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CHAPTER 3

A FINITE SOURCE MULTI-SERVER INVENTORY
SYSTEM WITH SERVICE FACILITY
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3.1. INTRODUCTION

One implicit assumption made by many previous stochastic inventory models is that the
item whose inventory is kept is made available to the customer immediately it is
demanded. This is not generally true, however, as many items are delivered only after
some work has been done on them. This is a particularly growing trend as many
organisations are strategically shifting their production approach from a make-to-stock
system to an assemble-to-order system. Such systems have longer lead time but
maintain smaller inventory levels than the make-to-stock system. The implication of
such increase in lead time on the level of service available to customers is an area that is

now being actively researched by many authors.

Berman et al (1993) considered an inventory management system at a service facility
which uses one item of inventory for each service provided. They assumed that both
demand and service rates are deterministic and constant and queues can form only
during stock outs. They determined optimal order quantity that minimizes the total cost
rate. Berman and Kim (1999) analysed a problem in a stochastic environment where
customers arrive at a service facility according to a Poisson process. The service times
are exponentially distributed with mean inter-arrival time which is assumed to be larger
than the mean service time. Under both the discounted and the average cost cases, the
optimal policy of both the finite and infinite time horizon problem is a threshold
ordering policy. A logically related model was studied by He et al. (1998), who analyzed a
Markovian inventory - production system, in which demands are processed by a single
machine in a batch of size one. Berman and Sapna (2000) studied an inventory control
problem at a service facility which requires one item of the inventory. They assumed
Poisson arrivals, arbitrarily distributed service times and zero lead times. They assumed
that their the system has finite waiting room. Under a specified cost structure, the
optimal ordering quantity that minimizes the long-run expected cost per unit time was
derived. Schwarz et al. (2006) considered an inventory system with Poisson demand and
exponentially distributed service time with deterministic and randomized ordering

policies.
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In all the above models the authors assumed that the service facility had a single server.
But in many real life situations the service facility may provide more than one server so
that more customers are handled at a time. Moreover if a customer's request cannot be
processed for want of stock or free server he/she may prefer to leave the system and
make an attempt at later time. The concept of having unserviced customers in an orbit
and allowing them to retry for the service have been considered in queueing systems. A
complete description of situations where queues with retrial customers arise can be
found in Falin and Templeton (1997). A classified bibliography is given in Artalejo (1999).
For more details on multi-server retrial queues see Anisimov and Artalejo (2001),

Artalejo et al. (2001) and Chakravarthy and Dudin (2002).

Multi server inventory system with service facility was considered by Arivarignan et al
(2008). They assumed a continuous review (s, S) perishable inventory system in which
the customers arrive according to a Markovian arrival process. The service time, the lead
time for the reorders and the life time of the items were assumed to be exponential. The
customer who arrive during the stock-out period or all the items in the inventory are in
service or all the servers are busy entered into the orbit of infinite size and these
customers compete for their service after an exponentially distributed time interval.
Using matrix geometric method, they derived the steady state probabilities and under a

suitable cost structure, they calculated the long run total expected cost rate.

In this chapter, the focus is on the case in which the population of demanding customers
under study is finite so that each individual customer generates his own flow of primary
demand. The inventory system with finite source was received only a little attention.
This concept was introduced by Sivakumar (2009). But the analysis of finite source retrial
gueue in continuous time have been considered by many authors, the interested reader
see Falin and Templeton (1997), Artalejo (1998) and Falin and Artalejo (1998) Almasi et
al., (2005) and Artalejo and Lopez-Herero (2007) and references therein. The chapter
utilises the quasi-random distribution for the arrival process. A good reading on quasi-

random distribution is Sharafali et al (2009).
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The rest of the chapter is organized as follows. In the next section, the mathematical
model and the notation used were described. The steady state analysis of the model is
presented in section 3. In section 4, the various system performance measures in the
steady state were derived. In the final section, the total expected cost rate in the steady

state were calculated.

Notations :
[A]; j : element/sub-matrix at ith row, jth column of the matrix A.
0 : zero vector.

I : identity matrix.

e’ = (1,1,..,1).
E) ={0,1,...,i}.
E} ={1,2,..,i}.

gy =L =t
Y |0, otherwise.

3.2. MODEL DESCRIPTION

Consider a service facility which can stock a maximum of S units and ¢ (= 1) identical
servers. It is assumed that the arrival process of customers is quasi random with
parameter a. The number of sources that generate the customers is assumed to be N.
The customers demand a single item and the item is delivered to the customer after
performing some service on the item. The service time is assumed to have exponential
distribution. If a customer finds any one of the server is idle and at least one item is not
in service, then he/she immediately accedes to the service. The customer who finds
either all the servers are busy or all the items are in service enters the orbit of
unsatisfied customers. These orbiting customers send requests at random time points
for possible selection of their demands. The time intervals describing the repeated
attempts are assumed to be independent and exponentially distributed with rate

Hcfoj + iv, when there are i customers in orbit. The service times are independent
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exponential random variables with rate u. As and when the on-hand inventory level
drops to a prefixed level s(= c), an order for Q(= S — s > s) units is placed. The lead
time distribution is exponential with parameter B(> 0). The streams of arrival of
customers, intervals separating successive repeated attempts, service times and lead

times are assumed to be mutually independent.

3.3. ANALYSIS

Let X(t), L(t) and Y (t), respectively, denote the number of customers in the orbit, the
on-hand inventory level (including those items that are in the service) and the number of
busy servers at time t. From the assumptions made on the input and output processes,
it may be verified that the stochastic process {(X(t),L(t),Y(t)),t = 0} is a Markov

process with the state space given by

Q={(i,j,k);i €Ey_,j EEQ,k € EPYU{(i,j,k);i € Ey_.,j € Es\E¢, k € E0}
U{(i,j,k); i € EN\Ey_c,j € Ey_i, k € E}'}
U{(i,j,k); i € EN\En_c,j € Es\Ey_i,k € Ey_}

The infinitesimal generator of this process, defined by

P=(p(@)k),(L,mmn)) ),  (Gjk),(mn)EE,

can be easily calculated and is given by
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(N—-i—Kk)a, =i,
m=j,
n=k+1,
l=1i,
m=j,
n=k+1,
l=i+1,
m=j,
n==xk,
l=i+1,
m=j,
n==xk,
0+ iv, l=i—-1,
m=j,
n=k+1,
l=i-1,
m=j,
n=k+1,
\
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NS EI(\)/—C—ll
j € Eg,

k € Eglin(j—l,c—l)'

or

i€ En_1\En—c-1,

Jj € Eg,

k=01,.. minj—1,N—-i—-1),

or
NS EI(\)/—C—ll
jEE,

k = min(j, ¢),

or

[ €EN_1\En_c-1,

jEE?,

k = min(j, N — i),

i € EN—C—l'
j € Es,

k=0,1,.., min(j —1,c—1),

or

i € EN\\EN-c-1,

Jj € Eg,

k=01,..,mn(jGj—-1,N—-i—-1),
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8, =i i € Ey_o1,

m=j+Q, je€Eg,

n==xk, k =0,1,..,min(j,c),

or

=1, i € EN\\Ey_c—1,

m=j, Jj € ESO,

n==xk, k=0,1,..,min(j,N — i),
U =1, i €En_c_1,

m=j—-1, j€E,
n=k—1, k=12,..,min(,c),
or
) =i, i € EN\\Ey_c—1, (3.2)
m=j—1, j€E,
n=k—-1, k=12,..,min(j,N —i),

—((N—i—k)a+ky I =i, i€EY .1,
+h(s = DB + 886 + 1)), m=j,  jEES,

n==xk, k =0,1,..,min(j, c),

or

—((N—i—k)a+ku =i, i € EN\EN—c1,
th(s— DB +80+ 1)), m=j,  jEES,

n==xk, k=0,1,..,min(j,N — i),
\0, otherwise.

