THE EFFECT OF EXERCISE TRAINING ON THE AUTONOMIC FUNCTION, DISEASE ACTIVITY AND FUNCTIONAL CAPACITY IN FEMALES SUFFERING FROM RHEUMATOID ARTHRITIS

by

Dina Christina Janse van Rensburg

Submitted in fulfilment of the requirements for the degree

MD

in

Clinical Rheumatology (Internal Medicine)

in the

Faculty of Health Sciences
Department of Internal Medicine
University of Pretoria

Supervisor: Prof JA Ker

Pretoria, July 2012
DEDICATION

This dissertation is dedicated to all Rheumatoid Arthritis sufferers
I would like to express my sincere thanks and gratitude to the following persons and institutions for their guidance, without whose assistance this study would not have been possible:

Hans Swart
(My husband). For your patience and for graciously supporting me in pursuing this goal.

Prof JA Ker
(Deputy Dean: Faculty of Health Sciences, University of Pretoria), who acted as my promoter. For his enthusiasm and gentle guidance. For always remaining positive.

Dr Lizelle Fletcher
(Department of Statistics, University of Pretoria). Thank you for your dedication and willingness to work at difficult hours.

Dr Rina Grant
(Section Sports Medicine, University of Pretoria). For your support and guidance regarding heart rate variability.

Patients who participated in the study.
For your time, support and willingness to assist.

Chrismarie Coertzen, Anneke de Beer and Natania Fourie
(Honours students from the Department of Biokinetics, Sport and Leisure Science, University of Pretoria). For your help with the exercise programmes of the patients, and processing the data.

Staff of the Medical Library
(University of Pretoria). For your endless help in finding articles.

Ria Smuts
(Section Sports Medicine, University of Pretoria). For your assistance with setting up a data base of researched articles.

Brenda Weder
(Section Sports Medicine, University of Pretoria). For typing and technical support.

Thelani Grant
(Research assistant). For assistance with the graphs.

Remi
(My dog). For loyally and faithfully lying at my feet during the long hours of writing up my thesis.

Rheumatoid Arthritis (RA) is a chronic disease and one of the more common auto-immune diseases. It generally occurs more amongst females than males. Patients with RA rely almost solely on pharmaceutical intervention to manage the disease. This study firstly compared the autonomic function of RA females to that of healthy females, whereupon the emphasis shifted to the effect of exercise intervention on the following three aspects relating to the effects of RA:

- Autonomic function (as measured by heart rate variability)
- Disease activity (as measured by Disease Activity Score, Visual Analogue Scale and Health Activity Questionnaire)
- Functional capacity (as measured by strength, flexibility and aerobic capacity)

After a 3 month intervention period it was found that exposing Rheumatoid Arthritis patients to exercise had a meaningful effect on their autonomic function, disease activity and functional capacity.

Key words: autonomic nervous system dysfunction / impairment, rheumatoid arthritis, heart rate variability, exercise, disease activity, functional outcome
Introduction: Rheumatoid arthritis (RA) is a chronic disease and one of the more common auto-immune diseases. Patients with RA rely almost solely on pharmaceutical intervention to manage the disease. Autonomic impairment has been proven in previous studies on patients with RA. The positive effect of exercise on autonomic impairment has also previously been demonstrated, but not in the RA population. The purpose of this study was firstly to confirm autonomic impairment in a South African based female population with RA and secondly to evaluate the effect of exercise on the autonomic cardiac function (as measured by short-term heart rate variability), disease activity and functional capacity.

Methods: The study was conducted at the University of Pretoria during 2009 and 2010. In the first phase of the study female RA patients were recruited from all rheumatology practices in Pretoria and healthy controls were recruited from family and friends of the research team and of the RA group. Cardiac autonomic function was compared between the two groups by means of short-term heart rate variability. Three techniques were used: time domain, frequency domain and Poincare plot analysis.

