SURFACE CHARACTERISTICS AND
IN VITRO BIO-ACCEPTABILITY OF
MACHINED AND CAST
PURE TITANIUM
AND TITANIUM ALLOY

BY

LORNA CELIA CARNEIRO

Thesis submitted in fulfillment for the requirements of the degree

Philosophiae Doctor

In the School of Dentistry
Faculty of Health Sciences
University of Pretoria

Promotor
Prof Dr SJ Botha
Centre of Stomatological Research
School of Dentistry, University of Pretoria.

Co-Promotor
Prof Dr PL Kemp
Department of Prosthetics
School of Dentistry, University of Pretoria

January-2003
DECLARATION

I, Lorna Celia Carneiro, declare that this thesis entitled:

"Surface Characteristics and In Vitro Bio-acceptability of Machined and Cast Pure Titanium and Titanium Alloy"

which I herewith submit to the University of Pretoria for the Degree of Philosophiae Doctor in Dentistry, is my own original work, and has never been submitted for any academic award to any other tertiary institution for any degree.

Date 2003
Lorna Celia Carneiro
DEDICATION

My late brother-in-law
Agnelo

My parents

My husband
Primo

Our children
Ryan, Elton and Michael
Commit to the LORD whatever you do, and your plans will succeed

Proverbs 16:3
ACKNOWLEDGEMENTS

The Training Fund for Tanzanian Women for the partial scholarship grant.

The Muhimbili National Hospital/Muhimbili University College of Health Sciences for study leave and partial scholarship grant.

Prof SJ Botha for his untimely effort in planning, constant encouragement and many other aspects for which there are no words just gratitude.

Prof PL Kemp for his profound contribution to unlimited knowledge, constant assistance and guidance.

Colleagues in the Centre of Stomatological Research and Department of Prosthetic Dentistry.

Southern Implants - Graham Blackbeard and Hein van Heerden for all machined samples and the enhancement of cast samples.

J & D Chrome, Deon Botha and Johan Voss for the fabrication of Cast Titanium samples.

Department of Materials Science and Metallurgical Engineering, University of Pretoria for the different microscopic utilities especially Prof Von Moltke, Robert Ehlers and Prem Premachandra.

Gerrit Myburg for doing the Radio Frequency Glow Discharge Treatment of samples.

Wynand Louw - from the Council for Scientific & Industrial Research for the Depth profile analysis of samples.

Department of Electron Microscopy, University of Pretoria and especially Ian Hall and Chris van de Merwe for samples preparation, training and assistance in using the Scanning Electron Microscope.
Dr PJ Becker from the Medical Research Council, for guidance assistance and processing of the statistics.

Gerald Grossberg — L N dministrator, School of Dentistry for help with the network, digital camera and computer technicalities.

Library staff (Susan Marsh, Maria Skosana, Antionette Kemp, Patrick Maibelo and Marinda Maritz) of the Pre Clinical Library of the University of Pretoria for their tireless effort in retrieving of publications.

Colleagues from the assistent Dental Officer’s Training School/Faculty of Dentistry, Muhimbili University College of Health Sciences, Tanzania.

Primo, my husband, for his love, support, prompting, advice and encouragement to persevere.

My children, Ryan, Elton and Michael who besides many sacrifices were deprived of my presence.

My parents for their continued love and support.

Ivan, my brother for his spiritual support besides the many other times he has been there for me.

Riantes Residence — The Rossi’s — you provided not only boarding and meals during the many times I was busy working but love, care and consideration.

My friends Monica, Hulda, Marna, Carol, Cecilia and lice — both near and far, for their prayers, friendship and words of encouragement.

Lastly not forgetting the families of Dr Hennie and nnalie van Jaarsveld, Monica and Guillermo Hamity, Fanie and Francien Botha, Rina and Hennie de Wet, Ina and Jan de Wet and Hulda and Fidelis Swai — you all provided me a family to be part of.

