

THE DEVELOPMENT OF A SCALE TO MEASURE PERCEPTIONS OF THE ADVANCED AUTOMATED AIRCRAFT TRAINING CLIMATE

by

PREVENDREN NAIDOO

Submitted in partial fulfilment of the requirements for the degree

PHILOSOPHIAE DOCTOR

(ORGANISATIONAL BEHAVIOUR)

in the

FACULTY OF ECONOMICS AND MANAGEMENT SCIENCES

at the

UNIVERSITY OF PRETORIA

APRIL 2012

Supervisor: Professor Dr L. P. Vermeulen

Co-supervisor: Professor Dr P. Schaap

© University of Pretoria

FACULTY OF ECONOMIC AND MANAGEMENT SCIENCES

Declaration

I, Prevendren Naidoo,

Declare the following:

- I understand what plagiarism entails and I am aware of the University's policy in this regard.
- 2. I declare that the thesis entitled *The development of a scale to measure perceptions of the advanced automated aircraft training climate* is my own original work, both in content and execution. Where someone else's work was used (whether from a printed source, the World Wide Web or any other paper or electronic source), due acknowledgement was given and reference was made according to departmental requirements. The Harvard method was used to acknowledge all references.
- I did not copy and paste any information <u>directly</u> from an electronic source (e.g. a web page, electronic journal article or compact or digital video disc) into this document.
- 4. Apart from the guidance and support from my study leaders, I did not make use of another person's previous work or submit it as my own.
- 5. I did not allow and will not allow anyone to copy my work with the intention of presenting it as his/her own work.

- i -

+l

Signature

April 2012

Date

ACKNOWLEDGEMENTS

Completing a study of this magnitude cannot be achieved without the selfless support, encouragement and help of others. I wish to express my sincere appreciation and gratitude to the following:

- First and foremost, my supervisor, Professor Dr Leo Vermeulen, for taking me under his "wing" more than 10 years ago. His guidance and passion for aviation was priceless in inspiring this research project. Without his continued support, patience, and depth of knowledge in the topic, this study would have never succeeded.
- My co-supervisor, Professor Dr Pieter Schaap, for his wisdom, advice and encouragement.
- My family and friends for their continuous support and encouragement during some of my most difficult and trying times as an academic hermit.
- Mrs Idette Noomé, for her excellent advice and patience in editing the thesis.
- Ms Rina Owen at the University of Pretoria's Department of Statistics, for her support with, and knowledge about, the more complex computational problems I encountered in this study.
- The pilots, academics and experts in the industry who unselfishly gave up their time to provide the constructive feedback and critique needed to make this study a success. The objectives of the research would never have been reached without the support of this truly wonderful group of people.
- Finally, if it were not for the individuals who sacrificed both their lives and many thousands of hours perfecting a magnificent machine in order to fulfil the elusive dream of heavier-than-air flight, this thesis would never exist.

SUMMARY

The development of a scale to measure perceptions of the advanced automated aircraft training climate

by

PREVENDREN NAIDOO

SUPERVISOR: Professor Dr L. P. Vermeulen

CO-SUPERVISOR: Professor Dr P. Schaap

DEPARTMENT: Department of Human Resource Management

DEGREE: Philosophiae Doctor (Organisational Behaviour)

Commercial air travel is regarded as the safest mode of transportation known to humankind; however, every year people lose their lives from aircraft accidents and incidents. In addition, the financial impact of an air disaster can destroy an airline organisation. Studies have found that in adverse events involving highly advanced aircraft employing complex automation, human factor issues, and particularly pilot training, continue to play a significant causal role. Special attention should therefore be paid to the *training* of airline pilots, who are ultimately the last line of defence in aircraft operations. Airline pilots' perceptions of the training climate associated with advanced aircraft can be a pervasive and powerful determinant of training outcomes and eventual flight deck behaviour.

The study undertook to develop a valid and reliable instrument to measure airline pilots' perceptions of the training climate associated with advanced aircraft equipped with highly complex automation. The goal was to construct a questionnaire by operationalizing an unobserved hypothesised construct (perceptions of the advanced automated aircraft training climate) based on three levels of analysis (the

microsphere, mesosphere and macrosphere). The study also attempted to explore the statistical relationship between the demographic variables of the respondents and the latent factors of the construct.

