THE EFFECT OF SOFT TISSUE MOBILIZATION
TECHNIQUES ON THE SYMPTOMS OF CHRONIC
POSTERIOR COMPARTMENT SYNDROME IN RUNNERS: A
MULTIPLE CASE STUDY APPROACH

by

Estelle Annette Erasmus

submitted in partial fulfilment of
the requirements for the degree

DOCTOR PHILOSOPHIAE

in the

FACULTY OF HUMANITIES
(Department of Biokinetics, Sports and Leisure Sciences)

University of Pretoria

APRIL 2008
ACKNOWLEDGEMENTS

I would sincerely like to thank the following persons for their contributions towards this study:

My promoter, Prof. P.E. Krüger for his guidance and support.

My family, Frans, Emily and Abigail for their patience and support.

My parents, for creating and encouraging my love for continuous education.
ABSTRACT

<table>
<thead>
<tr>
<th>TITLE</th>
<th>The effect of soft tissue mobilization techniques on the symptoms of chronic posterior compartment syndrome in runners: A multiple case study approach.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANDIDATE</td>
<td>Estelle Annette Erasmus</td>
</tr>
<tr>
<td>PROMOTOR</td>
<td>Prof PE Krüger</td>
</tr>
</tbody>
</table>
| DEPARTMENT | Biokinetics, Sports and Leisure Sciences
University of Pretoria |
| DEGREE | Doctor Philosophia |

Chronic posterior compartment syndrome (CPCS) of the leg is a pathological condition which is often encountered by participants in exercise related activities such as running. To date no successful conservative treatment approach existed for the condition. The mainstay of the management of the condition at present is the surgical release of the involved fascia that surrounds the compartment. The main aim of the research project was thus to develop a successful conservative treatment approach for the symptoms of CPCS. It was identified that the current theoretical base did not incorporate the continuous and relatively inelastic nature of the fascia which plays an important role in the condition. Based on an extended literature review, muscles which are linked to the posterior compartment via the myofascial tissue were identified. Tightness in these *clinically significant* muscles is able to induce stresses in the myofascial chain which could ultimately influence stresses in the posterior compartment of the leg. The release of tightness in these muscles external to the posterior compartment through soft tissue mobilization techniques provides an effective conservative treatment approach for the symptoms of CPCS. A revised model for the pathogenesis of CPCS was developed which formed the basis for treatment interventions. The revised theoretical model for the pathogenesis of CPCS was validated based on a mixed-methodological approach which included a series of exploratory as well as explanatory case studies. This qualitative approach was supplemented by quantitative experiments in which the causal relationships of the condition on certain biomechanical aspects were explored. The treatment
interventions had a hundred percent success rate and the results of the experimental research conducted also supports the new theoretical model for the pathogenesis of CPCS.

Key words:

Chronic Posterior Compartment Syndrome; Pathogenesis; Fascia; Soft tissue myofascial links; Soft tissue mobilization techniques; Conservative interventions; Connective tissue; Running injuries; Qualitative research paradigms; Mixed-methodologies; Alternatives to surgical management.
OPSOMMING

<table>
<thead>
<tr>
<th>TITEL</th>
<th>Die invloed van sagteweefsel mobiliseringstegnieke op die simptome van kroniese posterior kompartementsindroom in hardlopers: ‘n Meervoudige gevallestudie benadering</th>
</tr>
</thead>
<tbody>
<tr>
<td>KANDIDAAT</td>
<td>Estelle Annette Erasmus</td>
</tr>
<tr>
<td>PROMOTER</td>
<td>Prof PE Krüger</td>
</tr>
<tr>
<td>DEPARTEMENT</td>
<td>Biokinetika, Sport en Ontspannings Wetenskap Universeit van Pretoria</td>
</tr>
<tr>
<td>GRAAD</td>
<td>Doctor Philosophia</td>
</tr>
</tbody>
</table>

