.

Evaluation of a block is finished when the last statement of the block has executed. The value of
the last statement is returned as the value of the message sent that executed the block. If the last
statement of the block was a <return statement> then the evaluation of the block's enclosing
function is also terminated and the value of the <return statement> is used as the return
value of the enclosing function.

Expressions within a block may refer to temporary variables and arguments in the enclosing
function. In this way a block is an independent closure and any referenced variables are bound to
the blocks context. These bindings will be maintained for as long as the block is used in the
system.

<block constructor> ::= '[' <block body> ']'
<block body> ::= [<block argument>* 'I '] [<temporaries>] [<statements>]
<block argument> ::= ':' identifier

Messages cause the activation of a method. There are three different types of "message sends".
They correspond to the three types; <unary message>, <binary message> and <keyword
message>. Every message sent results in a value that corresponds to the result returned by the
method. The receiver of a message is the value of the <primary> or the result returned by the
message sent to the immediate left of a message's selector. The receiver is a reference to an
object. The receiver and the arguments are evaluated before the message is sent and evaluated in
a left-to-right order.

Unary messages require no arguments. Binary messages require one argument, and keyword
messages take one or more arguments and are composed of a sequence of keywords followed by
expressions. It is possible to construct a <messages> clause with multiple messages to be sent.

A cascade is a sequence of messages that are all directed to the same object. Only the fIrst in such
a sequence has an explicit receiver specifIed. The receiver of the subsequent messages is the same
object as the receiver of the of the initial message in the sequence.

<messages> ::=

«unary message>+ <binary message>* [<keyword message>])
«binary message>+ [<keyword message>])
<keyword message>

<unary message> ::= identifier
<binary message> ::= binarySelector <binary argument>
<binary argument> ::= <primary> <unary message>*
<keyword message> ::= (keyword <keyword argument»+
<keyword argument> ::= <primary> <unary message>* <binary message>*
<cascaded messages> ::= (';' <messages»*

The following productions are used in the lexical analyser to produce the tokens used in the
syntax analysis phase.

keyword ::= identifier '.'
identifier::= letter (letter I digitl*
binarYSelector ::= binaryCharacter+
binaryCharacter ::= 'special characters, i.e. +, -
letter::= 'alphabetic characters'
digit::= 'digits from 0-9'

The following identifiers are reserved words in Smalltalk. They may only be used as a <primary>
and are defined as follows:

nil A constant binding to a unique object. The scope of the binding is the entire program.
Variables that have not been initialised initially are assigned this value.

self Within a method, a constant binding to the receiver of the message that activated the
method. The scope of the binding is a single method activation. In a class method it is a
constant binding to the associated class object.

super Within a method, a constant binding to the receiver of the message that activated the
method. The scope of the binding is a single method activation. The binding of super is to
the same object as the binding of self, but causes message lookup to start in the
superclass of the class containing the method in which super appears, rather than starting
in the class of the receiver.

To perform lexical analysis the Squeak Smalltalk Scanner was used and modified to include the
changes made in the Smalltalk grammar for translating to Java.

The implementation of the Scanner is fairly straightforward. The next 4 methods, ini tialize,
step, scanToken and xDigi t are excerpts from the Smalltalk image. For full source code refer
to the class named stj .Scanner in the Squeak-STJ image on the accompanying CD. It has a
class variable, TypeTable, an instance of an Array with ASCII codes being the index and the
values at the index of the array being a symbol describing the corresponding type of the lexeme.
The array is initialised with statements such as those below - i.e. initialising the delimiter, digit
and letter lexeme codes.

stj.Scanner class»initialize
TypeTable atAll: #(9 10 12

space"
TypeTable
TypeTable
TypeTable

atAll:
atAll:
atAll:

($0 asciiValue to: $9 asciiValue) put: #xDigit.
($A asciiValue to: $z asciiValue) put: #xLetter.
($a asciiValue to: $z asciiValue) put: #xLetter.

An important method on the Scanner is the step method. This returns the current character in the
input stream and increments the position in the stream to point to the lookahead character.

stj.Scanner»step
I t1 I
t1 := hereChar.
hereChar := aheadChar.
source atEnd

ifTrue: [aheadChar := 30 asCharacter]
ifFalse: [aheadChar := source next].

