

SURFACE CHARACTERISTICS AND

IN VITRO BIO-ACCEPTABILITY OF

MACHINED AND CAST

PURE TITANIUM

AND TITANIUM ALLOY

BY

LORNA CELIA CARNEIRO

Thesis submitted in fulfillment for the requirements of the degree

Philosophiae Doctor

In the School of Dentistry Faculty of Health Sciences University of Pretoria

Promotor

Prof Dr SJ Botha Centre of Stomatological Research School of Dentistry, University of Pretoria.

Co-Promotor

Prof Dr PL Kemp Department of Prosthetics School of Dentistry, University of Pretoria

January~2003

© University of Pretoria

DECLARATION

I, Lorna Celia Carneiro, declare that this thesis entitled:

"Surface Characteristics and *In Vitro* Bio-acceptability of Machined and Cast Pure Titanium and Titanium Alloy"

which I herewith submit to the University of Pretoria for the Degree of Philosophiae Doctor in Dentistry, is my own original work, and has never been submitted for any academic award to any other tertiary institution for any degree.

2003

Lorna Celia Carneiro

The deponent has acknow-ledged that he/she knows and understands the con-tents of this alfidavit which was sworn to/affirmed be-Die verklaarder erken dat hy/sy ten volle op hoogte is van die inhoud van hierdie verklaring en dit begryp. Hierdie verklaring was beë-dig/bevestig voor my. iore me. DANIEL PIETER BOTHA Asst. Registrateur/Registrar \$19 Univ. van/of, Pretoria Landdrosdistrik/Magisterial District Datum 28/01 Kom, van Ede/Com of Oaths Date PRETONIA

Date

DEDICATION

My late brother-in-law

Agnelo

My parents

My husband

Primo

Our children

Ryan, Elton and Michael

Commit to the LORD whatever you do, and your plans will succeed

Proverbs 16:3

- ----

ACKNOWLEDGEMENTS

The Training Fund for Tanzanian Women for the partial scholarship grant.

The Muhimbili National Hospital/Muhimbili University College of Health Sciences for study leave and partial scholarship grant.

Prof SJ Botha for his untimely effort in planning, constant encouragement and many other aspects for which there are no words just gratitude.

Prof PL Kemp for his profound contribution to unlimited knowledge, constant assistance and guidance.

Colleagues in the Centre of Stomatological Research and Department of Prosthetic Dentistry.

Southern Implants - Graham Blackbeard and Hein van Heerden for all machined samples and the enhancement of cast samples.

J & D Chrome, Deon Botha and Johan Voss for the fabrication of Cast Titanium samples.

Department of Materials Science and Metallurgical Engineering, University of Pretoria for the different microscopic utilities especially Prof Von Moltke, Robert Ehlers and Prem Premachandra.

Gerrit Myburg for doing the Radio Frequency Glow Discharge Treatment of samples.

Wynand Louw - from the Council for Scientific & Industrial Research for the Depth profile analysis of samples.

Department of Electron Microscopy, University of Pretoria and especially lan Hall and Chris van de Merwe for samples preparation, training and assistance in using the Scanning Electron Microscope.

v

Dr PJ Becker from the Medical Research Council, for guidance assistance and processing of the statistics.

Gerald Grossberg - L N dministrator, School of Dentistry for help with the network, digital camera and computer technicalities.

Library staff (Susan Marsh, Maria Skosana, Antionette Kemp, Patrick Maibelo and Marinda Maritz) of the Pre Clinical Library of the University of Pretoria for their tireless effort in retrieving of publications.

Colleagues from the ssistant Dental Officer's Training School/Faculty of Dentistry, Muhimbili University College of Health Sciences, Tanzania.

Primo, my husband, for his love, support, prompting, advice and encouragement to persevere.

My children, Ryan, Elton and Michael who besides many sacrifices were deprived of my presence.

My parents for their continued love and support.

Ivan, my brother for his spiritual support besides the many other times he has been there for me.

Riantes Residence - The Rossi's -you provided not only boarding and meals during the many times I was busy working but love, care and consideration.

My friends Monica, Hulda, Marna, Carol, Cecilia and lice -both near and far, for their prayers, friendship and words of encouragement.