Define the following ordered sets

For i=0,1,.. N —c,
((i,7,0),3,j,1),....(L,7,.))), j=01,..,c

<iLj> = 10((,5,0,0,),1),..,0,¢), j=c+1,c+2..,S,
Fori=N—-c+1,N—-—c+2,..,N, (3.3)

((i’jl 0)’ (iljl 1)""l(iljlj))’ j = 0,1, ...,N - i, '
<iLj> = ((Gj0),0j)D,..,{(j ,N-10), j=N—-i+1,N—-i+2..,5S,
<i> = (i,0><i1>,..,<i,5>),i=01,...,N.

Then the state space can be orderedas (<0 >,<1>,...,< N >).

The infinitesimal generator P of this process may be expressed conveniently as a block

partitioned matrix with entries

56



&
g UMNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

U, l=i, i=0,1,..,N,
P, = vV, l=i+1 i=01,..,N-1,
i w, l=i-1, i=1.2,..,N,
0, otherwise.

More explicitly,

where
For i=01,..,N—c—1,
Hi;, m=j, j=01,..,c—1,
Vilim = Hi.,, m=j, k=cc+1,..,S,
0, otherwise.
Fori=N—-—¢N—-c+1,..,N—1,
vV _ Hi]" m=j, j=0,1,...,N—i—1,
Wiljm = {0, otherwise.
For i=01,..,N—c—1,j=0,1,..
(N—l—k)a n—k k=j,
{ otherwise.
For i=N —cN—c+1 LN—-1,7=01,..,N—1|
(N—l—k)a, n=k k=]j
0, otherwise.
For i=1,2,..,N —
Ml], m=j, j=12,..,c—1,
Mlc, m=j, j=c¢c+1,..,5S,
otherwise.
For i=N —c+1N—c+2 N —1,
M;;, m=j, j=12,...N—i—1,
Wiljm = {Mi(N—i); m=j, j=N—-iN—i+1,..,S,
0, otherwise.
(Myy, m=j, j=12,..,5,
Wiljm = 0, otherwise.

For i=12,..,N—¢,j=12,..,c
M, ] _ (0+iv, n=k+1, k=01,..,j—1,
ylkn = 1o, otherwise.
Fori=N—-c+1,N—-c+2,..,N,j=12,...,N—i+1,
_ (6+iv, n=k+1, k=01,..,j
[Mijlin = 0, otherwise.
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Fori=0,,..,N—c,
(Di]', m=j, j=0,1,...,C—1,
D, m=j, j=cc+1,..,s,
Di(s+1)' m=j, j:S+1,S+2,...,S,
Fij' m =j, ] = 1,2, e, C,
Wilim =, m=j i=c+1lc+2,..,8
i(c+1) b J) c , € y ey
Gijr m=]+Q, j:0,1,...,C—1,
Gic, m=j+Q, j=cc+1,..,S,
\0, otherwise.
Fori=N—-c+1N—-c+2,..,N—1,
(Dij' m=j, j:0,1,...,N—i—1,
Din—i) m=j, j=N—-iN—i+1,..,s,
Di(N—i+1)l m=j, j=S+1,S+2,...,S,
Fij' m=j, j=1,2,...,N—i,
Wilim = AFyiur, m=j i =N-—i+1,N—i+2
i(N—i+1)» b ] l ) l ) o
Gijr m=]+Q, ]:0,1,,N—l—1,
Gi(N—l')l m=]+Q, j=N—i,N—i+1,...,S,
\0, otherwise.
Fori=N,
(Dij, m =}, j=0,
Dy1, m=j, j=12,..,s,
[Ulm = Dy m=}, j=s+1,s+2..,5,
Gio, m=j+Q, j=01,..,s,
\0, otherwise.
Fori=0,,..,N,j =0,1,..,min(c, N — i),
G,1] _ {,B n=k, k=01,..,J
tjdken 0, otherwise.
Fori=0,1,..,N—c,j=12,..,c
ky n=k-1, k=12, ..,j,
LFijlin {0, otherwise.
Fori=12,..,N—c,
F {ku n=k—-1, k=1.2,..,c,
Fice+nlien 0, otherwise.
Fori=N-c+11,..,,N,j=12,..,N —1i,
P _ {ku n=k—-1, k=12 ..,j,
Fijlien = 0, otherwise.
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Fori=N-c+1,N—-c+2,..,N—1,

ky n=k—1, k=12..,N—i,
[Fiv—i+1)lkn {

0, otherwise.
Dyy = —-(Na+p),
Forj=12,..,c,
—((N—-ka+ku+p), n=k, k=0.1,..,J,
[Dojlin = &N—mm n=k+1, k=01,..,j—1,
0 otherwise.
—((N —k)a+ku), n=k, k=01,..,c,
[Doc+ylen = {(N —k)a, n=k+1 k=01,..,c—1,
0 otherwise.
Fori=12,..,N—c,
Dy = —(N-Da+p)
Forj=1,2,..,c
—((N—i—Ka+ku+p+6;0+iv), n=k, k=0,1,..,j,
Dijlkn = (N —k)a, n=k+1, k=01,..,j—1,
0 otherwise.
—((N—i—k)a+ku+6.00+iv), n=k, k=01,..,c
[Dicc+plkn = (N —K)a, n=k+1 k=01,..,c—1,
0 otherwise.
Fori=N—-c+1,N—-c+2,..,N—1,
Dy = —(N-Da+p)
Forj=12,..,N—i-2,
—-(N—i—-ka+ku+p+ Skj(e +1iv)), n=k, k=0,1,..,]J,
[Dijlen = (N —i—k)a, n=k+1, k=01,..,j—1,
0 otherwise.
—((N=i—k)a+ku+p+38.00+iv), n=k, k=01,..,N—i—1,
[Di(N—i—l)]kn = (N—-i—-Ka, n=k+1, k=01,..c—1,
0 otherwise.
—((N —i—k)a+ku+ 6,6 +iv), n=k, k=01,.,N—i—1,
[Din-plkn = (N—-i—-ka, n=k+1, k=01,..,c—1,
0 otherwise.
Dyoe = —B,
Dy; = —((0+Nv)+pB),
Dy, = —(6+Nv).

