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Abstract

Most optimisation problems in everyday life are not static in nature, have multiple objec-
tives and at least two of the objectives are in con
ict with one another. However, most
research focusses on either static multi-objective optimisation (MOO) or dynamic single-
objective optimisation (DSOO). Furthermore, most research on dynamic multi-objective
optimisation (DMOO) focusses on evolutionary algorithms (EAs) and only a few par-
ticle swarm optimisation (PSO) algorithms exist. This thesis proposes a multi-swarm
PSO algorithm, dynamic Vector Evaluated Particle Swarm Optimisation (DVEPSO), to
solve dynamic multi-objective optimisation problems (DMOOPs). In order to determine
whether an algorithm solves DMOO e�ciently, functions are required that resembles
real world DMOOPs, called benchmark functions, as well as functions that quantify the
performance of the algorithm, called performance measures. However, one major prob-
lem in the �eld of DMOO is a lack of standard benchmark functions and performance
measures. To address this problem, an overview is provided from the current literature
and shortcomings of current DMOO benchmark functions and performance measures are
discussed. In addition, new DMOOPs are introduced to address the identi�ed shortcom-
ings of current benchmark functions. Guides guide the optimisation process of DVEPSO.
Therefore, various guide update approaches are investigated. Furthermore, a sensitivity
analysis of DVEPSO is conducted to determine the in
uence of various parameters on the
performance of DVEPSO. The investigated parameters include approaches to manage
boundary constraint violations, approaches to share knowledge between the sub-swarms
and responses to changes in the environment that are applied to either the particles

 
 
 



of the sub-swarms or the non-dominated solutions stored in the archive. From these
experiments the best DVEPSO con�guration is determined and compared against four
state-of-the-art DMOO algorithms.

Keywords: dynamic multi-objective optimisation, particle swarm optimisation, dy-
namic vector evaluated particle swarm optimisation algorithm, benchmark functions,
performance measures, guide updates, management of boundary constraint violations,
response strategies, knowledge sharing
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\You have to be fast on your feet and adaptive or else a strategy is useless."
{ Charles de Gaulle
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Chapter 1

Introduction

\What do you want to achieve or avoid? The answers to this question are
objectives. How will you go about achieving your desire results? The answer
to this you can call strategy." { William E Rothschild

Imagine standing at the airport and looking at the display boards of arriving and
departing 
ights. Suddenly a number of 
ights are indicated as being delayed, and as
you check carefully your 
ight is one of them. You start to wonder whether you are
going to miss your connecting 
ight and all of the e�ects that this delay can have on
your schedule. However, at the air tra�c control room, people start to think about
other issues, such as: How will these delays in
uence the best way of handling all of
the incoming and departing aeroplanes? How can they ensure that each plane’s waiting
time for either landing or take-o� is minimised, but in such a way that the possibility of
collisions is kept to zero?

The above is just one scenario of an every day life optimisation problem. The issues
that the control room have to consider are called objectives. However, these objectives
are in con
ict with one another: by reducing the possibility of collissions, the waiting
time of either landing or departing 
ights are increased, and vice versa. Furthermore,
the delay of 
ights is an event that causes a change in the environment. Therefore, this
is an example of a dynamic multi-objective optimisation problem (DMOOP).

The main objective of this thesis is to propose a new algorithm that solves DMOOPs
e�ciently.

1

 
 
 



Chapter 1. Introduction 2

1.1 Motivation

Most current research in the �eld of multi-objective optimisation (MOO) focusses on
optimisation problems where all of the sub-objectives are static [31, 35, 36, 38]. Research
on solving dynamic optimisation problems, on the other hand, strongly focusses on
dynamic single-objective optimisation problems (DSOOPs) [11, 13, 37, 89].

However, optimisation problems that occur in situations of everyday life are normally
not static in nature and have many objectives that have to be optimised, i.e. DMOOPs.
One example of a real-life DMOOP is a steel production plant, where customers place
an order for speci�c products that have to be delivered by a speci�ed date. In order
to produce a customer’s order, the material has to go through speci�c production lines.
Each production line consists of a number of machines that can only manage a certain
load. Since many orders’ material is managed in the production lines at the same time,
and some orders may require the same machines, the order in which the material of the
various orders move through the production line has to be optimised. Since machines
can break down, requiring the production lines to be re-optimised, the optimisation of a
production plant is an example of a DMOOP.

Multi-objective optimisation problems (MOOPs) with con
icting objectives do not
have a single solution. Therefore, MOO algorithms aim to obtain a diverse set of non-
dominated solutions, i.e. solutions that balance the trade-o� between the various ob-
jectives, referred to as the Pareto-optimal front (POF). Another goal of multi-objective
algorithms (MOAs) is to �nd a POF that is as close as possible to the true POF of the
problem. Many MOAs store the found non-dominated solutions in an archive. There-
fore, if an algorithm �nds new non-dominated solutions, the new solutions are compared
with the solutions in the archive. If a new solution is dominated by any of the solutions
in the archive, it is not placed in the archive. Otherwise, the new solution is placed in
the archive and any solutions in the archive that are dominated by the new solution are
removed from the archive. When a change in the MOOP occurs, i.e. for example an
objective function changes, the solutions in the archive are not necessarily valid for the
new objective functions. Furthermore, solutions in the archive that were non-dominated
before the change, may have become dominated after the change. Therefore, algorithms
solving DMOOPs must have the ability to track the changing POF in order to �nd non-
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dominated solutions that are close to the new true POF, and to remove solutions from
the archive that have become dominated after a change occurred in the environment.

Initially not much research has been done on dynamic multi-objective optimisation
(DMOO) [1, 58, 117], but in the last few years more researchers focussed on DMOO [2, 17,
46, 67, 96, 100, 129, 135, 165, 156]. However, not much research has been done on solving
DMOO using particle swarm optimisation (PSO) [102, 107]. This thesis proposes a new
PSO-based DMOO algorithm, namely the dynamic Vector Evaluated Particle Swarm
Optimisation (DVEPSO) algorithm.

In order to determine whether an algorithm can solve DMOOPs, functions with
speci�c characteristics that are representative of typical real-world problems are required.
These functions are normally referred to as benchmark functions. In the �eld of DMOO,
there is a lack of standard benchmark functions and selecting the benchmark functions
to test a new DMOO algorithm is not a trivial task. This thesis provides an overview of
the benchmark functions that have been proposed in the DMOO literature and proposes
new benchmark functions to address the identi�ed limitations of the current DMOOPs.
In addition, the characteristics of an ideal benchmark function suite is provided, as well
as a list of DMOOPs for each of the identi�ed characteristics.

Functions that quantify the performance of a DMOO algorithm, are referred to as
performance measures or performance metrics. Similar to benchmark functions, there
are no standard performance measures for DMOO. Therefore, this thesis provides an
overview of the performance measures that are currently used to measure the perfor-
mance of DMOO algorithms. Furthermore, issues with current DMOO performance
measures are discussed.

1.2 Objectives

The primary objective of this thesis is to develop a PSO MOA for solving DMOOPs,
namely DVEPSO. In achieving this main objective, the following sub-objectives have
been identi�ed:

� Identifying a set of benchmark functions representative of typical real-world prob-
lems.
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� Identifying a set of performance measures that adequately quanti�es the perfor-
mance of a DMOO algorithm.

� The development and analysis of DVEPSO.

1.3 Contributions

The contributions of this thesis with regards to DMOOPs and performance measures for
DMOO are:

� A comprehensive overview of the benchmark functions that are currently used in
the DMOO literature.

� The identi�cation of limitations of current DMOO benchmark functions.
� New DMOOPs that address the identi�ed limitations of current DMOOP bench-

mark functions.
� An ideal DMOO benchmark function suite that contains:

{ characteristics that an ideal DMOOP suite should exhibit.
{ suggested DMOOPs for each identi�ed characteristic.

� A comprehensive overview of performance measures that are currently used to
measure the performance of DMOO algorithms.

� The identi�cation of issues with current DMOO performance measures.

Through empirical analysis the following observations were made that contribute to
knowledge in the �elds of DMOO and PSO:

� Pareto-dominance based guide update approaches lead to improved performance
over approaches that do not use Pareto-dominance information.

� Managing boundary constraint violations with the clamping (placing any particle
that violates a speci�c boundary of the search space on or close to the violated
boundary) approach produced the best performance.

� Re-initialising particles after a change in the environment occurs lead to improved
performance over re-evaluation of the particles.

� For DMOOPs where the POF changes over time (Type II and Type III), removing
all solutions from the archive after a change in the environment produced better
results than re-evaluating the solutions and removing the solutions that became
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dominated after the change. However, for Type I DMOOPs where the POF re-
mains static, removing all solutions from the archive after a change lead to poor
performance.

� PSO successfully solves DMOOPs of various types.

1.4 Research Methodology

Firstly, the DMOO literature was reviewed to determine the limitations with regards to:

� the development of DMOO algorithms, especially with reference to PSO algo-
rithms.

� benchmark functions for DMOO. The review revealed that there are no standard
benchmark functions for DMOO. Therefore, this thesis proposes an ideal set of
DMOOPs that consists of current DMOOPs, as well as newly proposed DMOOPs.

� performance measures to determine whether these performance measures are ade-
quate. Issues with regards to current DMOO performance measures were identi�ed
through empirical studies on DVEPSO. These issues are discussed and illustrated
in this thesis.

Secondly, problems were identi�ed with vector evaluated particle swarm optimisation
(VEPSO) when solving DMOOPs. Therefore, various methods were proposed to adapt
VEPSO for DMOO. An empirical analysis of DVEPSO was done to investigate the e�ect
of these proposed changes on the performance of DVEPSO. Using formal hypothesis
testing and statistical analysis, a �nal best performing con�guration of DVEPSO was
identi�ed.

Thirdly, the best con�guration of DVEPSO was compared against current state-of-
the-art DMOO algorithms, namely:

� DNSGA-II-A and DNSGA-II-B, two NSGA-II algorithms adapted for DMOO and
proposed by Deb et al. [46]. The source code of the static NSGA-II was obtained
from [109] and adapted for DMOO according to [46].

� dCOEA, a dynamic competitive-cooperative coevolutionary algorithm proposed
by Goh and Tan [67]. The source code of dCOEA was obtained from the �rst
author of [67].
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� MOPSO algorithm, a PSO algorithm adapted for DMOO by Lechuga [102].

For each of these state-of-the-art DMOO algorithms an empirical analysis was per-
formed to determine the best con�guration of the algorithm for the comparison study.
Formal hypothesis testing and statistical analysis were performed to compare the per-
formance of these DMOO algorithms and DVEPSO with one another.

1.5 Thesis Outline

The remainder of this thesis is organised in three main parts, namely optimisation back-
ground, computational intelligence algorithms and DVEPSO. The outline of each of these
sections are provided next.

The outline of the part on optimisation background is as follows:

� Chapter 2 presents the formal de�nitions of basic concepts required as background
for various types of optimisation problems, namely single-objective optimisation
problems (SOOPs), MOOPs and DMOOPs.

� Chapter 3 provides an overview of DMOO benchmark functions that are currently
used. Limitations of the DMOOPs are identi�ed and new DMOOPs are proposed
to address the limitations. An ideal set of benchmark functions are presented,
highlighting the characteristics of an ideal benchmark function suite. Furthermore,
example DMOOPs are suggested for each of the identi�ed characteristics.

� Chapter 4 provides an overview of DMOO performance measures. In addition,
issues with currently used performance measures are illustrated and discussed.

The part on computational intelligence algorithms is organised as follows:

� Chapter 5 provides basic background on single-objective optimisation (SOO)
computational intelligence algorithms that are referred to later in this thesis. Basic
concepts of PSO and genetic algorithms (GAs) are discussed.

� Chapter 6 provides information about population-based algorithms that were
used to solve MOOPs and that are referred to in later chapters of the thesis. A
description of non-dominated sorting genetic algorithm II (NSGA-II), cooperative-
coevolution evolutionary algorithm (CCEA) and multi-objective Particle Swarm
Optimisation (MOPSO) are provided.
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� Chapter 7 covers vector-evaluated MOO algorithms. The vector evaluated genetic
algorithm (VEGA), as well as the VEPSO algorithm that is inspired by VEGA,
are discussed. A di�erential evolution (DE) version of VEGA, namely vector eval-
uated di�erential evolution (VEDE), is also discussed. Furthermore, information
is provided about a hybrid algorithm that uses both VEPSO and VEDE to solve
MOOPs.

� Chapter 8 discusses population-based DMOO algorithms. Methods used by
DMOO algorithms to detect and respond to changes are covered.

The part on DVEPSO discusses the DMOO algorithm that is proposed in the thesis.
The outline of the DVEPSO part is:

� Chapter 9 introduces the DVEPSO algorithm. The adaptation of VEPSO for
DMOO, as well as the various parameters of DVEPSO, are discussed. New guide
update approaches that use Pareto-dominance infmormation are proposed. An
empirical study is performed to determine the in
uence of various guide update
approaches on the performance of DVEPSO.

� Chapter 10 presents an empirical study investigating the e�ect that various know-
ledge sharing approaches, approaches to manage boundary constraint violations
and various responses to a change in the environment have on the performance of
DVEPSO.

� Chapter 11 investigates the performance of DVEPSO in comparison with other
DMOO algorithms. An empirical study is discussed that compares the performance
of DVEPSO with four other state-of-the-art DMOO algorithms.

Finally, Chapter 12 concludes the work that has been presented in this thesis.

Additional information is provided in the Appendices as follows:

� Appendix A lists and de�nes the mathematical symbols used in this thesis, cat-
egorised according to the relevant chapter in which they appear.

� Appendix B provides a list of the important acronyms used or newly de�ned in
the thesis, as well as their associated de�nitions.

� Appendix C discusses the calculation of a DMOOPs true POF.
� Appendix D presents the performance measure values and the p-values obtained
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from the experiments discussed in Chapters 9, 10 and 11 respectively.
� Appendix E lists the publications derived from this research.
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Optimisation Background
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Chapter 2

Formal De�nitions

\We should forget about small e�ciencies, say about 97% of the time: pre-
mature optimization is the root of all evil." { Donald E. Knuth

In the modern world of today optimisation occurs in many aspects and areas of everyday
life. For example, a manufacturer wants to increase his pro�t and therefore the cost of
the manufacturing process has to be as low as possible. If this is approached as an
unconstrained SOOP, it can be de�ned as follows:

Example 2.1: A manufacturer wants to minimise the cost of the manufacturing
process.

However, many optimisation problems have more than one goal and some problems
occur in a changing environment. Example 2.1 can be de�ned with more than one goal
to increase a manufacturer’s pro�t, namely minimising the cost of the manufacturing
process and maximising the number of manufactured goods produced per day.