A t1

The scanToken method is the most important method. It starts by scanning for white space
(previously defined as #xDel imi ter) and when the white space is finished the type of the next
token is determined. If the token type determines that the token consists of more than one
character (by having x as the first character in the description of the token type) the rest of the
token is read from the stream by the perform method. Note the use of Smalltalk reflection where

the perform: message is sent to the object activating the relevant method associated with
tokenType. A good example is when the scanToken method encounters a character that
belongs to the #xDigi t set. The scanToken method will read the first character of the number
string and because it has an x as the first character the xDigi t method (shown in Figure 125)
will be performed on the scanner instance.

stj.Scanner»scanToken
[(tokenType := TypeTable at: hereChar asciiValue)

whileTrue: [self step].
mark := source position - 1.
(tokenType at: 1)

= $x
ifTrue: [self perform: tokenType]
ifFalse: [token := self step asSymbol] .

A token

The xDigi t method starts by simply setting the token type to #number. The highlighted line in
Figure 125 reads the number from the stream. The next few lines test for end of stream (EOS)
conditions. The readFrom: class method on Number accepts a stream (in this case the source
from the Scanner) and then reads a number from the stream, assigning it to the token variable and
then returning after increasing the current position in the source to the next token position.

stj.Scanner»xDigit
tokenType := #number.
(aheadChar = EOS

and:
[source skip: -1.
source next -= EOS])

ifTrue: [source skip: -1]
ifFalse: source : -2

The reason for this was to simulate in Smalltalk the package concept in Java whereby classes with
the same name can coexist in the system by having different package names prefixed to their
name. It was thus quite useful as it allowed the Squeak Small talk system to have an Obj ec t class
and a stj. Object class without conflicts. The stj. Scanner and stj. Parser classes
(modified) could also be kept separate from the original Scanner and Parser classes. It allowed
for transparent mapping between Squeak Smalltalk classes and their counterparts in the Java
translation instead of introducing a prefix in the class name of every Squeak Small talk class.

stj.Scanner»xLetter
I t1 I
buffer reset.
[((tl := typeTable at: hereChar asciiValue)

#xDigit])

whileTrue:
[buffer nextPut: hereChar.
hereChar := aheadChar.
source atEnd

ifTrue: [aheadChar := EOS]
ifFalse: [aheadChar := source next]].

(tl == #colon
or: [tl = #xColon and: [aheadChar -= $=]])
ifTrue:

[buffer nextPut: self step.
tokenType := #keyword]

ifFalse: [tokenType := #word].
token := buffer contents

For more examples of different types of tokens and how the scanner handles them refer to the
source code in the class stj .Scanner in the Squeak-STJ image. A full list of all the token types
is shown in Figure 127.

xBinary
xColon
xDelimeter
xDigit
xDollar
xDoubleQuote
xLetter
xLitQuote
xSingleQuote

The recursive descent parsing technique is simple to understand and to implement. A top-down
approach is followed in which the parser verifies that the syntax of the input stream is correct as it
is read from left to right. The parser depends on a basic operation - step (look-ahead) - which is
defined in Figure 123, section 4.2. It involves stepping through the source character by character
and determining the token which has been scanned. The parser then verifies token types against
EBNF requirements.

Another way to explain what a recursive descent parser actually does is the following: the parser
performs a depth-first search of the derivation tree for the string being parsed. This provides the
descent part of the name. The recursive property comes from how the parser is implemented, a
collection of recursive procedures, where each recursive procedure represents a production as
defined in the grammar in section 4.1. Thus for each non-terminal symbol in the grammar a
procedure is defined which constructs a parse node from the stream of tokens.

I tb I
tb := TestBlock new.
STJTranscript cr; show: tb value printString.

The code in Figure 128 will be used throughout this section as an example to illustrate the
implementation of the adapted Squeak Smalltalk (stj .Parser) recursive descent parser.