In table 3.1, the size of the sub matrices listed above were given.
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Table 3.1: The submatrices and their size
Matrix Size
c(c+1 c(c+1
Ui,i:(),l,...,N_C, %+(5—C+1)(€+1)X¥+(5‘—C
Vl‘i = 0,1, ...,N_C_]., +1)(C+1)
w,i=12,..,N —c,
jG+1) . . jG+1) . .
+S—-7j+1D(G+1) X +(S—-j+1
Upi=N—c+LN—c > S—=j+DH0G+D > S—=j+1D0
+2,..,N, +1),
j=N-—1i
jG+1) . . G+1DG+2) .
+S-j+DHG+ D) X————+ (S —
VNN T+ (S =+ DG+ 1) > (S =)y
1,..,N—1, +2),
j=N-—1i
. i(j—1 iG+1
W,i=N—-c+1,N—c+ ](’2 )+(S—j+2)j><](]2 ) b (S—j+ DG+ 1)
2,..,N, j=N—i
Hij,i=0,1,...,N—C—1,
G+ x(G+1)
j=01,..,c
Hl’j,i:N—C,N—C—
1,.,.N—-1,j=01,..,N — G+ x(G+1)
i
Mijri = 0,1, ,N —C,
G+ x(G+1)
j=12,..,c
Mij,i:N—C+1,N—C+
2, ..,Nj=12 ..,N— G+DHxG+2)
i+1
Gijri = 0,1, ,N —C,
G+ x(c+1)
j=01,..,c
Gij,i=N—C+1,N—C+
G+D)Xx(N-=-i+1)
2,.,N,j=01,.,N—-i
Fi]',i = 0,1, ,N —C,
G+1)xj
j=12,..,c
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Fi]',i = 0,1, ,N —C,

. 1 (c+1)x(c+1
Jj=crl

Fi]',izN—C+1,N—C+

2,.,N—1,j= G+1)xj
1,2,..,N—1i
Fij,i:N—C+1,N—C+ ] )
. , ] X]
2,.,N=—1,j=N-i+1
Di]',i = 0,1,...,N—C,
G+ x(G+1)

j=0,1,..,c

Dijri = 0,1, ,N —C,

(c+1D)x(c+1)

j=c+1,
Dij,i:N—C+1,N—C+
G+ x(G+1)
2,..,N,j=012 .., N—i
Dij,izN—C+1,N—C+ ] )
] X]

2,.,N, j=N—i+1

3.3.1. Steady State Analysis

It can be seen from the structure of the infinitesimal generator P that the time-

homogeneous Markov process {(X(t),L(t),Y(t));t = 0} on the finite state space E is

irreducible. Hence the limiting distribution

bajry = tli_{gPT[X(t) =i, L(t) = j,Y(t) = k|X(0),L(0),Y(0)]
exists. Let
(b joy Pijiy - Pajp) J=01,..,c, i=01,..,N—c,
q)(i'j) = ((I)(i,j,O)ld)(i,j,l)l ---'(b(i,j,c))' ] =c+ 1,C + 2, ...,S, I = 0,1, ,N —C,
((q)(i,j,o)rq)(i,j,l)r e ®ajp) =01, ,N—1i
i=N—-c+1,N—c+2,..,N,
d)(i‘j) = 4 (q)(i,j,O)'q)(i,j,l)' "'ld)(i,j,N—i))l i=N—1i+ 1,N -1+ 2, ...,S, (36)
t i=N—c+1,N—c+2,..,N,

by = (duoy Py - Pas))s

and

O = (boy by - Py
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Then the vector of limiting probabilities ® satisfies

dP =0 and ode=1.

(3.7)

From the structure of P, it is seen that the Markov process under study falls into the

class of birth and death process in a Markovian environment as discussed by Gaver et al.

(1984). Hence using the same argument, the limiting probability vectors can be

calculated. For the sake of completeness, the algorithm is provided here.

Algorithm :

Determine recursively the matrices

ZO = UO
Z; = U +W(-Z )V, i=12,..N.

Compute recursively the vectors ¢ ;) using

diy = PuspyWirr(=Z7D, i=N-1,N-2,..0,

Solve the system of equations
¢(N)ZN = 0
and

Yo dpne = 1.

(3.8)

(3.9)

(3.10)

(3.11)

From the system of equations (3.9) — (3.11), vector ¢y could be determined uniquely,

up to a multiplicative constant.

3.4. SYSTEM PERFORMANCE MEASURES

In this section, some stationary performance measures of the system under study were

derived. Using these measures, the total expected cost per unit time can be constructed.
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3.4.1. Expected Inventory Level

Let {; denote the expected inventory level in the steady state. Since ¢; is the steady
state probability vector of i —th customer level with each component specifying a
particular combination of the on-hand inventory level and the number of busy servers,

the mean inventory level is given by

G = Xilo Xz idape
= XS (Z§=1 jOejk + Ximct1 D=0l bijin)
+ XN e (BN ol Deijiy + Zien—itr 2k T DPeijk))
+ X321 idw,j0)-

(3.12)

3.4.2. Expected Reorder Rate

Let {p denote the expected reorder rate in the steady state. A reorder is triggered when
the inventory level drops to s. The steady state probability ¢ ;5411 8ives the rate at
which s 4+ 1 is visited. After the inventory level reaches s + 1, a service completion of

any one of k servers if k > 0 takes the inventory level to s. This leads to

(e = Xd Yoy kudsiin + Din—cs1 Tnet kUd st (3.13)

3.4.3. Expected Customer Levels in the Orbit

Let {, denote the expected number of customers in the orbit. Since ¢; is the steady
state probability vector of i —th customer level with each component specifying a
particular combination of the on-hand inventory level and the number of busy servers,
the quantity ¢;e gives the probability that the inventory level is i in the steady state.

Hence, the expected customer level in the orbit is given by

o = XLiidge. (3.14)
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3.4.4. Overall Rate of Retrials

Let {pr denote the expectation of overall rate of retrials. This is given by

lor = X, (0+iv)dpe. (3.15)

3.4.5. Successful Rate of Retrials

Let {sr denote the expectation of successful rate of retrials. Note that a customer from
the orbit enters into the service only when any one of the server is idle and at least one

item is not in service. This lead to

g = X (B, I, 0+ VO jk) T 2imcrr iz (0 + V) jk)
+ YN BN I o (04 )b + YSoni Zheo L (04 V) ji) (3:16)
+ X721 (6 + NV)dw,j0)-

3.4.6. Fraction of Successful Rate of Retrials

The fraction of successful rate of retrials {zsy is given by

¢
(rs = (ﬂ- (3.17)
OR
3.4.7. Number of Busy Servers
Let (s denote the expected number of busy servers in the steady state. Then (s is

given by

Iss = 2ty (X1 Zhet kbgiji + Xiccrr Tier kb jn)

_ ok y (3.18)
+ 2N ( 9’:11 ;<=1 kdjr + Z?:N—Hl pom k¢(i,j,k))-
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3.4.8. Expected Number of Idle Servers

Let {;s denote the expected number of idle servers in the steady state which is given by

s = ¢—{gs (3.19)

3.5. TOTAL EXPECTED COST

The long-run expected cost rate for this model is defined to be
TC(S,s) = cp{; + c{r + cyno (3.20)
where
¢y, :The inventory carrying cost/unit/unit time.
¢s :The setup cost/order.
cw : Waiting cost of a customer/unit time.
Substituting the values of {, we get the value of TC(S, s).