This chapter provides a theoretical overview of optimisation, presenting theory and
de�nitions that are needed throughout the thesis. It does not give a complete overview of
all aspects of MOO, dynamic single-objective optimisation (DSOO) and DMOO. How-
ever, this chapter highlights the most important information that is required to under-
stand concepts discussed in later chapters. Section 2.1 discusses the main concepts of
optimisation theory, highlighting the di�erent types of optima and characteristics of op-
timisation problems. The theory of MOO is summarised in Section 2.2, where a MOO

10
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problem is de�ned and the goal of solving MOO problems is clari�ed. Section 2.3 dis-
cusses DSOO and highlights the various types of environments for DSOOPs. DMOO,
and the di�erent types of DMOO problems, are presented in Section 2.4.

2.1 Single Objective Optimisation

This section discusses the main concepts of SOO. Section 2.1.1 discusses SOO theory that
is required to understand the main concepts of MOO theory and Section 2.1.2 discusses
the type of solutions that can be obtained for SOOPs.

2.1.1 Optimisation Concepts

Each optimisation problem contains one or more objective functions and a set of decision
variables and most optimisation problems contain a set of constraints. Optimisation
problems can be classi�ed according to a number of characteristics, including the number
of decision variables, the type of decision variables, the degree of linearity of the objective
functions, the type of constraints, the number of optimisation criteria or objectives and
the number of optima [36, 55]. These concepts are discussed in more detail below.

The objective function represents the quantity to be optimised, i.e. the quantity
to be minimised or maximised. The objective function is also referred to as the cost
function or optimisation criterion. If the problem that has to be optimised is expressed
using only one objective function, it is referred to as a SOOP. However, if a problem has
more than one objective that have to be optimised simultaneously, it is called a MOOP.

Each objective function has a vector of decision variables that in
uence the value
of the objective function. Therefore, a search algorithm iteratively modi�es the value of
these variables to �nd the optimum for the objective function. If x represents the set
of variables, the value of the objective function for the speci�c values of the variables
can be quanti�ed by f(x). Therefore, f(x) also quanti�es the quality of the candidate
solution, x.

A problem with only one decision variable to optimise (only one variable in
uences
the objective function) is referred to as a univariate problem. A multivariate problem
is a problem where more than one variable in
uence the objective function. When the
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type of decision variables is taken into account and a problem’s decision variables have
only continuous values, i.e. xk 2 R; 8k = 1; : : : ; nx, the problem is referred to as a
continuous-valued problem. The domain of a discrete-valued optimisation problem has a
limited number of discrete values. Combinatorial problems are problems were solutions
are permutations of integer-valued variables. When the decision variables can only have
0 or 1 as value, the problem is called a binary-valued problem.

When an objective function is linear in its variables, the problem is a linear problem.
A quadratic problem has a quadratic objective function. However, when any other non-
linear objective functions are used, the problem is referred to as a non-linear problem.

If an optimisation problem has constraints, the set of constraints restricts the values
that can be assigned to the set of decision variables. Equality constraints restrict a
variable to a speci�c value, for example g(x2) = 3. Inequality constraints can take one
of two forms, namely:

� Boundary constraints that restrict the domain of values that can be assigned to
each variable and thereby de�ne the search space. For example, �1 � x1 � 1
restricts the value that variable x1 can have to values between -1 and 1.

� Constraints of the form c(x) � 0 or c(x) � 0.

Values of x that satisfy the constraints form the feasible search space that is a subset
of the search space. Problems that only use boundary constraints are generally referred
to as unconstrained problems. However, when problems also have equality or inequality
constraints, these problems are referred to as constrained optimisation problems.

When solving an optimisation problem with either equality or inequality constraints,
the optimisation method’s goal is to assign values from the speci�ed domain to the
decision variables in order to optimise the objective function and to satisfy the con-
straints. Therefore, the optimisation algorithm searches for a solution in the feasible
search space, x 2 F � S � Rnx , that will obtain the smallest possible objective function
value, f(x), for a minimisation problem (or largest possible value for a maximisation
problem). Throughout this thesis, unless stated di�erently, minimisation is assumed.
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Mathematically, a SOOP is de�ned as:

minimise : f(x)

subject to : gi(x) � 0; i = 1; : : : ; ng

hj(x) = 0; j = 1; : : : ; nh

x 2 [xmin ; xmax]nx (2.1)

where nx is the number of decision variables; x = (x1; x2; : : : ; xnx) 2 S � Rnx ; ng is the
number of inequality constraints, g; nh is the number of equality constraints, h; and
x 2 [xmin ; xmax]nx refers to the boundary constraints (domain of x), with xmin and xmax

referring to the lower- and upper bounds of the feasible values for decision variables x.
The research in this thesis focuses on unconstrained optimisation problems.

The next section discusses the various types of solutions that can be found when
solving a SOOP.

2.1.2 Types of Solutions

This section discusses the type of solutions with various degrees of quality that can be
obtained when solving SOOPs.

Solutions found by an optimisation algorithm can be classi�ed according to their
quality, where the main types of solutions for a minimisation problem are the global
minimum and local minimum. The various degrees of solution quality, in terms of the
global minima and local minima, are de�ned below.

De�nition 2.1. Global minima: The solution x�
i 2 F , with F � S, is a global

minimum of the objective function f , if

f(x�
i ) � f(x); 8x 2 F; x�

i 6= x; 8i = 1; : : : ; q (2.2)

where q is the number of global minima of the SOOP.

Therefore, the best candidate solutions that lead to the smallest value of the objective
function is called the global minima. The various types of minima are illustrated in
Figure 2.1, with the point x2 as the global minimum of the function. It is important to
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note that an optimisation problem can have more than one global minimum. A problem
with only one solution (or optimum) is a uni-modal problem, but if more than one
optimum exists, the problem is referred to as a multi-modal problem.

Local minima can be either strong or weak, de�ned as follows:

De�nition 2.2. Strong local minima: The solution x�
Ni

2 N � F is a strong local
minimum of the objective function f , if

x�
Ni
< f(x); 8x 2 N; x�

Ni
6= x; 8i = 1; : : : ; q (2.3)

where N � F is a subset of points in the feasible space that is in the neighbourhood of
x�

N and q is the number of strong local minima of the SOOP. The point x1 in Figure 2.1
is a strong local minimum.

De�nition 2.3. Weak local minimum: The solution x�
Ni

2 N � F is a weak local
minimum of the objective function f , if

f(x�
Ni

) � f(x); 8x 2 N; x�
Ni

6= x; 8i = 1; : : : ; q (2.4)

where q is the number of weak local minima of the SOOP. Point x3 in Figure 2.1 is a
weak local minima.

2.2 Multi-objective Optimisation

Many optimisation problems have more than one objective. The manufacturing example
given earlier in Example 2.1 can be extended to a MOOP as follows:

Example 2.2: A manufacturer wants to maximise its pro�t. However, many fac-
tors have an in
uence on pro�t, for example the time required to manufacture a speci�c
number of products, the time that a speci�c machine is idle and the cost of the manu-
facturing process. Therefore, the goals or objectives of the manufacturer are to minimise
the time required to manufacture a speci�c number of products, to minimise the time
that a speci�c machine is idle, and to minimise the cost of the manufacturing process.
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Figure 2.1: Optima of a minimisation function

However, using a speci�c machine can be more expensive to use than another, and the
more expensive machine may require less time to manufacture the same number of prod-
ucts than a machine that is cheaper to operate. Therefore, in order to manufacture the
maximum number of products in a certain time, using the more expensive machine will
minimise the time required, but will increase the cost.

This example highlights an important problem with many MOOPs, namely that the
objectives are in con
ict with one another { minimising the time that the more expensive
machine is idle increases the operational cost and vice versa. In this thesis, when referring
to MOO, MOOPs with con
icting objectives are implied.

This section discusses the theory and de�nitions with regards to MOO [36, 55]. A
MOOP is de�ned in Section 2.2.1 and the concept of optima is extended for MOO in
Section 2.2.2. Section 2.2.3 discusses the goal when solving a MOOP and how this goal
di�ers from situations when solving a SOOP.
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2.2.1 Multi-objective Optimisation Problems

This section extends the mathematical de�nition of a SOOP (refer to Equation 2.1) to
mathematically de�ne a MOOP.

Let a single objective function be de�ned as fk : Rnx ! R. Then f(x) = (f1(x); f2(x);
: : : ; fnk(x)) 2 Ospace � Rnm represents an objective vector containing nk objective func-
tion evaluations, and Ospace is the objective space.

Using the notation de�ned above, a MOOP can be mathematically de�ned as follows:

minimise : f(x)

subject to : gi(x) � 0; i = 1; : : : ; ng

hj(x) = 0; j = 1; : : : ; nh

x 2 [xmin ; xmax]nx (2.5)

2.2.2 Pareto-optimal Set and Pareto Optimal Front

For SOOPs, where only one objective is optimised, local and global optima are de�ned as
presented in Section 2.1.2. However, when dealing with a MOOP, the various objectives
are normally in con
ict with one another, i.e. improvement in one objective leads to a
worse solution for at least one other objective. For the manufacturing example (Example
2.2 in Section 2.2) the various objectives, namely to minimise the time required to
manufacture a speci�c number of products, to minimise the time that a speci�c machine
is idle, and ro minimise cost, are in con
ict with one another. MOOPs do not have speci�c
optima, but trade-o� solutions. Therefore, for MOOPs, the de�nition of optimality has
to be re-de�ned. This section discusses the new de�nition of optimality for MOO.

When solving a MOOP the goal is to �nd a set of trade-o� solutions where for each
of these solutions no objective can be improved without causing a worse solution for
at least one of the other objectives. These solutions are referred to as non-dominated
solutions and the set of such solutions is called the non-dominated set or Pareto-optimal
set (POS). The corresponding objective vectors in the objective space that lead to the
non-dominated solutions are referred to as the POF or Pareto-front. These concepts and
de�nitions are now discussed in more detail.
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For MOOPs, when one decision vector dominates another, the dominating decision
vector is considered as a better decision vector. Decision vector domination is de�ned
as follows:

De�nition 2.4. Decision Vector Domination: A decision vector x1 dominates an-
other decision vector x2, denoted by x1 � x2, if and only if

� x1 is at least as good as x2 for all the objectives, i.e. fk(x1) � fk(x2); 8k =
1; : : : ; nk; and

� x1 is strictly better than x2 for at least one objective, i.e. 9k = 1; : : : ; nk : fk(x1) <
fk(x2) .

where nk is the number of objective functions.
A slightly less strict comparison can be made between two decision vectors using the

concept of weak domination, de�ned as:

De�nition 2.5. Weak Decision Vector Domination: A decision vector x1 weakly
dominates another decision vector x2, denoted by x1 � x2, if and only if

x1 is at least as good as x2 for all the objectives, i.e. fk(x1) � fk(x2); 8k = 1; : : : ; nk

The decision vectors that lead to the best trade-o� solutions, are called Pareto-
optimal, de�ned as follows:

De�nition 2.6. Pareto-optimal: A decision vector x� is Pareto-optimal if there does
not exist a decision vector x 6= x� 2 F that dominates x�, i.e. @k : fk(x) < fk(x�). If x�

is Pareto-optimal, the objective vector, f(x�), is also Pareto-optimal.

Together, all the Pareto-optimal decision vectors form the Pareto-optimal set (POS),
de�ned as:

De�nition 2.7. Pareto-optimal Set: The POS, P �, is formed by the set of all Pareto-
optimal decision vectors, i.e.

P � = fx� 2 F j@x 2 F : x � x�g (2.6)
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The POS contains the best trade-o� solutions for the MOOP. The corresponding
objective vectors form the Pareto-optimal front (POF), which is de�ned as follows:

De�nition 2.8. Pareto-optimal Front: For the objective vector f(x) and the POS
P �, the POF, PF � � Ospace is de�ned as

PF � = ff = (f1(x�); f2(x�); : : : ; fnk(x�))g; 8x� 2 P � (2.7)

Therefore, the POF contains the set of objective vectors that corresponds to the
POS, i.e. the set of decision vectors that are non-dominated. The POF can have various
shapes, e.g. a convex POF or a concave POF, as can be seen in Section 3.1.

Some MOO algorithms make use of �-domination and an �-approximate POF, pro-
posed by Laumanns et al. [101], which are extensions of De�nitions 2.4 and 2.8 above.
With �-domination, a decision vector x dominates not only all decision vectors as de�ned
in De�nition 2.4, but also all decision vectors that are within a distance � of x. The �
value can be selected by the decision maker to control the size of the set of solutions [80].
Furthermore, �-domination provides a way for algorithms to �nd solutions that converge
to the POF and that has a good diversity [101]. �-domination for decision vectors and
objective vectors, and an �-approximate POF are de�ned below in De�nitions 2.9, ??
and 2.10 respectively.

De�nition 2.9. Decision Vector �-Domination: A decision vector x1 �-dominates
another decision vector x2, denoted by x1 �� x2, if and only if

� fk(x1)=(1 + �) � fk(x2); 8k = 1; : : : ; nk, � > 0; and
� 9k = 1; : : : ; nk : fk(x1)=(1 + �) < fk(x2); � > 0 .

De�nition 2.10. �-approximate Pareto-optimal Front: For the objective vector
f(x) and an � > 0, the �-approximate POF, PF �

� � Ospace, contains all objective vectors
which are not �-dominated by any other objective vector and is therefore de�ned as

PF �
� = ff = (f1(x�); f2(x�); : : : ; fnk(x�)); 8x� 2 P � j@x 2 F :

f(x) �� fk(x�); 8k = 1; : : : ; nkg (2.8)
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2.2.3 Solving a Multi-objective Optimisation Problem

When solving a MOOP, the goal is to approximate the true POF. If the problem requires
a single solution, the best trade-o� solution is selected for the speci�c problem from the
set of solutions represented by the POF. Therefore, the goal is to �nd an approximation
of the true POF such that:

� The distance between the found POF and the true POF is minimised.
� The set of non-dominated solutions is as diverse as possible and as evenly spread

out along the found POF as possible.
� The set of non-dominated solutions contains as many solutions as possible.
� The solutions that have been found and that forms the found POF are stored for

later reference.

Similar to a SOOP having global and local optima, a MOOP can have a global POF
or local POFs. De�nitions 2.1 to 2.3 for SOO is extended for MOO as follows:

De�nition 2.11. Global POF: PF �
g is the global POF of a DMOOP, f , if

f(x�) � f(x); 8x 2 F jx =2 P �; 8x� 2 P �; x� 6= x (2.9)

where P � is the POS of f .

Therefore, the best candidate solutions that lead to the best trade-o� solutions, form
the POS and the corresponding values in the objective space result in the global POF
or the true POF. A MOOP can have many local POFs, with a local POF de�ned as
follows:

De�nition 2.12. Local POF: PF �
li is a local POF of a DMOOP, f , if

f(x�
Ni

) � f(x); 8x 2 N jx =2 P �; x�
Ni

6= x; x�
Ni

2 N; 8i = 1; : : : ; q (2.10)

where N � F is a subset of points in the feasible space that is in the neighbourhood of
x�

Ni
and q is the number of local POFs.