Kroniese posterior kompartementsindroom (KPKS) van die onderbeen is ‘n patologiese toestand wat ervaar word deur persone wat aan oefeningsverwante aktiwiteitie soos hardloop deelneem. Daar bestaan tans geen suksesvolle konserwatiewe behandeling vir die sindroom nie. Die enigste huidige aanbevole behandeling is die chirurgiese loslating of verwydering van die fasia rondom die simptomatiese kompartement. Die hoofdoel van hierdie studie was dus om ‘n suksesvolle konserwatiewe behandelingsregime vir die behandeling van die simptome van KPKS te ontwikkels. Daar is bevind dat die huidige teoretiese grondslag vir die behandeling van die toestand nie die kontinuiteit en die onelastisiteit van die fasia netwerk, wat ‘n groot rol in die sindroom speel, in ag neem nie. Spiere wat via die fasia netwerk aan mekaar en sodoende aan die posterior kompartement van die onderbeen gekoppels is, is deur middel van ‘n intensiewe literatuursoektog geïdentifiseer. Hierdie spiere is die *klinies belangrike spiere* genoem en ‘n styfheid in enige een van hierdie spiere is teories dus in staat om kragte in die miofasiale ketting te inducer wat dan weer die kragte op die posterior kompartement oordra. Die loslating van styfheid in hierdie spiere ekstern tot die posterior kompartement deur middel van sagteweefsel mobilisasiestegnieke, voorsien ‘n effektiewe konserwatiewe benadering tot die behandeling van die simptome van KPKS. ‘n Hersiene model wat die patologie van KPKS visueel voorstel is ontwikkels en dien as basis vir die konserwatiewe behandeling van die simptome van KPKS. Hierdie model is bevestig deur gebruik te maak van ‘n gemengde metodologiese benadering wat ‘n reeks van ondersoekende sowel as verduidelikende gevallestudies ingesluit het. Die
kwalitatiewe benadering was aangevul met kwantitatiewe eksperimente waartydens oorsaaklike verwantskappe met biomekaniese faktore ondersoek was. Die behandelingsbenadering was ‘n honderd persent suksesvol en die resultate van die eksperimentele navorsing wat uitgevoer was, ondersteun dus die nuwe teoretiese model vir die patogenese van KPKS.

Sleutelwoorde

Kroniese posterior kompartementsindroom; Patogenese; Fasia; Sagteweefsel mobilisasies; Miofasiale ketting; Sagteweefsel mobilisasietechnieke; Konservatiewe behandeling; Kollageen weefsel; Hardloopbesserings; Kwalitatiewe navorsings paradigmas; Gemengde metodologie; Alternatiewe tot chirurgiese behandeling
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii
ABSTRACT iii
OPSOMMING v
TABLE OF CONTENTS vii
LIST OF FIGURES xvi
LIST OF TABLES xviii
LIST OF ABBREVIATIONS xxv
GLOSSARY OF TERMS xxvi

CHAPTER 1: THE SCOPE OF THE RESEARCH
1.1. INTRODUCTION AND BACKGROUND 1
1.2. THE RESEARCH PROBLEM 2
1.3. THE RESEARCH QUESTION 4
1.4. INVESTIGATIVE QUESTIONS 5
1.5. KEY RESEARCH OBJECTIVES 6
1.6. SIGNIFICANCE OF THE RESEARCH 6
1.7. THE RESEARCH PROCESS 7
 1.7.1. Phase 1 – Exploratory research 7
 1.7.2. Phase 2 – Explanatory research 9
1.8. THE RESEARCH DESIGN AND METHODOLOGY 11
1.9. RESEARCH ASSUMPTIONS 12
1.10. RESEARCH CONSTRAINTS 13
1.11. CONTEXTUAL BOUNDARIES 13
 1.11.1. Limitations 13
 1.11.2. Delimitations 14
1.12. CONCLUSION 14

CHAPTER 2: LITERATURE REVIEW
2.1. INTRODUCTION 16
2.2. RESEARCH METHODOLOGY 16
 2.2.1. An introduction to qualitative research 16
2.2.2. Mixed methodologies

2.2.3. Case study research methodology
 2.2.3.1. General approach to case study design
 2.2.3.2. Components of research design
 2.2.3.3. The role of theory in design
 2.2.3.4. Criteria for judging the quality of research designs
 2.2.3.5. Case study designs
 2.2.3.6. Dimension and classification of case studies
 2.2.3.7. Protocol
 2.2.3.8. Synthesis and knowledge integration in imbedded case study research
 2.2.3.9. Case study protocol as design

2.2.4. Experimental study designs

2.2.5. Conclusion

2.3. CHRONIC POSTERIOR COMPARTMENT SYNDROME
 2.3.1. Introduction
 2.3.2. Chronic compartment syndrome
 2.3.2.1. Anatomy of compartments and their muscles
 2.3.2.2. Definition of chronic posterior compartment syndrome (CPCS)
 2.3.2.3. Pathogenesis of chronic posterior syndrome (CPCS)
 2.3.2.4. Prevalence of compartment syndrome
 2.3.2.5. Symptoms of chronic posterior compartment syndrome
 2.3.2.6. The differentiation of CPCS from other symptom related conditions
 2.3.2.7. Intra-compartmental pressure measurement as confirmation of the diagnosis of CPCS
 2.3.2.8. Surgical management of chronic compartment syndrome
 2.3.2.9. Conservative management of chronic compartment syndrome
 2.3.3. Functional anatomy and biomechanical factors
 2.3.3.1. Muscles of the posterior compartments of the lower leg
 2.3.3.2. Muscles of the anterior compartments of the lower leg
 2.3.3.3. Muscles of the lateral compartments of the lower leg
2.3.3.4. Normal running gait 79
2.3.3.5. Dorsi flexion at the ankle joint 84