Lastly not forgetting the families of Dr Hennie and nnalie van Jaarsveld, Monica and Guillermo Hamity, Fanie and Francien Botha, Rina and Hennie de Wet, Ina and Jan de Wet and Hulda and Fidelis Swai - you all provided me a family to be part of. Thank-you.

SUMMARY

Properties making Ti and its alloys popular implant materials are determined by manufacturing conditions. With introduction of cast Ti into the dental fraternity, alternative methods of implant fabrication are possible. This study determined and compared differences in bio-acceptability between surface characteristics of machined and cast Ti and Ti-alloy in relation to materials used, fabrication procedure employed, surface enhancements and Radio Frequency Glow Discharge Treatment (RFGDT). Discs of 6.35mm diameter, 2mm thick, were prepared using cpTi and Ti6Al4V by machining and casting, and specific topographies were introduced. The first group of surfaces was from machining and casting procedures (controls). The second group was surfaces enhanced according to proprietary specifications of Southern Implants (SI). The third group was experimentally enhanced surfaces (ES). Enhancement included grit blasting and acid etching. From each group 21 of 24 samples were RFGDT. Electron Spectroscopy and Profilometric analysis of the Ti surfaces determined chemical composition, oxide thickness and surface roughness. Growth of human gingival fibroblasts and osteoblast-like cells, and scanning electron microscopy (SEM) determined in vitro bioacceptability of different samples. Surface chemical composition was the same for cpTi and Ti6Al4V samples. Cast and enhanced samples were different from machined samples with higher % concentration of Sodium and Aluminium (p<0.05). RFGDT reduced Carbon and other surface contaminants and enhanced the Oxygen and Titanium atomic % concentration (p<0.05). The Sodium and Aluminium atomic % concentration was not affected. The major surface peak was TiO_2 for Ti and oxygen peaks varied considerably between machined and cast samples. Surface topography of cast samples had higher surface analysis values compared to machined samples (p<0.05). RFGDT increased surface area and Rp values (p<0.05). No significant differences in

vii

oxide thickness were observed between materials employed, but it was significantly higher for cast and enhanced samples. RFGDT significantly increased oxide thickness of samples. Fibroblasts showed significant increases in % attachment efficiency and proliferation (%AEP) with time while osteoblast-like cells showed a significant decrease with time. The %AEP of fibroblasts and osteoblast-like cells on different samples was not significantly different. Cast Ti6Al4V control and machined Ti6A14V SI samples had relatively higher %AEP for osteoblast-like cells than the control or other samples. SEM revealed that fibroblasts and osteoblast-like cells displayed similar attachment behaviour. On machined surfaces cells spread, displaying the underlying topography while on cast and enhanced surfaces cells attached to the available peaks and used these attachments to suspend themselves over the surface. Filopodia were responsible for the attachment of cells. Significant differences in chemical composition were introduced by casting and surface enhancement procedures. RFGDT significantly reduced the concentration of Carbon and other contaminants on the surface exposing the surface Titanium oxide. Cast samples had rougher surface topography than machined samples. RFGDT significantly increased surface area and peak height. Casting, surface enhancement and RFGDT significantly increased oxide thickness. With time fibroblasts showed significant increases in %AEP while osteoblast-like cells significant decreases. Fibroblasts tended to proliferate on relatively smooth surfaces whereas osteoblast-like cells favored rougher surface topography produced by casting and surface enhancement.

CONTENTS

		PAGE
Declaration		ii
Dedication		iii
Words of Wis	dom	iv
Acknowledgem	ents	V
Summary		vii
List of Figu	res	ivx
List of Tabl	es	xxiv
Chapter 1	Introduction	1
Chapter 2	Review of Literature	4
2.1 Ov	erview on Titanium	4
2.1.1	Titanium Development	4
2.1.2	Pure/Unalloyed Titanium	4
2.1.3	Titanium Alloy	5
2.1.4	Properties of Titanium	6
2.1.5	Titanium Oxides	8
2.1.6	Corrosion of Titanium	10
2.2 Fal	brication of Titanium	12
2.2.1	Machining of Titanium	12
2.2.2	Casting of Titanium	12
2.3	2.2.1 Casting Machines	13