When a MOOP has local POFs, an algorithm can become stuck in one of the local
POFs and this will prevent the algorithm from converging to the global POF.
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2.3 Dynamic Single-objective Optimisation

In many real-world situations the objective function that has to be optimised is not
static. A change in the objective function and/or the constraints can lead to a change
in the environment. The change in the objective function and/or constraints causes a
change in the search landscape, S, and/or the feasible space F , and causes changes to
the optima of the problem, i.e. optima can change in position or value, or optima can
disappear while new optima can appear. The manufacturing example, Example 2.1, can
be extended to illustrate a DSOOP as follows:

Example 2.3: A manufacturer wants to minimise the cost of the manufacturing
process. If the cost is calculated by taking the cost of using the machines into account,
then if one machine breaks down, the environment changes. There will be idle time while
the machine is being replaced and the new machine may not be exactly the same as the
previous one { the new machine may be more expensive to use and/or may need longer
time to complete the manufacturing process. Therefore, the previous solution cannot be
used anymore, and a new solution for the changed situation has to be found.

This section discusses the theory and de�nitions [55] with regards to DSOO. A
DSOOP is mathematically de�ned in Section 2.3.1 and Section 2.3.2 discusses the various
classi�cations of dynamic environments.

2.3.1 Dynamic Single-objective Optimisation Problem

A DSOOP can formally be de�ned as follows:

Minimise : f(x; t); x = (x1; : : : ; xnx)

Subject to : gi(x; t) � 0; i = 1; : : : ; ng

hj(x; t) = 0; j = 1; : : : ; nh

x 2 [xmin ; xmax]nx (2.11)

In order to solve the DSOOP, the goal is to �nd

x�(t) = minx2F (t) f(x; t) (2.12)
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where x�(t) is the optimum at time step t and F (t) is the feasible space at time t.
Since the optima change with time, the goal of an optimisation algorithm for dynamic

environments is to locate an optimum and track its trajectory as closely as possible, and
to �nd new optima that may appear.

2.3.2 Dynamic Environment Types

Dynamic environments or DSOOPs can change in various ways over time. When a
change occurs in the environment, temporal severity refers to the frequency of change
that the environment experiences and spatial severity refers to the extend of change in
the position of the optima.

Based on real-world problems, De Jong [91] identi�ed four types of changes that can
occur in a dynamic environment:

� Drifting landscapes, where the optima moves gradually over time, for example
aging equipment in a large production plant.

� Signi�cant changes in the optima location, where peaks of high �tness shrink
and new regions of high �tness emerge that was previously uninteresting regions,
for example competitive market places where opportunities for high pro�t 
uctuate
as the levels of competition change over time.

� Cyclic patterns in the landscape, where a relatively small number of states re-
occur over time, for example seasonal climate changes.

� Abrubt and discontinuous changes in the landscape, for example a power
station failure on a distribution grid.

Eberhart and Shi [53] de�ned the following three generic dynamic environment types
for SOO:

� Type I environments where the location of the optimum in the problem space,
x�(t), changes, but f(x�(t)) remains unchanged. The spatial severity, �, measures
the change in x�(t).

� Type II environments where x�(t) remains unchanged, but the objective func-
tion value at x�(t), f(x�(t)), changes.

� Type III environments where both x�(t) and f(x�(t)) changes. The change in
x�(t) is indicated by �.
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These three types are summarised in Table 2.1.

Table 2.1: Dynamic environment types as de�ned by Eberhart and Shi [53]

Optimum Location
Optimum Value No Change Change

No Change Static Type I
Change Type II Type III

Branke [12] categorised dynamic environments according to the following character-
istics:

� Frequency of change or temporal severity that determines how often the envi-
ronment changes.

� Severity of change or spatial severity that are normally measured as the distance
between the current and the previous optimum.

� Predictability of change that indicates whether the changes occur randomly or
with a pattern that can be learned or predicted by an algorithm.

� Cycle length or cycle accuracy that indicates how long it takes before the
environment returns to a previous state and how accurate or similar the returned
state is with regards to the previous state.

More recently, Duhain [50] classi�ed dynamic environments as follows:

� Static environments, where the environment does not change over time or the
changes to the environment have such a small in
uence on the problem that they
do not a�ect the performance of the algorithm for the duration of the simulation.

� Progressively changing environments, where the temporal severity is high,
but the spatial severity (change in x�(t)) is low. Therefore, the environment
changes in a progressive manner. Algorithms that solve problems with a pro-
gressively changing environment can use knowledge that was obtained earlier (the
previous optima) to �nd the new optima that will be in close proximity of the
previous optima.

� Abruptly changing environments, where the temporal severity is low, but the
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spatial severity is high. Therefore, previous knowledge will not be as useful as in
the case of a progressively changing environment.

� Chaotic environments where both the temporal and spatial severity are high.

These four types are summarised in Table 2.2. Duhain’s classi�cation is similar to De
Jong, but more generic and using the concepts of temporal severity and spatial severity.

If the temporal severity is high, the environment changes frequently and therefore
an algorithm would have to converge to the optima at a speci�c time step quickly and
adapt quickly after a change to �nd the new optima. A high spatial severity occurs
when x�(t+ 1) di�ers severely from x�(t) and therefore an algorithm has to �nd the new
optima that is far from the previous location in the search space. It is important to note
that not all problems’ environment will remain one type for the whole duration of the
simulation, but can change over time from one type of environment to another.

Table 2.2: Dynamic environment types as de�ned by Duhain [50]

Spatial Severity
Temporal Severity Low High

Low Static Abrupt
High Progressive Chaotic

2.4 Dynamic Multi-objective Optimisation

In most situations the optimisation problem is not static, and has more than one ob-
jective. Example 2.2 (refer to Section 2.2) can be extended to illustrate a DMOOP as
follows:

Example 2.4: A manufacturer wants to maximise its pro�t. Therefore, the goals
or objectives of the manufacturer are to minimise the time required to manufacture a
speci�c number of products, to minimise the time that a speci�c machine is idle, and
to minimise the cost of the manufacturing process. When a machine breaks down, the
environment changes. This change in the environment may also in
uence more than one
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objective function. The breakdown of a machine can occur quite frequently and other
changes can also occur. For example, the operational cost of a speci�c machine may
change when it breaks down and is replaced by another machine that is not exactly the
same as the replaced machine, the time required to complete the manufacturing process
may take longer for a machine as it gets older, etc. Since this manufacturing problem
is not static in nature, but dynamic, the previous solutions or POF will not be valid
anymore and a new POF has to be found.

This section discusses DMOO in more detail. Section 2.4.1 provides a mathematical
de�nition of a DMOOP and the various types of dynamic DMOOPs are discussed in
Section 2.4.2.

2.4.1 Dynamic Multi-objective Optimisation Problem

This section provides a mathematical de�nition of a DMOOP.
A DMOOP can be de�ned as:

Minimise : f(x; t); x = (x1; : : : ; xnx)

Subject to : gi(x; t) � 0; i = 1; : : : ; ng

hj(x; t) = 0; j = 1; : : : ; nh

x 2 [xmin ; xmax]nx (2.13)

Unlike DSOOPs with only one objective function, DMOOPs have many objective
functions. Therefore, in order to solve the DMOOP the goal is to track the POF over
time, i.e.

PF �(t) = ff(t) = (f1(x�; t); f2(x�; t); : : : ; fnk(x�; t)g ; 8x� 2 P �(t) (2.14)

The next section discusses the various types of DMOOPs, as well as the various ways
in which the POF can be a�ected when a change occurs in the environment.

2.4.2 Dynamic Environment Types

This section discusses the categorisation of DMOOPs, as well as the possible in
uences
of a change in the environment on the POF.
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Similar to the classi�cation of dynamic environment types for DSOOPs (refer to
Section 2.3.2), Farina et al. [58] classi�ed dynamic environments for DMOOPs into four
categories, namely:

� Type I environment where the POS (optimal set of decision variables) changes,
but the POF (corresponding objective function values) remains unchanged.

� Type II environment where both the POS and the POF change.
� Type III environment where the POS remains unchanged, but the POF changes.
� Type IV environment where both the POS and the POF remain unchanged,

even though an objective function or a constraint may have changed.

These four types are summarised in Table 2.3.

Table 2.3: Dynamic Environment Types for DMOO problems

POS
POF No Change Change

No Change Type IV Type I
Change Type III Type II

When a change occurs in the environment, the POF can change as follows over time:

1. Existing solutions in the POF becomes dominated and therefore are not part of
the POF any more.

2. The shape of the POF remains the same, but its location in the objective space
change over time. In these cases the POF shifts over time. This kind of change
of the POF occurs with type I DMOOPs and are the easiest kind of DMOOPs to
solve.

3. The shape of the POF changes over time. For example:

� The POF changes from convex to concave or vice versa.
� The POF changes from a continuous front to a disconnected front, i.e. vari-

ous disconnected continuous-valued areas.

This kind of change of the POF occurs with either type II or type III DMOOPs.
When the shape of the POF changes over time, an algorithm has to track the
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changing POF and obtain a diverse set of solutions for the new shape of the
POF. Therefore, if the shape of the POF changes over time, an algorithm may
struggle to �nd a diverse set of solutions after a change has occurred.

4. The density of the solutions in the POF changes over time. For example:

� The solutions in the POF becomes more/less dense.
� The number of solutions in the POF becomes more/less.

This kind of change in the POF can occur with all types of DMOOPs. When the
number of solutions or the densitiy of the solutions in the POF change overtime,
algorithms may struggle to �nd a diverse set of solutions.

2.5 Summary

This chapter discussed aspects of optimisation relevant to this thesis. Section 2.1.1
discussed optimisation problems and their characteristics with regards to the problem’s
objective functions, decision variables and constraints. Di�erent types of solutions exist
for an optimisation problem of which the main types are global and local minima, as
de�ned in Section 2.1.2. Section 2.2.1 de�ned a MOOP and in order to re-de�ne the
optima for a MOOP, the concepts of a POS and POF were discussed in Section 2.2.2.
Since most MOOPs do not have a single solution because of con
icting objectives, the
goal when solving MOOPs were summarised in Section 2.2.3. Furthermore, the concepts
of local and global optima for SOO have been extended to de�ne local and global POFs
for MOO in Section 2.2.3.

In real life, optimisation problems are not static in nature and change over time.
Therefore, both DSOO and DMOO were introduced in this chapter. DSOO was dis-
cussed in Section 2.3 and a DSOOP was de�ned in Section 2.3.1. The environment of
a DSOOP can change in various ways, as discussed in Section 2.3.2. However, many
dynamic optimisation problems do not have only one objective and therefore DMOO
was introduced in Section 2.4 and a DMOOP was de�ned in Section 2.4.1. Similar to
DSOOPs, the environment of a DMOOP and the POF can change in various ways over
time, as discussed in Section 2.4.2.

There exist many di�erent approaches that are used to solve optimisation problems:
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Population-based algorithms within the �eld of computational intelligence (CI), such as
evolutionary algorithms (EAs), PSO algorithms, and ant algorithms, are widely used
to solve optimisation problems. Various population-based approaches that are used to
solve MOO and DMOO problems are discussed in Chapters 6, 7 and 8.

The next chapter discusses bechmark functions that are used to evaluate whether an
algorithm can solve DMOOPs.

 
 
 



Chapter 3

Analysis of Dynamic Multi-objective
Optimisation Benchmark Functions

\Without a standard there is no logical basis for making a decision or taking
action." { Joseph M. Juran

Dynamic multi-objective optimisation problems are created by adjusting MOOPs in
one or more of the following ways: changing the objective functions over time or changing
the constraints over time. This thesis focusses on unconstrained DMOOPs with static
boundary constraints and objective functions that change over time.

In order to determine whether an algorithm can solve DMOOPs e�ciently, DMOOPs
should be used that test the ability of the algorithm to overcome certain di�culties.
These DMOOPs are called benchmark functions. One of the main problems in the �eld
of DMOO is a lack of standard benchmark functions. This chapter seeks to address this
problem by evaluating the current state-of-the-art benchmark functions presented in the
DMOO literature to establish whether they e�ciently evaluate the abilities of DMOO
algorithms.

MOO benchmark functions adapted to develop DMOOPs and characteristics that an
ideal set of MOO benchmark functions should have are discussed in Section 3.1. Cur-
rent benchmark functions used in the DMOO literature are discussed in Section 3.2.
Furthermore, approaches to develop DMOOPs with either an isolated or deceptive POF
are proposed. New DMOOPs with complicated POSs, i.e. POSs that are de�ned by

28
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non-linear functions and where each decision variable has a di�erent POS are intro-
duced. Characteristics that an ideal DMOO benchmark function suite should have, are
also presented and benchmark functions are suggested for each identi�ed characteristic.
Finally, a summary of this chapter is provided in Section 3.3.

3.1 Multi-objective Optimisation Benchmark Func-

tions

Benchmark functions test how well an algorithm can overcome various types of di�cul-
ties when trying to �nd the true POF. When an algorithm solves a MOOP its goal is
to �nd solutions that are as close as possible to the true POF and that have an uniform
spread. Therefore, benchmark problems should test whether an algorithm can achieve
this goal when faced with either multi-modality, deception (such as local POFs and iso-
lated optima that may prevent the algorithm from converging towards the true POF; or
a POF that is non-convex, discontinuous or non-uniform that may prevent the algorithm
from �nding an uniform spread of solutions [36, 49].

Section 3.1.1 discusses characteristics of ideal benchmark functions suites. Further-
more, two MOO benchmark function suites, namely the ZDT [38] and DTLZ func-
tions [49], that were adapted to develop DMOOPs are discussed in Sections 3.1.2 and 3.1.3
respectively.

3.1.1 Ideal Benchmark Function Characteristics

This section discusses characteristics that an ideal benchmark function suite should ex-
hibit.

Deb et al. [49] constructed the ZDT [38, 169] and DTLZ [49] MOOP suites in such
a way that the benchmark functions are:

� easy to construct,
� scalable in terms of the number of decision variables as well as the number of

objective functions,
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� producing a POF that is easy to understand with the POF’s shape and location
known, and

� hindering an algorithm to converge to the true POF and to produce a good distri-
bution of solutions.

According to Deb et al. [38], an algorithm can be hindered in converging to the true
POF when a benchmark function is multi-modal, deceptive, has an isolated optimum,
or contains noise. Deceptive functions have at least two optima in the search space, but
the search space favours the deceptive optimum, which is a local POF and not the true
global POF. If a function is multi-modal, it has many POFs and a DMOO algorithm
can become stuck in a local POF. If an open subset of decision variable values maps
to a single objective function value, the objective function is referred to as an objective
function with 
at regions, i.e. regions where small perturbations of the decision variable
values do not change the objective function value. The lack of gradient information
for the 
at regions may cause an algorithm to struggle to converge to the optima. For
DMOOPs, if the majority of the �tness landscape is fairly 
at and no useful information
is provided with regards to the location of the POF, the POF is referred to as being
isolated. Therefore, if the DMOOP has an isolated POF, a DMOO algorithm may
struggle to converge towards it. Even if the POF is not completely isolated from the
rest of the search space, i.e. the majority of the �tness landscape is not fairly 
at, an
algorithm may struggle to converge towards the POF if the density of solutions close to
the POF is signi�cantly less than in the rest of the search space.