2.4. KNOWLEDGE OF FASCIA 85
2.4.1. Composition of normal fascia 85
2.4.2. Manual therapy techniques for connective tissue dysfunction 88
2.4.3. Reflection 90

2.5. THE CONTINUITY OF THE SOFT TISSUE LINKS 92
2.5.1. Introduction 92
2.5.2. Description of the myofascial links 93
2.5.3. Posterior myofascial links of the trunk 94
2.5.4. Anterior myofascial links of the trunk 97
2.5.5. Fascia of the leg 100
2.5.6. Conclusion 101

CHAPTER 3: METHODOLOGY 103
3.1. INTRODUCTION 103
3.2. EXPLORATORY RESEARCH DESIGN 103
3.2.1. The basis for exploratory research design 104
3.2.2. Design Classification 105
3.2.3. Unit of Analysis 106
3.2.4. Subjects 106
3.2.4.1. Inclusion criteria 106
3.2.4.2. Exclusion criteria 106
3.2.4.3. Recruitment of subjects 107
3.2.4.4. Randomness 108
3.2.5. Database 108
3.2.6. Ethical considerations 108
3.2.7. The research question 109
3.2.8. Investigative questions 109
3.2.9. Theoretical framework 110
3.2.10. Propositions 111
3.2.11. Rival theories 111
3.2.12. Data collection 111
3.2.13. Schedule and reviews 112
3.2.14. Criteria for interpreting results 112
3.2.15. Variables and associated measures 112
3.2.16. Research Process 113
 3.2.16.1. Subjective assessment – Interview 113
 3.2.16.2. Objective Assessment – Physical examination 114
3.2.17. Intervention 116
3.2.18. Data recording 119
3.2.19. Quality assurance measures 120
3.2.20. Modification of the exploratory research design 121
3.2.21. Conclusion 122

3.3. THE EXPLANATORY RESEARCH DESIGN 122
3.3.1. The research question 123
3.3.2. Theoretical framework 123
3.3.3. Propositions 123
3.3.4. Rival theories 124
3.3.5. The Research Process 125
3.3.6. Conclusion 125

3.4. EXPERIMENTAL RESEARCH 126
3.4.1. Introduction 126
3.4.2. Degree of extension at the metatarsophalangeal joint during terminal stance 126
 3.4.2.1. Aim of the study 126
 3.4.2.2. Hypothesis 126
 3.4.2.3. Research design 127
 3.4.2.4. Sample selection 127
 3.4.2.5. Inclusion and exclusion criteria for the controls 127
 3.4.2.6. Inclusion and exclusion criteria for the subjects 128
 3.4.2.7. Outcome measures 128
 3.4.2.8. Procedure 128
3.4.3. The effect of soft tissue mobilization on subtalar over pronation in sportsmen 129
 3.4.3.1. Introduction 129
4.5.3 CASE STUDY 5 213
 4.5.3.1 The subject 213
 4.5.3.2 Research Procedure 213
 4.5.3.3 Interventions 220
 4.5.3.4 Synthesis/discussion 225
 4.5.3.5 Quality assurance measures 226
4.5.4 CASE STUDY 6 226
 4.5.4.1 The subject 226
 4.5.4.2 Research Procedure 227
 4.5.4.3 Interventions 234
 4.5.4.4 Synthesis/discussion 239
4.6 CROSS CASE STUDY COMPARISON 241
 4.6.1 Introduction 241
 4.6.2 The symptoms prior and post intervention 244
 4.6.3 Tightness in clinically significant muscles 245
 4.6.3.1 Relative tightness on the left 246
 4.6.3.2 Relative tightness on the right 245
 4.6.3.3 Summary 253
 4.6.4 Assessment of other abnormalities 253
 4.6.4.1 Muscle imbalances 253
 4.6.4.2 Running movement pattern abnormalities 260
 4.6.5 Conclusion 275
4.7 EXPERIMENTAL RESEARCH 277
 4.7.1 Introduction 277
 4.7.2 Degree of extension at the metatarsophalangeal joint during terminal stance 277
 4.7.2.1 Results 277
 4.7.2.2 Discussion 277
 4.7.3 The effect soft tissue mobilization on subtalar over pronation 282
 4.7.3.1 Results 282
 4.7.3.2 Discussion 283
 4.7.4 Conclusion 284
4.8. RESEARCH VALIDATION

