REFERENCES

References

References

A.1 PAPERS THAT APPEARED IN THOMSON INSTITUTE FOR SCIENTIFIC INFORMATION JOURNALS

- Kleynhans W., Salmon B.P., Olivier J.C., van den Bergh F., Wessels K.J., T.L. Grobler and Steenkamp K.C. "Land Cover Change Detection Using Autocorrelation Analysis on MODIS
Appendix A Publications emanating from this thesis and related work

A.2 PAPERS PUBLISHED IN REFEREED ACCREDITED CONFERENCE PROCEEDINGS

- Salmon B.P., Kleynhans W., van den Bergh F., Olivier J.C., Marais, W.J., Grobler T.L., Wessels K.J.,”A search algorithm to meta-optimize the parameters for an extended Kalman filter to improve classification on hyper-temporal images”, Accepted for publication, IEEE Geoscience and Remote Sensing Symposium 2012, Munich, Germany, 22 July - 27 July 2012

- Salmon B.P., Kleynhans W., van den Bergh F., Olivier J.C., Wessels K.J.,”Detecting land cover change by evaluating the internal covariance matrix of the extended Kalman filter”, Accepted for publication, IEEE Geoscience and Remote Sensing Symposium 2012, Munich, Germany, 22 July - 27 July 2012

- Kleynhans W., Salmon B.P., Olivier J.C., van den Bergh F., Wessels K.J., Grobler T.L. ”Detecting land cover change using a sliding window temporal autocorrelation approach”, Accepted for publication, IEEE Geoscience and Remote Sensing Symposium 2012, Munich, Germany, 22 July - 27 July 2012

- Kleynhans W., Salmon B.P., Olivier J.C., Wessels K.J., van den Bergh F.,”A comparison of feature extraction methods within a spatio-temporal land cover change detection framework”,
Appendix A
Publications emanating from this thesis and related work

A.3 INVITED CONFERENCE PAPERS IN REFEREED ACCREDITED CONFERENCE PROCEEDINGS

A.4 PAPERS SUBMITTED TO REFEREED ACCREDITED CONFERENCE PROCEEDINGS

A.5 BEST PAPER AWARD

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Specification of different remote sensing sensors.</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>MODIS spectral bands properties and characteristics.</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>MODIS land cover products.</td>
<td>22</td>
</tr>
<tr>
<td>6.1</td>
<td>Sequence of features extracted with sliding window at increments of $\frac{\pi}{2}$.</td>
<td>114</td>
</tr>
<tr>
<td>6.2</td>
<td>Sequence of features extracted with sliding window at increments of 2π.</td>
<td>116</td>
</tr>
<tr>
<td>8.1</td>
<td>Number of pixels used for training, validation and testing data sets.</td>
<td>146</td>
</tr>
<tr>
<td>8.2</td>
<td>The number of hidden nodes used within the MLP.</td>
<td>149</td>
</tr>
<tr>
<td>8.3</td>
<td>Classification accuracy of the batch mode and iteratively retrained MLP.</td>
<td>150</td>
</tr>
<tr>
<td>8.4</td>
<td>Classification accuracy of MLP using BVEP and ALS.</td>
<td>153</td>
</tr>
<tr>
<td>8.5</td>
<td>Parameter evaluation of simulated annealing and BVSA.</td>
<td>155</td>
</tr>
<tr>
<td>8.6</td>
<td>Parameter evaluation of MODIS spectral bands and NDVI in Limpopo province.</td>
<td>156</td>
</tr>
<tr>
<td>8.7</td>
<td>Parameter evaluation of MODIS spectral bands and NDVI in Gauteng province.</td>
<td>157</td>
</tr>
<tr>
<td>8.8</td>
<td>The Cophenetic correlation coefficient computed for hierarchical clustering methods.</td>
<td>160</td>
</tr>
<tr>
<td>8.9</td>
<td>Classification accuracy of MLP using SFF.</td>
<td>161</td>
</tr>
<tr>
<td>8.10</td>
<td>Classification accuracy of MLP using regression methods.</td>
<td>162</td>
</tr>
<tr>
<td>8.11</td>
<td>Classification accuracy of single, average and complete linkage criteria using SFF.</td>
<td>164</td>
</tr>
<tr>
<td>8.12</td>
<td>Classification accuracy of Ward clustering method using SFF.</td>
<td>165</td>
</tr>
<tr>
<td>8.13</td>
<td>Classification accuracy of Ward clustering method using regression methods.</td>
<td>165</td>
</tr>
<tr>
<td>8.14</td>
<td>Classification accuracy of K-means using SFF.</td>
<td>167</td>
</tr>
<tr>
<td>8.15</td>
<td>Classification accuracy of K-means using regression methods.</td>
<td>167</td>
</tr>
<tr>
<td>8.16</td>
<td>Classification accuracy of EM algorithm using SFF.</td>
<td>168</td>
</tr>
<tr>
<td>8.17</td>
<td>Classification accuracy of EM algorithm using regression methods.</td>
<td>169</td>
</tr>
<tr>
<td>8.18</td>
<td>Change detection accuracy on simulated land cover change in Limpopo province.</td>
<td>171</td>
</tr>
<tr>
<td>8.19</td>
<td>Change detection accuracy on simulated land cover change in Gauteng province.</td>
<td>172</td>
</tr>
<tr>
<td>8.20</td>
<td>Change detection accuracy on real land cover change in Limpopo province.</td>
<td>173</td>
</tr>
<tr>
<td>8.21</td>
<td>Change detection accuracy on real land cover change in Gauteng province.</td>
<td>174</td>
</tr>
</tbody>
</table>
8.22 Effective change detection delay in Limpopo province. 176
8.23 Effective change detection delay in Gauteng province. 177
8.24 Change detection algorithms tested at regional scale. 178
8.25 Change detection algorithm comparison. 179
8.26 Classification of the entire Limpopo province. 181
8.27 Classification of the entire Gauteng province. 182
8.28 Computational time of feature extraction methods. 184
List of Figures