A parse tree resulting from parsing the code in Figure 128 is shown in Figure 130. Each type of
node (i.e. each type of ParseNode) illustrated in this parse tree will be discussed in the following
subsections. The keys used throughout this section are shown in Figure 129.


~~~ac_ .•.•_la_s_s 1 Parse Tree Node

rn=DArray

Instance of a
Class

 
 
 



I Variable Node (this)

 
 
 



The first production of interest is stj. Parser I s method named method. This method
represents the production as defined in section 4.1.1. Because a method consists of a pattern,
optional temporary variables and an optional list of statements (Squeak Smalltalk uses the block
procedure for a list of statements); the method for parsing a method from a stream on
stj .Parser follows the pattern seen in Figure 131.

stj.Parser»method
I selectorAndArgs temps block I
selectorAndArgs := self pattern.
temps := self temporaries.
block := self block.
Astj.MethodNode new

selector: (selectorAndArgs at: 1)
arguments: (selectorAndArgs at: 2)
temporaries: temps
block: block.

In discussing nodes below, only the child node relationships will be illustrated. The other
variables that belong to a Parse Node will not be shown. Thus in regard to MethodNode,
selector and argument are not discussed further. The variables having child relationships are:

 
 
 



 
 
 



The next important production of stj .Parser is the method named block. A block can have an
optional list of arguments, an optional list of temporary variables and an optional list of
statements. The pattern in Figure 133 resembles the method for parsing a block from a stream on
stj .Parser.

stj.Parser»block
I arguments temporaries statements
arguments := self blockArguments.
temporaries := self temporaries.
statements := self statements.
Astj.BlockNode new

arguments: arguments
temporaries: temporaries
statements: statements.

Note that the statements child is a list of ParseNodes and since ParseNode is the superc1ass of
all nodes in the parser this means that any of the parser's node types can be in the statement list.

 
 
 



The next production is the method named assignment. It consists of a left hand side and a right
hand side. The left hand side is the variable to which the result of the expression on the right hand
side is assigned. The code in Figure 135 illustrates the expression production. It returns true if
it does not encounter an expression, otherwise it returns one of three types of parse nodes;
AssignmentNode, BraceNode or CascadeNode. The pattern for parsing the assignment
production is shown in Figure 136.

stj.Parser»expression
(hereType == #word and: [tokenType == #leftArrow])

ifTrue: [Aself assignment: self variable] .
hereType == #leftBrace

ifTrue: [self braceExpression]
ifFalse: [self primaryExpression ifFalse: [A false]].

(self messagePart: 3 repeat: true)
ifTrue: [hereType == #semicolon ifTrue: [self cascade]].

A true

stj.Parser»assignment: varNode
I parseNode I
self assignmentToken.
parseNode := self expression.
Astj.AssignmentNode new

variable: varNode
value: parseNode.

The illustration in Figure 137 shows the variable and value children. True to the production
of an AssignmentN ode the va 1ue child can be any type of parse node.

 
 
 



 
 
 



The production for a VariableNode, illustrated in Figure 138, is straightforward and involves
keeping track of the variable name and other flags to indicate if it is a method argument or a
block argument.

 
 
 



The next production is the method named message on stj . Parser. A MessageNode has to
keep track of the receiver, the selector and arguments (if any). Because there are 3 types of
messages the Parser needs to detect which type of message is being sent to the receiver.13

13 Due to the long method list of message it is not repeated in here. The interested reader may
refer to the source code on the enclosed CD for full details.

 
 
 



l'"'. ' .c. .
'l!••.••\..ll:i'

key 'show:'

The production for the method named cascade on stj.Parser follows the pattern shown below in
Figure 141. A CascadeNode has a receiver and a list of messages being sent to it. Figure 142
illustrates the simplicity of CascadeNode.

cascade
I rcvr msgs I

parseNode canCascade
ifFalse: [Aself expected: 'Cascading not'].

rcvr := parseNode cascadeReceiver.
msgs := stj.OrderedCollection with: parseNode.
[self match: #semicolon]

whileTrue:
[parseNode := rcvr.
(self messagePart: 3 repeat: false)

ifFalse: [Aself expected: 'Cascade'].
parseNode canCascade

ifFalse: [Aself expected: '<- No special messages'].
parseNode cascadeReceiver.
msgs addLast: parseNode].

Astj.CascadeNode new
receiver: rcvr
messages: msgs

 
 
 



Figure 141. Implementation of cascade on stj .Parser

