

An Empirically Derived System
for High-Speed Rendering

by Pierre (HR) Rautenbach

Submitted in partial fulfilment of the requirements for the degree

Doctor Philosophiae (Computer Science)

in the Faculty of Engineering, Built-Environment

and Information Technology

University of Pretoria

April 11th 2012

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 ii

Abstract

This thesis focuses on 3D computer graphics and the continuous maximisation of
rendering quality and performance. Its main focus is the critical analysis of numerous
real-time rendering algorithms and the construction of an empirically derived system for
the high-speed rendering of shader-based special effects, lighting effects, shadows,
reflection and refraction, post-processing effects and the processing of physics. This
critical analysis allows us to assess the relationship between rendering quality and
performance. It also allows for the isolation of key algorithmic weaknesses and possible
bottleneck areas.

Using this performance data, gathered during the analysis of various rendering
algorithms, we are able to define a selection engine to control the real-time cycling of
rendering algorithms and special effects groupings based on environmental conditions.
Furthermore, as a proof of concept, to balance Central Processing Unit (CPU) and
Graphic Processing Unit (GPU) load for and increased speed of execution, our
selection system unifies the GPU and CPU as a single computational unit for physics
processing and environmental mapping. This parallel computing system enables the
CPU to process cube mapping computations while the GPU can be tasked with
calculations traditionally handled solely by the CPU.

All analysed and benchmarked algorithms were implemented as part of a modular
rendering engine. This engine offers conventional first-person perspective input control,
mesh loading and support for shader model 4.0 shaders (via Microsoft’s High Level
Shader Language) for effects such as high dynamic range rendering (HDR), dynamic
ambient lighting, volumetric fog, specular reflections, reflective and refractive water,
realistic physics, particle effects, etc. The test engine also supports the dynamic
placement, movement and elimination of light sources, meshes and spatial geometry.

Critical analysis was performed via scripted camera movement and object and light
source additions – done not only to ensure consistent testing, but also to ease future
validation and replication of results. This provided us with a scalable interactive testing
environment as well as a complete solution for the rendering of computationally
intensive 3D environments. As a full-fledged game engine, our rendering engine is
amenable to first- and third-person shooter games, role playing games and 3D
immersive environments.

Evaluation criteria (identified to access the relationship between rendering quality and
performance), as mentioned, allows us to effectively cycle algorithms based on
empirical results and to distribute specific processing (cube mapping and physics

 iii

processing) between the CPU and GPU, a unification that ensures the following: nearby
effects are always of high-quality (where computational resources are available), distant
effects are, under certain conditions, rendered at a lower quality and the frames per
second rendering performance is always maximised.

The implication of our work is clear: unifying the CPU and GPU and dynamically cycling
through the most appropriate algorithms based on ever-changing environmental
conditions allow for maximised rendering quality and performance and shows that it is
possible to render high-quality visual effects with realism, without overburdening scarce
computational resources. Immersive rendering approaches used in conjunction with AI
subsystems, game networking and logic, physics processing and other special effects
(such as post-processing shader effects) are immensely processor intensive and can
only be successfully implemented on high-end hardware. Only by cycling and
distributing algorithms based on environmental conditions and through the exploitation
of algorithmic strengths can high-quality real-time special effects and highly accurate
calculations become as common as texture mapping. Furthermore, in a gaming context,
players often spend an inordinate amount of time fine-tuning their graphics settings to
achieve the perfect balance between rendering quality and frames-per-second
performance. Using this system, however, ensures that performance vs. quality is
always optimised, not only for the game as a whole but also for the current scene being
rendered – some scenes might, for example, require more computational power than
others, resulting in noticeable slowdowns, slowdowns not experienced thanks to our
system’s dynamic cycling of rendering algorithms and its proof of concept unification of
the CPU and GPU.

Key words and phrases: Algorithms, Ambient Occlusion, Chromatic Dispersion,
Displacement Mapping, Distributed Rendering, Depth-of-Field, Dynamic Algorithm
Selection, Fuzzy Logic, High Dynamic Range Lighting, Instruction Set Utilisation, Light
Maps, Normal Maps, Parralax Mapping, Particles, Physics, Reflection, Refraction,
Shaders, Shadow Mapping, Soft Shadows, Spatial Subdivision, Specular Highlights,
Stencil Shadow Volumes, Volumetric Materials.

Supervisor: Prof. Dr. D.G. Kourie
Department of Computer Science
Degree: Doctor Philosophiae

 iv

Acknowledgements

First of all, my eternal gratitude and thanks to my supervisor and mentor at the
University of Pretoria, Prof. Dr. Derrick G. Kourie, for support, encouragement and for
being a great sounding board and a ceaseless source of inspiration.

