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SYNOPSIS 

 
________________________________________________________ 
 
 
Pyrrhotite (Fe(1-x)S) is one of the most commonly occurring metal sulfide minerals and is 

recognised in a variety of types of ore deposits. Since the principal nickel ore mineral, 

pentlandite, almost ubiquitously occurs with pyrrhotite, the understanding of the behaviour of 

pyrrhotite during flotation is of fundamental interest. For many nickel processing operations, 

pyrrhotite is rejected to the tailings in order to control circuit throughput and concentrate 

grade and thereby reduce excess sulfur dioxide smelter emissions. For the platinum group 

element processing operations however, pyrrhotite recovery is targeted due to its association 

with the platinum group elements and minerals. Therefore, the ability to be able to manipulate 

pyrrhotite flotation performance is of importance. It can be best achieved if the mineralogical 

characteristics of the pyrrhotite being processed are known and their relationship to flotation 

performance is understood.   

 

Pyrrhotite is known to naturally occur in different forms that have varying physical and 

chemical attributes. These different pyrrhotite forms are commonly known as magnetic 

(Fe7S8) and non-magnetic pyrrhotite (Fe9S10, Fe10S11, Fe11S12) and as a result of their varying 

properties are expected to show some difference in their reactivity towards oxidation and 

flotation performance. Yet the accounts in the literature are inconsistent as to which of the 

pyrrhotite types is more reactive. Similarly, there appears to be little agreement in the 

literature as to which of the pyrrhotite types is more floatable. It is probable that this lack of 

agreement arises from the fact that previous studies have not given due consideration to the 

effect of the mineralogy of the samples examined. The success of the discipline of process 

mineralogy as a whole however, has been to gain an understanding of how the mineralogy of 

an ore affects its processing properties.  

 

The objective of this process mineralogy study was to develop the relationship between 

pyrrhotite mineralogy and flotation performance based on a thorough characterisation of 

pyrrhotite from selected nickel and platinum group element ore deposits in terms of their 

crystallography, mineral association, mineral chemistry and mineral reactivity. This was 
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achieved through the characterisation of the mineralogy and mineral reactivity of pyrrhotite 

samples obtained from the Sudbury ore in Canada, Phoenix ore in Botswana and the 

Merensky Reef and Nkomati ores in South Africa. Based on the linkage of these 

characteristics to flotation performance, an understanding of the relationship and mechanisms 

that cause pyrrhotite mineralogy to influence pyrrhotite flotation performance has been 

gained.  

 

Mineralogical characterisation of the pyrrhotite samples in this study was performed using ore 

petrography, x-ray diffraction and mineral chemistry analysis. On the basis of these results 

pyrrhotite samples were classified as: single phase magnetic 4C Fe7S8 pyrrhotite, single phase 

non-magnetic 5C Fe9S10 pyrrhotite; two phase magnetic 4C Fe7S8 pyrrhotite intergrown with 

non-magnetic 5C Fe9S10 pyrrhotite and as two phase non-magnetic 6C Fe11S12 pyrrhotite 

intergrown with 2C FeS troilite. Nickel was identified as the main trace element impurity in 

the pyrrhotite structure and the amount of solid solution nickel in the pyrrhotite structure was 

correlated with whether the pyrrhotite was magnetic or non-magnetic, and whether it 

coexisted with another pyrrhotite phase. All pyrrhotite samples investigated showed a strong 

association to pentlandite that occurred in both granular and flame pentlandite forms. These 

key features of pyrrhotite mineralogy were in turn shown to be controlled by the bulk 

composition and cooling history of the monosulfide solid solution (MSS) from which 

pyrrhotite is derived.  

 

The reactivity of the different pyrrhotite samples towards oxidation was determined using 

open circuit potential, cyclic voltammetry and oxygen uptake measurements at both pH 7 and 

10. Non-magnetic Sudbury Copper Cliff North pyrrhotite was the most unreactive of the 

samples examined, whereas magnetic Sudbury Gertrude West pyrrhotite was the most 

reactive. The magnetic Sudbury Gertrude West pyrrhotite was so reactive that open circuit 

potential and oxygen uptake measurements showed it was already passivated and likely 

covered with hydrophilic ferric hydroxides. The magnetic Phoenix pyrrhotite was slightly less 

reactive than the magnetic Sudbury Gertrude West pyrrhotite. The reactivity of the Nkomati 

Massive Sulfide Body (MSB) mixed pyrrhotite was in between that of the non-magnetic 

Sudbury Copper Cliff North and magnetic Phoenix pyrrhotite, due to the combined 

contribution of intergrown magnetic and non-magnetic pyrrhotite to its reactivity.   
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The flotation performance of the different pyrrhotite samples was investigated at both pH 7 

and 10 using microflotation tests. A variety of different reagent conditions was also 

investigated that included the use of different chain length xanthate collectors (sodium 

isobutyl xanthate (SIBX), sodium normal propyl xanthate (SNPX)) and the use of copper 

activation. The collectorless flotation of the non-magnetic Sudbury Copper Cliff North 

pyrrhotite was the greatest of the samples investigated. Only with the addition of flotation 

reagents were differences in the floatability of the other pyrrhotite samples identified. 

Magnetic Phoenix pyrrhotite showed good flotation performance whereas the flotation 

performance of the magnetic Sudbury Gertrude and Gertrude West pyrrhotite was very poor. 