Since the computation of the ¢'s are recursive, it is quite difficult to show the convexity

of the total expected cost rate analytically.

3.6. CONCLUSION

In this chapter, a continuous review retrial inventory system with a finite source of
customers and identical multiple servers in parallel was studied. The customers arrive
according a quasi-random distribution. The customers demand unit item and the

demanded items are delivered after performing some service which is distributed as
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exponential. The ordering policy is (s, S) policy, that is, once the inventory level drops to
a prefixed level, say s, an order for Q(= S — s) items would be placed. The lead times for
the orders are assumed to have an exponential distribution. The arriving customer who
finds all the servers are busy or all the items are in service joins an orbit of unsatisfied
customers. The orbiting customers form a queue such that only a customer selected
according to a certain rule can re-apply for service. The intervals separating two
successive repeated attempts are exponentially distributed with rate 8 + iv, when the
orbit has i customers i = 1. The joint probability distribution of the number of customer
in the orbit, the number of busy servers and the inventory level is obtained in the steady
state case. Various measures of stationary system performance are computed and the

total expected cost per unit time is calculated.
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CHAPTER 4

TWO-COMMODITY PERISHABLE INVENTORY
SYSTEM WITH BULK DEMAND FOR ONE
COMMODITY

* A modified version of this chapter has been published in the South African Journal of
Industrial Engineering, Volume 21 NO 1, 2010
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4.1. INTRODUCTION

One of the factors that contribute to the complexity of the present day inventory
system is the multitude of items stocked and this necessitated the multi-
commodity inventory systems. In dealing with such systems, in the earlier days,
many models were proposed with independently established reorder points. But in
situations where several products compete for limited storage space or share the
same transport facility or are produced on (procured from) the same equipment
(supplier) the above strategy overlooks the potential savings associated with joint
ordering and, hence, will not be optimal. Thus, the coordinated approach, or what
is known as joint replenishment, reduces the ordering and setup costs and allows
the user to take advantage of quantity discounts, if any. Various models and
references may be found in Miller (1971), Agarwal (1984), Silver (1974), Thomstone
and Silver (1975), Kalpakam and Arivarignan (1993) and Srinivasan and

Ravichandran (1994) and the references contained therein.

In continuous review inventory systems, Balintfy (1964) and Silver (1974) have

considered a coordinated reordering policy which is represented by the triplet

(S,c,s), where the three parameters S,c, and s, are specified for each item i
with 8, <c; <S;, under the unit sized Poisson demand and constant lead time. In
this policy, if the level of i-th commodity at any time is below s;, an order is placed
for S,—s, items and at the same time, any other item j(#i) with available
inventory at or below its can-order level ¢;, an order is placed so as to bring its

level back to its maximum capacity Sj. Subsequently many articles have appeared

with models involving the above policy and another article of interest is due to
Federgruen, Groenevelt and Tijms (1984), which deals with the general case of

compound Poisson demands and non-zero lead times.
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The work on methods to solve the joint replenishment problem throughout the
years has been extensive. Some further notable references include the publications
of Fung and Ma (2001), Goyal (1973,1974,1988), Goyal and Satir (1989), Kaspi and
Rosenblatt (1991), Nilsson et al. (2007), Nilsson and Silver (2008), Olsen (2005),
Silver (1976), Van Eijs (1993), Viswanathan (1996,2002,2007) and Wildeman et al.

(1997) and references therein.

Kalpakam and Arivarignan (1993) have introduced (s,S) policy with a single
reorder level s defined in terms of the total number of items in the stock. This
policy avoids separate ordering for each commodity and hence a single processing
of orders for both commodities has some advantages in situation wherein
procurement is made from the same supplies, items are produced on the same

machine, or items have to be supplied by the same transport facility.

In the case of two-commodity inventory systems, Anbazhagan and Arivarignan
(2000,2001a,2001b,2003) have proposed various ordering policies. Yadavalli et al.
(2005b) have analyzed a model with joint ordering policy and variable order
guantities. Sivakumar et al. (2005) have considered a two commodity substitutable
inventory system in which the demanded items are delivered after a random time.
Sivakumar et al. (2006) have considered a two commodity perishable inventory

system with joint ordering policy.

There are some situations in which a single item is demanded for one commodity
and multiple items are demanded for another commodity. For instance, a
customer may buy a single razor or set of blades or both. Another example is the
sales of DVD writer and set of DVDs. It may be noted that the seller would be
placing a joint order for both commodities as these will be available from the same

source. Moreover, a seller may not be willing to place orders frequently and may
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prefer to have one order to replenish his/her stock in a given cycle. These
situations are modelled in this work by assuming demand processes that require
single item for one commodity, multiple items for the other commodities or both

commodities and by assuming a joint reorder for both commodities.

This paper is organized as follows: in section 2, the mathematical model and
notations followed in the rest of the chapter were described. The steady state
solution of the joint probability distribution for both commodities , the phase of
the demand process and the phase of the lead time process is given in section 3. In
section 4, the various measures of system performance in the steady state were
derived and the total expected cost rate is calculated in section 5. Section 6

presents the cost analysis of the model using numerical examples.

(0, 53) (51, 52)

Set of reorder levels

0, 52)

L8

(D.U) (51:0) (S],U)

Figure 4.1: Space of Inventory levels
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Notations

: zero matrix
: an identity matrix

x if x>0

H(x):{o if x<0

E ={12,...,i}

= {0,1,....)

= a column vector of ones.

4.2. MODEL DESCRIPTION

Consider a two-commodity perishable inventory system with the maximum
capacity S; units for i-th commodity (i =1,2). Assume that the demand for the first

commodity is for single item and the demand for the second commaodity is for bulk
items. An arriving customer may demand only the first commodity or only the
second commodity or both. The number of items demanded for the second

commodity at any demand point is a random variable Y with probability function
p,=PH{Y =k}, k=123,.... The three type of demands for these two
commodities occur according to a Markovian arrival process MAP. The life time of
each commodity is exponential with parameter %,(i=1,2) The reorder level for

the i-th commodity is fixed at 5, (1<s; <S.) and the ordering quantity for the i-th

commodity is O (=S,—s, >s,+1) items when both the inventory levels are less

than or equal to their respective reorder levels. It is assumed that demands during
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stock-out period as well as unsatisfied demands are lost. The requirement
S.—s,>5,+1, ensures that after a replenishment the inventory levels of both

commodities will always be above the respective reorder levels. Otherwise, it may

not be possible to place any reorder (according to this policy) which will lead to
perpetual shortage. That is, if L(f) represents inventory level of j-th commodity at
time ¢, then a reorder is made when L, (r)<s, and L,(1)<s, (see figure 1). The

time to deliver the items are assumed to be of phase (PH) type with

representation («,T7) of order m,. It can be noted that the phase type

distribution is defined as the time until absorption in a finite state irreducible

Markov chain with one absorbing state. The mean of the phase type distribution

(a,T) is given by a(—T)‘le_ Let S denote the reciprocal of this mean. That is,

B = [()((—T)‘leT1 gives the rate of replenishment once an order is placed. Let T° be

such that Te+T7T° = 0.