The following properties of the true POF may cause di�culty for an algorithm to
�nd a diverse set of solutions: convexity or non-convexity in the POF, a discontinuous
POF, or a non-uniform spacing of solutions in the POS or POF [38, 40]. When a
POF is convex, it may be di�cult to solve the DMOOP by algorithms that assign a
solution’s �tness based on the number of solutions that the solution dominates (Pareto
ranking) [38]. This �tness assignment favours intermediate or middling solutions that
perform reasonably well with regards to all objective functions more than solutions that
perform very good with regards to one objective and not so good with regards to the other
objectives. Therefore, this �tness assignment may cause bias towards certain portions
of the POF that contain intermediate solutions. If the POF is discontinous and has a
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set of disconnected continuous sub-regions, an algorithm may struggle to �nd all regions
of the POF. Even though an algorithm may �nd solutions within each region, when the
solutions compete amongst each other (for storage in the archive or for a rank), solutions
from certain sub-regions may be outranked and therefore may be removed from the non-
dominated solution set. If the POS or POF is not uniformly spaced, an algorithm may
struggle to �nd a diverse set of non-dominated solutions [40].

3.1.2 ZDT Functions

Deb introduced a tunable two-objective optimisation problem, de�ned as [38]:

Minimise: f(x) = (f1(xI); f2(x))

Subject to: f1(xI) = f1(x1; x2; : : : ; xm)

f2(xII) = g(xII) � h(f1(xI); g(xII))

xII = (xm+1; : : : ; xn)

(3.1)

where f1; g > 0. MOOPs with speci�c features can be created by changing the f1, g and
h functions:

� the selected h function in
uences the convexity or discontiuity of the POF.
� a di�cult g function a�ects the level of di�culty that an algorithm experiences

when converging to the true POF.
� the selected f1 function a�ects the diversity or spread of solutions in the POF.

Based on this two-objective optimisation problem and the guidelines produced by
Deb et al [38] as discussed in Section 3.1.1, Zitzler, Deb and Thiele introduced six
benchmark functions referred to as the ZDT functions (�rst letter of the surnames of the
three authors) [169]. Each of the functions are structured according to Equation (3.1)
and addresses one of the six di�culties discussed in Section 3.1.1. The mathematical
equations (Equations (3.2) to (3.7)) of these functions are presented below:
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ZDT1 =

8
>>>>>>>>>>><

>>>>>>>>>>>:

Minimise : f(x) = (f1(x1); g(xII) � h(f1(x1); g(xII)))

f1(xI) = x1

g(xII) = 1 + 9
Pm

i=2
xi

m�1

h(f1; g) = 1 �
q

f1
g

where :

xII = (xm+1; : : : ; xn); xi 2 [0; 1]

(3.2)

where m = 30. ZDT1 has a convex POF that is formed with g(xII) = 1. Therefore the
POF of ZDT1 is 1 �

p
f1 and the POS is xi = 0; 8i 2 xII.

ZDT2 =

8
>>>>>>>><

>>>>>>>>:

Minimise : f(x) = (f1(x1); g(xII) � h(f1(x1); g(xII)))

f1(x1) = x1

g(xII) = 1 + 9
Pm

i=2
xi

m�1

h(f1(x1); g(xII)) = 1 �
�

f1
g

�2

xII = (xm+1; : : : ; xn); xi 2 [0; 1]

(3.3)

where m = 30. The POF is non-convex with POF = 1 � f 2
1 . The POS of ZDT2 is

xi = 0; 8i 2 xII.

ZDT3 =

8
>>>>>>>>>>><

>>>>>>>>>>>:

Minimise : f(x) = (f1(x1); g(xII) � h(f1(x1); g(xII)))

f1(x1) = x1

g(xII) = 1 + 9
Pm

i=2
xi

m�1

h(f1(x1); g(xII)) = 1 �
q

f1
g � f1

g sin(10�f1)

where :

x1 2 [0; 1]; xII = (xm+1; : : : ; xn) 2 [�5; 5]

(3.4)

where m = 10. ZDT3 has a discrete POF that consists of several discontinuous convex
parts. The sine function in h causes discontinuity in the POF, but not in the decision
space. The POF is 1 �

p
f1 � f1 sin(10�f1). The POS of ZDT3 is xi = 0; 8i 2 xII.
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ZDT4 =

8
>>>>>>>>>>><

>>>>>>>>>>>:

Minimise : f(x) = (f1(x1); g(xII) � h(f1(x1); g(xII)))

f1(x1) = x1

g(xII) = 1 + 10(m� 1) +
Pm

i=2(x2
i � 10 cos(4�xi))

h(f1(x1); g(xII)) = 1 �
q

f1
g

where :

x1 2 [0; 1]; xII = (xm+1; : : : ; xn) 2 [�5; 5]

(3.5)

where m = 10. The POF of ZDT4 has 219 local POFs and therefore tests the algorithm’s
ability to deal with multi-modality. The global POF is formed with g(xII) = 1 and is
1 �

p
f1. The global POS is xi = 0; 8i 2 xII. The best local POF can be found with

g(xII) = 1:25.

ZDT5 =

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

Minimise : f(x) = (f1(x1); g(xII) � h(f1(x1); g(xII)))

f1(x1) = u(x1)

g(xII) = 1 + 9
Pm

i=2 v(u(xi))

h(f1(x1); g(xII)) = 1
f1

where :

x1 2 f0; 1g30; xII = (xm+1; : : : ; xn) 2 f0; 1g5

v(u(xi)) =

8
<

:
2 + u(xi); if u(xi) < 5

1; if u(xi) = 5

(3.6)

where m = 11. ZDT5 is a deceptive problem where xi is represented by a binary string.
The global POF is formed with g(xII) = 10. The best deceptive POF can be found
where g(xII) = 11. The global and local POFs are convex.

ZDT6 =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Minimise : f(x) = (f1(x1); g(xII) � h(f1(x1); g(xII)))

f1(x1) = 1 � exp(�4x1) sin6(6�x1)

g(xII) = 1 + 9
�Pm

i=2 xi
m�1

�0:25

h(f1(x1); g(xII)) = 1 �
�

f1
g

�2

where :

xII = (xm+1; : : : ; xn); xi 2 [0; 1]

(3.7)

where m = 10. ZDT6 causes two di�culties for algorithms because of the non-uniformity
of the search space, namely: (i) the solutions are non-uniformly distributed along the
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global POF, and (ii) the solutions are the least dense close to the POF and most dense
away from the POF. ZDT6 has a non-convex POF 1 � f 2

1 . The POS of ZDT6 is xi =
0; 8i 2 xII.

The ZDT functions are all two-objective optimisation problems. Therefore, Deb et
al. [49] introduced test problems that can be scaled in terms of the number of objective
functions.

3.1.3 DTLZ Functions

This section discusses two approaches, as well as a benchmark function generator, that
were used to develop the Deb, Thiele, Laumanns and Zitzler (DTLZ) benchmark func-
tions.

Spherical Coordinates Approach

Deb et al. [49] de�ned a test problem that has a POF in the �rst quadrant of a sphere
with radius one and where all objective functions have non-negative values (add �gure
to refer to). Mathematically, using spherical coordinates (�, 
 and r = 1), the POF is
de�ned as

POF =

8
>>>>>>>><

>>>>>>>>:

f1(�; 
) = cos � cos
�

 +

�
4

�

f2(�; 
) = cos � sin
�

 +

�
4

�

f3(�; 
) = sin(�)

where 0 � � �
�
2
;

��
4

� 
 �
�
4

(3.8)

Any two points of the surface de�ned by Equation (3.8) are non-dominated if all
three objective functions are minimised. By de�ning the rest of the search space above
this surface, the POF is de�ned as the unit sphere. This can be done by constructing
the rest of the search space parallel to the surface de�ned in Equation (3.8) as follows:
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POF =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Minimise :

f1(�; 
; r) = (1 + g(r)) cos � cos
�

 +

�
4

�

f2(�; 
) = (1 + g(r)) cos � sin
�

 +

�
4

�

f3(�; 
) = (1 + g(r)) sin(�)

where :

0 � � �
�
2
;

��
4

� 
 �
�
4

g(r) � 0

(3.9)

where the POS is 0 � �� � �
2 , ��

4 � 
� � �
4 , g(r)� = 0. Although this three-objective

problem has three independent variables (�, 
 and r), the variables can be meta-variables
and can be considered as a function of n decision variables, i.e. � = �(x1; : : : ; xn),

 = 
(x1; : : : ; xn), r = r(x1; : : : ; xn). These functions must adhere to the lower and
upper bounds of the three variables and can be used to introduce di�culties to the
optimisation problem.

Constraint Surface Approach

Another approach used by Deb et al. to develop benchmark functions are based on a
constraint surface [49]. Firstly, a search space is de�ned as follows:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Minimise :

f1(x)

: : :

fM (x)

where :

fL
i � fi(x) � fU

i ; 8 i = 1; 2; : : : ;M

(3.10)

where fL
i and fU

i refers to the lower bound and upper bound of the objective function
fi respectively. The POS has only one solution, namely a solution that consists of the
lower bound value of each objective, namely (fL

1 ; fL
2 ; : : : ; fL

M)T .
A set of constraints, that can be linear or non-linear, can be added to the problem in

Equation (3.10), where each constraint eliminates a portion of the original rectangular
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region. Therefore, the optimisation problem of Equation (3.10) becomes:
8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

Minimise :

f1(x)

: : :

fM (x)

where :

fL
i � fi(x) � fU

i 8 i = 1; 2; : : : ;M

gj(f1; f2; : : : ; fM ) � 0; 8 j = 1; 2; : : : ; J

(3.11)

In order to solve this MOOP, the goal of an algorithm becomes to �nd the non-
dominated part of the feasible space’s boundary. The density of solutions in the search
space can be modi�ed by using non-linear functions for fi.

Benchmark Function Generator

Based on the constraint surface approach, Deb [40, p.361] suggested a generic MOOP
generator where the number of objectives can be scaled. Mathematically, the generator
is de�ned as

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

Minimise :

f1(x1)
...

fM�1(xM�1)

fM (x) = g(xM) � h(f1; : : : ; fM�1; g)

where :

xi 2 Rjxij; 8i = 1; 2; : : : ;M

(3.12)

where POF = fM = g x h(f1; f2; : : : ; fM�1).
Using the concepts of Equations 3.9 and 3.12, Deb et al. [49] presented the DTLZ

functions. The mathematical equations (Equations 3.13 to 3.19) of these functions are
presented below:
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DTLZ1 =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Minimise :

f1(x) =
1
2
x1x2 : : : xM�1(1 + g(xM))

f2(x) =
1
2
x1x2 : : : (1 � xM�1)(1 + g(xM))

...

fM�1(x) =
1
2
x1(1 � x2)(1 + g(xM))

fM (x) =
1
2

(1 � x1)(1 + g(xM))

where :

g(xM) = 100

 

jxMj +
X

xi2xM

(xi � 0:5)2 � cos(20�(xi � 0:5))

!

0 � xi � 1; 8i = 1; 2; : : : ; n

jxMj = k n = M + k � 1

(3.13)

where k = 5. The POF of DTLZ1 is a linear hyperplane with a POS of x�
i = 0:5; 8xi 2

xM. The POF of DTLZ1 is
PM

m=1 f
�
m = 0:5. DTLZ1 introduces the di�culty of decep-

tion, since the search space has (11k � 1) local POFs.

DTLZ2 =

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

Minimise :

f1(x) = (1 + g(xM)) cos
�x1�

2

�
: : : cos

�xM�1�
2

�

f2(x) = (1 + g(xM)) cos
�x1�

2

�
: : : sin

�xM�1�
2

�

...

fM (x) = (1 + g(xM)) sin
�xM�1�

2

�

where :

g(xM) =
X

xi2xM

(xi � 0:5)2

0 � xi � 1; 8i = 1; 2; : : : ; n

jxMj = k; n = M + k � 1

(3.14)

where k = 10. The POF of DTLZ2 is a sphere of radius one, namely
PM

m=1(f �
m)2 = 1.

The POS is x�
i = 0:5; 8xi 2 xM.
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DTLZ3 =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Minimise :

f1(x) = (1 + g(xM)) cos
�x1�

2

�
: : : cos

�xM�1�
2

�

f2(x) = (1 + g(xM)) cos
�x1�

2

�
: : : sin

�xM�1�
2

�

...

fM (x) = (1 + g(xM)) sin
�xM�1�

2

�

where :

g(xM) = 100

 

jxMj +
X

xi2xM

(xi � 0:5)2 � cos(20�(xi � 0:5))

!

0 � xi � 1; 8i = 1; 2; : : : ; n

jxMj = k; n = M + k � 1

(3.15)

where k = 10. Similar to DTLZ2, the POF of DTLZ3 is a sphere of radius one, namely
PM

m=1(f �
m)2 = 1 with a POS of x�

i = 0:5; 8xi 2 xM. However, this MOOP has many
local POFs and will test an algorithm’s ability to converge to the global POF in the
presence of many local POFs.

DTLZ4 =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Minimise :

f1(x) = (1 + g(xM)) cos
�y1�

2

�
: : : cos

�yM�1�
2

�

f2(x) = (1 + g(xM)) cos
�y1�

2

�
: : : sin

�yM�1�
2

�

...

fM (x) = (1 + g(xM)) sin
�yM�1�

2

�

where :

g(xM) =
X

xi2xM

(xi � 0:5)2

yi = x�
i

0 � xi � 1; 8i = 1; 2; : : : ; n

jxMj = k; n = M + k � 1

(3.16)

where k = 10 and � = 100. Similar to DTLZ2 and DTLZ3, the POF of DTLZ4 is
a sphere of radius,

PM
m=1(f �

m)2 = 1 and the POS is x�
i = 0:5; 8xi 2 xM. However,
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by introducing the mapping of the x-variables, a dense set of solutions exists near the
fM � f1 plane.

DTLZ5 =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Minimise :

f1(x) = (1 + g(xM)) cos(�1) cos(�2) : : : cos(�M�1)

f2(x) = (1 + g(xM)) cos(�1) cos(�2) : : : sin(�M�1)
...

fM (x) = (1 + g(xM)) sin(�M�1)

where :

g(xM) =
X

xi2xM

x0:1
i

�i =
�

4(1 + g(r))
(1 + 2g(r)xi); 8i = 1; 2; : : : ; n

0 � xi � 1; 8i = 1; 2; : : : ; n

jxMj = k; n = M + k � 1

(3.17)

where k = 10. The POF of DTLZ5 is a degenerated curve.