Thank-you.
SUMMARY

Properties making Ti and its alloys popular implant materials are determined by manufacturing conditions. With introduction of cast Ti into the dental fraternity, alternative methods of implant fabrication are possible. This study determined and compared differences in bio-acceptability between surface characteristics of machined and cast Ti and Ti-alloy in relation to materials used, fabrication procedure employed, surface enhancements and Radio Frequency Glow Discharge Treatment (RFGDT). Discs of 6.35mm diameter, 2mm thick, were prepared using cpTi and Ti6Al4V by machining and casting, and specific topographies were introduced. The first group of surfaces was from machining and casting procedures (controls). The second group was surfaces enhanced according to proprietary specifications of Southern Implants (SI). The third group was experimentally enhanced surfaces (ES). Enhancement included grit blasting and acid etching. From each group 21 of 24 samples were RFGDT. Electron Spectroscopy and Profilometric analysis of the Ti surfaces determined chemical composition, oxide thickness and surface roughness. Growth of human gingival fibroblasts and osteoblast-like cells, and scanning electron microscopy (SEM) determined in vitro bio-acceptability of different samples. Surface chemical composition was the same for cpTi and Ti6Al4V samples. Cast and enhanced samples were different from machined samples with higher % concentration of Sodium and Aluminium (p<0.05). RFGDT reduced Carbon and other surface contaminants and enhanced the Oxygen and Titanium atomic % concentration (p<0.05). The Sodium and Aluminium atomic % concentration was not affected. The major surface peak was TiO₂ for Ti and oxygen peaks varied considerably between machined and cast samples. Surface topography of cast samples had higher surface analysis values compared to machined samples (p<0.05). RFGDT increased surface area and Rp values (p<0.05). No significant differences in
oxide thickness were observed between materials employed, but it was significantly higher for cast and enhanced samples. RFGDT significantly increased oxide thickness of samples. Fibroblasts showed significant increases in % attachment efficiency and proliferation (%AEP) with time while osteoblast-like cells showed a significant decrease with time. The %AEP of fibroblasts and osteoblast-like cells on different samples was not significantly different. Cast Ti6Al4V control and machined Ti6Al4V SI samples had relatively higher %AEP for osteoblast-like cells than the control or other samples. SEM revealed that fibroblasts and osteoblast-like cells displayed similar attachment behaviour. On machined surfaces cells spread, displaying the underlying topography while on cast and enhanced surfaces cells attached to the available peaks and used these attachments to suspend themselves over the surface. Filopodia were responsible for the attachment of cells. Significant differences in chemical composition were introduced by casting and surface enhancement procedures. RFGDT significantly reduced the concentration of Carbon and other contaminants on the surface exposing the surface Titanium oxide. Cast samples had rougher surface topography than machined samples. RFGDT significantly increased surface area and peak height. Casting, surface enhancement and RFGDT significantly increased oxide thickness. With time fibroblasts showed significant increases in %AEP while osteoblast-like cells significant decreases. Fibroblasts tended to proliferate on relatively smooth surfaces whereas osteoblast-like cells favored rougher surface topography produced by casting and surface enhancement.
CONTENTS

Declaration ii

Dedication iii

Words of Wisdom iv

Acknowledgements v

Summary vii

List of Figures xvii

List of Tables xxiv

Chapter 1 Introduction 1

Chapter 2 Review of Literature 4

2.1 Overview on Titanium 4

2.1.1 Titanium Development 4

2.1.2 Pure/Unalloyed Titanium 4

2.1.3 Titanium Alloy 5

2.1.4 Properties of Titanium 6

2.1.5 Titanium Oxides 8

2.1.6 Corrosion of Titanium 10

2.2 Fabrication of Titanium 12

2.2.1 Machining of Titanium 12

2.2.2 Casting of Titanium 12

2.2.2.1 Casting Machines 13
2.2.2.2 Cyclarc Titanium Casting Machine

2.2.2.3 Investment Material

2.3 Osseointegration

2.4 Titanium and its Alloys as Dental Implants

2.5 Classification of Dental Implants
 2.5.1 The Implant Surface
 2.5.1.1 Machined Surfaces
 2.5.1.2 Osseotite Surface
 2.5.1.3 Grit Blasted Surfaces
 2.5.1.4 Bioactive Coated Surfaces

2.6 Surface Characterization
 2.6.1 Compositional-Considerations
 2.6.1.1 X-ray Photoelectron Spectroscopy (XPS)
 2.6.2 Surface Topography
 2.6.2.1 Atomic Force Microscope (AFM)
 2.6.3 Depth Profiling
 2.6.4 Cleaning and Sterilization of Implants
 2.6.4.1 Radio Frequency Glow Discharge Treatment (RFGDT)