In the second phase of the study, females with confirmed RA were randomly assigned to an exercise group and a control group. The exercise group was requested to train under supervision two to three times per week for a period of twelve weeks, while the control group continued with their sedentary lifestyle. At study completion the two groups were compared for the effect of exercise intervention on the following three aspects:

- Autonomic function (as measured by heart rate variability)
- Disease activity (as measured by Disease Activity Score, Visual Analogue Scale and Health Activity Questionnaire)
- Functional capacity (as measured by strength, flexibility and aerobic capacity)

Results: In the first phase of the study comparing females with RA (n=45) to healthy females (n=39), the basal heart rate was significantly higher in the RA group. In the supine position significant differences existed between the RA group and the control group (p ≤ 0.01). Indicators of parasympathetic activity showed significantly lower variation in the RA group [RMSSD=14.70, pNN50=0.50, SD1=10.50, HF(ms²)=31] compared to the control group [RMSSD=29.40, pNN50=7.8, SD1=20.9, HF(ms²)=141.00]. Indicators of sympathetic variation were also significantly lower in the RA Group [SD2=36.70, LF(ms²)=65] compared to the Control group (SD2=49.50, LF(ms²)=175]. In the standing position 8 variables indicated autonomic impairment by significant differences (p≤0.01) between the 2 groups. The response of the RA Group to an orthostatic stressor showed less vagal withdrawal, [p-values for RMSSD=0.038, pNN50=0.022, SD1=0.043 and HF(ms²)=0.008 respectively]; and lower sympathetic response [p-values for SD2=0.001 and LF(ms²)<0.001] when compared to the Control group.

In the second phase of the study, comparing an RA exercise group to a RA sedentary group, three aspects were evaluated:

1. Heart rate variability

At baseline the control group (n=18) had significantly higher variability compared to the exercise group (n=19) for most heart rate variability (HRV) indicators. At study completion the variables showing significant changes (p=0.01 to 0.05) favoured the exercise group in all instances. Wilcoxon signed rank tests were performed to assess changes within groups from start to end. The exercise group showed significant improvement for most of the standing variables, including measurements of combined autonomic influence e.g. SDRR (p=0.002) and variables indicating only vagal influence e.g. pNN50 (p=0.014). The control group mostly deteriorated with emphasis on variables measuring vagal influence [RMSSD, pNN50, SD1 and HF(ms²)].
2. Disease activity

At baseline the two groups were comparable. At the end of the intervention, the exercise group had significant improvement for the tender joint count \((p=0.015)\), swollen joint count \((p<=0.001)\), physician global assessment \((p=0.003)\) and DAS score \((p=0.003)\) compared to the control group. To assess changes that happened within each group from start to end, Wilcoxon signed rank tests were performed. The exercise group improved significantly with regards to tender joint count \((p=0.002)\), swollen joint count \((p=0.001)\), physician global assessment \((p=0.001)\), DAS score \((0.001)\) and the visual analogue scale \((p=0.032)\). The sedentary group improved significantly only in the health assessment questionnaire \((p=0.032)\).

3. Functional capacity

Comparing the groups at baseline the exercise group had better knee- and hip flexion on the left hand side but it took them longer to complete the arm curl test. At study completion the exercise group was mostly favoured with regards to flexibility (significant p-values ranging between 0.001 – 0.049), strength (handgrip right \(p<0.001\), leg strength \(p=0.035\), arm curl test \(p=0.010\), sit to stand test \(p=0.025\)) and aerobic fitness (1 mile walk test \(p<0.001\) and \(VO_2\) max \(p=0.007\)). Changes within each group were assessed by Wilcoxon signed rank tests. The exercise groups showed significant changes for many parameters in the three categories, i.e. flexibility \((8 \text{ of } 18)\), strength \((5 \text{ of } 5)\), and aerobic fitness \((4 \text{ of } 8)\). The control group mostly deteriorated in flexibility, while their strength also improved, but not to the same extent as for the exercise group. Their aerobic fitness did not change.

Discussion: In the first phase of this study, using standardised methods to measure short-term HRV, females with RA showed less variability compared to a healthy age- and sex matched control group. An inability of the autonomic nervous system to efficiently compensate to internal and external environmental changes may predispose RA patients to arrhythmias thereby increasing cardiovascular mortality.
All 3 methods used showed the same outcome, implying decreased HRV and thus an increased risk for arrhythmias in RA patients. Evaluating the autonomic nervous system might be critical in planning management of RA.

In the second phase study results indicated that twelve weeks of exercise intervention, had a positive effect on cardiac autonomic function as measured by short-term HRV, in females with RA. Several of the standing variables indicated improved vagal influence on the heart rate. Exercise can thus potentially be used as an instrument to improve cardiac health in a patient group known for increased cardiac morbidity.

The exercise programme was also effective in decreasing perception of pain as well as disease activity in female RA patients. Given our findings it seems warranted to include physical exercise as part of the treatment prescription of patients with class I and II RA.

