KUNDI SALVATORY THEOBALD

Starch Digestibility of Porridges from Unrefined and Refined Maize, Pearl Millet and Sorghum

MSc UP 2002
Starch Digestibility of Porridges from Unrefined and Refined Maize, Pearl Millet and Sorghum

By

Salvatory Theobald Kundi

Submitted in partial fulfilment of the requirements for the degree

MSc Food Science

In the
Department of Food Science
Faculty of Natural and Agricultural Sciences
University of Pretoria

Pretoria
South Africa
January 2002
I declare that the dissertation herewith submitted for the degree MSc Food Science at the University of Pretoria, has not previously been submitted by me for a degree at any other university or institution of higher education.
ABSTRACT

STARCH DIGESTIBILITY OF PORRIDGES FROM UNREFINED AND REFINED MAIZE, PEARL MILLET AND SORGHUM

by

Salvatory Theobald Kundi

Leader: Prof J.R.N. Taylor
Co-leader: Mrs B. van der Merwe
Department: Food Science
Degree: MSc Food Science

The incidence of diabetes mellitus in Tanzania, as in many developing countries, appears to be increasing among people living in urban areas, as compared to rural areas. The major carbohydrate staple of most of the people living in the rural areas of Tanzania is stiff porridge prepared from unrefined maize, sorghum or pearl millet, while in urban areas it is stiff porridge prepared from refined maize. This change from unrefined to refined porridge and from sorghum and pearl millet to maize could have contributed to the apparent increasing incidence of diabetes among urban people.

An in vitro assay involving pre-chewing of the porridge, followed by digestion with pepsin and α-amylase in dialysis tubing was used to determine the rate of starch digestibility. The rates of starch digestibility of porridges prepared from unrefined and refined maize, sorghum and pearl millet using white wheat bread as a standard were determined. Hydrolysis Indices (HIs) were calculated and used to predict the Glycaemic Indices (GIs). The effects of species, variety and refinement on the rates of in vitro starch digestibility of the porridges from the three cereals were determined.
All the porridges prepared from the three cereals, except that from refined sorghum variety NK 283, had a lower rate and extent (p < 0.05) of in vitro starch digestibility than that of bread.

Cereal species did not affect the rates of in vitro starch digestibility of the stiff porridges. The probable reasons are that all three cereals are C4 crops and the proximate compositions, endosperm structures, gelatinisation temperatures and the shape of their starch granules are similar.

Apparently, due to the higher proportion of amylopectin in the starch, porridge from refined sorghum NK 283 was more digestible than the porridges from other varieties. However, the stiff porridge made from the unrefined flour did not show this effect.

Refinement of cereal grain flours did not in general improve the rates of in vitro starch digestibility of the stiff porridges prepared from non-tannin low polyphenol grains. However, it did increase the rate of digestibility of sorghum variety NK 283 and pearl millet variety SDMV 91018, both of which contained relatively high levels of non-tannin polyphenols in the grain and much lower levels in the refined flour. It is possible that high levels of non-tannin polyphenols inhibit starch digestibility.

Since porridges from maize, sorghum and pearl millet in unrefined or refined forms did not in general differ significantly in terms of GI, the three cereals in unrefined or refined forms can probably be used without discrimination by diabetic people. None of the three cereals can be claimed as more suitable than the others in diabetes management. However, if there are varieties known to have a high amylopectin/amylose ratio in their starches, like sorghum variety NK 283, they should be avoided as a diet for diabetic people, because this type of starch is associated with higher rate of starch digestibility and hence higher GI which is unsuitable for diabetics. On the other hand, varieties known to contain high levels of non-tannin polyphenols may be useful for diabetics in the unrefined form, as these grains have shown both lower starch digestibilities and GIs.
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to the following individuals and organisations for their help and assistance on this project:

Prof. J.R.N. Taylor, my study leader, for his guidance, advice, positive and constructive criticism, encouragement and patience throughout the project.

Mrs. B. van der Merwe, my study co-leader for her guidance, advice, positive criticism and encouragement throughout the project.