I would also like to thank Prof. Dr. Dr. Bruce W. Watson and Prof. Dr. Roelf van den
Heever for all their guidance, inspiration and for believing.

Special thanks to some of the best students at the university (and some of the best
software developers I know), Deon Pienaar, Kepler Engelbrecht, Chris Schulz, Tiaan
Scheepers, Jaco Prinsloo and Morkel Theunissen. My appreciation for your friendship
and for putting up with all my start-up ideas!

Last but not least I am grateful to my family for their love and encouragement.

 v

Preface
An Informal Personal History of this Thesis

This preface provides an historical account of the genesis and evolution of ideas in this
study as well as how these ideas have flowed into one another over time. It is provided
so that the reader clearly understands the scope of the thesis and is able to differentiate
between its roots in earlier developments, and the new work undertaken to complete the
thesis.

Development of the presented rendering engine, as a first-person-shooter game engine,
commenced on the 3rd of March 2002. It started out as a silly little student project but
has since lead to a textbook, a MSc dissertation and now this, a PhD thesis. When I was
a second year electronic engineering student back in 2002, I teamed up with two fellow
students with the idea that we, a couple of kids hailing from South Africa, could take on
the mighty id Software and write a 3-D first-person-shooter featuring dynamic lighting,
curved surfaces, shadows, bump mapping and a number of other technological
advancements. These two friends shared my inextirpable passion for making games but
also my burning desire to be a part of the next big software start-up. Deon Pienaar,
coder extraordinaire and no holds barred genius and Kepler Engelbrecht, a electrical
engineering student bent on becoming the next Shigeru Miyamoto (the creator of Mario,
Donkey Kong and The Legend of Zelda, some of the most successful video game
franchises of all time). As for yours truly, I had spent every waking moment since getting
my first computer at the age of thirteen programming games ranging from crude text-
adventures to 3-D simulations based on the tracing of light-paths between objects in an
image plane. I should also mention that, in addition to my passion for 3-D graphics and
gaming, my penchant for 80’s metal and long hair (at the time, at least) didn’t really hurt
when it came to bonding with these guys. So, it was settled: I would hone my skills as
graphics programmer and we would spend day and night chasing the dream of founding
a company where we would be rock stars and where the easy money was only a game
away. It sounds like a fantasy but it didn’t feel too out of reach at the time. It was the
early 2000s and anything seemed possible; the dot-com boom had just happened and
all we had to do was emulate a couple of guys up in Texas who were continuously
redefining the 3-D first-person-shooter genre through multimillion-dollar grossing titles
like Doom, Quake, Quake II and the seminal trequal, Quake III. As they say, it was ON!

The next three years were spent programming, sleeping on pizza boxes (please note, I
might be exaggerating) and missing out on a lot varsity life had to offer (socially, at
least). But we did it and with Kepler dealing with network coding and the game logic,
Deon working his magic with the cognitive AI implementation (amongst other things) and

 vi

yours truly implementing the renderer, we finally had the technology to create “the
coolest technology demonstration ever.” The problem with this was that in order to
showcase everything the engine was capable of, we suddenly needed artistically gifted
individuals to put together a number of appropriate environments to emphasise the
engine’s capabilities. We wanted detailed 3-D models of buildings arranged to form a
coastal town set in an archipelago-type landscape. We wanted a beach, a forest,
canyons, an old, explorable mineshaft. We wanted a rocket-propelled grenade launcher
mounted nearby to fire at the player as he made his way through town. However, taking
our artistic disposition into account, a compromise was eventually struck and it was
decided that our tech demo would feature a basic coastal town with source-less mortar
fire raining down on the player…nothing more, nothing less and things were more or
less back on track. That said, this was, sadly, the beginning of the end – graduation
came and real-life soon caught up with a vengeance! In short: Kepler has since joined
SAAB and is currently doing a lot of low-level programming on defence projects while
Deon remains dedicated to the dream, the two of us (along with some other friends and
enemies of modern music) still chasing start-up stardom!

Deon, Pierre and Pierre and Kepler…

So, following that first four years and desperately trying to avoid the dark reality that is
the 9-to-5, I had a truly great and empowering idea; why not write a 3-D game
programming text book? I set out writing a simple “OpenGL and C++ in 21 days” sort of
book, you know the thing, where all the basics would be presented in bottom-up fashion.
Having completed the book, I couldn’t think of anyone better than one of my professors
to show it to. Professor Judith Bishop, the author and co-author of 15 monographs and
text books translated into German, Italian, Spanish, Polish and Russian was the obvious
choice and strangely enough, everything worked out exactly as I had planned. Well,
almost; my “3-D Programming Power Book” wasn’t a truly unique concept or really
marketable but it was definitely a taste of things to come. In summary, I gave Prof
Bishop a printed copy which she handed over to an editor friend of hers in London who,
in turn, contacted me with an offer to write something truly unique – a textbook where
two competing graphics/game programming technologies would be covered in a

 vii

seamless, parallel fashion. It was now June 2006 and by January 2007, I had signed on
the dotted line of a writing contract.