Lastly this research has shown that regular, controlled exercise for RA patients with controlled disease can decrease joint stiffness and improve joint mobility, strength and aerobic capacity without exacerbating pain or disease activity. Also, if one observes the decline in the sedentary group for many parameters, it is important to note that this happened over a relative short time period and that even a small change may have a detrimental impact on the RA patient.

The current report supports previous literature on autonomic impairment in patients suffering from RA as well as the meaningful positive effect of exercise on disease activity and functional capacity. It is the only study on the effect of an exercise intervention on the cardiac autonomic function of RA patients.

Future research in this field should aim for larger study samples, longer intervention periods and perhaps add analysis of blood pressure variability to support results obtained by HRV analysis.
Chapter One: Introduction

1.1 Rheumatoid Arthritis background 1
1.2 Morbidity and mortality in Rheumatoid Arthritis 2
1.3 Autonomic dysfunction in RA 2
1.4 Exercise as intervention 3
1.5 Relevance of the study: role of exercise 4
1.6 Research questions 5
1.7 Study aims and objectives
 1.7.1 PHASE 1 6
 1.7.2 PHASE 2 6
 1.7.2.1 Objective 1 6
 1.7.2.2 Objective 2 6
 1.7.2.3 Objective 3 6
 1.7.2.4 Objective 4 6
1.8 Hypotheses 7
 1.8.1 PHASE one 7
 1.8.2 PHASE two 7
1.9 Possible limitations of the study 8

Bibliography 9
Chapter Two: Literature Review

2.1 Pathogenesis and etiology
 2.1.1 Role of immunity
 2.1.2 Gender (Hormonal)
 2.1.3 Tobacco
 2.1.4 Infection
 2.1.5 Genetic

2.2 Clinical features
 2.2.1 Prevalence and incidence
 2.2.2 Patterns of onset
 2.2.2.1 Insidious onset
 2.2.2.2 Acute onset
 2.2.2.3 Intermediate onset
 2.2.2.4 Unusual patterns (variants) of disease
 2.2.2.4.1 Palindromic
 2.2.2.4.2 Rheumatoid Nodulosis
 2.2.2.4.3 Arthritis Robustus
 2.2.2.4.4 RA and paralysis
 2.2.3 Classification
 2.2.4 Constitutional symptoms
 2.2.5 Joint involvement
 2.2.6 Extra-articular manifestations
 2.2.6.1 Musculoskeletal involvement
 2.2.6.2 Cardiac involvement
 2.2.6.2.1 Conventional cardiovascular risk factors
 2.2.6.2.2 Accelerated atherosclerosis
 2.2.6.2.3 Conduction disorders and arrhythmias

2.3 Autonomic dysfunction in RA
 2.3.1 Sweat responses (sympathetic involvement)
 2.3.2 Cardiovascular reflex tests
 2.3.3 Four tasks indicating autonomic function
 2.3.4 Pre-ejection period and respiratory sinus arrhythmia
 2.3.5 Sympathetic skin response and RR interval variation
 2.3.6 Pupillography
 2.3.7 Heart rate variability
 2.3.8 Heart rate turbulence
 2.3.9 Summary of literature on autonomic dysfunction in RA

2.4 Role of exercise
Chapter Three: Methodology

3.1 Hypotheses
3.1.1 PHASE 1
3.1.2 PHASE 2

3.2 Study aims and objectives
3.2.1 PHASE 1 Aim
3.2.2 PHASE 2 Aim
 3.2.2.1 Objective 1
 3.2.2.2 Objective 2
 3.2.2.3 Objective 3
 3.2.2.4 Objective 4

3.3 Study design

3.4 Setting

3.5 Patient / Research object selection
3.5.1 Healthy Control Group (PHASE 1 of the study)
3.5.2 Rheumatoid Group (PHASE 1 and 2 of the study)