In order to meet the research objectives, the study began with a thorough review of the current literature on the topic to develop a systems model of the main construct under investigation. The review included a critique of the theory on organisational climate, learning, training and education, of historical data on aircraft automation, of human factors, and of aircraft accident investigation principles and case studies. The objectives of the research were fulfilled by strictly observing a positivist paradigm, and engaging in a guantitative exploration, triangulating methods with data captured from a purposive sample of the target population. The empirical study was completed in four phases. Firstly, the research construct was operationalized and the items in the proposed questionnaire validated by a panel of subject matter experts using Lawshe's (1975) content validity ratio (CVR) technique. Inter-rater bias was assessed using Cochran's Q test. This application resulted in the retention of 42 items. Secondly, factor analysis and item analysis was performed on the responses of the respondents for the development of the final 33 item measurement instrument. Thirdly, to explore the relationship between the demographic variables and the latent factors of the main construct, an appropriate non-parametric family of statistics was selected to gain a deeper understanding of the phenomena associated with the data. Finally, a logistic regression analysis that included specific demographic variables was performed for the development of a model to predict a pilot's perception of the training climate associated with advanced automated aircraft.

A non-probability purposive sample of 17 subject matter experts and 229 qualified South African airline pilots was used to accomplish the goals of the study. The underlying structure of the advanced Automated Aircraft Training Climate Questionnaire (AATC-Q) was derived from the results of a Principal Axis Factor (PAF) analysis using a promax (Kappa-4) rotation. The number of factors extracted from the data set was based on a modified version of Horn's (1965) parallel analysis, namely the Monte Carlo simulation algorithm designed by O'Connor (2000). Three core factors explained most of the underlying variability in the main construct. The first factor was a composite at the macro and meso levels of analysis, whilst the

second and third factors became fragmented at the micro level of analysis. These three factors were then labelled *Organisational Professionalism*, *Intrinsic Motivation* and *Individual Control of Training Outcomes*. The quality and rigour of the derived scale were demonstrated by its content and construct validity. Overall, satisfactory results from computing Cronbach's coefficient alpha showed that the measurement scale was also reliable.

The effect of the demographic variables on airline pilots' perceptions of the advanced automated aircraft training climate was determined by computing relationships and comparing the responses from different categorised subsets with one another, by means of a non-parametric MANOVA and non-parametric analysis of variance. The results of these tests revealed that *Flight Deck Position, Size of the Airline, Computer Literacy* and *Flight Experience* had a significant effect on a pilot's perception of the training climate. Results from a logistic regression model indicated that the interaction between pilots' experiences and their perceived level of computer literacy (on a sigmoid curve), their actual experience in advanced aircraft, and their preferences for route and simulator training, were related to whether a pilot perceived the advanced aircraft training climate as favourable or not. The overall percentage of cases for which the dependent variable was correctly predicted by the regression model was computed at 63.8%.

This study represents a vital step toward an understanding of the dimensionality of the learning, education and training for, and the actual operation of, highly advanced commercial aircraft, which employ complex automation. The results provide sufficient empirical evidence to suggest that the research findings may be of particular interest to aviation psychologists, aviation safety practitioners, and airlines engaged in training pilots to operate advanced aircraft.

Keywords: automation in aviation, advanced aircraft, advanced aircraft training, Automated Aircraft Training Climate Questionnaire (AATC-Q), aviation training, aviation exploratory study, human factors, Individual Control of Training Outcomes, Intrinsic Motivation, measurement scale, Organisational Professionalism, perceptions of aviation training, training climate.

CONTENTS

Declaration	i
Acknowledgements	ii
Summary	iii

CHAPTER ONE: INTRODUCTION - THE PROBLEM AND ITS CONTEXT...... 19 1.1 1.2 1.3 1.4 1.5 1.6 1.6.1 1.6.2 1.7 1.8

CHAPTER TWO: LITERATURE STUDY -

THE HUM	AN-MACHINE INTERFACE	38
2.1		38
2.2	CONTEXTUAL DEFINITIONS	40
2.3	CHARACTERISTICS OF ADVANCED AUTOMATED AIRCRAFT	40
2.3.1	Computerisation of aircraft systems	.43
2.3.2	The dominance of aircraft technology	.44
2.3.3	The advanced flight deck	.46
2.3.4	Advanced airframe and mechanical subsystems	.53

2.4	AUTOMATED AIRCRAFT AND HUMAN PERFORMANCE	.56
2.4.1	The impact of human factors on aircraft safety	.61
2.5	AIRLINE PILOT TRAINING	.66
2.5.1	Airline training strategies	.67
2.5.2	Models of airline instruction	.69
2.5.3	Flight simulator training	.71
2.5.4	Pilot route training	.74
2.6	CONCLUSION	.75