For the description of the demand process, the description of MAP as given in
Lucantoni (1991) was used. Consider a continuous-time Markov chain on the state

space 1,2,...,m,. The demand process is constructively defined as follows. When

the chain enters a state i,1<i<m,, it stays for an exponential time with
parameter . At the end of the sojourn time in state i, there are four possible
transitions: with probabilities a;,1< j<m,, the chain enters the state j when a

demand for the first commodity occurs; with probabilities b,, 1< j<m,, the chain

ij?
enters the state j when a demand for the second commodity occurs; with
probabilities CU,ISjSml, the chain enters the state j when a demand for both
commodities occurs; with probabilities d;,1< j<m,i# j, the transitions

corresponds to no demand and the state of the chain is j . Note that the Markov

chain can go from state i to state i only through a demand. Define the square
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matrices D, k=0,1,2,12 of size m,xm, by [D,];=—6 and [D,], =64, i+ j,

i [/

[Dl]l.j =6a [Dz]l:]. = l9l.bl.j and [Dlz]ij =0c,

j» 1<i,j<m,. It is easily seen that

ij’

D=D,+D,+D,+D, is an infinitesimal generator of a continuous-time Markov

chain. It is assumed that D is irreducible and Dye # 0.
Let ¢ be the stationary probability vector of the continuous-time Markov chain
with generator D. Thatis, { is the unique probability vector satisfying
¢D=0,le=1.

Let » be the initial probability vector of the underlying Markov chain governing
the MAP. Then, by choosing n appropriately the time origin can be modelled to
be

1. an arbitrary arrival point;

2. the end of an interval during which there are at least ¢ arrivals;

3. the point at which the system is in specific state such as the busy period ends

or busy period begins;

The important case is the one where one gets the stationary version of the MAP
by n=¢. The constant 1= { (D, + D, + D,,)e, referred to as the fundamental rate
gives the expected number of demands per unit of time in the stationary version of
the MAP. The quantities 4, ={De, A, ={D,e and 4, = {D,,e, give the arrival rate
of demand for first commodity, second commodity and for both respectively. Note

that A=4,+4,+4,.

For further details on MAP and phase-type distributions and their usefulness in
Stochastic modelling, the following are good references: Chapter 2 in Neuts (1994),
Chapter 5 in Neuts (1989), Ramaswami (1981), Lucantoni (1991, 1993), Lucantoni
et al. (1990), Latouche and Ramaswami (1999), Li and Li (1994), Lee and Jeon
(2000) and Chakravarthy and Dudin (2003) and references therein for a detailed
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introduction of the MAP and phase-type distribution. Some recent reviews can be

found in Neuts (1995) and Chakravarthy (2001).

Let J,(r) and J,(¢), respectively, denote the phase of the demand process and the
phase of the lead time process. Then the stochastic process
{(L,(t), L, (1), J, (1), J, (1)), > 0} has the state space,

Q ={i.i,,i,.0).i, € Eg \E, ,i,e E; \E, i, E, |
Coe . . . o -
LJJL(11,12,13,0),11 € ESl \I'ZSl,z2 € Esz,l3 € Eml}

U (ilai23i370)’i1 € E?l ’e ESZ \E ’i3 € Enﬁ}

52

Coe e . 0 - 0 . .
u{(zl,zz,z3,z4),zleEsl,zzeEsz,geEm1,14eEmz}

From the assumptions made on the demand and the replenishment processes, it
can be shown that {(L,(¢), L, (¢),J,(2),J,(¢)),t 20} is a Markov process on the state
space Q. By ordering the sets of state space in lexicographic order, the
infinitesimal generator of the Markov chain governing the system, in block

partitioned form, is given by

A, j=i, i=0,1,....S,
B, j=i-1, i=12,...,8,

[P], = - | (4.1)
C, j=i+Q,, i=01l,...,s,
0, otherwise.

where

I, ®T°, j=i+Q,, i=0,1,..,s,

[Cl, =1 ST : (4.2)
0, otherwise.
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For k=s+2,5+3,....,8,,
D, +kyl, , =i
D +D,+kyl, . Jj=i
[B,]; =4 Pi_;Dp> j=12,..,i—1,
p;Dn’ Jj=0,
0, otherwise
=Zpi
For k=s +1,
D +kyl, , j=1,
(D, +kyl, )®a Jj=i,
(D, +D12+k;/11 )®a Jj=i,
p._iDp, j=s,+1 s2+2 -1,
[B,]; =1p._;D,®0, j=12,.
or
j=12,..,i—1,
P;D12®a’ j=0,
0, otherwise
For k=1.2,...,s,
D, +knl, , j=i,
(D, +k7/11ml)®1m2, j=i,
(D, +D,, +k711ml) ® Imz, j=i,
PiiDps j=s,+ls, 42,01,
[B.]; =1p_D,®«, Jj=12,...5s,,
pD,®«a, J=0,
pl.ijn@Imz, j=12,...,i—1,
P;Dlz ®1m2’ J=0,
0, otherwise.
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i=12,...S,,
i=0,
i=23,...,8
i=1.2,...,8

i=s,+1,5,+2,..
i=12,...,s,
i=0,

i=s,+2,5,+3,...,
i=s,+2,5,+3,...,

i=23,..,
i=12...5,,

i=s,+1,s,+2,...
i=12,...,s,
i=0,

i=s,+2,5,+3,...,
i=s,+1,5,+2,...,
i=s,+1,5,+2,...,

i=23,...,s,
i=12,...,s,

s, +1,

(4.3)

oS,

S,
S,, (4.4)