4.8.1 CASE STUDY 7
 4.8.1.1 The subject
 4.8.1.2 Research Procedure
 4.8.1.3 Interventions
 4.8.1.4 Synthesis/discussion

4.8.2 CASE STUDY 8
 4.8.2.1 The subject
 4.8.2.2 Research Procedure
 4.8.2.3 Interventions
 4.8.2.4 Synthesis/discussion

4.8.3 Reflection
 4.8.3.1 Knowledge from the literature study
 4.8.3.2 Knowledge gained from experimentation

4.8.4 Validation of tightness assessment technique

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.1 INTRODUCTION

5.2 KNOWLEDGE INTEGRATION
 5.2.1 Replication of results
 5.2.2 Muscle tightness
 5.2.3 Muscle imbalances
 5.2.4 Gait analysis
 5.2.5 Biomechanical measures

5.3 THE RESEARCH PROBLEM

5.4 THE RESEARCH AND INVESTIGATIVE QUESTIONS

5.5 KEY RESEARCH OBJECTIVES

5.6 SIGNIFICANCE OF THE RESEARCH

5.7 THE RESEARCH PROCESS

5.8 THE RESEARCH DESIGN AND METHODOLOGY

5.9 CONTEXTUAL BOUNDARIES AND SHORTCOMINGS

5.10 RECOMMENDATIONS

REFERENCES
APPENDICES

APPENDIX 1: STUDENT PROTOCOL AND THE ETHICAL COMMITTEE 345
APPENDIX 2: PATIENT INFORMED CONSENT 346
APPENDIX 3: E-MAIL FOR THE RECRUITMENT OF SUBJECTS 351
LIST OF FIGURES

Figure 1.1	The research process – Phase 1	8
Figure 1.2	The research process – Phase 2	10
Figure 2.1	Theory of knowledge	36
Figure 2.2	Brunswikian Lens Model	40
Figure 2.3	Proposed pathogenesis of CPCS	54
Figure 2.4	Rotation of the Achilles tendon	77
Figure 2.5	The thoraco-dorsal fascia and its links	95
Figure 2.6	The gluteus maximus muscle and its fascia links	96
Figure 2.7	The continuity of the myofascial links through the sacroiliac ligament	96
Figure 2.8	The myofascial links connecting to the sacrotuberous ligament	97
Figure 2.9	An illustration of some of the anterior myofascial links	97
Figure 2.10	Examples of anterior and posterior trunk fascia links to one another	99
Figure 3.1	Pathogenesis of CPCS	110
Figure 3.2	Anatomy of the compartments of the lower leg	116
Figure 3.3	Mobilization of the posterior inter-muscular septum	117
Figure 3.4	Soft tissue mobilization of the deep transverse fascia	117
Figure 3.5	Mobilization of the fascia between the soleus- and gastrocnemius muscles	118
Figure 3.6	Modification of exploratory designs	121
Figure 3.7	Proposed modified model for the pathogenesis of CPCS	124
Figure 3.8	Fascial stress induced pronation	130
Figure 3.9	Measurement by means of Coral Draw software	132
Figure 4.1	Pathogenesis of CPCS	137
Figure 4.2	The chronological development of Case Study 1	154
Figure 4.3	Modified theoretical framework (Case Study 1)	155
Figure 4.4	The evolved theoretical framework	169
Figure 4.5	A summary of the different posterior myofascial links	183
Figure 4.6	A summary of the different anterior myofascial links	184
Figure 4.7	Posterior compartments	188
Figure 4.8	Induced stresses in posterior compartments	191
Figure 4.9	Modified model for the pathogenesis of CPCS	192
Figure 4.10	Progressive change from *Exploration* to *Explanation*	242
Figure 4.11	Correlations between peak torque performance pre- and post intervention	258
Figure 4.12	Correlation between work performed per repetition pre- and post intervention	260
Figure 4.13	Metatarsophalangeal extension	278
Figure 4.14	Improvement of the metatarsophalangeal extension: left leg	280
Figure 4.15	Improvement of the metatarsophalangeal extension: right leg	281
Figure 4.16	Normalisation of hind foot pronation	283
Figure 5.1	Towards a new conception of the pathogenesis of CPCS	318
LIST OF TABLES