DTLZ6 =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Minimise :

f1(x1) = x1

...

fM�1(xM�1) = xM�1

fM (x) = g(xM) � h(f1; : : : ; fM�1; g)

where :

g(xM) = 1 +
9

jxMj

X

xi2xM

xi

h = M �
M�1X

i=1

fi

1 + g
(1 + sin(3�fi))

xi 2 Rjxij; 8i = 1; 2; : : : ;M

(3.18)

where k = 20. DTLZ6 is based on Equation (3.12) and has 2M�1 disconnected Pareto
optimal regions in the search space.
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DTLZ7 =

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

Minimise :

fj(x) =
1

b n
M c

b j n
M cX

b(j�1) n
M c

xi; j = 1; : : : ;M

where :

gj(x) = fM (x) + 4fj(x) � 1 � 0; 8j = 1; : : : ; (M � 1)

gM (x) = 2fM (x) +
M�1
min

i;j=1;i 6=j
[fi(x) + fj(x)] � 1 � 0

h = M �
M�1X

i=1

fi

1 + g
(1 + sin(3�fi))

0 � xi � 1; 8i = 1; 2; : : : ; n

(3.19)

where n = 10M . DTLZ7 is based on Equation (3.11) and has M constraints. Its POF
is a combination of a hyperplane (represented by constraint gM) and a straight line
(intersection of the �rst (M-1) constraints with f1 = f2 = : : : = fM�1).

Many benchmark functions for DMOO were based on the ZDT and DTLZ static MOO
(SMOO) benchmark functions. The next section discusses DMOO benchmark functions
that were proposed in the DMOO literature and the gaps that can be identi�ed in the
currently available DMOOPs.

3.2 Dynamic Multi-Objective Optimisation Bench-

mark functions

This section discusses benchmark functions used to evaluate the performance of DMOO
algorithms. Benchmark functions that have been proposed in the DMOO literature are
discussed in Section 3.2.1. Sections 3.2.2 and 3.2.3 present new approaches to develop
DMOOPs with an isolated POF and deceptive POF respectively. New DMOOPs with
complicated POSs are introduced in Section 3.2.4. Characteristics of an ideal set or suite
of benchmark functions are presented in Section 3.2.5 and DMOOPs are suggested for
each characteristic.

 
 
 



Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 41

3.2.1 Dynamic Multi-Objective Optimisation Benchmark Func-

tions Currently Used

This section discusses benchmark functions used in the DMOO literature to evaluate
whether DMOO algorithms can e�ciently solve DMOOPs.

Due to space constraints, only POSs and POFs with di�erent characteristics will be
illustrated in this section. In all two-objective �gures f2 refers to gh.

Guan et al. [74] suggested to create DMOOPs by replacing objective functions with
new objective functions over time. The advantage of Guan et al.’s approach is that the
new objective function(s) can cause a severe change in the DMOOP and by selecting
the objective functions carefully, various types of changes can be incorporated into the
DMOOP. Recently, Wang and Li [156] presented a DMOOP where the one subfunction
of an objective function changes over time. When objective functions are changed over
time, as in the approaches followed by Guan et al. and Wang and Li, the objective
functions should be selected carefully to ensure that the resulting objective functions
hinder the algorithm in �nding the POF in various ways as discussed in Section 3.1.1.
Another approach was followed by Jin and Sendho� [90], where a two-objective DMOOP
is constructed from a three-objective MOO function. The approach of Jin and Sendho�
has been used by various researchers [110, 111, 112, 108]. However, the adherence to the
guidelines of Deb et al. by the benchmark functions suggested by Guan et al., Wang and
Li, and Jin and Sendho� will depend on the speci�c objective functions that are used.

Based on the ZDT [38, 169] and DTLZ [49] functions, Farina et al. [58] developed
the �rst suite of DMOOPs, namely the FDA benchmark functions. The FDA functions
are constructed in such a way that they are one of the �rst three DMOOP types of
DMOOPs, where either the POS or POF changes over time, or both the POS and POF
change over time.

The DMOOPs of the FDA DMOOP suite are easy to construct and the number
of decision variables are easily scalable. FDA4 and FDA5 are constructed in such a
way that they are easily scalable with regards to both the number of decision variables
and the number of objective functions. The FDA benchmark functions are of Type I,
II and III DMOOPs and the POF of these DMOOPs is either convex, non-convex or
changes from convex to concave over time. Therefore, the FDA DMOOP suite exhibits
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the characteristics that benchmark functions should have, as de�ned by Deb et al. [38].
The �ve FDA DMOOPs are de�ned as follows:

FDA1 =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(xI); g(xII; t) � h(f1(xI); g(xII; t)))

f1(xI) = x1

g(xII; t) = 1 +
P

xi2xII
(xi �G(t))2

h(f1; g) = 1 �
q

f1
g

where :

G(t) = sin(0:5�t); t = 1
nt

j
�
�t

k

xI 2 [0; 1]; xII = (x2; : : : ; xn) 2 [�1; 1]n�1

(3.20)

For FDA1, values in the decision variable space (POS) change over time, but the values
in the objective space (POF) remain the same. Therefore, it is a Type I DMOOP. It
has a convex POF with POF = 1 �

p
f1, as illustrated in Figure 3.1(b). The POS

is xi = G(t); 8xi 2 xII as illustrated in Figure 3.1(a). Appendix C explains how to
determine the POS and POF of a DMOOP.

(a) POS (b) POF

Figure 3.1: POS and POF of FDA1 with nt = 10 and �t = 10 for 1000 iterations
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FDA2 =

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(xI); g(xII) � h (xIII; f1(xI); g (xII) ; t))

f1(xI) = x1

g(xII) = 1 +
P

xi2xII
x2

i

h(xIII; f1; g; t) = 1 �
�

f1
g

�H2(t)

where :

H(t) = 0:75 + 0:75 sin(0:5�t); t = 1
nt

j
�
�t

k

H2(t) =
�
H(t) +

P
xi2xIII

(xi �H(t))2
��1

xI 2 [0; 1]; xIIi ;xIIIi 2 [�1; 1]

(3.21)

FDA2 has a POF that changes from convex to concave. It is a Type II DMOOP, since
both the POS and POF change over time. For FDA2, POF = 1 � fH(t)�1

1 , as illustrated
in Figure 3.2(a). The POS of FDA2 is xi = 0; 8xi 2 xII and xi = H(t); 8xi 2 xIII. It
should be noted that many researchers refer to FDA2 as a Type III DMOOP due to an
error at the DMOOP de�nition in [58]. However, before the de�nition of FDA2 in [58],
the explanation of the e�ect of the h function on the DMOOP states that the h function
in FDA2 causes the POF to only change through a change in xIII and that FDA2 is
therefore a Type II DMOOP.

(a) POF of FDA2 (b) POF of FDA3

Figure 3.2: POF of FDA2 and FDA3 with nt = 10 and �t = 10 for 1000 iterations
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FDA3 =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(xI; t); g(xII; t) � h(f1(xI); g(xII; t)))

f1(xI; t) =
P

xi2xI
xF (t)

i

g(xII; t) = 1 +G(t) +
P

xi2xII
(xi �G(t))2

h(f1; g) = 1 �
q

f1
g

where :

G(t) = jsin(0:5�t)j

F (t) = 102 sin(0:5�t); t = 1
nt

j
�
�t

k

xIi 2 [0; 1]; xIIi 2 [�1; 1]

(3.22)

FDA3 has a convex POF and both the values of the POS and POF change. Therefore it
is called a Type II DMOOP. For FDA3, POF = (1+G(t))

�
1 �

q
f1

1+G(t)

�
, as illustrated

in Figure 9.5. The POS is xi = G(t); 8xi 2 xII, similar to the POS of FDA1 (refer to
Figure 3.1(b)). The f1 function of the two-objective FDA DMOOPs regulate the spread
of solutions in objective space. Therefore, when f1 changes over time, as is the case with
FDA3, the spread of solutions in the POF changes over time.

FDA4 =

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(x; g(xII; t)); : : : ; fk(x; g(xII; t)))

f1(x; g; t) = (1 + g(xII; t))
QM�1

i=1 cos
�xi�

2
�

fk(x; g; t) = (1 + g(xII; t))
�QM�1

i=1 cos
�xi�

2
��

sin
�yM�k+1�

2
�
; 8k = 2; : : : ;M � 1

...

fm(x; g; t) = (1 + g(xII; t))
QM�1

i=1 sin
�x1�

2
�

where :

g(xII; t) =
P

xi2xII
(xi �G(t))2

G(t) = jsin(0:5�t)j; t = 1
nt

j
�
�t

k

xII = (xM ; : : : ; xn); xi 2 [0; 1]; 8i = 1; : : : ; n

(3.23)

For FDA4, values in the decision variable space (POS) change over time, but the values
in the objective space (POF) remain the same. Therefore, it is a Type I DMOOP. It has a
non-convex POF with the true POF (POF ) de�ned as f 2

1 +f 2
2 +f 2

3 = 1 for three objective
functions, as illustrated in Figure 3.3. The POS of FDA4 is xi = G(t); 8xi 2 xII, similar
to FDA1 (refer to Figure 3.1(b)).
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Figure 3.3: POF of FDA4 with three objective functions [58]

FDA5 =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(x; g(xII; t)); : : : ; fk(x; g(xII; t)))

f1(x; g; t) = (1 + g(xII; t))
QM�1

i=1 cos
�yi�

2
�

fk(x; g; t) = (1 + g(xII; t))
�QM�1

i=1 cos
�yi�

2
��

sin
�yM�k+1�

2
�
; 8k = 2; : : : ;M � 1

...

fm(x; g; t) = (1 + g(xII; t))
QM�1

i=1 sin
�y1�

2
�

where :

g(xII; t) = G(t) +
P

xi2xII
(xi �G(t))2

G(t) = jsin(0:5�t)j; t = 1
nt

j
�
�t

k

yi = xF (t)
i ; 8i = 1; : : : ; (M � 1)

F (t) = 1 + 100 sin4(0:5�t)

xII = (xM ; : : : ; xn)

xi 2 [0; 1]; 8i = 1; : : : ; n

(3.24)

FDA5 has a non-convex POF, where both the values in the decision variable space (POS)
and the objective space (POF) change over time. Therefore, it is a Type II DMOOP.
Furthermore, the spread of solutions in the POF changes over time. For FDA5 with three
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objective functions, the POF is f 2
1 + f 2

2 + f 2
3 = (1 +G(t))2 as illustrated in Figure 3.4.

The POS of FDA5 is xi = G(t); 8xi 2 xII, similar to FDA1 (refer to Figure 3.1(b)).

Figure 3.4: POF of FDA5 with three objective functions for four time steps [58]

Many researchers have used the FDA DMOOPs over the years as highlighted in
Table 3.1. In Table 3.1 the symbol M indicates that the authors have used a modi-
�ed version of the speci�c FDA DMOOP, I indicates that the authors have introduced
the speci�c DMOOPs and the column Other indicates whether the authors have used
DMOOPs other than the FDA set. Table 3.1 shows that most researchers used the FDA1
DMOOP, which is of Type I where the POS changes over time, but the POF remains
the same. Clearly, FDA1 is the easiest DMOOP of the FDA suite to solve. Therefore,
using the FDA1 DMOOP alone to test whether an algorithm can solve DMOOPs is not
su�cient.

Several researchers have used the FDA2 DMOOP. However, the POF of FDA2
changes from a convex to a concave shape only for speci�c values of the decision vari-
ables [46, 117], as can be seen for example in [77, 78] and Figure 4.2. Therefore, even
if an algorithm �nds Pareto-optimal solutions, it may �nd a convex POF instead of a
concave POF. To address this issue, several modi�cations to the h or g function of FDA2
have been suggested, as shown in Table 3.2. Underlying problems with FDA3 also lead
to several modi�cations to FDA3 being suggested, as indicated in Table 3.3. In order to
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test an algorithm’s ability to solve Type III DMOOPs, Talukder [144] modi�ed FDA5
to a Type III DMOO, as indicated in Table 3.4.

A generalisation of the FDA functions, DTF, was suggested by Mehnen et al. [117]:

DTF =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(xI; t); g(xII; t) � h(f1(xI; t); g(xII; t); t))

f1(xI; t) = x�(t)
1

g(xII; t) = 1 +
P

xi2xII
((xi � 
(t))2 � cos(!(t(�)))�(xi � 
(t)) + 1)

h(f1; g; t) = 2 �
�

f1
g

��(t)
�
�

f1
g

�
jsin( (t)�f1))j�(t)

where :

t = 1
nt

j
�
�t

k

xI 2 [0; 1]; xIIi 2 [�1; 1]

(3.25)

where � represents the spread of solutions, � the curvature of the POF, 
 the optimal
decision variable values or POS,  the number of POF sections, and ! the number
of local POFs. For example, a Type II DMOOP can be constructed from DTF by
setting the following parameter values: n = 20, �(t) = 0:2 + 4:8t2, �(t) = 102 sin(0:5�t),

(t) = sin(0:5�t),  (t) = ts with s 2 R and !(t) /  (t).

DTF is constructed in such a way that the number of disconnected continuous POF
sections, the number of local POFs, the curvature of the POF, the spread of the solutions,
and the optimal decision variable values that represent the POS can be easily speci�ed.

Table 3.2: Usage of modi�ed FDA2 DMOOP to test algorithms’ performance

Year Authors Changes Modi�ed FDA2 DMOOP
2006 Mehnen et al. [117] Changed the g and H2

functions to develop
a Type III DMOOP.
POF is 1 � fH2(t)

1

and the POS is xi =
0; 8xi 2 xII and xi =
�1; 8xi 2 xIII.

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

f1(xI) = x1
g(xII) = 1 +

P
xi2xII

x2
i +P

xi2xIII
(xi + 1)2

h(xIII; f1; g; t) = 1 �
�

f1
g

�H2(t)

where :
H2(t) = 0:2 + 4:8t(�)2

t = 1
nt

j
�
�t

k

xI 2 [0; 1]; xIIi ;xIIIi 2 [�1; 1]

(3.26)

Continued on next page
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Year Authors Changes Modi�ed FDA2 DMOOP
2007
2010

Deb et al. [46] and
Liu et al. [113]

Developed a Type III
DMOOP by changing
the h, H and H2

functions and the cal-
culation of t. The
POF is 1 �

�
f2

1
�H2(t)

and the POS is xi =
0; 8xi 2 xII and xi =
�1; 8xi 2 xIII.

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

f1(xI) = x1
g(xII) = 1 +

P
xi2xII

x2
i

h(xIII; f1; g; t) = 1 �
��

f1
g

�2
�H2(t)

where :
H2(t) = H(t) +

P
xi2xIII

(xi �H(t)=4)2

H(t) = 2 sin(0:5�(t� 1))
t = 2

j
�
�t

k
�t

�max��t

xI 2 [0; 1]; xIIi ;xIIIi 2 [�1; 1]
�max = 200; jxII j = 5; jxIII j = 7

(3.27)

2007 Zheng [165] Changed the h func-
tion to develop a Type
III DMOOP. POF
is

�
1 �

p
f1
�H2(t)

and POS is
xi = 0; 8xi 2 xII;xIII.