	2.2.2.2 Cyclarc Titanium		
	Casting Machine		13
	2.2.2.3 Investment Materia	1	14
2.3	Osseointegration		15
2.4	Titanium and its Alloys as Dental Implants		18
2.5	Classification of Dental Imp	olants	19
	2.5.1 The Implant Surface		20
	2.5.1.1 Machined Surfaces		20
	2.5.1.2 Osseotite Surface		21
	2.5.1.3 Grit Blasted Surfa	ces	22
	2.5.1.4 Bioactive Coated S	urfaces	23
2.6	Surface Characterization		24
	2.6.1 Compositional-Considera	tions	26
	2.6.1.1 X-ray Photoelectro	on	
	Spectroscopy (XP	S)	27
	2.6.2 Surface Topography		29
	2,6.2.1 Atomic Force Micro	escope (AFM)	31
	2.6.3 Depth Profiling		34
	2.6.4 Cleaning and Sterilizat	ion	
	of Implants		37
	2.6.4.1 Radio Frequency		
	Glow Discharge Tre	atment (RFGDT)	39
2.7	Cell Culturing		41
	2.7.1 Types of Cells used		
	in Culture		42

	2.7.2	Cell	Attachment	46
	2.7.3	Cell	Detachment	47
	2.7.4	Inoc	ulation/Seeding of Cells	48
	2.7.5	Esti:	mation of Cell Number	48
	2.7.6	Cell	Proliferation	49
2.8	Bic	-accep	tibility	50
	2.8.1	Scan	ning Electron Microscopy (SEM)	51
Char	pter 3	Aim	of the Study	52
Char	pter 4	Mate	erials and Methods	54
4.1	Fab	ricati	on of Specimen Discs	54
	4.1.1	Prep	aration of Machined Discs	5.4
	4.1.2	Fabr	ication of Cast Discs	55
	4.1	.2.1	Preparation of Resin	
			Disc Patterns	55
	4.1	.2.2	Casting Procedures	57
4.2	Pre	parati	on of Different Surfaces	59
	4.2.1	Non-	enhanced Surfaces	60
	4.2.2	Enha	nced Surfaces	60
	4.2	.2.1	Surface Enhancement of Samples according to Southern Implants	(SI)
				60
	4.2	.2.2	Experimental Enhancement of Samples (ES)	61

UNIVERSITEIT	VAN PRETORIA
UNIVERSITY YUNIBESITHI	OF PRETORIA YA PRETORIA
	UNIVERSITEIT UNIVERSITY YUNIBESITHI

		YUNIBESITHI YA PRETORIA	
4.3	Sterili Glow Di	zation by Radio Frequency scharge Treatment	61
4.4	Analysi Charact	s of Surface erization	62
	4.4.1 X-	ray Photoelectron	
	Sp	ectroscopy (XPS)	62
	4.4.2 At	omic Force Microscope (AFM)	63
	4.4.3 Th	e Quantum 2000 Scanning	
	ES	CA Microprobe	65
4.5	Cell Cu	lturing	66
	4.5.1 Ce	ll Cultures	66
	4.5.1.1	Fibroblasts	66
	4.5.1.2	Osteoblast-like cells	66
	4.5.2 Cu	ltivation of Cell cultures	66
	4.5.3 Ce	ll Concentration	67
	4.5.4 In	oculation of Cells onto	
	Sa	mple Discs	67
	4.5.5 In	cubation	68
	4.5.6 Co	unting Procedures	68
	4.5.6.1	Preparation of Trypan	
		Blue	6.8
	4.5.6.2	Cell Detachment for	
		Osteoblast-like cells	69
	4.5.6.3	Cell Detachment for	
		Fibroblasts	69
	4.5.6.4	Neubauer Haemocytometer	70

4.5.6.5	Estimation of Cell		
	Number and Proliferat	ion	71
4.5.7 Fix	ation Procedures		71
4.6 Scanning	Electron Microscopy	(SEM)	72
4.7 Statisti	cal Analysis		72
Chapter 5 Res	sults		74
5.1 Surface	Characterization		74
5.1.1 Che	mical Composition		74
5.1.1.1	Atomic Percent		
	Concentration		74
	XPS Survey Spetra		76
	Carbon		78
	Oxygen		79
	Titanium		80
	Aluminium		81
	Sodium		82
5,1.1,2	Curve Fitting		83
	Carbon sub peaks		83
	Oxygen sub peaks		85
	Titanium sub peaks		86
	Aluminium sub peaks		88
	Sodium sub peaks		88
5.1.2 Sur	face Roughness		89
5.1.2.1	Area Analysis		89