Figure 142 illustrates the simplicity of CascadeNode.

 
 
 



In this section the encoding of the constructed parse nodes will be handled. Each parse node has
values that indicate how the target Java code should be generated. The same parse nodes that
were discussed in section 4.3 will be used. For the sake of brevity, only an extract of each
encodeJava: method will be shown to illustrate the essence ofthe translation.

 
 
 



A MethodNode will write out all the temporary variables and assign null to them. The next step
is to determine the number of blocks that will be created and then an array, _blocks [],will be
created to refer to these blocks. The block child is encoded and then, depending whether there
are blocks or not, the catch- and corresponding throw clauses are generated.

stj.MethodNode»encodeJava: aStream
I allBlocks allTempVars I
temporaries do: [:temp I

aStream nextPutAll: 'stj.Object '
temp encodeJava: aStream.
aStream nextPutAll: ' = null;'; cr.

] .
aStream cr.
allBlocks := block allBlocks.
I to: allBlocks size do: [:index (allBlocks at: index)

blockNumber: (index-I)].
allBlocks isEmpty ifFalse: [

aStream nextPutAll: 'final stj.Object _blocks[] = new
stj.BlockContext[', allBlocks size printString, '];'; cr; cr.

aStream nextPutAll: 'try'; cr.
aStream tab.
aStream nextPutAll: '{'; cr.

] .
block encodeJava: aStream.
allBlocks isEmpty ifFalse:

aStream untab.
aStream nextPutAll: '}'; cr.
aStream nextPutAll: 'catch (BlockException e)'; cr.
aStream tab.
aStream nextPutAll: '{'; cr.
I to: allBlocks size do: [:index I

aStream nextPutAll: 'if (((BlockException)e) .block
_blocks[', (index-I) printString, ']) return
((BlockException)e) .outcome;'; cr.

] .
aStream nextPutAll: 'throw e;'; cr.
aStream untab.
aStream nextPutAll: '}'; cr.

 
 
 



Every block in a method isassigned an index and assigned to an index in the _blocks array.
The next step is to testifthe block refersto variablesdefined outside itsown context.If so a
_temp array referringto these variablesispassed as an argument to the block when creatingit.
The number of arguments isdetermined and the appropriatemethod signatureisgenerated by the
val ueMethod. The body of the block with allthe statementsisgenerated next.The laststepisto
determine if the block has a non-local return and if so, an stj .BlockException is thrown.
Otherwise a normal returnismade.

encodeJava: aStream
blockNumber notNil if True: [aStream nextPutAll: '_blocks[',

blockNumber printString, '] = '].
self needsTempVarArray

if True: [aStream nextPutAll: 'new stj.BlockContext(_temp) 'icr.]
if False: [aStream nextPutAll: 'new stj.BlockContext() 'i cr.].

aStream tabi nextPut: ${i cr.
aStream nextPutAll: self valueMethodi cr.
aStream tabi nextPut: ${i cr.

self encodeJavaForStatementslnBlock: aStream deleteReturnStatement:
returns topLevelBlock: false staticMethod: false.

returns
if True: [aStream nextPutAll: 'throw new stj.BlockException(this,

_result)i'i cr]
if False: [aStream nextPutAll: 'return(_result)i'i cr].

aStream nextPutAll: '} /* value() */'.
aStream untab.
aStream cri nextPutAll: '}'.
aStream untab.

 
 
 



Generation of Java code for an AssignmentNode is straightforward and illustrates the recursive
nature of this generation method. The encodeJava: message is sent to the variable child, the
assignment operator is generated and the encodeJava: message is sent to the value child.

encodeJava: aStream
self variable encodeJava: aStream.
aStream nextPutAll: ' = '.
self value encodeJava: aStream.

A VariableNode has to first check if any of the reserved keywords are being referred to. If so
some direct substitutions are made. The next step is to test if a class name is being used. If so the
appropriate prefix and suffix is generated. In the case of a class variable, its class has to be
determined as well and used in the substitution.

encodeJava: aStream
I className class I
name 'self' ifTrue: [AaStream nextPutAll: 'this'.]"
name 'nil' ifTrue: [AaStream nextPutAll: 'stj.Object. __ nil'].
name 'true' ifTrue: [AaStream nextPutAll: 'stj.Object. __ true'].
name 'false' ifTrue: [AaStream nextPutAll: 'stj.Object. __ false'].
"Are we dealing with a class name?"
((Smalltalk at: self javaName asSymbol ifAbsent: [])

isKindOf: Class)
ifTrue: [AaStream nextPutAll: 'metaclass.' ,

self javaName , ,"__ class'].
"Are we dealing with a class variable?"
class := STJTranslator classCurrentlyTranslated.
className := class classNameOfClassVariableDefinition: name.
className notNil

ifTrue: [aStream nextPutAll: '((metaclass.' , className , ')
(metaclass.' , className , ,.__ class)).' , self javaName]

ifFalse: [aStream nextPutAll: self javaName]"

 
 
 