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

f1(xI) = x1
g(xII) = 1 +

P
xi2xII

x2
i

h(xIII; f1; g; t) =
�

1 �
q

f1
g

�H2(t)

where :
H2(t) =

�
H(t) +

P
xi2xIII

(xi �H(t))2��1

H(t) = 0:75 + 0:75 sin(0:5�t)
t = 1

nt

j
�
�t

k

xI 2 [0; 1]; xIIi ;xIIIi 2 [�1; 1]
(3.28)

2008
2009

Isaacs et al. [87]
and Ray et al. [127]

Developed a Type III
DMOOP by changing
the H2 function. Very
similar to modi�ca-
tion made by Mehnen
et al. [117]. POF
is 1 � fH2(t)

1 and
the POS is xi =
0; 8xi 2 xII and xi =
�1; 8xi 2 xIII.

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

f1(xI) = x1
g(xII) = 1 +

P
xi2xII

x2
i +P

xi2xIII
(xi + 1)2

h(xIII; f1; g; t) = 1 �
�

f1
g

�H2(t)

where :
H2(t) = 0:2 + 4:8t2

t = 1
nt

j
�
�t

k

xI 2 [0; 1]; xIIi ;xIIIi 2 [�1; 1]

(3.29)

Continued on next page
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Year Authors Changes Modi�ed FDA2 DMOOP
2009 Salazar

Lechuga [102]
Changed the h func-
tion to develop a
Type III DMOOP.
1 � fH2(t)

1 is the
POF and the POS is
xi = 0; 8xi 2 xII.

8
>>>>>>>>>>><

>>>>>>>>>>>:

f1(xI) = x1
g(xII) = 1 +

P
xi2xII

x2
i

h(xIII; f1; g; t) = 1 �
�

f1
g

�H2(t)

where :
H2(t) = 0:75 + 0:75 sin(0:5�t)
t = 1

nt

j
�
�t

k

xI 2 [0; 1]; xIIi ;xIIIi 2 [�1; 1]

(3.30)

2010 C�amara et al. [17]
[16] [138]

Changed the H
and H2 func-
tions to develop
a Type III DMOOP.
1 � fH2(t)

1 is the
POF and the POS is
xi = 0; 8xi 2 xII and
xi = �1; 8xi 2 xIII.

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

f1(xI) = x1
g(xII) = 1 +

P
xi2xII

x2
i

h(xIII; f1; g; t) = 1 �
�

f1
g

�H2(t)

where :
H2(t) = H(t) +

P
xi2xIII

(xi �H(t)=2)2

H(t) = z� cos(�t=4)

t = 1
nt

j
�
�t

k

xI 2 [0; 1]; xIIi ;xIIIi 2 [�1; 1]
(3.31)

Tang et al. [149] suggested a similar approach than Farina et al., constructing DMOOPs
based on the ZDT functions of Deb et al. [38]. Three objective functions are constructed
similar to the DMOOPs of Farina et al. and provide an additional explanation of how
the POF is calculated. For two objective DMOOPs, the following format is used:

8
<

:

Minimise : f(x) = (f1(xI); f2(xII))

f1(xI) = f1(xI)
f2(xII) = u(t)g(xII)v(t) [h (f(xI); g(xII)v(t))]

(3.36)

with u(t) and v(t) functions of time t. The selection of u(t) and v(t) lead to the con-
struction of various types of DMOOPs:

� u(t) = 1 and v(t) that changes over time, create a DMOOP of Type I.
� v(t) = 1 and u(t) that changes over time, create a DMOOP of Type III.
� u(t) and v(t) that change over time, create a DMOOP of Type II.

The formulation of the DMOOP using Equation (3.36) can therefore lead to the
creation of various types of DMOOPs by changing the values of v(t) and u(t). It is very
similar to the FDA DMOOPs, but by formulating the DMOOP in this way, the required
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Table 3.1: Usage of FDA DMOOP to test algorithms’ performance

Year Authors FDA1 FDA2 FDA3 FDA4 FDA5 Other
2004 Farina et al. [58] (I) x x x x x
2005 Amato and Farina [1] x
2005 Shang et al. [135] x x
2006 Hatzakis and Wallis [76] x
2006 Mehnen et al. [117] x M x x
2006 Zheng et al. [160] x x x
2007 Bingul [10] x
2007 C�amara et al. [19] [18] x x
2007 Deb et al. [46] M
2007 Liu and Wang [112] x x x
2007 Zheng [165] x M M x x
2007 Zhou et al. [166] x M
2008 Gree� and Engelbrecht [72] x x x
2008 Isaacs et al. [87] x M
2008 Talukder [144] [96] x M M
2008 Tan and Goh [146] x
2008 Wang and Dang [153] x x x
2009 Chen et al. [23] x x
2009 Goh and Tan [67] [66] x x
2009 Isaacs et al. [88] x M
2009 Ray et al. [127] x M
2009 Salazar Lechuga [102] x M
2009 Wang and Li [155] x x
2010 C�amara et al. [17] [16] [138] x M M x x
2010 Gree� and Engelbrecht [71] x x x x
2010 Koo et al. [100] x x x
2010 Liu et al. [113] x M x
2010 Liu et al. [110] x x
2010 Wang and Li [156] x x x x
2011 Helbig and Engelbrecht [78] x x x x

type of DMOOP can be easily created. Since these functions are based on the ZDT
functions, they adhere to the characteristics of benchmark functions recommended by
Deb et al. An example Type III DMOOP using Equation (3.36) where v(t) = 1 and
u(t) = t2 is:
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8
>>>>>>>>>><

>>>>>>>>>>:

Minimise : f(x) = (f1(xI); f2(xII))

f1(xI) = 1 � exp(�4x1) sin6(6�x1)

f2(xII) = t2g
�

1 �
�

f1
g

�2
�

where :

g = 1 + 9
�Pn

i=2 xi
n�1

�0:25

xi 2 [0; 1]; 8i = 1; 2; : : : ; 10

(3.37)

Table 3.3: Usage of modi�ed FDA3 DMOOP to test algorithms’ performance

Year Authors Changes Modi�ed FDA3 DMOOP
2007 Zheng [165] Modi�ed the f1

function to de-
velop a Type II
DMOOP. POF is (1 +
G(t))

�
1 �

q
f1

1+G(t)

�

and POS is
xi = G(t); 8xi 2 xII.

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

f1(xI; t) = 1
jxIj
P

xi2xI
xF (t)

i

g(xII; t) = 1 +G(t) +
P

xi2xII
(xi �G(t))2

h(f1; g) = 1 �
q

f1
g

where :
G(t) = jsin(0:5�t)j
F (t) = 102 sin(0:5�t)

t = 1
nt

j
�
�t

k

xIi 2 [0; 1]; xIIi 2 [�1; 1]
(3.32)

2008 Talukder [144] [96] Changed FDA3 from
a Type II to a Type
III DMOOP by mod-
ifying the g function.
The POF is (1 +
G(t))

�
1 �

q
f1

1+G(t)

�

and POS is
xi = 0; 8xi 2 xII.

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

f1(xI; t) =
P

xi2xI
xF (t)

i

g(xII; t) = 1 +G(t) +
P

xi2xII
x2

i

h(f1; g) = 1 �
q

f1
g

where :
G(t) = jsin(0:5�t)j
F (t) = 102 sin(0:5�t)

t = 1
nt

j
�
�t

k

xIi 2 [0; 1]; xIIi 2 [�1; 1]

(3.33)

2010 C�amara et al. [17] Modi�ed the f1

function to de-
velop a Type II
DMOOP. POF is (1 +
G(t))

�
1 �

q
f1

1+G(t)

�

and POS is
xi = G(t); 8xi 2 xII.

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

f1(xI; t) = xF (t)
1

g(xII; t) = 1 +G(t) +
P

xi2xII
(xi �G(t))2

h(f1; g) = 1 �
q

f1
g

where :
G(t) = jsin(0:5�t)j
F (t) = 102 sin(0:5�t)

t = 1
nt

j
�
�t

k

xI 2 [0; 1]; xIIi 2 [�1; 1]
xII = (x2; : : : ; xn)

(3.34)
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Table 3.4: Usage of modi�ed FDA5 DMOOP to test algorithms’ performance

Year Authors Changes Modi�ed FDA5 DMOOP
2008 Talukder [144] Changed FDA5 from a

Type II to a Type III
DMOOP by modifying
the g and F functions.
POF is

P
f2
k = (1 +

G(t))2 and POS is xi =
0; 8xi 2 xII.

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

f1(x; g; t) = (1 + g(xII; t))
QM�1

i=1 cos
�yi�

2

�

fk(x; g; t) = (1 + g(xII; t))
�QM�1

i=1 cos
�yi�

2

��

sin
�yM�k+1�

2

�
; 8k = 1; : : : ;M � 1

...
fm(x; g; t) = (1 + g(xII; t))

QM�1
i=1 sin

�y1�
2

�

where :
g(xII; t) = G(t) +

P
xi2xII

x2
i

G(t) = jsin(0:5�t)j; t = 1
nt

j
�
�t

k

yi = xF (t)
i ; 8i = 1; : : : ; (M � 1)

F (t) = 102 sin(0:5�t)

xII = (xM ; : : : ; xn)
xi 2 [0; 1]; 8i = 1; : : : ; n

(3.35)

Wang and Li [155, 156] recently also suggested new Type I DMOOPs that are created
by adapting the ZDT functions. These functions are shown in Table 3.6.

Based on the construction guidelines of Farina et al. [58], Goh and Tan [67] presented
three DMOOPs, namely dMOP1, dMOP2 and dMOP3. dMOP1 and dMOP2 have a
POF that changes from convex to concave over time, with dMOP1 being a Type III
DMOOP and dMOP2 a Type II DMOOP. In the FDA DMOOP suite, FDA2 also has a
POF that changes from convex to concave over time, and FDA2 is a Type II DMOOP.
However, dMOP1 and dMOP2 do not su�er from the decision variable selection problem
that FDA2 su�ers from. dMOP1 tests whether a DMOO algorithm can solve problems
where the POF changes from convex to concave but the POS remains the same over
time, and dMOP2 adds the di�culty of solving this problem with a changing POS and
POF. dMOP3 is very similar to FDA1, however the variable that controls the spread
of the POF solutions, x1 in FDA1, changes over time. This may cause an algorithm to
struggle to maintain a diverse set of solutions as the POS changes over time. The dMOP
benchmark functions are de�ned as follows:
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dMOP1 =

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(xI); g(xII) � h(f1(xI); g(xII); t))
f1(xI) = x1
g(xII) = 1 + 9

P
xi2xII

(xi)2

h(f1; g; t) = 1 �
�

f1
g

�H(t)

where :
H(t) = 0:75 sin(0:5�t) + 1:25
t = 1

nt

j
�
�t

k

xi 2 [0; 1]; xI = (x1)
xII = (x2; : : : ; xn)

(3.38)

The POF of dMOP1 changes from convex to concave over time, but the POF remains
the same. Therefore, it is a Type III problem, with POF = 1 � fH(t)

1 , as illustrated in
Figure 3.5. The POS of dMOP1 is xi = 0; 8xi 2 xII, similar to FDA2.

Figure 3.5: POF of dMOP1 with nt = 10 and �t = 10 for 1000 iterations

dMOP2 =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(xI); g(xII; t) � h(f1(xI); g(xII; t); t))
f1(xI) = x1
g(xII; t) = 1 + 9

P
xi2xII

(xi �G(t))2

h(f1; g; t) = 1 �
�

f1
g

�H(t)

where :
H(t) = 0:75 sin(0:5�t) + 1:25;
G(t) = sin(0:5�t)
t = 1

nt

j
�
�t

k

xi 2 [0; 1]; xI = (x1)
xII = (x2; : : : ; xn)

(3.39)
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dMOP2 has a POF that changes from convex to concave, where the values in both the
POS and POF change. Therefore, dMOP2 is a Type II problem, with POF = 1 � fH(t)

1 ,
similar to dMOP1 (refer to Figure 3.5). The POS of dMOP2 is xi = G(t); 8xi 2 xII,
similar to FDA1 (refer to Figure 3.1(b)).

dMOP3 =

8
>>>>>>>>>>><

>>>>>>>>>>>:

Minimize : f(x; t) = (f1(xI); g(xII; t) � h(f1(xI); g(xII; t)))
f1(xI) = xr
g(xII; t) = 1 + 9

P
xi2xIInxr

(xi �G(t))2

h(f1; g) = 1 �
q

f1
g

where :
G(t) = sin(0:5�t); t = 1

nt

j
�
�t

k

xi 2 [0; 1]; r =
S

(1; 2; : : : ; n)

(3.40)

dMOP3 has a convex POF where the POS changes over time, but the POF remains
the same. dMOP3 is therefore a Type I DMOOP and the spread of the POF solutions
changes over time. Similar to FDA1, for dMOP3, POF = 1�

p
f1 (refer to Figure 3.1(b))

and the POS is xi = G(t); 8xi 2 xII n xr (refer to Figure 3.1(a)).
More recently, Li and Zhang [105] and Deb et al. [48] presented MOOPs with decision

variable dependencies (or linkages). Zhou et al. [166] modi�ed FDA1 to incorporate
dependencies between the decision variables. The modi�ed FDA1 DMOOP is de�ned as
follows:

ZJZ =

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(xI); g(xII; t) � h(f1(xI); g(xII; t)))
f1(xI) = x1

g(xII; t) = 1 +
P

xi2xII

�
xi �G(t) � xH(t)

1

�2

h(f1; g) = 1 �
�

f1
g

�H(t)

where :
G(t) = sin(0:5�t)
H(t) = 1:5 +G(t)
t = 1

nt

j
�
�t

k

xI 2 [0; 1]; xII = (x2; : : : ; xn) 2 [�1; 2]n�1

(3.41)

For ZJZ, the values of both the POS and POF change over time. Therefore, it is
a Type II DMOOP. ZJZ’s POF is similar to dMOP1 (refer to Figure 3.5) and changes
from convex to concave over time, with POF = 1 � fH(t)

1 . However, there are non-linear
dependencies between the decision variables that make the DMOOP more di�cult to
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solve. The POS of ZJZ is xi = G(t) + xH(t)
1 ; 8xi 2 xII, as illustrated in Figure 3.6.

Changes made to FDA1 to develop new DMOOPs are summarised in Table 3.5.

Figure 3.6: POS of ZJZ with nt = 10 and �t = 10 for 1000 iterations

Table 3.5: Usage of modi�ed FDA1 DMOOP to test algorithms’ performance

Year Authors Changes Modi�ed FDA1 DMOOP
2007 Zhou et

al. [166]
Modi�ed FDA1 from a
Type I to a Type II
DMOOP with non-linear
dependencies between the
decision variables. POF is
1 � fH(t)

1 and POS is xi =
G(t) + xH(t)

1 ; 8xi 2 xII.