		YUNIBESITHI YA PRETORIA	
		Area Ra and RMS	92
		Average height and	
		Maximum range	94
		Surface Area	96
	5.1.2.2	Line Analysis	99
		Ra	104
		Rt	105
		Rtm	105
		Rp	105
		Rpm	105
	5.1.3 Dept	h Profile	106
5.2	Cell Cult	uring	109
	5.2.1 Cell	. Attachment	109
	5.2.1.1	Fibroblasts	109
	5.2.1.2	Osteoblast-like Cells	116
	5.2.2 Scan	ning Electron Microscope Analysis	
			123
	5.2.2.1	Fibroblasts	123
		Two days	123
		Twenty-eight days	126
	5.2.2.2	Osteoblast-like Cells	129
		Two days	129
		Twenty-eight days	133

Chapter 6 Discussion	137
6.1 Chemical Composition	139
6.2 Surface Roughness	143
6.2.1 Area Analysis	144
6.2.2 Line Analysis	146
6.3 Depth Profile	147
6.4 Cell Culturing	150
6.5 Scanning Electron Microscopy	154
6.6 Bio-acceptability	157
Chapter 7 Conclusion and Recommendations	159
7.1 Conclusions	159
7.2 Recommendations	162
Chapter 8 References	164
Addendum A	178
Addendum B	179
Addendum C	180
Addendum D	183
Addendum E	188
Addendum F	193
Addendum G	196
Addendum H	200

PAGE

LIST OF FIGURES

Fig 2-1: Three separate phenomena of osseointegration taken from 17 The Colgate Oral Care Report (2000) Fig 2-2: a) Cast surface (An isotropic surface) and b) Machined surface (An anisotropic surface) taken from Mummery (1992) 30 Fig 4-1: Sample discs of cpTi (Grade 3) and Ti6Al4V (Grade 5) as received from Southern Implants 55 Fig 4-2: DuraLay resin rods as fabricated from the duplicating mould 56 Slow speed cutting saw sectioning Fig 4-3: resin rods into discs 57 Fig 4-4: The Morita Cyclarc Casting Machine taken from (J.Morita, Europe, GMBA) 58 Fig 4-5: Coded sample discs 60 Fig 4-6: Placing of sample discs into tissue culture wells 68 Fig 4-7: Neubauer haemocytometer being filled by capillary action prior to cell counting 70 Fig 5-1: XPS survey spectra for cpTi cast control sample surfaces before RFGDT 76

Fig 5-2:	XPS survey spectra for cpTi cast	
	control sample surface after RFGDT	77
Fig 5-3:	XPS survey spectra of cpTi	
	machined RFGDT sample (AG=green)	
	and cpTi cast RFGDT sample (FG=blue)	
	of control surfaces	77
Fig 5-4:	XPS survey spectra of Ti6Al4V machined	
	RFGDT sample (CG=green) and	
	Ti6Al4V cast RFGDT sample (HG=blue)	
	of control surfaces	78
Fig 5-5:	Atomic percent concentration of Carbon	
	before and after RFGDT of sample	
	surfaces	78
Fig 5-6:	Atomic percent concentration of Oxygen	
	before and after RFGDT of sample	
	surfaces	80
Fig 5-7:	Atomic percent concentration of Titaniu	ım
	before and after RFGDT of sample	
	surfaces	81
Fig 5-8:	Atomic percent concentration of	
	Aluminium before and after RFGDT	
	of sample surfaces	82
Fig 5-9:	Atomic percent concentration of Sodium	
	before and after RFGDT of sample	
	surfaces	83
Fig 5-10:	Deconvolution of XPS Carbon envelope	
	of Ti6A14V cast control RFGDT sample	
	surfaces	84