S,
S,,
S,,

(4.5)
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For k=s +1,s,+2,...,5,,

plD2+k}/21ml, j=i—-1, i=23,...,5,,
pi_iD,, j=12,..,i-2, i=34,..S,,
p;Dz, j=0, i=12,...,5,,
[Ak]l‘j = . ..
D, — (ky, +z}/l)lml Jj=1, i=12,...,S5,,
D0+D2—k}/llml, j=i, i=0,
0, otherwise.
For k=12,...,s,
nDy+ipl, j=i-1, i=s,+2,5,+3,...5,
(plD2+i}/ZIml)®a, j=i-1, i=s,+1,
(p1D2+i721Wﬁ)®IWb, j=i—1, i=23,..5,
P, j=s+15+2,..,i-2, i=s,+3,5,+4,....5,,
p_D, ®q, j=1,2,.,i-2, i=s,+1,5,+2,
or
j=12,..s, i=s,+3,5,+4,...5,,
Al = P D®I, . j=1.2,.,0-2, i=34,..5,
pD,®q, j=0, i=s5,+1,5,+2,...5,,
pD, ®Im2, j=0, i=1,2,..s,,
D, —(ky, +i}/2)lml, j=i, i=s,+1,5,+2,...,5,
D, ®T—(ky, +i7/2)1m1 ®Im2, j=i, i=1,2,..s,
(D0+D2)(-BT—I<}/lIm1 ®IW?, j=i, i=0,
0, otherwise
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Fork =0
n(Dy+Dy)+in, j=i—1, i=s5,+2,5,+3,...5,,
(P(D,+D)+inl, )@ j=i-l, i=s,+1,
(0D, +Dy)+ipl, @1, ,  j=i-l, i=23,..5,
P/(Dy+Dy), j=8+1,85+2,..,i-2, i=s,+3,5,+4,...5,,
pl._j(D2+D12)®a’, j=12,.,i-2, i=s,+1,5,+2,
or
j=12,.,s,, i=s,+3,s,+4,...5,
[Al;= P (D +D,)®I, j=1,2,..,i2—2, i=32,4,..,;, "(a8)

p(D,+D,,)®a, j=0, i=s,+1,5,42,....5,,
p(D,+D,)®I, , j=0, i=12,..,s,
D +D =Gy, j=i, i=s,+1,5+2...5,
(D, +D)®T - )1, ®1, , j=i, i=12,..s,
D®@T, Jj=i, i=0,
0, otherwise

It may be noted that the matrix C is of order (Q,m, + (s, +1)m,m,)x (S, +1)m,, the
matrices B,i=s+2,5,+3,...,S,, are of order (S, +1)m,x (S, +1)m,, the matrix

B

ot is of order (S, +1)m, x(Q,m, + (s, +1)m,m,), the matrices B,,i=1,2,..,5,, are

of order (Q,m, + (s, +1)mm,)x(Qm, + (s, + )m,m,), the matrices A,i=0,1,..s,
are of order (Qm, + (s, +1)mm,)x(Qm, + (s, +1)mm,), and the matrices

Ai=s+1,5+2...,8, are of order (S, +1)m,x (S, +1)m,.

4.3. STEADY STATE ANALYSIS

It can be seen from the structure of P that the homogeneous Markov process

{(L,(t), L,(2),J,(2),J,(2)),t =20} on the finite state space Q is irreducible.
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Hence, the limiting distribution ¢(i’k’jl,j2) =

lim Pr{L (t) =i, L,(t) =k, J,(£) = j,, J, () = j, | [,(0),L,(0),J,(0),J,(0)]

t—0o0

exists. Let

(¢(i’k’jl’l)’¢(i’k’jl’2)’.“’¢(i’k’jl’m2))’ (i9k’ jl)e F'l’
¢(i,k,jl) = (¢(i,k,j1,0))’ (i,k, j)eEF,,

where
F,={ipipis)i € Ei,e B i€ E, |
1 127227351 5'1’2 5'2’3 m
F, ={iisis).i € Eg \E, ,i,€ Eg \E, ,i;€E, |
Coe ey . . 0 -
u{(zl,zz,z3),zleEsl\Esl,zzeEsz,z3e Eml}

Olivisniy).iy € B € Eg \E, Li,€ E, |

S2

- — : : ; ke E,,ie E
1 Ky K K
¢( k) (¢(1k1)’¢(1k2)’ ’¢(1km1))’ 2 1°

¢(i) - {(¢(i,0)’¢(1‘,1)""’¢(1‘,S2))’ ie El

and

o=(0".0",.  o%)

Then the vector of limiting probabilities & satisfies

dP=0 and Pe=1. (49)

The first equation of the above yields the following set of equations:

CI)(H—I)BA

i+1

DA —0f= -
+®YA =0,i=0,1,...,0, -1, (4.10)

cI)(Hl)Bi+l +CI)(i)Ai +q)(i—Q1)C =0,i= le

(4.11)
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q)(Hl)B +¢(’)A +CI)(I QIC OZ_Q1+17Q1+27""SI_1’

i+1 (412)
i) (=0 ~ _ .
PVA+D C=0,i=3S,. (4.13)
The equations (except (4.11)) can be recursively solved to get
q)(i)zq)(Qﬂei’ iZO,l,-~~,S1, (414)
where
(-1’7 By Ayl By BuAT, =010, -1,
I, i=Q,
6 = (4.15)

o S=i
(_1)2er IZ[(BQIA;—IBQI—I ’ s1+1 J 51 lk‘ 51 J

(B AL BB ) =041,

Substituting the values of & in equation (4.11) and in the normalizing condition thr

]

following is obtained

©)] 110 [( q )C
P ( 1) ZO BQIAQI—IBQI—I ) spHl=j 51 J ASI*]
p=

-1
(le—jASl -1 s1 = Q1+2AQ +1) Q1+1 (4.16)
NELENN AOJ

and

0,01 i+l

0,1
c1><91>{ (( H%'B A B, B, A‘l) I

al i1 _
+ z [(—l)zg1 +IZ[(BQ1AQ11—IBQ1—1 B, A /)C A

i:Q1+1 j=0 (417)

(le jAgl—jl s-i-1 z+1A: )) ]
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From the equation (4.16), the value of ®9 can be obtained up to a constant
multiplication. This constant can be determined by substituting the value of &

in the equation (4.17). Substituting the value of ®@ in the equation (4.14) leads

to the values of ¥,i=0,1,..,S.

4.4, SYSTEM PERFORMANCE MEASURES

In this section, some stationary performance measures of the system were derived.

Using these measures, the total expected cost per unit time can be constructed.

4.4.1. Mean Inventory level

Let m, denote the mean inventory level of k¥ — th commodity in the steady state

(k=1,2). Since ¢(i’j) is the steady state probability vector for inventory level of

first commodity iand the second commodity j, then

515
7, = D Did, e (4.18)
i=1 j=0
and
515
M, = 2200 (4.19)
i=0 j=1
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4.4.2. Mean Reorder Rate

A reorder for both commodities is made when the joint inventory level drops to
either (s,,s,) or (s, j),j<s, or (i,s,),i<s,. Let 5, denote the mean reorder

rate for both commodities in the steady state and it is given by

19

R =20 P WZPu(D ®a)e+2¢(y (D ®a)e

k=0 j=1

sl+1 Q2

+ Zz¢(k v2+j)zpu(D12 ® a)e + Z(S2 + 1)}/2¢(k s. +1)e (4'20)

k=1 j=1

2
+2 (5 DG e
k=0

4.4.3. Mean Shortage Rate

Let 7,, denote the mean shortage rate of i —th type demand in the steady state

(i=1,2,12).Then

)
773hl = Z¢(O,k)Dle' (4.21)
k=0
S, Sy
775112 Zz¢(z J) Z ka €. (422)
i=0 j=0 k=j+1

and

s, = (Z%k) ze+22¢<m2m lzeJ (4.23)

i=0 j=0 k=j+1
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4.4.4. Mean Failure Rate

Let the mean failure rate of commodity-i in the steady state be denoted by

77F,-’(i =1,2). A failure occurs when any one of the stocked items cease to work or
perish. Since the rate of failure of a single item is }; for the commodity j, the rate
at which any one of i items for j—th commodity fails is given by iy,,(j=1,2).
When the process is in state (i,k, j,, j,), the rate of failure of any one of item of

first commodity is given by iy, (provided i > 0) and the failure rate of any one item

of second commodity is ky, (provided k > 0).