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

f1(xI) = x1

g(xII; t) = 1 +
P

xi2xII

�
xi �G(t) � xH(t)

1

�2

h(f1; g) = 1 �
�

f1
g

�H(t)

where :
G(t) = sin(0:5�t); t = 1

nt

j
�
�t

k

H(t) = 1:5 +G(t)
xI 2 [0; 1]; xII = (x2; : : : ; xn) 2 [�1; 1]n�1

(3.42)

Another shortcoming of the FDA DMOOP suite is that all DMOOP objective func-
tions consist of decision variables with the same rate of change over time. Koo et al. [100]
suggested two new benchmark functions where each decision variable has its own rate of
change, except the variable x1 that controls the spread of solutions. These two functions,
DIMP1 and DIMP2, are de�ned as follows:

 
 
 



Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 56

DIMP1 =

8
>>>>>>>>>>><

>>>>>>>>>>>:

Minimize : f(x; t) = (f1(xI); g(xII; t) � h(f1(xI); g(xII; t)))
f1(xI) = x1
g(xII; t) = 1 +

P
xi2xII

(xi �Gi(t))2

h(f1; g) = 1 �
�

f1
g

�2

where :

Gi(t) = sin
�

0:5�t+ 2�
�

i
n+1

��2
; t = 1

nt

j
�
�t

k

xI = (x1) 2 [0; 1]; xII = (x2; x3; : : : ; xn) 2 [�1; 1]n�1

(3.43)

The POS of DIMP1 changes over time, but the POF remains the same. Therefore,
DIMP1 is a Type I DMOOP, with POF = 1 � f 2

1 (as illustrated in Figure 3.7) and the
POS is xi = G(t); 8xi 2 xII, similar to FDA1 (refer to Figure 3.1(a)).

Figure 3.7: POF of DIMP1 with nt = 10 and �t = 10 for 1000 iterations

DIMP2 =

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(xI); g(xII; t) � (f1(xI); g(xII; t)))
f1(xI) = x1
g(xII; t) = 1 + 2(n� 1)+P

xi2xII
[(xi �Gi(t))2�

2 cos(3�(xi �Gi(t)))]

h(f1; g) = 1 �
q

f1
g

where :

Gi(t) = sin
�

0:5�t+ 2�
�

i
n+1

��2
; t = 1

nt

j
�
�t

k

xI 2 [0; 1]; xII 2 [�2; 2]n�1

(3.44)
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DIMP2 is a Type I problem, since its POS changes over time but its POF remains the
same. Similar to FDA1, DIMP2’s POF is 1 �

p
f1 (refer to Figure 3.1(b)) and the POS

is xi = G(t); 8xi 2 xII (refer to Figure 3.1(a)).
The FDA and dMOP MOOPs only contain DMOOPs with a continuous POF. Two

discontinous functions, namely TP1mod and TP2mod, were presented by Gree� and Engel-
brecht [72]. However, these two functions do not allow easy scalability of the number of
decision variables. Therefore, TP1mod and TP2mod do not adhere to the characteristics of
benchmark functions that are recommended by Deb et al. Recently, Helbig and Engel-
brecht [78] presented two DMOOPs with a discontinuous POF, namely HE1 and HE2.
These two functions are based on the ZDT3 [169] MOOP that was developed in such
a way that it adheres to the characteristics recommended by Deb et al. HE1 and HE2
were developed by adapting ZDT3 to be dynamic and therefore adhere to the benchmark
function characteristics recommended by Deb et al. HE1 and HE2 are de�ned as:

HE1 =

8
>>>>>>>>>><

>>>>>>>>>>:

Minimize : f(x; t) = (f1(xI); g(xII) � h(f1(xI); g(xII); t))
f1(xI) = x1
g(xII) = 1 + 9

n�1
P

xi2xII
xi

h(f1; g; t) = 1 �
q

f1
g � f1

g sin(10�tf1)
where :
t = 1

nt

j
�
�t

k

xi 2 [0; 1]; xI = (x1); xII = (x2; : : : ; xn)

(3.45)

HE2 =

8
>>>>>>>>>>><

>>>>>>>>>>>:

Minimize : f(x; t) = (f1(xI); g(xII) � h(f1(xI); g(xII); t))
f1(xI) = xi
g(xII) = 1 + 9

n�1
P

xi2xII
xi

h(f1; g; t) = 1 �
�q

f1
g

�H(t)
�
�

f1
g

�H(t)
sin(10�f1)

where :
H(t) = 0:75 sin(0:5�t) + 1:25; t = 1

nt

j
�
�t

k

xi 2 [0; 1]; xI = (x1); xII = (x2; : : : ; xn)

(3.46)

Both HE1 and HE2 have a discontinuous POF, with various disconnected continuous
sub-regions. Both are Type III DMOOPs, since their POFs change over time, but their
POSs remain the same. For HE1, POF = 1 �

p
f1 � f1 sin(10�tf1) as illustrated in

Figure 3.8(a), and for HE2, POF = 1 �
�p

f1
�H(t) � fH(t)

1 sin(0:5�f1) as illustrated in

Figure 9.9. The POS for both HE1 and HE2 is xi = 0; 8xi 2 xII, similar to FDA2.
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(a) POF of HE1 (b) POF of HE2

Figure 3.8: POF of HE1 and HE2 with nt = 10 and �t = 10 for 1000 iterations

Avdagi�c et al. [2] introduced an adaptation of the DTLZ problems to develop the
following types of benchmark functions: Type I DMOOP where the POS changes co-
herently over time, but the POF remains the same, Type II DMOOP where the shape
of the POS continuously changes and the POF also changes over time, and a Type II
DMOOP where the number of objective functions change over time [2]. These benchmark
functions are developed from the following general equation:

DTLZAv =

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

Minimize : q(x) = (q1(x); : : : ; qm(x))
q1(x) = a1xc1

1 x
c1
2 : : : xc1

m�1(1 � xm)c1g1(x) + b1

q2(x) = a2xc2
1 x

c2
2 : : : (1 � xm�1)c2(1 � xm)c2g2(x) + b2

...
qm�1(x) = am�1x

cm�1
1 (1 � x2)cm�1 : : : (1 � xm�1)cm�1(1 � xm)cm�1

gm�1(x) + bm�1

qm(x) = am(1 � x1)cm(1 � x2)cm : : : (1 � xm�1)cm(1 � xm)cmgm(x)
+bm

where :
gi = 1 � di cos(20�xi)
ai; bi; ci; di 2 R

(3.47)

A Type I DMOOP with a continuously changing POS is created by using Equa-
tion (3.47) and setting the following parameter values: ai = 1, di = 0, bi = bik, where
k represents the iteration and ci = 1 or ci = 2. Similarly, a Type II DMOOP with
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continuously changing POS and POF are developed by setting the following parameter
values: ai = 1, bi = bik, cik = 5bik and di = 0. To develop a Type II DMOOP with
a changing number of objectives, the same parameters are used as those spesi�ed for
the Type II DMOOP, with two objective functions being used for a certain number of
iterations and then three objective functions are used for the other iterations. These
additional types of DMOOPs, which are not part of the FDA benchmark function set,
may become important if these kind of changes occur in a real-world problem.

Recently, Huang et al. [84] pointed out that all DMOOPs assume that the current
found POS does not a�ect the future POS or POF. To the best knowledge of the author
of this thesis, none of the suggested DMOOPs have a POS or POF that depends on
the previous POS or POF. Furthermore, most DMOOPs consist of a static number of
decision variables and objective functions. Therefore, Huang et al. [84] introduced four
DMOOPs that incorporate these scenarios, de�ned as follows:

T1 =

8
>>>>>>>>>>><

>>>>>>>>>>>:

Minimize : f(x; t) = (f1(x; t); f2(x; t))

f1(x; t) =
Pd1(t)

i=1
�
x2

i � 10 cos(2�xi) + 10
�

f2(x; t) = (x1 � 1)2 +
Pd2(t)

i=2
�
x2

i � xi�1
�2

where :
d1(t) = bnj sin(t)jc
d2(t) = bnj cos3(2t)jc
t = 1

nt

j
�
�t

k

(3.48)

with d1 and d2 varying the number of decision variables over time. The minimum for f1

is 0 and the POS for f1 is xi = 0; 8i = 1; : : : ; d1(t). The minimum for f2 is 0 with the
POS xi = 1; 8i = 1; : : : ; d2(t). Both the POF and POS remain static, but the number
of decision variables changes over time. Therefore, T1 is a type IV DMOOP.

T2 =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(x; t); : : : ; fm(x; t))

f1(x; t) = (1 + g(xII))
Qm(t)�1

i=1 cos
��xi

2
�

fk(x; t) = (1 + g(xII))
Qm(t)�k

i=1 cos
��xi

2
�

sin
�

�xm(t)�k+1
2

�
;

8k = 2; : : : ;m(t) � 1fm(x; t) = (1 + g(xII))
Qm(t)�1

i=1 sin
��x1

2
�

where :
g(xII) =

Pm(t)
i=1 (xi � 0:5)2

m(t) = bM j sin(0:5�t)jc; t = 1
nt

j
�
�t

k

xi 2 [0; 1]

(3.49)
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with M representing the maximum number of objective functions and m varying the
number of objective functions over time. T2 is a Type III DMOOP, since its POF changes
over time, but its POS remains the same. The POS of T2 is xi = 0:5; 8i = 1; : : : ;m(t)
and the POF is

Pm(t)
i f2

i = 1.

T3 =

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(x; t); f2(x; t))
f1(x; t) = R(x; t) cos

��x1
2
�

f2(x; t) = R(x; t) sin
��x1

2
�

where :
R(x; t) = �R(x; t � 1; t) +G(x; t)
�R(x; t) = 1

P
PP

j Rj(x; t� 1)
�R(x;�1) = 1
G(x; t) =

Pn
i=2
�
xi � �R(x; t� 1)

�2 ; t = 1
nt

j
�
�t

k

x1 2 [0; 1]; xi 2 [ �R(x; t) � 100; �R(x; t) + 100]; 8i = 2; : : : ; n

(3.50)

with the value of R(x; t) depending on previous values of R. Therefore, if a slight error
occurs with regards to the found value of R at time t, this error will increase over time,
in
uencing the algorithm’s ability to �nd the solutions at the next time steps. Both
the POS and POF remain static. Therefore, T3 is a Type IV DMOOP. The POS is
xi = �R(x; t� 1); 8i = 2; : : : ; n. The POF is f 2

1 + f 2
2 = 1. Similar to T1, T4 is a type IV

DMOOP, de�ned as:

T4 =

8
>>>>>>>><

>>>>>>>>:

Minimize : f(x; t) = (f1(x; t); f2(x; t))
f1(x; t) =

Pn
i=1
�
x2

i � 10 cos(2�xi) + 10
�

f2(x; t) = (x1 � r(t))2 +
Pn

i=2
�
x2

i � xi�1
�2

where :
r(x; t) = 1

n
P

xi2x (xi � 0)

t = 1
nt

j
�
�t

k

(3.51)

with r representing the average error of the decision variables of the selected POS
(POS�). Since the POS of T4 is xi = 0; 8i = 1; 2; : : : ; n, the average error of the
decision variables of POS� is r(x; t) = 1

n

P
xi2x (xi � 0). The selected trade-o� solution

set, POS�, is derived from the current POS by a decision making mechanism used by the
decision maker. Therefore, for T4, the POF depends on the decision making mechanism
used at previous time steps.

Mehnen et al. [117] suggested that simpler benchmark functions are required to anal-
yse the e�ect of di�erent dynamic properties in a more isolated manner. For this reason,
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they presented the DSW DMOOPs generator that are based on the static MOOP of
Sha�er [131]. The DSW DMOOPs are parabolic and are similar to the sphere function
that are typically used to test whether an algorithm can solve DSOOPs. The DSW
benchmark generator is de�ned as:

DSW =

8
>>>>>><

>>>>>>:

Minimize : f(x; t) = (f1(x; t); f2(x; t))
f1(x; t) = (a11x1 + a12jx1j � b1G(t))2 +

Pn
i=2 x

2
i

f2(x; t) = (a21x1 + a22jx1j � b2G(t) � 2)2 +
Pn

i=2 x
2
i

where :
G(t) = t(�)s; t = 1

nt

j
�
�t

k

(3.52)

with s representing the severity of change. Using Equation (3.52), the following three
benchmark functions are created:

DSW1 :
�
x 2 [�50; 50]n; a11 = 1; a12 = 0; a21 = 1;
a22 = 0; b1 = 1; b2 = 1 (3.53)

DSW1 has a dynamic POF and POS, and is therefore a Type II DMOOP. The POS
of DSW1 is x1 2 [G(t); G(t) + 2] and xi = 0; 8i = 2; 3; : : : ; n. The POF is POF =
�p

f1 � 2
�2 with f1 = (x1 � G(t))2, as illustrated in Figure 3.9(a). DSW1 is similar to

the spherical SOOP function where the center of the sphere is linearly shifted over time.

(a) POF of DSW1 (b) POF of DSW2

Figure 3.9: POF of DSW1 and DSW2 with nt = 10 and �t = 10 for 1000 iterations
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DSW2 :
�
x 2 [�50; 50]n; a11 = 0; a12 = 1; a21 = 0;
a22 = 1; b1 = 1; b2 = 1 (3.54)

Both the POS and POF of DSW2 change over time. Therefore, DSW2 is a Type II
DMOOP. DSW2 has a disconnected POS, with x1 2 [�G(t)�2;�G(t)][ [G(t); G(t)+2]
and xi = 0; 8i = 2; 3; : : : ; n. If a periodical G(t) is used, the POSs will join and depart
periodically. The POF of DSW2 is similar to that of DSW1, namely POF =

�p
f1 � 2

�2,
but with f1 = (jx1j �G(t))2, as illustrated in Figure 3.9(b).

DSW3 :
�
x 2 [�50; 50]n; a11 = 1; a12 = 0; a21 = 1;
a22 = 0; b1 = 0; b2 = 1 (3.55)

DSW3 has a changing POF and POS, and is therefore a Type II DMOOP. For DSW3
the POS is x1 2 [0; G(t) + 2] and the POF is POF =

�p
f1 �G(t) � 2

�2 with f1 = x2
1.

Setting b1 = 0 causes one border of the POS interval for x1, namely G(t) + 2, to change
over time, while the other border, 0, remains static.

The DMOOPs that have been discussed above are summarised in Table 3.6 (excluding
the FDA and modi�ed FDA functions summarised in Tables 3.1 to 3.4).

None of the DMOOPs discussed in this section have an isolated or deceptive POF.
The next section discusses an approach to construct DMOOPs with an isolated POF.