3.6 Equipment

3.7 Measurements
3.7.1 Height
3.7.2 Body mass
3.7.3 Heart rate
3.7.4 Blood pressure
3.7.5 Heart rate variability
 3.7.5.1 Method of Heart rate variability data sampling
 3.7.5.2 Heart rate variability quantification
 3.7.5.2.1 Time domain
 3.7.5.2.2 Frequency domain
 3.7.5.2.3 Poincaré plots
3.7.6 Disease Activity Score (DAS_{28})
 3.7.6.1 Tender joint count
3.7.6.2 Swollen joint count 94
3.7.6.3 Patient global assessment 95
3.7.6.4 Physician global assessment 95
3.7.6.5 C-reactive protein 96
3.7.7 Quality of life 97
3.7.8 Visual Analogue Scale 98
3.7.9 Functional capacity 98
3.7.9.1 Flexibility 98
3.7.9.1.1 Wrist flexion 99
3.7.9.1.2 Wrist extension 99
3.7.9.1.3 Knee flexion 100
3.7.9.1.4 Knee extension 100
3.7.9.1.5 Hip flexion 101
3.7.9.1.6 Hip extension 101
3.7.9.1.7 Lateral flexion 102
3.7.9.1.8 Back scratch test 102
3.7.9.1.9 Chair sit and reach test 103
3.7.9.2 Strength 104
3.7.9.2.1 Hand grip strength 104
3.7.9.2.2 Leg strength test 105
3.7.9.2.3 Arm curl test 106
3.7.9.2.4 Sit to stand test 106
3.7.10 Aerobic capacity 107

3.8 Data analysis 108

3.9 Ethical considerations 110
3.9.1 Ethical approval 110
3.9.2 Consent 110
3.9.3 Confidentiality 110

Bibliography 111

Chapter Four: Results

4.1 PHASE one: Healthy Control Group versus Rheumatoid Arthritis Group 117
4.1.1 Demographic background 117
4.1.2 Heart rate variability 118
4.1.2.1 Variables in the supine (resting) position 118
4.1.2.2 Variables in the standing (stress) position 122
4.1.2.3 Heart rate and heart rate response 125
4.1.2.4 Postural change 126
4.2 PHASE two: Rheumatoid Arthritis Exercise Group versus Rheumatoid Arthritis Control Group

4.2.1 Demographic background

4.2.2 Heart rate variability
 4.2.2(A) Descriptive statistics
 4.2.2(B) Assessment for initial bias between the two groups
 4.2.2(C) Within group analysis
 4.2.2(D) Differences between the two groups at study completion

4.2.3 Disease Activity Score28, Health Assessment Questionnaire and Visual Analogue Scale
 4.2.3(A) Descriptive statistics
 4.2.3(B) Assessment for initial bias between the two groups
 4.2.3(C) Within group analysis
 4.2.3(D) Differences between the two groups at study completion

4.2.4 Functional parameters
 4.2.4(A) Descriptive statistics
 4.2.4(B) Assessment for initial bias between the two groups
 4.2.4(C) Within group analysis
 4.2.4(D) Differences between the two groups at study completion

Bibliography

Chapter Five: Discussion

5.1 Cardiac autonomic function between healthy participants and rheumatoid arthritis patients

5.2 Effect of exercise on cardiac autonomic function, disease activity and functional parameters in rheumatoid arthritis
 5.2.1 Autonomic nervous system (HRV)
 5.2.2 Disease outcome
 5.2.3 Functional parameters

5.3 Conclusion
 5.3.1 Added value
 5.3.2 Limitations of the study

Bibliography
Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>WHO definition of Health</td>
<td>178</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>Medical History Questionnaire</td>
<td>179</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>The 1987 revised criteria for the classification of rheumatoid arthritis (traditional format)</td>
<td>181</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>Classification of Global Functional Status in RA</td>
<td>182</td>
</tr>
<tr>
<td>Appendix 5</td>
<td>Health Assessment Questionnaire</td>
<td>183</td>
</tr>
<tr>
<td>Appendix 6</td>
<td>T08165 HRV Normality Tests.docx</td>
<td>See attached CD</td>
</tr>
<tr>
<td>Appendix 7</td>
<td>T08165 HRV MANOVA using ln(HRV).docx</td>
<td>See attached CD</td>
</tr>
<tr>
<td>Appendix 8</td>
<td>T08165 HRV analysis 24 March.docx p69-71 and p74-76</td>
<td>See attached CD</td>
</tr>
<tr>
<td>Appendix 9</td>
<td>Participant Informed Consent form</td>
<td>185</td>
</tr>
<tr>
<td>Appendix 10</td>
<td>GCP Certificate</td>
<td>190</td>
</tr>
<tr>
<td>Appendix 11</td>
<td>T08165 Confidence intervals</td>
<td>See attached CD</td>
</tr>
<tr>
<td>Appendix 12</td>
<td>T08165 Phase II HAQ Analysis p1-6.</td>
<td>See attached CD</td>
</tr>
<tr>
<td>Figure</td>
<td>Page no</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>