2.7 Cell Culturing
 2.7.1 Types of Cells used in Culture
2.7.2 Cell Attachment

2.7.3 Cell Detachment

2.7.4 Inoculation/Seeding of Cells

2.7.5 Estimation of Cell Number

2.7.6 Cell Proliferation

2.8 Bio-acceptibility

2.8.1 Scanning Electron Microscopy (SEM)

Chapter 3 Aim of the Study

Chapter 4 Materials and Methods

4.1 Fabrication of Specimen Discs

4.1.1 Preparation of Machined Discs

4.1.2 Fabrication of Cast Discs

- **4.1.2.1 Preparation of Resin Disc Patterns**
- **4.1.2.2 Casting Procedures**

4.2 Preparation of Different Surfaces

4.2.1 Non-enhanced Surfaces

4.2.2 Enhanced Surfaces

- **4.2.2.1 Surface Enhancement of Samples according to Southern Implants (SI)**
- **4.2.2.2 Experimental Enhancement of Samples (ES)**
4.3 Sterilization by Radio Frequency Glow Discharge Treatment

4.4 Analysis of Surface Characterization

4.4.1 X-ray Photoelectron Spectroscopy (XPS)

4.4.2 Atomic Force Microscope (AFM)

4.4.3 The Quantum 2000 Scanning ESCA Microprobe

4.5 Cell Culturing

4.5.1 Cell Cultures

4.5.1.1 Fibroblasts

4.5.1.2 Osteoblast-like cells

4.5.2 Cultivation of Cell cultures

4.5.3 Cell Concentration

4.5.4 Inoculation of Cells onto Sample Discs

4.5.5 Incubation

4.5.6 Counting Procedures

4.5.6.1 Preparation of Trypan Blue

4.5.6.2 Cell Detachment for Osteoblast-like cells

4.5.6.3 Cell Detachment for Fibroblasts

4.5.6.4 Neubauer Haemocytometer
4.5.6.5 Estimation of Cell Number and Proliferation

4.5.7 Fixation Procedures

4.6 Scanning Electron Microscopy (SEM)

4.7 Statistical Analysis

Chapter 5 Results

5.1 Surface Characterization

5.1.1 Chemical Composition

5.1.1.1 Atomic Percent Concentration

XPS Survey Spectra

Carbon

Oxygen

Titanium

Aluminium

Sodium

5.1.1.2 Curve Fitting

Carbon sub peaks

Oxygen sub peaks

Titanium sub peaks

Aluminium sub peaks

Sodium sub peaks

5.1.2 Surface Roughness

5.1.2.1 Area Analysis
Area Ra and RMS 92
Average height and Maximum range 94
Surface Area 96

5.1.2.2 Line Analysis 99
Ra 104
Rt 105
Rtm 105
Rp 105
Rpm 105

5.1.3 Depth Profile 106

5.2 Cell Culturing 109
5.2.1 Cell Attachment 109
5.2.1.1 Fibroblasts 109
5.2.1.2 Osteoblast-like Cells 116
5.2.2 Scanning Electron Microscope Analysis 123
5.2.2.1 Fibroblasts 123
Two days 123
Twenty-eight days 126
5.2.2.2 Osteoblast-like Cells 129
Two days 129
Twenty-eight days 133
<table>
<thead>
<tr>
<th>FIGURES</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 2-1: Three separate phenomena of osseointegration taken from The Colgate Oral Care Report (2000)</td>
<td>17</td>
</tr>
<tr>
<td>Fig 2-2: a) Cast surface (An isotropic surface) and b) Machined surface (An anisotropic surface) taken from Mummery (1992)</td>
<td>30</td>
</tr>
<tr>
<td>Fig 4-1: Sample discs of cpTi (Grade 3) and Ti6Al4V (Grade 5) as received from Southern Implants</td>
<td>55</td>
</tr>
<tr>
<td>Fig 4-2: DuraLay resin rods as fabricated from the duplicating mould</td>
<td>56</td>
</tr>
<tr>
<td>Fig 4-3: Slow speed cutting saw sectioning resin rods into discs</td>
<td>57</td>
</tr>
<tr>
<td>Fig 4-4: The Morita Cyclarc Casting Machine taken from (J.Morita, Europe, GMB)</td>
<td>58</td>
</tr>
<tr>
<td>Fig 4-5: Coded sample discs</td>
<td>60</td>
</tr>
<tr>
<td>Fig 4-6: Placing of sample discs into tissue culture wells</td>
<td>68</td>
</tr>
<tr>
<td>Fig 4-7: Neubauer haemocytometer being filled by capillary action prior to cell counting</td>
<td>70</td>
</tr>
<tr>
<td>Fig 5-1: XPS survey spectra for cpTi cast control sample surfaces before RFGDT</td>
<td>76</td>
</tr>
</tbody>
</table>
Fig 5-2: XPS survey spectra for cpTi cast control sample surface after RFGDT