The Southern Africa Co-ordination Conference for Agricultural and Research (SACCAR) and Division of Research and Development (DRD) in the Ministry of Agriculture, Government of the United Republic of Tanzania for funding the Project.

Dr. M.J. van der Linde from the Department of Information Technology and Dr. L. Swart from Department of Statistics, University of Pretoria for Advice and assistance in statistical analysis of the data.

Dr. E. Monyo and Ms. E. Chinhema of the SADC/ICRISAT Matopos, Bulawayo: Zimbabwe for providing the pearl millet grain.

Prof. A. Minnaar, Prof. B.H. Bester and Dr. H.L. de Kock for their encouragement.

Mrs. J. Taylor and Mrs. N. Dersley for their technical advice

Mrs. S. van der Berg, Mrs. Rachel Mathibe and Ms. Kuliso Matodzi for their technical support.

Friends and colleagues in the department of Food Science, University of Pretoria for their encouragement, assistance and willingness to help.
My parents, my wife, my children, my brothers and sisters, my in-laws and my friends. Thanks for your prayers.

Above all, glory to God Almighty, for his grace and this life that has given us to accomplish such an achievement.
DEDICATION

This dissertation is dedicated to the following people:

MY DEAR PARENTS: Mr. Theobald Peter Kundi and Mrs. Prisca Theobald Kundi
For their great vision in education and their relentless efforts in educating their children.
It is through this vision and efforts that has made me what I am today.

MY BELOVED WIFE: Mrs. Grace-Anna Salvatory Kundi
For her willingness to remain behind during my studies, encouragement, prayers and her
magnificent devotion to her children and the whole family.

MY DEAR CHILDREN: Witness and Gloria
For missing their Daddy’s company throughout the duration of the studies.

The fear of the Lord is the beginning of wisdom.
(Psalm 111 : 10a)
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Refinement of cereal grains</td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>Changing of the food consumption patterns and preparation and its implications</td>
<td>4</td>
</tr>
<tr>
<td>2.3</td>
<td>Role of maize, sorghum and pearl millet cereal grains in human nutrition</td>
<td>5</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Structure and chemical composition of maize, sorghum and pearl millet cereal grains</td>
<td>6</td>
</tr>
<tr>
<td>2.3.1.1</td>
<td>Germ</td>
<td>9</td>
</tr>
<tr>
<td>2.3.1.2</td>
<td>Bran</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1.3</td>
<td>Endosperm</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Effect of refining or milling on the chemical composition of maize, sorghum and pearl millet cereal grains</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>Starch</td>
<td>13</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Starch gelatinisation</td>
<td>15</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Starch retrogradation</td>
<td>16</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Effect of amylopectin, amylose and lipids on swelling and gelatinisation of cereal starches</td>
<td>17</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Starch digestibility</td>
<td>17</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Relationship between starch digestibility, Gycaemic Index (GI) and the Hydrolysis Index (HI)</td>
<td>18</td>
</tr>
<tr>
<td>2.5.5.1</td>
<td>Factors affecting the measured GI values</td>
<td>22</td>
</tr>
<tr>
<td>2.5.6</td>
<td>The role of slowly digested starch or low GI foods in the treatment and control of diabetes mellitus</td>
<td>23</td>
</tr>
</tbody>
</table>
2.6 Factors affecting the rate of starch digestibility

2.6.1 Intrinsic factors affecting the starch digestibility

2.6.1.1 Starch structure
2.6.1.2 Amylose : amylopectin ratio
2.6.1.3 Formation of amylose-lipid complex superstructures
2.6.1.4 Starch-protein interaction
2.6.1.5 Effects of dietary fibre on starch digestibility
2.6.1.6 Antinutrients
2.6.1.7 Amylase inhibitor

2.6.2 Extrinsic factors affecting starch digestibility

2.6.2.1 Degree of gelatinisation
2.6.2.2 Physical form
2.6.2.3 Formation of retrograded starch
2.6.2.4 The presence of other ingredients