Thinking back to 2007, I recall days going to the gym at 7:00 and writing from 9:00 to
18:00, seven days a week. It was just what I needed; I fancied myself a real writer and
relished being in complete and utter control of my time (and life). And when it finally
came out in October 2008, the 679 page book garnered reviews lauding the writing style
as “a pleasure to read” and the concept as “excellent”. 3D Game Programming Using
DirectX 10 and OpenGL (Rautenbach, 2008) was an instant hit, it was one-of-a-kind and
it was in many ways a one-hit-wonder with even the worst reviews being positive. Most
importantly, the book captured everything I knew and it served as a triumphant tour de
force in what could easily have been a short-lived and disappointing game programming
career.

The book caused me to spend a lot of time on shadow rendering (mostly stencil shadow
volume optimisations and the development of a hybrid spatial subdivision approach).
This research and ceaseless experimentation eventually culminated in the development
of an empirically derived system for high-speed shadow rendering. This system was
subsequently documented and submitted in partial fulfilment of the requirements for the
degree Magister Scientiae (Computer Science), which was awarded cum laude on the
20th of April 2009. The presented thesis now builds on this past work, the core aim
being the continuous maximisation of rendering quality and performance through the
real-time cycling and distribution of algorithms, calculations and rendering approaches
based on ever-changing environmental conditions.

 viii

Table of Contents

Abstract ii

Acknowledgements v

Preface vi

Part I 1

Chapter 1: Introduction 2
 1.1 Research Domain 3
 1.2 Problem Statement 12
 1.3 Dissertation Structure 20

Chapter 2: Creating an Interactive 3D Environment 23
 2.1 Game Engine Architecture 24
 2.2 Initialisation and Shutdown 29
 2.3 The Game Loop 30
 2.4 Creating a Basic Interactive DirectX 10 3D Environment 33
 2.5 Summary 47

Chapter 3: Extending the Basic Interactive 3D Environment 48
 3.1 Extending the Basic Interactive DirectX 10 3D Environment 49
 3.2 Shaders 51
 3.3 Local Illumination 54
 3.4 Reflection and Refraction 61
 3.4.1 Implementing Cube Mapping 63
 3.4.2 Implementing Basic Refraction 71
 3.4.3 Reflection and Refraction Extended 76
 3.5 Adding High Dynamic Range (HDR) Lighting 82
 3.6 Shadows 87
 3.6.1 Stencil Shadow Volumes 88
 3.6.2 Implementing Shadow Mapping 103
 3.6.3 Hybrid and Derived Approaches 105
 3.7 Physics 108
 3.7.1 The Role of Newton’s Laws 109
 3.7.2 Particle Effects 112
 3.7.3 Particle System Implementation 113
 3.8 Post-Processing 117
 3.9 Summary 117

Part II 118

Chapter 4: Benchmarking the Rendering Algorithms and Techniques 119
 4.1 Benchmarking Mechanism 120
 4.2 Rendering Subsystem Evaluation Criteria 120
 4.3 Algorithm Comparison 121
 4.3.1 Shadows 122
 4.3.2 Shaders 127
 4.3.3 Local Illumination 131
 4.3.4 Reflection and Refraction 134
 4.3.5 Physics 137

 ix

 4.3.6 Particle Effects 140
 4.3.7 Post-Processing 144
 4.4 Summary 147

Chapter 5: An Empirically Derived System for Distributed Rendering 149
 5.1 Introduction 150
 5.2 The Selection Engine and the Dynamic Selection and Allocation of Algorithms 150
 5.2.1 Shadows 152
 5.2.2 Shaders 154
 5.2.3 Local Illumination 155
 5.2.4 Reflection and Refraction 155
 5.2.5 Physics 156
 5.2.6 Particle Effects 157
 5.2.7 Post-Processing 158
 5.3 Construction of the Algorithm Selection Mechanism 158
 5.4 Results 160
 5.5 Summary 171

Chapter 6: Summary and Conclusion 173
 6.1 Summary 174
 6.2 Concluding Remarks and Future Work 176

References 179

Appendix A: Fundamentals of the Graphics Pipeline Architecture 200
Appendix B: Shaders 219
Appendix C: Lighting and Reflection 246
Appendix D: Real-time Shadow Generation 260
Appendix E: Physics 276
Appendix F: The DXUT Framework 294

	FRONT
	Title page
	Abstract
	Key words
	Acknowledgements
	Preface
	Table of Contents

	Part-I
	Part-II
	References
	Appendices