Fig 5-3: XPS survey spectra of cpTi machined RFGDT sample (AG=green) and cpTi cast RFGDT sample (FG=blue) of control surfaces

Fig 5-4: XPS survey spectra of Ti6Al4V machined RFGDT sample (CG=green) and Ti6Al4V cast RFGDT sample (HG=blue) of control surfaces

Fig 5-5: Atomic percent concentration of Carbon before and after RFGDT of sample surfaces

Fig 5-6: Atomic percent concentration of Oxygen before and after RFGDT of sample surfaces

Fig 5-7: Atomic percent concentration of Titanium before and after RFGDT of sample surfaces

Fig 5-8: Atomic percent concentration of Aluminium before and after RFGDT of sample surfaces

Fig 5-9: Atomic percent concentration of Sodium before and after RFGDT of sample surfaces

Fig 5-10: Deconvolution of XPS Carbon envelope of Ti6Al4V cast control RFGDT sample surfaces
Fig 5-11: Deconvolution of XPS Oxygen envelope of Ti6Al4V cast control RFGDT sample surface

Fig 5-12: Deconvolution of XPS Titanium envelope of Ti6Al4V cast control RFGDT sample surface

Fig 5-13: Deconvolution of Aluminium envelope for Ti6Al4V cast control sample surface

Fig 5-14: AFM 3D images of 20μm scans of cpTi machined control sample surface

Fig 5-15: AFM 3D images of 20μm scans of Ti6Al4V machined control sample surface

Fig 5-16: AFM 3D images of 20μm scans of cpTi cast control sample surface

Fig 5-17: AFM 3D images of 20μm scans of Ti6Al4V cast control sample

Fig 5-18: Average roughness (Ra and RMS) of the different sample surfaces by material employed and RFGDT for 20μm scans

Fig 5-19: Average roughness (Ra and RMS) of the different samples by material employed and RFGDT for 5μm scans

Fig 5-20: Average height and Maximum range for 20μm scans of sample surfaces

Fig 5-21: Average height and Maximum range for 5μm scans of sample surfaces
Fig 5-22: Average Projected surface area of the 20μm scans for sample surfaces 96

Fig 5-23: Average Projected surface area of the 5μm scans for sample surfaces 97

Fig 5-24: Percent increase of Projected surface areas of samples for the 20μm scans 98

Fig 5-25: Line analysis of the 20μm scans of cpTi machined control sample surfaces 99

Fig 5-26: Line analysis of the 20μm scans of cpTi cast control sample surfaces 100

Fig 5-27: Line analysis of the 20μm scans of Ti6Al4V machined control sample surfaces 100

Fig 5-28: Line analysis of the 20μm scans of Ti6Al4V cast control sample surface 101

Fig 5-29: Line analysis of the 5μm scans of cpTi machined control sample surfaces 102

Fig 5-30: Line analysis of the 5μm scans of cpTi cast control sample surfaces 102

Fig 5-31: Line analysis of the 5μm scans of Ti6Al4V machined control sample surfaces 103

Fig 5-32: Line analysis of the 5μm scans of Ti6Al4V cast control sample surfaces 103

Fig 5-33: Different values of line analysis of sample surfaces as related to fabrication procedures for the 20μm scan 106
Fig 5-34: Tracing of the depth profile of Ti6A14V cast control RFGDT sample

Fig 5-35: Oxide thickness of samples

Fig 5-36: Percent attachment efficiency and proliferation of fibroblasts on machined cpTi samples

Fig 5-37: Percent attachment efficiency and proliferation of fibroblasts on machined Ti6A14V samples

Fig 5-38: Percent attachment efficiency and proliferation of fibroblasts exposed to cast cpTi samples

Fig 5-39: Percent attachment efficiency and proliferation of fibroblasts exposed to cast Ti6A14V samples

Fig 5-40: Percent attachment efficiency and proliferation of fibroblasts exposed to machined samples

Fig 5-41: Percent attachment efficiency and proliferation of fibroblasts exposed to cast samples

Fig 5-42: Percent attachment efficiency and proliferation of fibroblasts exposed to different control samples

Fig 5-43: Percent attachment efficiency and proliferation of fibroblasts exposed to SI enhanced samples