CHAPTER THREE: LITERATURE STUDY -

THE ADV	ANCED AIRCRAFT TRAINING CLIMATE77
3.1	INTRODUCTION
3.2	RESEARCH DELIMITATIONS
3.3	CLARIFICATION OF THE CONSTRUCT - TRAINING CLIMATE
3.3.1	Introduction to climates
3.3.2	Airline training climate
3.3.3	Climate constructs associated with the airline organisation83
3.3.4	Contextualising the advanced aircraft training climate
3.4	APPROACHES TO LEARNING90
3.4.1	Application of learning in the airline environment93
3.4.2	Literature on airline pilots' learning styles and subsequent
	organisational impact95
3.5	MEASURING LEARNING101
3.6	HYPOTHESISING AN EXPLANATORY MODEL OF THE
	RESEARCH CONSTRUCT
3.7	CONCLUSION

СНАРТЕ	ER FOUR: RESEARCH AND STATISTICAL METHODOLOGY	110
4.1	INTRODUCTION	110
4.2	RESEARCH DESIGN	111
4.2.1	The research paradigm	112
4.2.2	A classification of the overall research design	113
4.3	REASONING	114
4.3.1	Abductive reasoning	115
4.3.2	Inductive reasoning	116
4.3.3	Deductive reasoning	117
4.3.4	Reasoning followed in the present study	117
4.3.5	Ontology	119
4.3.6	Epistemology	119
4.3.7	Summary of the research design	119
4.4	THE EMPIRICAL RESEARCH METHOD: A MULTIPLE METH	
	APPROACH	120
4.5	MEASURING INSTRUMENTS	127
4.5.1	Survey method	128
4.5.2	The paper-and-pencil survey	130
4.5.3	Electronic surveying	130
4.6	QUESTIONNAIRE CONSTRUCTION	132
4.6.1	Scaling procedure	135
4.6.2	Item design	136
4.6.3	Rationale for using only positively worded items	138
4.6.4	Rationale used in the clustering of questionnaire items	139
4.7	STRUCTURE AND LAYOUT OF THE QUESTIONNAIRE USED	IN
	THE STUDY	142
4.8	LEVELS OF MEASUREMENT	144
4.9	RESEARCH POPULATION AND SAMPLING STRATEGY	146
4.9.1	Determining the sample size	146
4.9.2	Sampling frame based on the response rate	149

4.9.3 4.9.4	Sampling procedure Stratification in terms of airline pilot unionisation	
4.10	BASIC DEMOGRAPHIC INFORMATION ON THE FINAL SAMPLE	.154
4.11	DATA COLLECTION PROCEDURES	.158
4.12	CONTENT VALIDATION	.160
4.13	RESULTS OF LAWSHE'S TECHNIQUE	.165
4.14	ITEM RETENTION RESULTING FROM THE APPLICATION OF LAWSHE'S TECHNIQUE	.178
4.15	ASSESSMENT OF INTER-RATER BIAS	.180
4.15.1 4.15.2	Final item retention Data collection	
4.16	DATA ANALYSIS	.183
4.16.1	Computerisation and coding of the data	
4.16.2	Statistical analyses	.184
4.16.3	Analysis of compliance with specific assumptions	.185
4.16.4	Descriptive statistics	.188
4.16.5	Factor analysis	.189
4.16.6	Factor extraction	.190
4.16.7	Factor rotation	.194
4.16.8	Reliability	.196
4.16.9	Homogeneity	.198
4.16.10	Item discrimination analysis	.199
4.16.11	Comparative statistics	.200
4.16.12	Associational statistics	.202
4.16.13	Logistic regression analysis	.203
4.16.14	Practical significance and effect size	.208
4.17	RESEARCH ETHICS	.209
4.18	SUMMARY	.212