Fig 5-11:	Deconvolution of XPS Oxygen envelope	
	of Ti6Al4V cast control RFGDT sample	
	surface	86
Fig 5-12:	Deconvolution of XPS Titanium	
	envelope of Ti6Al4V cast control	
	RFGDT sample surface	87
Fig 5-13:	Deconvolution of Aluminium	
	envelope for Ti6Al4V cast control	
	sample surface	88
Fig 5-14:	AFM 3D images of 20µm scans of cpTi	
	machined control sample surface	89
Fig 5-15:	AFM 3D images of 20µm scans of Ti6Al4V	
	machined control sample surface	89
Fig 5-16:	AFM 3D images of 20µm scans of cpTi	
	cast control sample surface	90
Fig 5-17:	AFM 3D images of 20 μ m scans of Ti6Al4V	
	cast control sample	90
Fig 5-18:	Average roughness (Ra and RMS) of	
	the different sample surfaces by	
	material employed and RFGDT for	
	20µm scans	93
Fig 5-19:	Average roughness (Ra and RMS) of	
	the different samples by	
	material employed and RFGDT	
	for 5µm scans	94
Fig 5-20:	Average height and Maximum range for	
	20µm scans of sample surfaces	95
Fig 5-21:	Average height and Maximum range for	
	5µm scans of sample surfaces	95

Fig 5-22:	Average Projected surface area of th	ie
	20µm scans for sample surfaces	96
Fig 5-23:	Average Projected surface area of the	
	5µm scans for sample surfaces	97
Fig 5-24:	Percent increase of Projected	
	surface areas of samples for the	
	20µm scans	98
Fig 5-25:	Line analysis of the 20µm scans of	
	cpTi machined control sample surfaces	99
Fig 5-26:	Line analysis of the 20µm scans of	
	cpTi cast control sample surfaces	100
Fig 5-27:	Line analysis of the 20µm scans of	
	Ti6Al4V machined control sample	
	surfaces	100
Fig 5-28:	Line analysis of the 20µm scans of	
	Ti6Al4V cast control sample surface	101
Fig 5-29:	Line analysis of the 5µm scans of	
	cpTi machined control sample surfaces	102
Fig 5-30:	Line analysis of the 5µm scans of	
	cpTi cast control sample surfaces	102
Fig 5-31:	Line analysis of the 5µm scans of	
	Ti6Al4V machined control sample	
	surfaces	103
Fig 5-32:	Line analysis of the 5µm scans of	
	Ti6Al4V cast control sample surfaces	103
Fig 5-33:	Different values of line analysis	
	of sample surfaces as related to	
	fabrication procedures for the	
	20µm scan	106

Fig 5-34:	Tracing of the depth profile of	
	Ti6A14V cast control RFGDT sample	107
Fig 5-35:	Oxide thickness of samples	109
Fig 5-36:	Percent attachment efficiency and	
	proliferation of fibroblasts on	
	machined cpTi samples	110
Fig 5-37:	Percent attachment efficiency and	
	proliferation of fibroblasts	
	on machined Ti6Al4V samples	111
Fig 5-38:	Percent attachment efficiency and	
	proliferation of fibroblasts exposed	
	to cast cpTi samples	112
Fig 5-39:	Percent attachment efficiency and	
	proliferation of fibroblasts exposed	
	to cast Ti6Al4V samples	112
Fig 5-40:	Percent attachment efficiency and	
	proliferation of fibroblasts exposed	
	to machined samples	113
Fig 5-41:	Percent attachment efficiency and	
	proliferation of fibroblasts exposed	
	to cast samples	114
Fig 5-42:	Percent attachment efficiency and	
	proliferation of fibroblasts exposed	
	to different control samples	114
Fig 5-43:	Percent attachment efficiency and	
	proliferation of fibroblasts exposed	
	to SI enhanced samples	115
Fig 5-44:	Percent attachment efficiency and	
	proliferation of fibroblasts exposed	
	to ES samples	116

Fig 5-46: Percent attachment efficiency and proliferation of osteoblast-like cells exposed to machined Ti6Al4V samples	17
exposed to machined cpTi samples1Fig 5-46:Percent attachment efficiency and proliferation of osteoblast-like cells exposed to machined Ti6Al4V samples1	17
Fig 5-46: Percent attachment efficiency and proliferation of osteoblast-like cells exposed to machined Ti6Al4V samples	18
proliferation of osteoblast-like cells exposed to machined Ti6A14V samples	18
exposed to machined Ti6A14V samples 1	18
enposed to industried fibility dumpted i	
Fig 5-47: Percent attachment efficiency and	
proliferation of osteoblast-like cells	
exposed to cast cpTi samples 1	18
Fig 5-48: Percent attachment efficiency and	
proliferation of osteoblast-like cells	
exposed to cast Ti6A14V samples 1	19
Fig 5-49: Percent attachment efficiency and	
proliferation of osteoblast-like cells	
exposed to machined samples 1	20
Fig 5-50: Percent attachment efficiency and	
proliferation of osteoblast-like cells	
exposed to cast samples 1	21
Fig 5-51: Percent attachment efficiency and	
proliferation of osteoblast-like cells	
exposed to control surfaces 1	21
Fig 5-52: Percent attachment efficiency and	
proliferation of osteoblast-like cells	
exposed to SI samples 1	22
Fig 5-53: Percent attachment efficiency and	
proliferation of osteoblast-like cells	
exposed to ES samples 1	22
Fig 5-54: Growth of fibroblasts on surfaces of	
machined cpTi samples after	
2 days incubation 1	24