1.1 Flow diagram for proposed solution. ... 4

2.1 The Limpopo province. .. 9
2.2 The Gauteng province. .. 10
2.3 The electromagnetic spectrum. .. 12
2.4 Atmospheric absorption. ... 15
2.5 Global MODIS image ... 20
2.6 Example of passive satellite. ... 23
2.7 Sinusoidal projection of the Earth. ... 25
2.8 Global NDVI index. ... 27
2.9 Seasonal variations versus land cover conversion. 30

3.1 Aerial photograph in Limpopo province. 39
3.2 Aerial photograph in Limpopo province (new segments). 43
3.3 Flow diagram of processing steps. ... 44
3.4 Aerial photograph in Limpopo province (alternative segments). 45
3.5 Aerial photograph in Limpopo province (histogram representation). 46
3.6 MLP topology. .. 49
3.7 Training of the SOM. .. 61

4.1 Aerial photograph in Limpopo province. 68
4.2 Two dimensional illustration of feature vectors. 69
4.3 Aerial photograph in Limpopo province (alternative segments). 74
4.4 Illustration of hierarchical clustering operating in agglomerative mode. 75
4.5 A silhouette plot of 3 clusters formed. .. 82

5.1 Multiple aerial photos used to create a time series. 85
5.2 Time series created of multiple aerial photos. 86
5.3 EKF fits the process function to a time series. 94
List of Figures

5.4 EKF estimates the state-space vector \overrightarrow{W}_i. .. 95
5.5 Least squares fitting model to annual time series. .. 97
5.6 Least squares applied to time series using sliding window. 98
5.7 Least squares fits the model to a time series. ... 99
5.8 Least squares estimates the parameter vector \overrightarrow{W}_i. 100
5.9 M-estimator fits the model to a time series. ... 102
5.10 M-estimator estimates the parameter vector \overrightarrow{W}_i. 103
5.11 FFT models a time series using harmonics. ... 105
5.12 FFT estimates the parameter vector \overrightarrow{W}_i. .. 106

6.1 Illustration of sliding window operating on a time series. 112
6.2 Two sliding window extracted separated at two $\frac{\pi}{2}$ time increments. 114
6.3 Two sliding window extracted separated at two 2π time increments. 115
6.4 Example of Seasonal Fourier features extracted with sliding windows. 117
6.5 Multi-spectral temporal sliding window used to extract subsequences. 118
6.6 Change detection example operating on the first two spectral bands. 119

7.1 FFT of the MODIS spectral band 1’s time series. ... 123
7.2 Tracking of the first two spectral bands using EKF. ... 124

8.1 Example of land cover change in Midstream estates. .. 139
8.2 Example of land cover change in Limpopo province. ... 140
8.3 Land cover change identified in the Sekuruwe area. .. 141
8.4 Flow diagram of complete system outline. .. 143
8.5 Illustration of the effective change detection delay Δ_τ. 144
8.6 Illustration of simulated land cover change using different blending periods. 145
8.7 Classification accuracies of least squares using different lengths of sliding window. ... 151
8.8 Parameter comparison for least squares using different lengths of sliding window. ... 152
8.9 Standard deviation of mean parameter reported by BVS. 154
8.10 Standard deviation of amplitude parameter reported by BVS. 154
8.11 Expected residuals reported by BVS. .. 155
8.12 Computing the average silhouette value S_{ave} for different number of classes. ... 159
8.13 Change detection map of the entire Limpopo province. 180
8.14 Change detection map of the entire Gauteng province. 182
8.15 Examples of natural vegetation and settlements in different provinces. 185