CHAPTE	R FIVE: RESULTS	.214
5.1		.214
5.2	FACTOR ANALYSIS	.215
5.2.1	Sample size rationale used for the factor analysis	.216
5.2.2	Factor analytic computation	.217
5.2.3	Results of the factor retention method	.220
5.2.4	Finalised factor analytic solution	.226
5.3	SCALE LABELLING AND FACTOR DESCRIPTION	.231
5.4	RELIABILITY ANALYSIS	.233
5.5	ITEM DISCRIMINATION ANALYSIS	.237
5.6	DATA EXPLORATION: ANALYSIS OF DISTRIBUTION	.240
5.7	RESULTS OF THE NON-PARAMETRIC COMPARATIVE	
	STATISTICS USED TO EXPLORE PHENOMENA	.244
5.8	ASSOCIATIONAL STATISTICS: NON-PARAMETRIC MEASURES	
	OF BIVARIATE RELATIONSHIPS	.257
5.9	NON-PARAMETRIC MULTIVARIATE ANALYSIS OF VARIANCE	
	(MANOVA)	.264
5.9.1	Between-subjects effects	.269
5.9.2	Non-parametric comparative post hoc tests for independent samples	
	(Mann-Whitney) based on the GLM results	.271
5.9.3	Size of the carrier	.272
5.9.4	Computer literacy	.274
5.9.1	Digital flight time experience* Level of computer literacy	.274
5.10	BACKWARD STEPWISE LOGISTIC REGRESSION	.279
5.11	SUMMARY	.290

CHAPTER	R SIX: SI	UMMARY	, DISCUSSI	ONS AND	RECOM	IMENDATIONS	293
6.1	INTROD	UCTION .					293
6.2	RESEAR	CH OBJE	ECTIVES				296
6.3	RESEAR	CH MET	HODOLOGY	AND PRO	CEDUR	E	298
6.4	MAIN CC	OMPONE	NTS OF THE	HYPOTH	ESISED		
	RESEAR	CH CON	STRUCT				300
6.5						RELATIONSHII	
6.6	LIMITATI	IONS OF	THE STUDY				314
6.7	RECOM	MENDAT	ONS FOR FI	JTURE RE	ESEARC	:H	315
6.8	CONCLU	JDING RE	MARKS				318

APPENDICES		
APPENDIX	A: Advanced Aircraft Training Climate Expert Questionnaire	
	(AATCe-Q)	346
APPENDIX	B: Survey Invitation Letter	365
APPENDIX	C: Three Scale Items	368
APPENDIX	D: Informed consent form	370
APPENDIX	E: Illustrated structure of the measurement construct	372
APPENDIX	F: Web based survey	374

LIST OF FIGURES

Figure 1:	Synthesis of the literature study	39
Figure 2:	The two main components of an advanced automated aircraft	42
Figure 3:	Evolution in primary flight instrumentation	47
Figure 4:	Comparison of specific flight control mechanisms	49
Figure 5:	Advanced flight deck instrumentation console	
	(Airbus A320 example)	50
Figure 6:	The relationship between mechanical failures and human factors	54
Figure 7:	Comparison of two aircraft control system types	55
Figure 8:	Trends in three aircraft automation surveys	58
Figure 9:	Aircraft production versus accident rate	59
Figure 10:	Modern flight simulator training device	73
Figure 11:	Mathematical relationship between structured learning and	
	flight deck behaviour	86
Figure 12:	Representation of a systemic aviation training climate	89
Figure 13:	Hypothesised model of the main research construct	107
Figure 14:	Summary of the focus of the literature review and its integration	
	with the research objective	109
Figure 15:	Integrated model of reasoning used for the study	118
Figure 16:	Research design cycle matrix	120
Figure 17:	Multiple-method and within-method triangulation	125
Figure 18:	Overall multiple-method research design	126
Figure 19:	Seven-point Likert-type item	138
Figure 20:	Content validation analogy	163
Figure 21:	Distribution of subject matter expert demographic variables	169
Figure 22:	Subject matter expert response surface model	179

Figure 23:	General shape of the common sigmoid curve used in			
	logistic regression	204		
Figure 24:	Thirty-five item scree plot	221		
Figure 25:	O'Connor plot of the actual, mean and permutated eigenvalues	223		
Figure 26:	Factor plot in the rotated space	229		
Figure 27:	Matrix scatterplot for the discrimination of classes	238		
Figure 28:	Probability plot for the interaction effect between experience			
	and computer literacy	288		
Figure 29:	Probability plot for Preference for Simulator Training	289		
Figure 30:	Final theorised construct based on the empirical dataset	304		