A MessageNode has two main parts, the receiver and the selector. The receiver is sent the
encodeJava: message. The selector is sent encodeJava: as well and then the arguments need
to be generated. For each argument the encodeJava: message is sent as well.

encodeJava: aStream
I tempArgs firstArg I
self receiver notNil ifTrue:

[self receiver encodeJava: aStream.
aStream nextPutAll: '.'.].

self selector encodeJava: aStream.
aStream nextPutAll: '('.
tempArgs := self arguments asOrderedCollection.
(tempArgs size >= 1) ifTrue: [

firstArg := tempArgs at: 1.
tempArgs removeFirst.
firstArg encodeJava: aStream.

] .
tempArgs do: [:arg I aStream cr; nextPutAll: '

arg encodeJava: aStream].
aStream nextPutAll: ')'.

 
 
 



A simple check for the', , message is done and substituted with 'comrnaConcatenate' and then
the asJavaSelector method invoked.

encodeJava: aStream
(key = #',') ifTrue: [key := 'comrnaConcatenate' asSymbol].
aStream nextPutAll: key asString asJavaSelector.

A CascadeNode can be translated into Java by cascading the method invocations as well. Thus
the receiver is sent the encodeJava: message and then each message in the messages child is sent
the encodeJava: message after generating a ' . ' before the message.

encodeJava: aStream
receiver encodeJava: aStream.
messages do:

[:message I
aStream nextPutAll:
message encodeJava: aStream.].

 
 
 



It is quite possible to reuse most of the existing framework in the translator to produce a translator
for another language. This can be achieved by replacing the encodeJava: sections on the nodes.
The STJTranslator class will also have to be replaced by a new translator focussed on the new
target language.

One target language that seems well-suited is the Python language. Python is similar to Smalltalk
in that:

1) it has reflection,
2) it has a construct that is as powerful as Smalltalk blocks,
3) it translates to byte codes that executes on a virtual machine,
4) it is a dynamically typed language.

However, a full discussion of the merits or otherwise of various other possible target languages is
beyond the scope of this dissertation. Instead, attention is now turned to other work done on
Smalltalk to Java translation, as well as to future directions that could be taken by the present
research.

 
 
 



Due to the similarities of Java and Smalltalk other initiatives are busy with implementing
Smalltalk to Java translators. (See Boyd (2000) and Mission Software (2002).) In this section the
two environments known as Bistro and SmalltalklJVM are introduced with a short overview on
each. It is followed by a comparison between STJ (the current STJ Translator), Bistro and
SmalltalklJVM. The reason for choosing to discuss these two environments is that, as far as can
be ascertained, they seem to be the most significant Smalltalk to Java endeavours to date. They
have also apparently been developed contemporaneously and with the work discussed in this
dissertation. Each turns out to have some similarities with STJ but there are also some
differences.

Bistro is a derivative of Smalltalk and although it does not conform to the ANSI Smalltalk
specification it is still useful to compare against STJ. Bistro introduces types to Smalltalk and
allows the developer to specify a type if needed for improved performance. In this respect it is
similar to Typed Smalltalk by Johnson, Graver and Zurawski (1988).

Bistro allows the development of Java Servlets14 and tight integration between Bistro source code
and Java source code. Bistro allows the invocation of Java methods. Java code is generated from
Bistro source code and the Java code must be compiled in a similar fashion to STJ.

At the time of writing the author confirmed a problem with Bistro translation's of Blocks that will
be discussed in section 5.1.5.

SmalltalklJVM is a product developed by Mission Software (2002). It follows the Smalltalk
paradigm of presenting the developer with class browsers, workspaces and a Transcript.

14 A Java Servlet is a class in the Java Servlet Development Kit and allows a developer to develop
Java code on the server that generates HTML pages for Web browsers.

 
 
 



SmalltalklJVM compiles from a Smalltalk source file directly to a Java class filel5
. It has a

comprehensive Smalltalk class library with the product. An inspector window is also
implemented to inspect object values during runtime.

Other features include the ability for SmalltalklJVM to call Java methods from Smalltalk methods
and to call Smalltalk methods from Java methods. It is also possible for a Java class to inherit
from a Smalltalk class and a Smalltalk class can inherit from a Java class. An example in the
evaluation copy of SmalltalklJVM is included to show how SmalltalklJVM implements a Java