Therefore
S5
M = 2D ih e (4.24)
i=1 k=0
and
)
e, = 2.0 k1@ (4.25)
i=0 k=1

4.5. COST ANALYSIS

The total expected cost per unit time (total expected cost rate) in the steady-state

for this model is defined to be 7C(S,,s,,S,,s,)

=Cp Ty FCp Ty, T CTR + Cop Ty Con M, T Con Thsny, ¥ CpTlp, €4, gFZ (4.26)

82



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<
=

N UNIVERSITEIT VAN PRETORIA

Qo

where

¢, :Theinventory carrying cost of i-th commodity per unit item per unit time

(i=12)

¢, :Joint ordering cost per order.

N

¢, :The failure cost of i-th commodity per unit item per unit time (i =1,2).

f;

l

Cop, Shortage cost due to type i demand per unit time (i =1,2,12).

Since the total expected cost rate is known only implicitly, the analytical properties
such as convexity of the total expected cost rate cannot be carried out in the
present form. However the following numerical examples were presented to
demonstrate the computability of the results derived in our work, and to illustrate
the existence of local optima when the total cost function is treated as a function

of only two variables.

4.6. ILLUSTRATIVE NUMERICAL EXAMPLES

As the total expected cost rate is obtained in a complex form, the convexity of the
total expected cost rate cannot be studied by the analytical methods. Hence the use
‘simple' numerical search procedures to find the “local" optimal vales for any two of
the decision variables {S,,s,,S,,s,} by considering a small set of integer values for
these variables. With a large number of numerical examples, it was found that the
total cost rate per unit time in the long run is either convex function of both variables

or an increasing function of any one variable.
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The following five MAPs for arrival of demands are considered and it may be noted
that these processes can be normalized to have a specific (given) demand rate A

when considered for arrival of demands.

1. Exponential (Exp)

2. Erlang (Erl)
-1 1 0 0 0O
Hy=0 -1 1| H=[{0 0 0
0O 0 -1 1 00
3. Hyper-exponential (HExp)

-10 0 9 1
H,= H, =
0 -1 0.9 0.1

4. MAP with Negative correlation (MNC)

2 2 0 00 0
Hy=| 0 —-81 0| H,=|2525 0 5575
0 0 -81 5575 0 25.25

5. MAP with Positive correlation (MPC)

-2 2 0 00 0
Hy=| 0 —-81 0| H,=|5525 0 2575
0 0 -8l 2575 0 55.25

All the above MAPs are qualitatively different in that they have different variance and
correlation structures. The first three processes are special cases of renewal processes

and the correlation between arrival times is 0. The demand process labelled as MNC
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has correlated arrivals with correlation coefficient -0.1254 and the demands
corresponding to the process labelled MPC has positive correlation coefficient 0.1213.
Since Erlang has the least variance among the five arrival processes considered here,
the ratios of the variances of the other four arrival processes, labelled as
Exp, HExp, MNC and MPC above, with respect to the Erlang process are, 3.0,
15.1163, 8.1795, 8.1795, respectively. The ratios were given rather than the actual

values since the variance depends on the arrival rate which is varied in the discussion.

For the lead time distribution, the following three PH distributions were considered.

Again these processes can be normalized to have a specific (given) rate S when

considered for replenishment.
1. Exponential (Exp)
a=T=(1

2. Erlang (Erl)

-1 1 0 0
-1 1 0

a=(1,0,00)T =
0 0 -1 1
0 0 0 -1

3. Hyper-exponential (HExp)

-10 O
a=(0.9,0.1)T =
0 -1

Example 1: This example is to illustrate the effect of the demand rate A, the lead time

rate S, the five types of demand processes and the three types of lead time processes

on the optimal values (S,,S,) and the optimal cost rate TC(S, ,2,S,,4). The following

fixed values were assumed for the parameters and costs:
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D,=H,,D, =03H,,D,=0.4H,,D,=03H,,7,=0.8,7,=0.6,p,=0.6%0.4",i=12,...,
¢, =0.05,¢c, =001,c. =10,c, =0.8,c., =1.5,c, =1l,c, =0.2,c, =0.2.
hl 112 K sh1 sh12 f1 f2

shz

Table 4.1 gives the optimum values, Sf and S;, that minimize the total expected cost
rate for each of the five MAPs for arrivals of demands considered against each of the
three PHs for lead times. The associated total expected cost rate values are also given

in the table. The lower entry in each cell gives the optimal expected cost rate and the

upper entries are corresponding to ST and S;. The following observations were

noticed from the table 1:

1. As A increases the optimal total cost rate decreases for all the five demand
processes and for all the three lead time processes. Similarly as £ increases
the optimal total cost rate decreases.

2. The optimal total expected cost rate has higher value for demand process
having hyper-exponential distribution and has lower value for Erlang demand
process.

3. The lead time distributed as Erlang has low optimal total cost rate except for
HExp distributed demand process and HExp distributed lead time has high
optimal total cost rate except for HExp distributed demand process. For HExp
distributed demand process this observation reverse, i.e., HExp distributed
lead time has low optimal total cost rate and Erl distributed lead time has high

optimal total cost rate.

Example 2: This example serves to illustrate the effect of the arrival rate A, the lead

time rate £ and the type of arrival and lead time processes on the optimal values

(ST,S;) and optimal cost rate TC(IS,S;‘SO,S;). The following fixed values were

assumed for the parameters and cost:
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D,=H, D, =03H,,D,=04H,,D,, =0.3H,,7, =0.6,7, =05, p, =0.55*%0.45",i =1,2,...

ch, =0.01,ch, =0.01,c, = lO,cshl = O.8,csh2 =1.5,c, = 1’Cf1 =0.2, ¢y, = 0.2.

shlz

The optimum values, sf and S;, that minimizes the expected total cost for each of the

five MAPs for arrivals of demands considered against each of the three PHs for lead
times is given in the table 4.2. The associated total expected cost rate values are also

given. The lower entry in each cell gives the optimal expected cost rate and the upper

® *
entries correspond to §; and S§,. The key observations are summarized below.

1. As A increases, the optimal total cost rate increases except for Hexp
distributed demand process. For Hexp distributed demand process, the
optimal total cost rate decreases as the demand rate 1 increases.

2. When /S increases, the optimal total cost rate increases for all combination
of five arrival processes and three demands processes.

3. The optimal cost rate is high in the cases wherein the demand process is
Hexp and it is low when the demand process is Erlang.