The Nkomati MSB mixed pyrrhotite only showed good flotation performance at pH 7. All 

pyrrhotite samples generally showed improved flotation performance with the use of the 

longer chain length SIBX collector than the shorter chain length SNPX, whereas the 

efficiency of copper activation was influenced by pyrrhotite mineralogy, pH and collector 

chain length.   

 

Differences in the flotation performance of the pyrrhotite samples investigated were linked to 

their reactivity towards oxidation. Although not directly measured, the formation of 

hydrophilic ferric hydroxides on pyrrhotite surfaces due to oxidation was inferred as the 

reason for the poor flotation performance of some of the pyrrhotite samples. Key features 

interpreted to influence both pyrrhotite reactivity and flotation performance were pyrrhotite 

crystallography, mineral chemistry and mineral association. It has been proposed that 

differences in the amount of vacancies in the pyrrhotite crystal structure influence the 

oxidation rate and similarly the greater proportion of ferric iron in the magnetic pyrrhotite 

structure was argued to account for its greater reactivity relative to non-magnetic pyrrhotite. 

Differences in the solid solution nickel content and trace oxygen in the pyrrhotite structure 

were also proposed as additional characteristics influencing pyrrhotite oxidation rate and 

flotation performance. Depending on the degree of association of pyrrhotite to pentlandite, its 

flotation performance could be affected by the liberation characteristics and flotation of 

composite particles containing abundant locked flame pentlandite, although this could be 

manipulated by changing the grind size. The presence of nickel ions derived from the flame 

pentlandite in these composite particles could also assist in the activation of pyrrhotite and 

further improvement of its flotation performance.   
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Some guidelines are also presented as to which simple mineralogical and mineral reactivity 

measurements have been of the most use in developing the relationship between mineralogy 

and flotation performance.  
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STATEMENT OF ORIGINALITY 

 
________________________________________________________________ 
 
 
The following outcomes listed below are considered as original contributions from this 

research:  

 

The creation of a unique pyrrhotite mineral chemistry database consisting of over 1000 EMP 

analyses from well-known nickel and platinum group element ore deposits derived from 

Southern Africa and Canada. The inclusion of crystallographic information and details of 

mineral associations between pyrrhotite types and associated sulfide minerals contributes to 

the uniqueness of the database. This database also provides a framework upon which to 

evaluate pre-existing datasets examining pyrrhotite reactivity and flotation performance. 

 

The first complete crystal structure solution of natural 5C non-magnetic pyrrhotite based on 

the solution of the Sudbury CCN Fe9S10 pyrrhotite (De Villiers et al., Submitted). This 

includes the establishment that natural non-magnetic 5C pyrrhotite of composition Fe9S10 is 

actually orthorhombic and not hexagonal as conventionally accepted, and that the crystal 

structure contains partially occupied iron sites instead of vacant sites as conventionally known 

for the 4C monoclinic pyrrhotite. This study has also demonstrated that natural 4C Fe7S8 

pyrrhotite does not always fall into the monoclinic C2/c space group, but can show C2 

symmetry based on the crystal structure solution of the Impala Merensky pyrrhotite sample 

IMP-1 (De Villiers et al., In Prep). 

 

The refinement of analytical methodology for magnetic and non-magnetic pyrrhotite analysis 

and quantification using quantitative powder x-ray diffraction (QXRD) with Rietveld 

refinement and automated SEM techniques. 

 

An understanding of the relationship between pyrrhotite mineralogy, reactivity and flotation 

performance based on the interpretation of pyrrhotite crystallography, mineral chemistry and 
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mineral association. Several mechanisms have also been proposed to account for differences 

in the oxidation rate and flotation response of magnetic and non-magnetic pyrrhotite. 
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___________________________________________________________________________ 

 

The following definitions are given within the context of this study: 

  

Anhedral  Textural term to describe a mineral grain that does not show a 
well developed crystal form 

 
Antiferromagnetic Magnetic state of a material where opposing magnetic moments 

are equal and result in no net magnetic character 
 
Archean Geological time period 2.5 billion years before present 
 
Disseminated Textural description of an ore consisting of fine grains of 

valuable minerals dispersed throughout the bulk of the rock 
 
En echelon Textural term to describe very closely spaced, overlapping and 

parallel to sub-parallel structural features 
 
Euhedral Textural term to describe a mineral grain that shows well 

developed crystal form 
 
Exsolution   Unmixing of two phases from a solid solution 
 
Ferrimagnetic Magnetic state of a material where opposing magnetic moments 

are unequal and result in a net magnetic character 
 
Greenstone belt Ancient geological structure comprised of metamorphosed 

volcanic rocks with associated sedimentary rocks  
 
“Hexagonal” pyrrhotite Common reference to non-magnetic NC pyrrhotite used in the 

literature. When quoted here, it is in reference to the 
terminology used by the authors of a particular study, even 
though 5C pyrrhotite is shown to be orthorhombic.  

 
Liberated   A particle with greater than 95% surface area exposed 
 
Liberation     Proportion of the surface area of a particle which is exposed 
 
Locked Mineral grain that is entirely enclosed by other grains and has 

no exposed surface area 
 
Middlings   Mineral grain that is partially liberated 
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Orogenic   Mountain building 
 
Paramagnetic Magnetic state of a material where the orientation of magnetic 

moments is completely random 
 
Petrogenesis   Origin of rocks 
 
Petrography   Description of rock textures 
 
Proterozoic Geological time period from 1.5 billion to 542 million years 

before present 
 
Subhedral Textural term to describe a mineral grain that shows partially 

developed crystal form 
 
Superstructure Pyrrhotite structure based upon multiple repeats of the smaller 

NiAs unit cell 
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