Table 2.1 Tactics for ensuring quality research designs 24
Table 2.2 Different kinds of rival explanations 26
Table 2.3 Basic types of designs for case studies 30
Table 2.4 Dimensions and classifications of case studies 32
Table 2.5 Case study protocol conformance matrix 43
Table 2.6 Summary of the anatomy of the compartments of the lower leg 50
Table 2.7 Summary of the occurrence of chronic compartment syndrome 55
Table 2.8(a) Outcomes of surgical interventions during 1983 to 1998 67
Table 2.8(b) Outcomes of surgical interventions during 1998 to 2002 68
Table 2.9 Sequence of movement at the pelvis, hips, knees, ankles and feet during running 80
Table 3.1 Design classification of Case Study 1 105
Table 3.2 Case study questions 109
Table 3.3 Case study variables and associated measures 113
Table 3.4 Quality assurance measures 120
Table 3.5 Dimensions and classifications of the experiment 127
Table 4.1 Outcomes of running gait analysis for Case Study 1 prior to intervention 142
Table 4.2 Muscle strength results prior to intervention: Case Study 2 158
Table 4.3 Outcomes of running gait analysis for Case Study 2 prior to intervention 161
Table 4.4 Biomechanical angles: Case Study 2 during intervention 162
Table 4.5 Muscle strength results prior to intervention: Case Study 3 171
Table 4.6 Outcomes of the running gait analysis for Case Study 3 prior to intervention 172
Table 4.7 Biomechanical angles for Case Study 3 during intervention 173
Table 4.8 The intensity of pain/discomfort before and after intervention 179
Table 4.9 The distance run before commencement of symptoms 179
Table 4.10 The total weekly-distances run before and after intervention 179
Table 4.11 Muscle imbalances in peak torque performance prior to interventions

Table 4.12 A summary of the chronological progression of case studies 1 to 3

Table 4.13 Clinically significant muscles

Table 4.14 Isokinetic dynamometer test results* prior to intervention: Case Study 4

Table 4.15 (a) Running gait analysis: Case Study 4 prior to intervention (Upper body)

Table 4.15 (b) Running gait analysis: Case Study 4 prior to intervention (Lower body)

Table 4.16 Biomechanical angles: Case Study 4

Table 4.17 Tightness of clinically significant muscles: Case Study 4 prior to intervention:

Table 4.18 Isokinetic dynamometer test results after intervention: Case Study 4

Table 4.19 Running gait analysis: Case Study 4 after intervention

Table 4.20 Biomechanical angles: Case Study 4

Table 4.21 Tightness of clinically significant muscles: Case Study 4 after intervention

Table 4.22 Isokinetic dynamometer test results* prior to intervention: Case Study 5

Table 4.23(a) Running gait analysis: Case Study 5 prior to intervention (Upper body)

Table 4.23(b) Running gait analysis: Case Study 5 prior to intervention (Lower body)

Table 4.24 Biomechanical angles: Case Study 5 during intervention

Table 4.25 Tightness of clinically significant muscles: Case Study 5 prior to intervention

Table 4.26 Running gait analysis: Case Study 5 after intervention

Table 4.27 Biomechanical angles: Case Study 5

Table 4.28 Tightness of clinically significant muscles: Case Study 5 (Final)
Table 4.29 Isokinetic dynamometer test results prior to intervention: Case Study 6

Table 4.30 (a) Running gait analysis: Case Study 6 prior to intervention (Upper body)

Table 4.30 (b) Running gait analysis: Case Study 6 prior to intervention (Lower body)

Table 4.31 Biomechanical angles: Case Study 6 prior to intervention

Table 4.32 Tightness of clinically significant muscles: Case Study 6 prior to intervention

Table 4.33 Running gait analysis: Case Study 6 after intervention

Table 4.34 Biomechanical angles: Case Study 6 after intervention

Table 4.35 Tightness of clinically significant muscles: Case Study 6 after intervention (Date: 25/10/2003) (Interim)

Table 4.36 Tightness of clinically significant muscles: Case Study 6 (Final) (Date: 24/01/2004)

Table 4.37 A summary of the chronological progression of case studies 1 to 6

Table 4.38 Intensity of pain and discomfort before and after intervention

Table 4.39 Commencement of symptoms before and after intervention

Table 4.40 The total weekly-distances run before and after intervention

Table 4.41 (a) Relative tightness of posterior links prior to intervention (left)

Table 4.41 (b) Relative tightness of anterior links prior to intervention (left)

Table 4.42 (a) Relative tightness of posterior links post intervention (left)

Table 4.42 (b) Relative tightness of the anterior links post intervention (left)