Servlet in Smalltalk. Another example supplied with SmalltalklJVM illustrates the tight
integration of SmalltalklJVM with Java and shows how to access the JDBC API from Smalltalk.

At the time of writing the author confmned that, unlike STJ, SmalltalklJVM does not handle
dynamic Small talk metaclasses according to the Smalltalk standard.

The third product, Talks2, has similar features to SmalltalklJVM. The difference is that the
Smalltalk and development environments run on top of the Java Virtual Machine, whereas
SmalltalklJVM is implemented in Smalltalk. The Architur company that is developing the
product is currently attempting to have it translate the Squeak Smalltalk source code to Java.
However, they admit to various limitations (See Architur (2002». At the time of writing the
product was in an alpha release and could not be used for comparative purposes in section 5.1.5.

Another interesting product is SmalltalkIX by Gittinger (2002). It involves adapting the Smalltalk
VM used by SmalltalkIX to interpret JBC as well. The result is that the VM can execute Smalltalk
and Java code at the same time. The Java class hierarchy inherits from the Smalltalk Object class.
A similar approach (in the opposite direction) is used to that used by STJ whereby translated
Smalltalk classes inherit from the Java Object class.

15 It seems possible to implement the same functionality in STJ simply by invoking the j avac
compiler directly after the translation process.

 
 
 



Section 3.3 discusses the two methods explored for STJ. Bistro chose to use the reflection
method, section 3.3.2, of translating most method calls into a perform_wi th () call. To achieve
an acceptable level of performance, frequently used methods inherited from Obj ect were
invoked normally. SmalltalklJVM opted to use the faster approach to invoking methods that was
discussed in section 3.3.3, and which is used in STJ. In SmalltalklJVM the Obj ect class inherits
from a class named Any and all new methods to be invoked are generated and added to the Any

class.

Section 3.4 discusses how STJ approached the translation of Smalltalk classes by simulating
metaclasses. The examples in Figure 56 and Figure 60 were used to test the capabilities of Bistro
and SmalltalklJVM. Bistro passed the test and managed to create a Vehicle and BMW instance
and initialise them correctly. SmalltalklJVM created a Vehicle instance, but could not create a
BMW instance and invoke the correct initialise method.

Both Bistro and SmalltalklJVM created and evaluated a block successfully. The example in
Figure 85, section 3.5.1, was used. Bistro creates a different Block class, ZeroArgumentBlock,
OneArgumentBlock and TwoArgumentBlock depending on the number of arguments passed
into a block. SmalltalklJVM translated directly to class files.

The example in Figure 88, section 3.5.2, was used and translated. Bistro translated it and executed
it successfully returning 11 as output. SmalltalklJVM translated it, but the output was given as
16. Further investigation is difficult, due to the direct translation to class files. However, the
difference could perhaps be attributed to a simple problem like different precedence between '*'
and '+'.

 
 
 



The example in Figure 92, section 3.5.3, was used and both Bistro and SmalltalklJVM translated
and executed it successfully. As noted before, Bistro makes use of different Block classes,
depending on the number of arguments passed into a block.

A more difficult task is to translate a block within its enclosing context, and maintain the same
behaviour as in Smalltalk. The example in Figure 94, section 3.5.4, was used. Bistro translated it
successfully, but could not execute it correctly. Inspection of the translated Java code that Bistro
generates, confirmed that the blocks being generated cannot refer to variables in the enclosing
context while executing somewhere else in the program.

STJ solves this problem by using an array for all variables referred to in the block, declared
outside the block, and passes this array to the block as an argument, effectively passing the
enclosing context to the block.

Another difficult translation to implement is when a block returns out of its enclosing context, by
virtue of encountering a non-local return when it is evaluated. The example in Figure 99, section
3.5.5, was used. In STJ the approach taken was by throwing BlockExceptions, holding on to
the block result.

The same approach was taken by Bistro. An exception, MethodExi t, was defined and thrown
whenever a non-local return was needed. Bistro was clever enough to subclass MethodExi t
from RuntimeException in Java, which prevents the method signatures from changing in the