List of Figures
Chapter 2: Literature Review

<table>
<thead>
<tr>
<th>Figure 2.1</th>
<th>Summary of Literature Review</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.2</td>
<td>Immune mechanisms possibly playing a role in RA</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>The complex interactions between RA characteristics, cardiovascular risk factors, genetic determinants and therapies on the development of preclinical and overt cardiovascular disease in RA</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Relative impact of traditional cardiovascular (CV) risk factors on a combined CV endpoint in RA and non-RA subjects</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Database search (1963-December 2010)</td>
<td>35</td>
</tr>
</tbody>
</table>

Chapter 3: Methodology

<table>
<thead>
<tr>
<th>Figure 3.1</th>
<th>Anthropometer</th>
<th>83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3.2</td>
<td>Scale</td>
<td>83</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Polar heart rate monitor</td>
<td>84</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Sphygmomanometer</td>
<td>84</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Stethoscope</td>
<td>84</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Goniometer</td>
<td>84</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Tape measure</td>
<td>84</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Ruler</td>
<td>84</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Dynamometer</td>
<td>85</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Leg dynamometer</td>
<td>85</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Dumbbells</td>
<td>85</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Measurement of height</td>
<td>86</td>
</tr>
<tr>
<td>Figure 3.13</td>
<td>Measurement of resting heart rate</td>
<td>87</td>
</tr>
<tr>
<td>Figure 3.14</td>
<td>Measurement of blood pressure</td>
<td>87</td>
</tr>
<tr>
<td>Figure 3.15</td>
<td>The Polar strap in position around the chest</td>
<td>89</td>
</tr>
<tr>
<td>Figure 3.16</td>
<td>Participants in the supine position</td>
<td>89</td>
</tr>
<tr>
<td>Figure 3.17</td>
<td>Participants in the standing (stress) position</td>
<td>89</td>
</tr>
<tr>
<td>Figure 3.18</td>
<td>Example of a tachogram</td>
<td>92</td>
</tr>
<tr>
<td>Figure 3.19</td>
<td>Examining of tender joints: hands</td>
<td>94</td>
</tr>
<tr>
<td>Figure 3.20</td>
<td>Examining of tender joints: knees</td>
<td>94</td>
</tr>
</tbody>
</table>
Figure 3.21 Swollen joints of the hands
Chapter 4: Results

Figures pertaining to Heart rate variability

Figure 4.1 Medians of RMSSD supine and pNN50 supine in the HCG and RAG 119
Figure 4.2 Medians of SD1 supine and HF(ms)^2 supine in the HCG and RAG 119
Figure 4.3 Medians of RR supine, RRSD supine and HRSD supine in the HCG and RAG 120
Figure 4.4 Medians of SD2 supine and LF(ms^2) supine in the HCG and RAG 120
Figure 4.5 Medians of LF(nu) supine, HF(nu) supine and LF/HF supine in the HCG and RAG
Figure 4.6 Medians of RMSSD stress and pNN50 stress in the HCG and RAG
Figure 4.7 Medians of SD1 stress and HF(ms)^2 stress in the HCG and RAG
Figure 4.8 Medians of RR stress, RRSD stress and HRSD stress in the HCG and RAG
Figure 4.9 Medians of SD2 stress and LF(ms^2) stress in the HCG and RAG
Figure 4.10 Medians of HR supine and stress in the HCG and RAG
Figure 4.11 Comparison of posture change for the groups
Figure 4.12 Box-Whisker plot of comparison of BMI
Figure 4.13 Comparison of the influence of posture change on the HRV indicator values in the RAE group from pre- to post-intervention
Figure 4.14 Comparison of the influence of posture change on the HRV indicator values in the RAC group from pre- to post-intervention 139

Figures pertaining to Disease activity

Figure 4.15 Parameters that changed in favour of the RAE group at study completion 145
Figure 4.16 Clustered Box Plot on VAS at baseline and at completion of study for both groups 146

Figure pertaining to Functional capacity

Figure 4.17 Comparison of changes in the strength parameters from pre- to post- intervention for both groups 153
List of Tables