2.7 In vitro determination of starch digestibility

2.7.1 Sample preparation
2.7.2 Enzyme used to digest the starchy food sample
2.7.3 Incubation conditions
2.7.4 Measurement of digestion end products

2.8 Conclusion

3 RESEARCH OBJECTIVES

4 EXPERIMENTAL

4.1 Materials

4.1.1 Maize
4.1.2 Sorghum
4.1.3 Pearl millet
4.1.4 White wheat bread

4.2 Methods

4.2.1 Removal of bran and germ
4.2.1.1 Degerming maize
4.2.1.2 Decortication of sorghum and pearl millet

4.2.2 Milling maize, sorghum and pearl millet to flour

4.2.3 Maize, sorghum and pearl millet stiff porridge cooking procedure

4.3 Analyses

4.3.1 Hardness of the grains

4.3.2 Weight of the grains (1000 kernel weight)

4.3.3 Proximate analysis

4.3.3.1 Moisture

4.3.3.2 Ash

4.3.3.3 Protein content

4.3.3.4 Crude fat

4.3.3.5 Total starch

4.3.4 Amylose content

4.3.5 Total polyphenols

4.3.6 Texture

4.3.7 In vitro starch digestibility

4.3.7.1 Preparation of dialysis tubing

4.3.7.2 Sample preparation

4.3.7.3 Chewing

4.3.7.4 Enzyme incubation

4.3.7.5 Measurement of products of digestion

4.3.7.6 Blanks and reference sample

4.3.7.7 Calculation of Hydrolysis Index (HI) and predicted Glycaemic Index (GI)

4.3.8 Statistical analysis

5 RESULTS

5.1 Grain hardness (visual characterization)

5.2 Total polyphenols from refined and unrefined flours

5.3 Amylose content

5.4 Texture of the stiff porridges
5.5 In vitro starch digestibility results

5.6 ANOVA between the unrefined and refined treatments on maize, sorghum and pearl millet

5.7 Hydrolysis Index (HI) and predicted Glycaemic Index (GI)

6 DISCUSSION

7 CONCLUSIONS AND RECOMMENDATIONS

8 REFERENCES
LIST OF TABLES

Table 1 Summary of major components in average percentages of normal maize, sorghum and pearl millet (Boyer and Shannon, 1989; Hoseney, 1994; Serna-Saldivar and Rooney, 1995)..................... 11
Table 2 Composition of milling products of maize and sorghum grains (% dwb) (Kent and Evers, 1994; Pedersen et al., 1989).................. 12
Table 3 Chemical composition of the pearl millet whole grain (% dwb) (Hoseney et al., 1987).. 13
Table 4 Some few examples of conditions employed during determination of starch digestibility in vitro ... 34
Table 5 Proximate composition of maize, sorghum and pearl millet flour samples... 43
Table 6 Proximate composition of wheat bread... 44
Table 7 Visual characterization of grain hardness for maize, sorghum and pearl millet... 58
Table 8 Total polyphenols content of refined and unrefined flours of maize, and pearl millet samples.. 59
Table 9 Amylose content of refined and unrefined flours of maize, sorghum and pearl millet samples.. 60
Table 10 Texture in terms of compression force (N) for stiff porridges made from refined and unrefined flours of maize, sorghum and pearl millet samples... 61
Table 11 Regression statistics of the linear models fitted to the data of digestibility over time for white bread and porridges prepared from unrefined flours of maize, sorghum and pearl millet............... 66
Table 12 Regression statistics of the linear models fitted to the data of digestibility over time for white bread and porridges prepared from refined flours of maize, sorghum and pearl millet 70

Table 13 Mean percentage starch digestibility and ANOVA between the unrefined and refined treatments on maize, sorghum and pearl millet 95

Table 14 Calculated Hydrolysis Index (HI) and predicted Glycaemic Index (GI) for maize, sorghum, pearl millet and bread 96
LIST OF FIGURES