translated Java code.

The nested blocks example in Figure 105, section 3.5.6, was used to ensure that the translators
could handle more than one level of block creation. Both Bistro and SmalltalklJVM handled it
successfully.

 
 
 



In Smalltalk it is possible to add a method dynamically (i.e. at runtime) to an object. In Java, a
class has to be completely recompiled for methods to be added. Initial investigation resulted in a
way of adding classes at runtime, but this will require existing class instances to be migrated to
the new version of the class and ensuring that all references to the old class instances are updated
to reference the newer version.

The become: method in Smalltalk allows the exchange of references to objects in the virtual
machine. This is quite a useful feature and will ease the implementation of dynamically loading
and unloading Java classes.

Another issue is that the translator does not support the identification of the classes and methods
required to execute an application at runtime. The classes to be translated are specified by the
user and all methods in the specified classes are translated.

Smalltalk has another feature on blocks to enable multi-threading and multiple processes. By
sending the fork message to a block it executes in its own process. It is thus possible to assign a
block (process) to a variable and treat it as a separate process. (See Goldberg and Robinson
(1989, p250-p266).) More investigation will be necessary to support this feature in the translation
of Smalltalk to Java code in STJ. Bistro has a few examples of Bistro code with multiple
processes being translated to Java threads.

These unresolved issues do not constitute a complete list. Indeed, several other issues require
further study. For example, Budd (1987) discusses problems associated with implementing a
Small talk compiler and virtual machine.

It would be an interesting exercise to translate the implemented Smalltalk by using the translator
on itself. The generated Java code (output 1) will then have the same functionality of the
Smalltalk translator and would also be able to translate the Smalltalk translator and generate Java
code again (output 2). By showing that the output of step I is equal to step 2 one could verify the
generated Java translator code to be functionally equivalent to the original Smalltalk source code.
This exercise was not possible with the current version of STJ. In order to carry out the
experiment, it would be necessary to provide STJ not only with its own Smalltalk source code,

 
 
 



but also with the Small talk code for all the library classes that were used in its implementation.
This was considered to be beyond the scope of the present study.

The Squeak Smalltalk system was constructed by a similar process known as bootstrapping. Refer
to Ingalls, Kaehler and Kay (1997) for a full discussion on how this was achieved in Squeak
Smalltalk.

It should be noted that the work described in this dissertation was started several years ago and
was carried out on a part-time basis. In the intervening period, a number of other initiatives to
translate Smalltalk to Java have come to light.

Section 5.1 examined the two most prominent initiatives. Examples of Smalltalk code were tested
on these respective translators. The examples are from chapter 3, which had already pointed out
how STJ achieves an appropriate translation in each case. An ex post facto finding was that in
some cases, these initiatives followed similar translation strategies to STJ. However, it was also
found that the rival translators do not always fully conform to standard Smalltalk semantics.

On the other hand, section 5.2.1 identified areas where translation is possible, but which have not
been tackled by STJ. Indeed, some of the areas mentioned (e.g. blocks to enable multi-threading)
are dealt with by rival translators. The same section points to at least one area where translation
appears to be infeasible (namely, the become: method).

In one sense, then, STJ and the other translation systems discussed, provide the translational
semantics of various Smalltalk constructs in Java. In doing so, the similarities and differences
between the two languages are highlighted. The fact that a significant part of Small talk code can
be translated to Java code by applying a few simple rules testifies to the similarities between the
languages. In other cases, such as translating blocks, the translation rules become far more
complex. Nevertheless, while a comprehensive Smalltalk to Java translation system seems
unlikely, this work suggests that it is be possible to obtain reasonably efficient JBC versions of