Chapter 2: Literature review

<table>
<thead>
<tr>
<th>No</th>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>21</td>
<td>Possible infectious causes of Rheumatoid Arthritis</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>25</td>
<td>The 1987 revised criteria for the classification of Rheumatoid Arthritis</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>26</td>
<td>Distribution of joints involved in attacks based on a cumulative experience with 227 patients</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>28</td>
<td>Extra-articular features of Rheumatoid Arthritis</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>31</td>
<td>Prevalence of traditional cardiovascular risk factors at RA incidence in Rheumatoid Arthritis and non-Rheumatoid Arthritis patients</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>49</td>
<td>Classification of global functional status in Rheumatoid Arthritis</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>53</td>
<td>Studies on autonomic nervous system function in Rheumatoid Arthritis patients</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 3: Methodology

<table>
<thead>
<tr>
<th>No</th>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>79</td>
<td>Exercise programme</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>83</td>
<td>Equipment for pre-test and post-test measurements</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>93</td>
<td>HRV techniques, HRV indicators and origins of variability</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>109</td>
<td>Explanation of statistical analyses on PHASE 1 HRV parameters</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 4: Results

Tables relating to Heart rate variability

<table>
<thead>
<tr>
<th>No</th>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>117</td>
<td>Descriptive background data of the HCG and RAG</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>118</td>
<td>Descriptives and MWU test results of HRV indicators in the supine position for the HCG and the RAG</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>122</td>
<td>Descriptives and MWU test of HRV indicators in the standing position for the HCG and the RAG</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>129</td>
<td>Demographic information on RAE and RAC</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>131</td>
<td>Descriptive statistics for RAE and RAC pre-intervention</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>132</td>
<td>Descriptive statistics for RAE and RAC post-intervention</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>133</td>
<td>Values of variables displaying initial bias</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>135</td>
<td>HRV variables that showed a change from pre- to post-intervention in RAE</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>136</td>
<td>HRV variables that showed a change from pre- to post-intervention in RAC</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.10 Variables that showed significant changes between the RAE and RAC groups at study completion

Tables relating to Disease Activity
- Table 4.11 Descriptive statistics of the RAE and RAC groups
- Table 4.12 p-values of the MANOVA on transformed variables, MANOVA on untransformed variables and MWU on untransformed variables
- Table 4.13 Differences between the pre- and post-values for RAE
- Table 4.14 Differences between the pre- and post-values for RAC
- Table 4.15 p-values for differences between the two groups at study completion

Tables relating to Functional Capacity
- Table 4.16 Descriptive statistics of RAE and RAC group for flexibility parameters
- Table 4.17 Descriptive statistics of RAE and RAC group for strength parameters
- Table 4.18 Descriptive statistics of RAE and RAC group for aerobic fitness parameters
- Table 4.19 Median values of variables showing initial bias between RAE and RAC
- Table 4.20 Parameter measurement descriptions
- Table 4.21 Functional parameters that changed significantly from baseline to study completion for RAE
- Table 4.22 Functional parameters that changed significantly from baseline to study completion for RAC
- Table 4.23 Parameters that showed significant changes between the two groups at end of study
List of publications, oral and poster presentations from the study

Publications
 South African Orthopaedic Journal Vol 9(2) 2010: 34-42

2. Land- and water-based exercises in Rheumatoid Arthritis.
 South African Journal of Sports Medicine Vol 23(3) 2011: 84-88

3. Autonomic dysfunction in Rheumatoid Arthritis.
 Article accepted for publication in International Journal of Rheumatic Diseases

4. Effect of exercise on cardiac autonomic function in female Rheumatoid Arthritis patients.
 Article accepted for publication in Clinical Rheumatology

Oral presentations
 21st National Congress of the South African Rheumatoid Arthritis Association 2009

 Conference of Science and Medicine in Sport 2010 (Australia)

 Faculty Day, University of Pretoria 2011

 South African Rheumatoid Arthritis Association Congress 2011

9. Heart rate variability and exercise.
 14th Biennial South African Sports Medicine Association Congress 2011

Poster presentations
10. The prescription of exercise to counter autonomic dysfunction in Rheumatoid Arthritis patients: a pilot study.
 American College of Sports Medicine Congress 2011 (Denver, Colorado)

11. Effect of exercise on cardiac autonomic function in female Rheumatoid Arthritis patients.
 International e-Conference on Kinesiology and Integrated Physiology 2011 (University of Houston)