Table 4.43 (a) Relative tightness of posterior links prior to intervention (right)

Table 4.43 (b) Relative tightness of anterior links prior to intervention (right)

Table 4.44 (a) Relative tightness of the posterior links post intervention (right)

Table 4.44 (b) Relative tightness of the anterior links post intervention (right)
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.45</td>
<td>Muscle imbalances in peak torque performance (Prior to treatment)</td>
<td>254</td>
</tr>
<tr>
<td>4.46</td>
<td>Muscle imbalances: work performance per repetition (Prior to treatment)</td>
<td>255</td>
</tr>
<tr>
<td>4.47</td>
<td>The effect of the treatments on peak torque performance (Nm)</td>
<td>257</td>
</tr>
<tr>
<td>4.48</td>
<td>Analysis of the effect of treatment on work performance (Nm/sec)</td>
<td>259</td>
</tr>
<tr>
<td>4.49(a)</td>
<td>A comparative summary of running gait analysis prior and post intervention: weight acceptance phase – initial contact (Upper Body - Shoulder)</td>
<td>261</td>
</tr>
<tr>
<td>4.49(b)</td>
<td>A comparative summary of running gait analysis prior and post intervention: weight acceptance phase – initial contact (Upper Body - Thoracic region)</td>
<td>262</td>
</tr>
<tr>
<td>4.49(c)</td>
<td>A comparative summary of running gait analysis prior and post intervention: weight acceptance phase – initial contact (Upper Body – Pelvis)</td>
<td>262</td>
</tr>
<tr>
<td>4.50(a)</td>
<td>A comparative summary of running gait analysis prior and post intervention: weight acceptance phase – initial contact (Lower Body -Hip)</td>
<td>263</td>
</tr>
<tr>
<td>4.50(b)</td>
<td>A comparative summary of running gait analysis prior and post intervention: weight acceptance phase – initial contact (Lower Body -Knee)</td>
<td>263</td>
</tr>
<tr>
<td>4.50(c)</td>
<td>A comparative summary of running gait analysis prior and post intervention: weight acceptance phase – initial contact (Lower Body -Ankle)</td>
<td>264</td>
</tr>
<tr>
<td>4.50(d)</td>
<td>A comparative summary of running gait analysis prior and post intervention: weight acceptance phase – initial contact (Lower Body -Toes)</td>
<td>264</td>
</tr>
<tr>
<td>4.51(a)</td>
<td>A comparative summary of running gait analysis prior and post intervention: weight acceptance phase – loading response (Pelvis)</td>
<td>265</td>
</tr>
<tr>
<td>4.51(b)</td>
<td>A comparative summary of running gait analysis prior and post intervention: weight acceptance phase – loading response (Hip)</td>
<td>265</td>
</tr>
<tr>
<td>4.51(c)</td>
<td>A comparative summary of running gait analysis prior and post intervention: weight acceptance phase – loading response (Ankle)</td>
<td>266</td>
</tr>
<tr>
<td>Table 4.52(a)</td>
<td>A comparative summary of running gait analysis prior and post intervention: Single leg support – mid stance phase (Pelvis)</td>
<td>266</td>
</tr>
<tr>
<td>Table 4.52(b)</td>
<td>A comparative summary of running gait analysis prior and post intervention: Single leg support – mid stance phase (Hip)</td>
<td>267</td>
</tr>
<tr>
<td>Table 4.52(c)</td>
<td>A comparative summary of running gait analysis prior and post intervention: Single leg support – mid stance phase (Ankle)</td>
<td>267</td>
</tr>
<tr>
<td>Table 4.53(a)</td>
<td>A comparative summary of running gait analysis prior and post intervention: Single leg support – terminal stance phase (Pelvis)</td>
<td>268</td>
</tr>
<tr>
<td>Table 4.53(b)</td>
<td>A comparative summary of running gait analysis prior and post intervention: Single leg support – terminal stance phase (Hip)</td>
<td>268</td>
</tr>
<tr>
<td>Table 4.53(c)</td>
<td>A comparative summary of running gait analysis prior and post intervention: Single leg support – terminal stance phase (Ankle)</td>
<td>269</td>
</tr>
<tr>
<td>Table 4.53(d)</td>
<td>A comparative summary of running gait analysis prior and post intervention: Single leg support – terminal stance phase (Toes)</td>
<td>269</td>
</tr>
<tr>
<td>Table 4.54(a)</td>
<td>A comparative summary of running gait analysis prior and post intervention: Single leg support – pre swing phase (Pelvis)</td>
<td>270</td>
</tr>
<tr>
<td>Table 4.54(b)</td>
<td>A comparative summary of running gait analysis prior and post intervention: Single leg support – pre swing phase (Hip)</td>
<td>270</td>
</tr>
<tr>
<td>Table 4.54(c)</td>
<td>A comparative summary of running gait analysis prior and post intervention: Single leg support – pre swing phase (Ankle)</td>
<td>271</td>
</tr>
<tr>
<td>Table 4.55(a)</td>
<td>A comparative summary of running gait analysis prior and post intervention: Swing leg advancement – initial swing phase (Knee)</td>
<td>271</td>
</tr>
<tr>
<td>Table 4.55(b)</td>
<td>A comparative summary of running gait analysis prior and post intervention: Swing leg advancement – initial swing phase (Ankle)</td>
<td>272</td>
</tr>
<tr>
<td>Table 4.56(a)</td>
<td>A comparative summary of running gait analysis prior and post intervention: Swing leg advancement – mid swing phase (Hip)</td>
<td>272</td>
</tr>
<tr>
<td>Table 4.56(b)</td>
<td>A comparative summary of running gait analysis prior and post intervention: Swing leg advancement – mid swing phase (Knee)</td>
<td>273</td>
</tr>
</tbody>
</table>
Table 4.57(a) A comparative summary of running gait analysis prior and post intervention: swing leg advancement – terminal swing (Pelvis)