LIST OF TABLES

Table 1:	Definitions of some key terms	40
Table 2:	Definitions of advanced flight deck automation	45
Table 3:	Conventional and fly-by-wire aircraft control comparison	52
Table 4:	Accident statistics for western-built commercial aircraft	
	above 30 tonnes	61
Table 5:	A chronological list of automation incidents and accidents related	
	to the flight deck	64
Table 6:	A chronological list of automation incidents and accidents related	
	to airframe subsystems	65
Table 7:	Chronological synthesis of Instruction Systems Design models (ISDs)	70
Table 8:	Chronological list of training climate elements	84
Table 9:	Aviation-related psychological elements of a training climate	88
Table 10:	A synthesis of the elements affecting learning at different levels of	
	analysis1	00
Table 11:	A chronological synthesis of some important learning inventories1	02
Table 12:	Root theories considered in the construction of the theoretical model .1	06
Table 13:	Contrasting the pros and cons of Internet surveys1	31
Table 14:	Contrast of scale development guidelines1	34
Table 15:	Questionnaire structure1	43
Table 16:	Contrasting notions of what constitutes a good sample size1	48
Table 17:	Respondent sample frame (N=229)1	55
Table 18:	Demographic data of the subject matter experts (N=17)1	67
Table 19:	Lawshe test results for Domain A1	71
Table 20:	Lawshe test results for Domain B1	73
Table 21:	Lawshe test results for Domain C1	75
Table 22:	Summary of expert endorsement from Cochran's Q test1	80
Table 23:	Comparison of items retained after applying Lawshe's method1	81

Table 24:	Acceptance levels for the measure of sampling adequacy	. 185
Table 25:	Comparison of statistical tests	. 187
Table 26:	Descriptive statistics	. 188
Table 27:	A contrast of relevant Cronbach's coefficient alpha values	. 198
Table 28:	Summary of reliability and homogeneity coefficients	. 199
Table 29:	Correlation statistic guideline	.203
Table 30:	Ethical issues considered in the research process	.210
Table 31:	Variance explained by eigenvalues greater than one (42 items)	.219
Table 32:	Statements deleted in the first round of exploratory factor analysis	.220
Table 33:	Variance explained by eigenvalues greater than one (35 items)	.221
Table 34:	Actual and permutated eigenvalues on 35 items based on	
	O'Connor's (2000) algorithm	.224
Table 35:	The factor loadings and communalities (h^2) for the principal	
	factors extraction and promax rotation for the final 33-item cohort	.227
Table 36:	Item regression model and factor correlations	.230
Table 37:	Reliability and item statistics for Factor 1:	
	<i>Organisational Professionalism</i> (n =229)	.234
Table 38:	Reliability and item statistics for Factor 2:	
	Intrinsic Motivation (n =229)	.235
Table 39:	Reliability and item statistics for Factor 3:	
	Individual Control of Training Outcomes (n =229)	.235
Table 40:	Tests of equality of the discriminant group means	.239
Table 41:	Descriptive and distribution statistics of the three scales	
	and continuous independent variables (n=229)	.242
Table 42:	Statistical tests for normality	.243
Table 43:	Kruskal-Wallis test for the grouping variables flight deck position	
	and size of carrier	.247
Table 44:	Mann-Whitney <i>post hoc</i> significance tests for the grouping	

	variables flight deck position and size of carrier	248
Table 45:	Kruskal-Wallis test for the grouping variable interaction effect	
	between experience in advanced aircraft and computer literacy	250
Table 46:	Mann-Whitney post hoc significance tests for the grouping	
	variable interaction effect between experience in advanced	
	aircraft and computer literacy	251
Table 47:	Kruskal-Wallis test for the grouping variable computer literacy	253
Table 48:	Mann-Whitney post hoc significance tests for the grouping	
	variable computer literacy	253
Table 49:	Kruskal-Wallis test for the grouping variable manufacturer	254
Table 50:	Mann-Whitney post hoc significance test for the grouping	
	variable manufacturer	255
Table 51:	Kruskall-Wallis test for the grouping variables of initial	
	(ab initio) training	255
Table 52:	Mann-Whitney post hoc significance test for the grouping	
	variable nature of initial training	257
Table 53:	Main demographic and factor correlations	259
Table 54:	Tests for assumptions of normality and homogeneity	265
Table 55:	Frequency of between-subjects factors	266
Table 56:	Omnibus Pillai-Bartlett multivariate test of significance	267
Table 57:	Significance tests for between-subjects effects for Factors	
	1, 2 and 3	270
Table 58:	Non-parametric comparison of mean rank scores by size of carrier	
Table 59:	Non-parametric comparison of the mean rank scores by the level	
	of Digital flight time experience*Computer literacy	276
Table 60:	Classification table and model summary	283
Table 61:	Final logistic regression model	284
Table 62:	Relationship between construct domains and derived scales	