Fig 5-44: Percent attachment efficiency and proliferation of fibroblasts exposed to ES samples

xx
Fig 5-45: Percent attachment efficiency and proliferation of osteoblast-like cells exposed to machined cpTi samples 117

Fig 5-46: Percent attachment efficiency and proliferation of osteoblast-like cells exposed to machined Ti6Al4V samples 118

Fig 5-47: Percent attachment efficiency and proliferation of osteoblast-like cells exposed to cast cpTi samples 118

Fig 5-48: Percent attachment efficiency and proliferation of osteoblast-like cells exposed to cast Ti6Al4V samples 119

Fig 5-49: Percent attachment efficiency and proliferation of osteoblast-like cells exposed to machined samples 120

Fig 5-50: Percent attachment efficiency and proliferation of osteoblast-like cells exposed to cast samples 121

Fig 5-51: Percent attachment efficiency and proliferation of osteoblast-like cells exposed to control surfaces 121

Fig 5-52: Percent attachment efficiency and proliferation of osteoblast-like cells exposed to SI samples 122

Fig 5-53: Percent attachment efficiency and proliferation of osteoblast-like cells exposed to ES samples 122

Fig 5-54: Growth of fibroblasts on surfaces of machined cpTi samples after 2 days incubation 124
Fig 5-55: Growth of fibroblasts on surfaces of machined Ti6Al4V samples after 2 days incubation 124

Fig 5-56: Fibroblasts aligned according to the grooves created by machining on surfaces of machined Ti6Al4V control sample 125

Fig 5-57: Growth of fibroblasts on surfaces of cast cpTi samples after 2 days incubation 125

Fig 5-58: Growth of fibroblasts on cast Ti6Al4V samples after 2 days incubation 126

Fig 5-59: Growth of fibroblasts on surfaces of control samples after 28 days incubation 127

Fig 5-60: Growth of fibroblasts on surfaces of enhanced samples after 28 days incubation 128

Fig 5-61: Growth of fibroblasts on surfaces of S1 enhanced samples after 28 days incubation 129

Fig 5-62: Osteoblast-like cells have completely covered the surface of the machined cpTi and Ti6Al4V control sample after 2 days incubation 130

Fig 5-63: Growth of osteoblast-like cells on surfaces of machined enhanced samples after 2 days incubation 131
Fig 5-64: Growth of osteoblast-like cells on surfaces of cast control samples after 2 days incubation

Fig 5-65: Growth of osteoblast-like cells on cast enhanced samples after 2 days incubation

Fig 5-66: Attached osteoblast-like cell seen on the different Titanium surfaces

Fig 5-67: Growth of osteoblast-like cells on surfaces of machined samples after 28 days incubation

Fig 5-68: Growth of osteoblasts on surfaces of cast samples after 28 days incubation

Fig 5-69: Network of osteoblast-like cells formed on surfaces of cast Ti6Al4V control samples after 28 days incubation
LIST OF TABLES

Table 2-1	Maximum impurity limits of pure Titanium taken from Donachie (1984)	5
Table 2-2	Normal values of Titanium, Aluminium and Vanadium in Humans taken from Vargas et al (1992)	11
Table 2-3	Surface analytic techniques used to study material interaction with host fluids and tissues taken from Baier & Meyer (1988)	25
Table 4-1	Description of materials used in this study for sample fabrication	54
Table 4-2	Summary of the designation of sample material, fabrication procedure adopted and introduced surface enhancement	59
Table 5-1	A summary of the elemental composition of sample surfaces (At %)	75
Table 5-2	Deconvoluted Carbon 1s envelope with respective sub peak positions (Bold figures indicate highest percent)	84
Table 5-3	Deconvoluted Oxygen 1s envelope with respective sub peak positions (Bold figures indicate highest percent)	85
Table 5-4	Deconvoluted Titanium 2p envelope with respective sub peak positions (Bold figures indicate highest percent)	87
Table 5-5	Average tabulated values of the surface topography of samples for 20µm scans (N=5)	91
Table 5-6	Average tabulated values of the surface topography of samples for 5µm scans (N=5)	92
Table 5-7	Projected surface area of samples with their relative percent increase	98
Table 5-8	Averages of the line analysis done for the different sample surfaces for the 20µm scan	101
Table 5-9	Averages of the line analysis done for the different sample surfaces for the 5µm scan	104
Table 5-10	Sputter time and Oxide thickness of samples	108