Table 4.57(b) A comparative summary of running gait analysis prior and post intervention: swing leg advancement – terminal swing (Hip)

Table 4.57(c) A comparative summary of running gait analysis prior and post intervention: swing leg advancement – terminal swing (Ankle)

Table 4.57(d) A comparative summary of running gait analysis prior and post intervention: swing leg advancement – terminal swing (Toe)

Table 4.58 Metatarsophalangeal extension at the first toe

Table 4.59 Biomechanical measures before and after intervention

Table 4.60 Change in left hind foot pronation before and after intervention

Table 4.61 Change in right hind foot pronation before and after intervention

Table 4.62 Isokinetic dynamometer test results* prior to intervention: Case Study 7

Table 4.63(a) Running gait analysis: Case Study 7 prior to intervention (Upper body)

Table 4.63(b) Running gait analysis: Case Study 7 prior to intervention (Lower body)

Table 4.64 Biomechanical angles: Case Study 7 before intervention

Table 4.65 Tightness of clinically significant muscles: Case Study 7 prior to intervention

Table 4.66 Isokinetic dynamometer test results* after intervention: Case Study 7

Table 4.67 Running gait analysis: Case Study 7 after intervention

Table 4.68 Biomechanical angles: Case Study 7 after intervention

Table 4.69 Tightness of clinically significant muscles: Case Study 7 after intervention

Table 4.70 Isokinetic dynamometer test results* prior to intervention: Case Study 8

Table 4.71(a) Running gait analysis: Case Study 8 prior to intervention (Upper body)
<table>
<thead>
<tr>
<th>Table 4.71(b)</th>
<th>Running gait analysis: Case Study 8 prior to intervention (Lower body)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.72</td>
<td>Biomechanical angles: Case Study 8 before intervention</td>
</tr>
<tr>
<td>Table 4.73</td>
<td>Tightness of clinically significant muscles: Case Study 8 prior to intervention</td>
</tr>
<tr>
<td>Table 4.74</td>
<td>Running gait analysis: Case Study 8 after intervention</td>
</tr>
<tr>
<td>Table 4.75</td>
<td>Tightness of clinically significant muscles: Case Study 8 after intervention</td>
</tr>
<tr>
<td>Table 4.76</td>
<td>Summary of biomechanical angles: Case Study 8</td>
</tr>
<tr>
<td>Table 4.77</td>
<td>Validation of soft tissue rating process (Posterior fascia links)</td>
</tr>
<tr>
<td>Table 4.78</td>
<td>Validation of soft tissue rating process (Anterior fascia links)</td>
</tr>
<tr>
<td>Table 4.79</td>
<td>Analysis of validation data on tightness</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

AMA American Medical Association
CACS Chronic Anterior Compartment Syndrome
CCS Chronic Compartment Syndrome
CECS Chronic Exertional Compartment Syndrome
CPCS Chronic Posterior Compartment Syndrome
CT Connective Tissue
ECM Extracellular Matrix
EDL Extensor Digitorum Longus
ERLP Exercise Related Leg Pain
FDL Flexor Digitorum Longus
FHL Flexor Hallucis Longus
Inv Inversion
km Kilometre
km/h Kilometre per hour
mm Millimetre
MTP Metatarsophalangeal
Nm Newton-metre
Nm/s Newton-metre per second
TA Tibialis Anterior
TDF Thoraco-Dorsal Fascia
PB Peroneus Brevis
PCS Posterior Compartment Syndrome
PF Plantar Flexion
PG Protoglycans
PT Peroneus tertius
VAS Visual Analogue Scale
S.v. Sub verbo
GLOSSARY OF TERMS

Chronic posterior compartment syndrome

Chronic posterior compartment syndrome is a pathological condition of skeletal muscle characterized by increased interstitial pressure within an anatomically confined muscle compartment, specifically the posterior compartment, which interferes with the circulation and function of the muscle and neurovascular components of the compartment (Nicholas & Herschman, 1995a).