most Smalltalk programs. By providing such translators, is becomes possible to extend the range
of platforms on which legacy Smalltalk programs may be run.

 
 
 



Abelson, H., Sussman, GJ., Sussman, J. 1996. Structure and Interpretation of Computer
Programs, McGraw-Hill, 1996.

Beck, K., 1999. Kent Beck's Guide to Better Smalltalk: A Sorted Collection, Cambridge
University Press, 1999.

Bekker, C. 1993. Relationships and Reflection in the Object-Oriented Paradigm, M.Sc.
Dissertation, Department of Computer Science, University of Pretoria

Bothner, P. 1996. Translating Smalltalk to
http://www.cygnus.com!-bothner/smalltalk.html

Bothner, P. Hardwick, and Sipelstein. 2000. The Kawa Scheme System, [Online]. Available:
http://www.cygnus.com!-bothnerlkawa.html

Boyd, N. 2000. Bistro - Integrating Smalltalk and Java, [Online]. Available:
http://www.jps.net/nikboydlpapers/bistro/index.htm

Chambers, C. 1992. The Design and Implementation of the SELF Compiler - an optimizing
compiler for Object Oriented Programming Languages, Ph.D. Thesis, Department of
Computer Science, Stanford University

Engelbrecht, R. Kourie, D. 1998. Issues in Translating Smalltalk to Java, International
Conference on Compiler Construction (CC) 1998, Springer-Verlag

Fussel, ML Java and Smalltalk syntax compared, 2002. [Online]. Available:
http://www.chimu.com!publications/J avaSmalltalkSyntax.html

Fussel, M.L. SmallJava, 2002. [Online].
http://www.chimu.com!publications/SmallJ avalindex.html

 
 
 

http://www.cygnus.com!-bothner/smalltalk.html
http://www.cygnus.com!-bothnerlkawa.html
http://www.jps.net/nikboydlpapers/bistro/index.htm
http://www.chimu.com!publications/J
http://www.chimu.com!publications/SmallJ


Goldberg, A, Robson, D. 1983. Smalltalk-80: The Language and its Implementation, Addison-
Wesley, 1983.

Hardwick, J.e., Sipelstein, J. 1996. Java as an intermediate language, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, Aug. 1996.

Ingalls, D., Kaehler, T., Kay, A et al. Back to the Future, The Story of Squeak, A Practical
Smalltalk written in itself, Proceedings of OOPSLA 97, 1997.

JavaSoft, 1997. The Java Core Reflection API and Specification, [Online]. Available:
http://java.sun.com, Jan. 1997.

Johnson, R, Graver, J., Zurawski, L. 1988. TS: an optimizing compiler for Smalltalk, Proceedings
of OOPSLA 88, 1988.

Kay, AC. 1996. The early history of Smalltalk, Bergin, TJ. & Gibson, RG., History of
Programming Languages, Vol. 2, Addison-Wesley

Maes, P. 1987. Concepts and Experiments in Computational Reflection, Proceedings of OOPSLA
87, 1987.

Miller, R, Tripathi, A 2001. Issues with Exception Handling in Object-Oriented Systems,
Proceedings of ECOOP '97, Finland, 1997.

 
 
 

http://java.sun.com,


Misty Beach Software. 2002. Misty Beach Forth,
http://www.mistybeach.comIForthlJ avaForth.html

Odersky, M., Wadler, P. 1997. Pizza into Java: Translating theory into practice, Proceedings of
the 14th ACM Symposium on Principles of Programming Languages, France, Jan. 1997.

Ogasawara, T., Komatsu, R., Nakatani, T. 2001. A Study of Exception Handling and its Dynamic
Optimization in Java, ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications, Oct 2001.

Pinson, L., Wiener, R. 1988. An Introduction of Object-Oriented Programming and Smalltalk,
Addison-Wesley, 1988.

Piumarta, 1.K. 1992. Delayed Code Generation in a Smalltalk-80 Compiler, Ph.D. Thesis,
Department of Computer Science, University of Manchester, Oct. 1992.

SunWorld, 1995. Java: The inside story, [Online].
http://sunsite.cs.msu.su/sunworldonline/swol-07 -1995/swol-07 -java.html

Terekhov, A.A., Verhoef C. 2000. The realities of language conversions, IEEE Software, pp.
111-124, November 2000.

Tilevich,1. 2000. Translating C++ to Java, First German Java Developers' Conference Journal.
[Online] . Available: http://sol.pace.edu/-tilevich/c2j.html

Tolksdorf, R. 2002. Languages for the Java VM, [Online]. Available: http://grunge.cs.tu-
berlin. de/ -tolk/vmlanguages.html

Waddington, T. 2002. Java Backend for
http://archive.csee. uq .edu.au/ -csmweb/ubqt.html#gcc-jvm

Yasumatsu, K. 1996. A translation method from Smalltalk into Interoperable C Code, Ph.D.
Thesis, Graduate School of Engineering Science, Osaka University, 1996.

 
 
 

http://www.mistybeach.comIForthlJ
http://sunsite.cs.msu.su/sunworldonline/swol-07
http://sol.pace.edu/-tilevich/c2j.html


Yasumatsu, K., Doi, N. 1995. SPiCE: A System for Translating Smalltalk Programs into a C
Environment, IEEE Transactions on Software Engineering 21(11), pp. 902-912, 1995.

 
 
 


	FRONT
	Title page
	Table of contents
	Abstract
	Samevatting (Afrikaans)
	Acknowledgements

	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5