Figure 1 Longitudinal section of maize kernel (Hoseney, 1994) 7
Figure 2 The structure of sorghum kernel (Hoseney, 1994) 8
Figure 3 Low magnification of a longitudinal section of a pearl millet kernel (Hoseney, 1994) .. 9
Figure 4 The structure of amylose and amylopectin (Alais and Linden, 1991). 14
Figure 5 Calculation of the Glycaemic Index (GI) of a food product (Bjorck and Asp, 1994; adapted) .. 20
Figure 6 Approximate ranges in GI for some of the main sources of starch in a Western-type diet (Bjorck and Asp, 1994)........ 21
Figure 7 Flow diagram of the procedure used to determine the in vitro starch digestibility of stiff porridges from maize, sorghum and pearl millet. 53
Figure 8 In vitro starch digestibility of stiff porridges prepared from unrefined cereal grain flours of (▲) maize PAN 6043, (■) maize PAN 6335, (◆) sorghum KAT 369, (X) sorghum NK 283, (+) pearl millet SDMV 89004 and (Δ) pearl millet SDMV 91018 compared to that of white bread ... 63
Figure 9 Fitted linear models of percentages starch digested over time of stiff porridges made from unrefined flours of maize PAN 6043 (—— — —) and PAN 6335 (---------------); sorghum KAT 369 (—— ————) and NK 283 (—— ••••); pearl millet SDMV 89004 (—————) and SDMV 91018 (—— • —) compared to that of white bread (---------------) 65
Figure 10 In vitro starch digestibility of stiff porridges prepared from refined cereal grain flours of (Δ) maize PAN 6043, (□) maize PAN 6335, (◇) sorghum KAT 369, (O) sorghum NK 283, (★) pearl millet SDMV 89004 and (■) pearl millet SDMV 91018 compared to that of white bread (●) ... 67
Figure 11 Fitted linear models of percentages starch digested over time of stiff porridges made from refined flours of maize PAN 6043 (---) and PAN 6335 (----); sorghum KAT 369 (----------) and NK 283 (----------); pearl millet SDMV 89004 (-----) and SDMV 91018 (-----) compared to that of white bread (---------)......

Figure 12 In vitro starch digestibility of stiff porridges made from refined (Δ) and unrefined (▲) flours of maize PAN 6043 compared to that of white bread (●)...

Figure 13 Fitted linear models of percentages starch digested over time of stiff porridges made from refined (-----) and unrefined (-----) flours of maize PAN 6043 compared to that of white bread (---------)......

Figure 14 In vitro starch digestibility of stiff porridges made from refined (□) and unrefined (■) flours of maize PAN 6335 compared to that of white bread (●)...

Figure 15 Fitted linear models of percentages starch digested over time of stiff porridges made from refined (-----) and unrefined (-----) flours of maize PAN 6335 compared to that of white bread (---------)......

Figure 16 In vitro starch digestibility of stiff porridges made from refined (○) and unrefined (●) flours of sorghum KAT 369 compared to that of white bread (●)...

Figure 17 Fitted linear models of percentages starch digested over time of stiff porridges made from refined (-----) and unrefined (-----) flours of sorghum KAT 369 compared to that of white bread (---------)......

Figure 18 In vitro starch digestibility of stiff porridges made from refined (○) and unrefined (×) flours of sorghum NK 283 compared to that of white bread (●)...

Figure 19 Fitted linear models of percentages starch digested over time of stiff porridges made from refined (-----) and unrefined (-----) flours of sorghum NK 283 compared to that of white bread (---------)......
Figure 20 *In vitro* starch digestibility of stiff porridges made from refined (†) and unrefined (―) flours of pearl millet SDMV 89004 compared to that of white bread (●). ... 87

Figure 21 Fitted linear models of percentages starch digested over time of stiff porridges made from refined (●) and unrefined (―) flours of pearl millet SDMV 89004 compared to that of white bread (●). ... 89

Figure 22 *In vitro* starch digestibility of stiff porridges made from refined (■) and unrefined (△) flours of pearl millet SDMV 91018 compared to that of white bread (●). ... 91

Figure 23 Fitted linear models of percentages starch digested over time of stiff porridges made from refined (●) and unrefined (―) flours of pearl millet SDMV 91018 compared to that of white bread (●). ... 93