Dysfunctional fascia

Fascia, in the normal healthy state is relaxed and wavy in configuration. Due to its visco-elastic biomechanical properties it has a limited ability to “stretch” and move without restriction. When connective tissue experiences physical trauma, scarring or inflammation, the fascia loses its pliability (Culav et al., 1999). It becomes tight, restricted and a source of tension to the rest of the body (dysfunctional). Trauma, such as a repetitive strain injury, has cumulative effects. The changes they cause in the fascial system influence comfort and the functioning of the body.

Micro-structurally, the end results of the healing / reorganizing process in connective tissue are that the tissue a) has a more irregular arrangement (the arrangement and the alignment are a result of the mechanical stresses applied to the tissue); b) has a lower water content and c) contains more random cross-links between fibres, fibre bundles and adjacent tissues. As the collagen fibres are more randomly aligned with respect to forces applied to the tissue, the fibres must resist forces that are not parallel to their longitudinal axes. This is a task for which collagen is not structurally designed. In addition the loss of water diminishes the ease with which the collagen bundles might slide past one another (Threkeld, 1992). In other words, the fascia does not function the way it was designed to. Fascia that has been injured and has undergone structural changes affecting its function, as mentioned above, will therefore be called dysfunctional fascia by the researcher.
Effective functional length of myofascial chain

The researcher has defined the *effective functional length of myofascial chain* as that length of the myofascial web that is available for the execution of a normal range of body movements. Restrictions in the myofascial web could thus compromise the range of normal movement.

Muscle imbalances

Muscle imbalances can be described as a deviation from a theoretical optimal posture or movement by a disproportional effort from muscles working around a joint or joint series. In relation to gait, this can result in abnormal stress through the kinetic chain causing deformities, pathology and symptoms. (Harradine *et al*., 2006)

Myofascia

The word “myofascial” connotes the bundled together, inseparable nature of muscle tissue (myo-) and its accompanying web of connective tissue (fascia) (Comerford, 2000; Myers, 2001).

Myofascial chain

The word “chain” indicates the continuous nature of the myofascia throughout the body (Robertson, 2001).

Myofascial links

The word “links” implies that the muscles are linked via the fascia to one another (Myers, 2003).

Myofascial release techniques according to Manheim (1994) and Barnes (1990)

Myofascial procedures vary significantly, ranging from prolonged stretching and soft tissue mobilizing techniques to subtle indirect techniques (Manheim, 1994). Barnes (1990) has defined myofascial release techniques as the three-dimensional application of sustained pressure and movement into the fascial system in order to eliminate fascial restrictions.
Pronation

Pronation is classically defined as abduction and eversion of the foot along with hind foot eversion (Dugan & Bhat, 2005).

Release

Restrictions in the myofascial chain

Restrictions in the myofascial chain have been defined by the researcher as anything that can lead to a decrease in the effective functional length of the myofascial chain, such as trigger points, scar tissue and inflammation.

Runner

A person who runs a minimum distance of between 20 to 30 km per week on a regular basis and has been running consistently for a minimum period of time exceeding one year (Hreljac, 2005).

Soft tissue mobilization techniques

For the purpose of this specific research, soft tissue mobilizing techniques will refer to a variety of soft tissue mobilizing techniques aimed at the release of the tightness of tight myofascial tissue. The following soft tissue approaches were used:

- trigger point release techniques according to Travell and Simons (1999);
- myofascial release techniques according to Barnes (1990) and Manheim (1994);
- specific soft tissue mobilizations according to Hunter (1998).

Specific soft tissue mobilizing techniques

This approach relies on the use of specific soft tissue mobilization techniques which are applied to a specific area of tightness with the aim of restoring normal movement (Hunter, 1998).
Trigger point release techniques

Active trigger points are deactivated through ischemic compression. Ischemic compression applies sustained pressure to the trigger point with sufficient force and for a long enough time to deactivate it (Travell & Simons, 1999).