Fig 5-55:	Growth of fibroblasts on surfaces of	5
	machined Ti6Al4V samples after	
	2 days incubation	124
Fig 5-56:	Fibroblasts aligned according to the	
	grooves created by machining on	
	surfaces of machined Ti6Al4V	
	control sample	125
Fig 5-57:	Growth of fibroblasts on surfaces of	
	cast cpTi samples after	
	2 days incubation	125
Fig 5-58:	Growth of fibroblasts on cast Ti6Al4V	
	samples after 2 days incubation	126
Fig 5-59:	Growth of fibroblasts on surfaces of	
	control samples after	
	28 days incubation	127
Fig 5-60:	Growth of fibroblasts on surfaces of	
	enhanced samples after	
	28 days incubation	128
Fig 5-61:	Growth of fibroblasts on surfaces of	
	SI enhanced samples after	
	28 days incubation	129
Fig 5-62:	Osteoblast-like cells have completely	
	covered the surface of the machined	
	cpTi and Ti6Al4V control sample	
	after 2 days incubation	130
Fig 5-63:	Growth of osteoblast-like cells on	
	surfaces of machined enhanced samples	
	after 2 days incubation	131

Fig 5-64:	Growth of osteoblast-like cells on	
	surfaces of cast control samples	
	after 2 days incubation	131
Fig 5-65:	Growth of osteoblast-like cells on	
	cast enhanced samples	
	after 2 days incubation	132
Fig 5-66:	Attached osteoblast-like cell seen on	
	the different Titanium surfaces	133
Fig 5-67:	Growth of osteoblast-like cells on	
	surfaces of machined samples	
	after 28 days incubation	134
Fig 5-68:	Growth of osteoblasts on surfaces of	
	cast samples after 28 days	
	incubation	135
Fig 5-69:	Network of osteoblast-like cells	
	formed on surfaces of cast	
	Ti6Al4V control samples	
	after 28 days incubation	136

LIST OF TABLES

			PAGE
Table	2-1	Maximum impurity limits of pure	
		Titanium taken from Donachie (1984)	5
Table	2-2	Normal values of Titanium, Aluminium	
		and Vanadium in Humans taken from	
		Vargas et al (1992)	11
Table	2-3	Surface analytic techniques used to	
		study material interaction with	
		host fluids and tissues taken	
		from Baier & Meyer (1988)	25
Table	4-1	Description of materials used in this	
		study for sample fabrication	54
Table	4-2	Summary of the designation of sample	
		material, fabrication procedure	
		adopted and introduced surface	
		enhancement	59
Table	5-1	A summary of the elemental composition	
		of sample surfaces (At %)	75
Table	5-2	Deconvoluted Carbon 1s envelope with	
		respective sub peak positions (Bold	
		figures indicate highest percent)	84
Table	5-3	Deconvoluted Oxygen 1s envelope with	
		respective sub peak positions (Bold	
		figures indicate highest percent)	85
Table	5-4	Deconvoluted Titanium 2p envelope with	
		respective sub peak positions (Bold	
		figures indicate highest percent)	87

Table	5-5	Average tabulated values of the	
		surface topography of samples for	
		20µm scans (N=5)	91
Table	5-6	Average tabulated values of the surface	
		topography of samples for	
		5µm scans (N=5)	92
Table	5-7	Projected surface area of	
		samples with their relative	
		percent increase	98
Table	5-8	Averages of the line analysis done	
		for the different sample surfaces for	
		the 20µm scan	101
Table	5-9	Averages of the line analysis done	
		for the different sample surfaces for	
		the 5µm scan	104
Table	5-10	Sputter time and Oxide thickness	
		of samples	108