4. The optimal total cost rate is low when the lead time is Erl except for the
Hexp distributed demand process. For Hexp distributed lead time the
optimal total cost rate is high except for Hexp distributed demand process.
For HExp distributed demand process this observation reverse., i.e., Hexp
distributed lead time is associated with low optimal total cost rate and Erl

is associated with high optimal total cost rate.
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Table 4.1: Total expected cost rate as a function of (5, S,)

Lead time distribution

MAP

demands

distribu-

tions

ﬂ 10 15
A Exp Erl HExp Exp Erl HExp
Exp (13,46) (13,46) (13,46) (13,47) (13,47) (13,47)
8.0236 8.0177 8.0277 8.2027 8.1999 8.2047
Erl (13,46) (13,46) (13,46) (13,47) (13,47) (13,47)
7.9967 7.9905 8.0009 8.1838 8.1809 8.1858
6 HExp (13,46) (13,46) (13,46) (13,47) (13,47) (13,47)
8.1568 8.1570 8.1567 8.2977 8.2978 8.2976
MNC (13,46) (13,46) (13,46) (13,47) (13,47) (13,47)
8.0736 8.0680 8.0774 8.2379 8.2352 8.2397
MPC (13,46) (13,46) (13,46) (13,47) (13,47) (13,47)
8.1267 8.1214 8.1303 8.2753 8.2727 8.2770
Exp (17,58) (17,58) (17,58) (18,60) (18,60) (18,60)
10.5224 10.5175 10.5258 10.8125 10.8101 10.8141
Erl (17,58) (17,58) (17,58) (18,60) (18,60) (18,60)
10.4959 10.4908 10.4994 10.7939 10.7915 10.7956
8 HExp (17,58) (17,58) (17,58) (17,59) (17,59) (18,60)
10.6604 10.6608 10.6601 10.9104 10.9106 10.9103
MNC (17,58) (17,58) (17,58) (18,60) (18,60) (18,60)
10.5717 10.5670 10.5749 10.8470 10.8448 10.8486
MPC (17,58) (17,58) (17,58) (18,60) (18,60) (18,60)
10.6260 10.6215 10.6291 10.8852 10.8830 10.8867
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Table 4.2: Total expected cost rate as a function of (s,,s,)

Lead time distribution

MAP

Demands

Distri-

butions

10 15
Exp Erl HExp Exp Erl HExp
Exp (4,4) (4,4) (4,4) (4,4) (4,4) (4,4)
7.2328 7.2286 7.2356 7.3624 7.3604 7.3638
Erl (4,4) (4,4) (4,4) (4,4) (4,4) (4,4)
7.2080 7.2037 7.2111 7.3450 7.3429 7.3464
HExp (4,4) (4,4) (4,4) (4,4) (4,4) (4,4)
7.3579 7.3598 7.3567 7.4518 7.4527 7.4512
MNC (4,4) (4,4) (4,4) (4,4) (4,4) (4,4)
7.2787 7.2748 7.2814 7.3947 7.3929 7.3960
MPC (4,4) (4,4) (4,4) (4,4) (4,4) (4,4)
7.3282 7.3245 7.3307 7.4296 7.4279 7.4309
Exp (3,4) (3,4) (3,4) (3,4) (3,4) (3,4)
9.4935 9.4902 9.4957 9.7144 9.7129 9.7155
Erl (3,4) (3,4) (3,4) (3,4) (3,4) (3,4)
9.4694 9.4660 9.4717 9.6977 9.6961 9.6988
HExp (3,4) (3,4) (3,4) (3,4) (3,4) (3,4)
9.6194 9.6211 9.6183 9.8030 9.8038 9.8025
MNC (3,4) (3,4) (3,4) (3,4) (3,4) (3,4)
9.5381 9.5351 9.5402 9.7455 9.7441 9.7465
MPC (3,4) (3,4) (3,4) (3,4) (3,4) (3,4)
9.5876 9.5847 9.5895 9.7799 9.7786 9.7809
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Example 3: Next, the impact of ¢y and ¢y, on the total expected cost rate was considered.

For this, the following values were considered for the parameters and costs:

D,=H,,D, =03H,,D,=04H,,D,, =03H,,A=8,5=0.5,7=0.6,7, =0.5, p, =0.55%0.45"",
i= 1,2,...,ch1 = ().Ol,ch2 =0.0l,c, = IO,C‘th = O.&csh2 = 1.5,csh12 =1.

The graphs of the total expected cost rate as a function of cp and ¢, were plotted for the

three lead time processes and the five demand processes in figures 4.2 — 4.6. In all the
figures the lead time distributions Exp, Erl and HExp are coloured as blue, black and red

respectively. The following were noted:

¢ In all the five arrival processes, as ¢y and ¢, increase simultaneously, the total

expected cost rate increases. But the increasing rate for ¢, is high compared to Cy -

¢ The Erlang lead time process is associated with low total expected cost rate and

for the hyper exponential lead time process case the total expected cost rate is high.

Figure 4.2: Exp demand process
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Figure 4.3: Erl demand process

4: HExp demand process

4

Figure
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Figure 4.5: MNC demand process
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Figure 4.6: MPC demand process
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Example 4: In the final example, the impact of ¢, and ¢, on the total expected cost rate

was shown. The following values were considered for the parameters and costs:

D,=H,,D,=03H1,D,=04H1,D,, =0.3H1,A=15,8=2,%,=0.8,7, =0.4,p, =0.6*0.4™",
i=12,...,¢c,=10,c, =0.8,c, =15,c, =1l,c, =0.2,c, =0.2.
s shy shy shyp f f

The graphs of the total expected cost rate as a function of ¢y and ¢, were plotted for the

three lead time processes and the five demand processes in figures 4.7 — 4.11. In all the
figures the plots for the lead time distributions Exp, Erl and HExp are coloured as blue,

black and red respectively. The following were observed:

* In all the five arrival processes, as ¢, and ¢, increase, the total expected cost

rate increases. But the increasing rate for Ch, is high compared to that of Cp, -

e For all the demand process, the Erlang lead time process has low total expected

cost rate and hyper exponential lead time process has high total expected cost rate.

* The difference between the total expected cost rate for any two lead time process
is high except for HExp demand process. For the HExp demand process, the difference

between the total expected cost rate for any two lead time process is low.

TC(15,3,20,4)

Figure 4.7: Exp demand process
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Figure 4.8: Erl demand process
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Figure 4.9: HExp demand process
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Figure 4:10.: MNC demand process

MPC demand process

Figure 4.11
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4.7. CONCLUSION

The existing work on two-commodity continuous review inventory system have been
extended by introducing the perishability for both commodities, Markov Arrival Process for
demand time points and phase type distribution for lead time. It was also assumed that one
of the commodities may accept bulk demands. Steady state solutions for the joint
distribution of inventory levels have been provided. Under suitable cost structure, the total
expected cost rate in steady state have been constructed. To demonstrate the
computability of results derived here, ample numerical illustrations have been provided. The
effect of the parameters and costs on the total expected cost rate have also been

numerically analyzed.
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