Table 3.6: Usage of other DMOOP to test algorithms’ performance

YearAuthors Other DMOOPs DMOOPs De�nition
2004

2006
2007
2007
2010

Jin and
Sendho� [90] (I)
Liu and Wang [111]
Li et al. [108]
Liu and Wang [112]
Liu et al. [110]

Constructing two-
objective DMOOPs
from a three-objective
MOOP. Various f1

and f2 functions can
be used to create
Type I to III
DMOOPs.

8
>>>>>><

>>>>>>:

Minimize : f(x) = (f1(x); f2(x); f3(x))
Is changed to:
Minimize : (F1; F2)
where :
F1 = wf1(x) + (1 � w)f2(x)
F2 = wf1(x) + (1 � w)f3(x)
with w changing over time

(3.56)

Continued on next page
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YearAuthors Other DMOOPs DMOOPs De�nition
2005 Guan et al. [74] DMOOPs created by

replacing objective
functions with new
objective functions
over time. G1 is an
example of a Type III
DMOOP.

G1 =

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

Minimise :�
G = (f1; f2) for t
G = (f1; f 0

2) for t�
where :
f1 = x1

f2 = g(x)
�

1 �
�

x1
g(x)

�2
�

f 0
2 = g(x)

�
1 �

q
x1

g(x)

�

g(x) = 1 + 9
n�1

Pn
i=2 xi

xi 2 [0; 1]

(3.57)

G2 =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

Minimise :�
G = (f1; f2; f3; f4) for t
G = (f1; f2; f3; f 0

4) for t�
where :
f1 = (x1 � 2)2 + 4x2

2
f2 = x2

1 + (x2 � 3)(x3 � 3)
f3 = x2x3x4
f4 = x1x4 + x2x3

f 0
4 = 1=

�
x1:5

2 x2:5
3 x4

�

xi 2 [1; 10]
(3.58)

2005 Guan et al. [74]
(cont.)

DMOOPs created by
replacing objective
functions with new
objective functions
over time.

G3 =

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

Minimise :�
G = (f1; f2; f3; f4) for t
G = (f1; f2; f 0

3; f 0
4) for t�

where :
f1 = (x1 � 2)2 + 4x2

2
f2 = x2

1 + (x2 � 3)(x3 � 3)
f3 = 1 � exp(�4x1) sin6(6�x1)
f4 = x1x4 + x2x3

f 0
3 = x2x3x4
f 0

4 = 1=
�
x1:5

2 x2:5
3 x4

�

xi 2 [1; 10]
(3.59)

Continued on next page
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YearAuthors Other DMOOPs DMOOPs De�nition
2006 Mehnen et al. [117] DMOOP DTF ena-

bling easy speci�ca-
tion of the number of
separated POF
sections, the number
of local POFs, the
curvature of the POF,
the spread of the
solutions and the
optimal decision
variable values that
represent the POS.
Type I-III DMOOPs
can be created.

DSW DMOOP
generator that is
based on the static
MOOP of Sha�er.
DMOOP Types I-III
can be created.

Equation (3.25)

Equations (3.52) to (3.55)

2007 Tang et al. [149] DMOOPs based on
the ZDT functions of
Deb et al. [38]. Can
construct DMOOPs
of Type I-III.

Equation (3.36)

Continued on next page
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YearAuthors Other DMOOPs DMOOPs De�nition
2008 Gree� and

Engelbrecht [72]
TP1mod and TP2mod

DMOOPs with
discontinuous POFs.
Both TP1mod and
TP2mod are Type III
DMOOPs.

TP1mod:
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Minimize : f(x) = (f1(x); f2(x))

f1(x) =

8
<

:

�x for x � 1
�2 + x for 1 < x � 3
4 � x for 3 < x � 4
�4 + x for x > 4

f2(x) = (x� 5)2 +G(t)
where :
G(t) = j sin(0:5�t)
t = 1

nt

j
�
�t

k

�100 � x � 100
(3.60)

TP2mod:
8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

Minimize : f(x) = (f1(x); f2(x))
f1(x) = 2 + (x2 � 1)2 � 10c1G(t)+

(x1 � 2)2

f2(x) = 9x1 + (x2 � 1)2 � 10c2G(t)
where :
c1(x) =

n c1 for c1 � 0
0 for c1 > 0

c2(x) =
n c2 for c2 � 0

0 for c2 > 0
G(t) = j sin(0:5�t)
t = 1

nt

j
�
�t

k

x1; x2 2 [�20; 20]
(3.61)

Continued on next page
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YearAuthors Other DMOOPs DMOOPs De�nition
2009 Avdagi�c et al. [2] Adapted the DTLZ

problems to develop a
Type II homogenous
DMOOP where the
POS changes
uniformly at each
iteration, a non-
homogenous Type II
DMOOP where the
POS continuously
changes and results in
the POF that changes
as well, and a non-
homogenous Type II
DMOOP where the
number of objective
functions change over
time.

Equation (3.47)

2009 Goh and
Tan [67] [66]

Three DMOOPs,
namely dMOP1
(Type III), dMOP2
(Type II) and
dMOP3 (Type I).
dMOP1 and dMOP2
have a POF that
changes from convex
to concave over time.
dMOP3 is very
similar to FDA1,
however the variable
that controls the
spread of the POF
solutions changes over
time.

Equations (3.38) to (3.40)

Continued on next page
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YearAuthors Other DMOOPs DMOOPs De�nition
2009
2010

Wang and Li [155]
Wang and Li [156]

Modi�ed ZDT
functions to create
the Type I DMZDT
DMOOPs.

POF of DMZDT1 is
1 �

p
f1 and the POS

is jxi�t=ntj
H(t) = 0.

POF of DMZDT2 is
1 � f2

1 and the POS is
jxi�t=ntj

H(t) = 0.

DMZDT1:
8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(xI); g(xII; t)�
h(f1(xI); g(xII; t)))

f1(xI) = x1

g(xII; t) = 1 +
9

P
xi2xII

jyi(t)j
D�1

h(f1; g) = 1 �
q

f1
g

where :
yi(t) = jxi�t=ntj

H(t) ; 8i = 2; : : : ; D
H(t) = maxfj1 � t

nt
j; j � 1 � t

nt
jg

t =
j

fc
F ESc

k

xI 2 [0; 1]; xII = (x2; : : : ; xn) 2 [�1; 1]n�1

(3.62)

DMZDT2:
8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(xI); g(xII; t)�
h(f1(xI); g(xII; t)))

f1(xI) = x1

g(xII; t) = 1 +
9

P
xi2xII

jyi(t)j
D�1

h(f1; g) = 1 �
�

f1
g

�2

where :
yi(t) = jxi�t=ntj

H(t) ; 8i = 2; : : : ; D
H(t) = maxfj1 � t

nt
j; j � 1 � t

nt
jg

t =
j

fc
F ESc

k

xI 2 [0; 1]; xII = (x2; : : : ; xn) 2 [�1; 1]n�1

(3.63)

Continued on next page
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YearAuthors Other DMOOPs DMOOPs De�nition
2009
2010

Wang and Li [155]
Wang and Li [156]

(continued)

POF of DMZDT3 is
1 �

p
f1 �

f1 sin(10�f1). The
POF is discontinuous.
The POS is
jxi�t=ntj

H(t) = 0.

DMZDT4 has many
local POFs. POF of
DMZDT4 is 1 �

p
f1

and the POS is
jxi�t=ntj

H(t) = 0.

DMZDT3:8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(xI); g(xII; t)�
h(f1(xI); g(xII; t)))

f1(xI) = x1

g(xII; t) = 1 +
9

P
xi2xII

jyi(t)j
D�1

h(f1; g) = 1 �
q

f1
g � f1

g sin(10�f1)
where :
yi(t) = jxi�t=ntj

H(t) ; 8i = 2; : : : ; D
H(t) = maxfj1 � t

nt
j; j � 1 � t

nt
jg

t =
j

fc
F ESc

k

xI 2 [0; 1]; xII = (x2; : : : ; xn) 2 [�1; 1]n�1

(3.64)

DMZDT4:
8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(xI); g(xII; t)�
h(f1(xI); g(xII; t)))

f1(xI) = x1
g(xII; t) = 10D � 9+P

xi2xII

�
yi(t)2 � 10 cos(4�jyij)

�

h(f1; g) = 1 �
q

f1
g

where :
yi(t) = jxi�t=ntj

H(t) ; 8i = 2; : : : ; D
H(t) = maxfj1 � t

nt
j; j � 1 � t

nt
jg

t =
j

fc
F ESc

k

xI 2 [0; 1]; xII = (x2; : : : ; xn) 2 [�1; 1]n�1

(3.65)

2009
2010

Wang and Li [155]
Wang and Li [156]

Type II DMOOP,
WYL, where an
objective changes
over time.

WYL:
8
>>>>>><

>>>>>>:

Minimize :8
><

>:

DMZDT1 if t%4 = 0
DMZDT2 if t%4 = 1
DMZDT3 if t%4 = 2
DMZDT4 if t%4 = 3

where :
% is the modulus operator

(3.66)

Continued on next page
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YearAuthors Other DMOOPs DMOOPs De�nition
2010 Koo et al. [100] Type I DMOOPs

DIMP1 and DIMP2,
where each decision
variable has its own
rate of change, except
the variable x1 that
controls the spread of
solutions.

Equations (3.43) and (3.44)

2010 Liu et al. [113] DMOP3 is a three-
objective Type I
DMOOP similar to
FDA4 of Farina et al.
The three-objective
POF is
f2

1 + f2
2 + f2

3 = 1
and the POS is
xi = G(t); 8xi 2 xII.

DMOP3:8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(x; g(xII; t));
f2(x; g(xII; t)); f3(x; g(xII; t)))

f1(x; g; t) = (1 + g(xII; t))) cos(0:5�x1)
cos(0:5�x2)

f2(x; g; t) = (1 + g(xII; t))) cos(0:5�x1)
sin(0:5�x2)

f3(x; g; t) = (1 + g(xII; t))) sin(0:5�x2)
where :
g(xII; t) =

P
xi2xII

(xi �G(t))2

G(t) = jsin(0:5�t)j
t = 1

nt

j
�
�t

k

xII = (x3; : : : ; xn)
xi 2 [0; 1]; 8i = 1; : : : ; n

(3.67)

2011 Huang et al. [84] Type IV DMOOPs
where the current
found POS a�ects the
future POS or POF,
a Type IV DMOOP
where the number of
decision variables
change over time and
a Type II DMOOP
where the number of
objective functions
change over time.

Equations (3.48) to (3.51)

2011 Helbig and
Engelbrecht [78]

Type III DMOOPs
HE1 and HE2 with a
discontinuous POF
and based on the
ZDT3 [169] MOOP.

Equations (3.45) and (3.46)
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3.2.2 Dynamic Multi-objective Optimisation Problems with an

Isolated Pareto Optimal Front

Objective functions contain 
at regions when an open subset of decision variable values
maps to a single objective function value. The POF of DMOOPs with objective functions
that have 
at regions are also referred to as an isolated POF. The lack of gradient
information for the 
at regions may cause di�culty for a DMOO algorithm to converge
to the POF. However, no DMOOPs with an isolated POF have been proposed. Therefore,
this section proposes an approach that can be used to develop DMOOPs with an isolated
POF.

Huband et al. introduced a suite of static MOOPs referred to as the WFG benchmark
functions to address shortcomings of other MOO test suites [85]. One of the shortcom-
ings that the WFG suite addresses, is the development of MOOPs where the objective
functions have 
at regions. This approach is adapted so that it can be applied to current
DMOOPs.

The 
at regions are created by mapping the decision variables to new values using
the following equation [85]:

yi(xi; A;B;C) =A+ min(0; bxi �Bc)
A(B � xi)

B
� min(0; bC � yc)

(1 �A)(xi � C)
1 � C

(3.68)

where A;B;C 2 [0; 1]; B < C; B = 0 =) A = 0 ^ C 6= 0; C = 1 =) A = 1 ^ B 6= 0.
All values of xi between B and C are mapped to the value of A. Therefore, the region
between B and C forms the 
at region.

This mapping can be applied to existing DMOOPs. Two examples are provided
below, namely the adjustment of FDA5 (refer to Equation (3.24)) and dMOP2 (refer to
Equation (3.39)):
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FDA5iso =

8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(x; g(xII; t)); : : : ; fk(x; g(xII; t)))
f1(x; g; t) = (1 + g(xII; t))

QM�1
i=1 cos

�yi�
2
�

fk(x; g; t) = (1 + g(xII; t))
�QM�1

i=1 cos
�yi�

2
��

sin
�yM�k+1�

2
�
; 8k = 1; : : : ;M � 1

...
fm(x; g; t) = (1 + g(xII; t))

QM�1
i=1 sin

�y1�
2
�

where :
g(xII; t) =

P
xj2xII

(yj �G(t))2

G(t) = jsin(0:5�t)j; t = 1
nt

j
�
�t

k

yi = xF (t)
i ; 8i = 1; : : : ; (M � 1)

yj = yj(xj ; A;B;C); 8xj 2 xII

F (t) = 1 + 100 sin4(0:5�t)
xII = (xM ; : : : ; xn); xi 2 [0; 1]; 8i = 1; : : : ; n

(3.69)

where yj is calculated using Equation (3.68). A, B and C can, for example, be selected as
G(t), 0:001 and 0:05 respectively. Similar to FDA5 (refer to Equation (3.24)), FDA5iso is
a Type II DMOOP and the POF of FDA5iso is f 2

1 + f 2
2 + f 2

3 = (1 +G(t))2 (as illustrated
in Figure 3.4). The POS of FDA5iso is xi = G(t); 8xi 2 xII, similar to FDA1 (refer to
Figure 3.1(b)).

dMOP2iso =

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(xI); g(xII; t) � h(f1(xI); g(xII; t); t))
f1(xI) = x1
g(xII; t) = 1 + 9

P
xi2xII

(yi �G(t))2

h(f1; g; t) = 1 �
�

f1
g

�H(t)

where :
yi = yi(xi; A;B;C); 8xi 2 xII
H(t) = 0:75 sin(0:5�t) + 1:25;
G(t) = sin(0:5�t); t = 1

nt

j
�
�t

k

xi 2 [0; 1]; xI = (x1); xII = (x2; : : : ; xn)

(3.70)

where yi is calculated using Equation (3.68). Example values for A, B and C are G(t),
0:001 and 0:05 respectively. Similar to dMOP2 (refer to Equation (3.39)), dMOP2iso is
a Type II problem, with POF = 1 � fH(t)

1 (refer to Figure 3.5). The POS of dMOP2iso

is xi = G(t); 8xi 2 xII, similar to FDA1 (refer to Figure 3.1(b)).
The next section discusses an approach that can be used to develop DMOOPs with

a deceptive POF.
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3.2.3 Dynamic Multi-objective Optimisation Problems with a

Deceptive Pareto Optimal Front

DMOOPs with a deceptive POF have at least two optima, but the search space favours
the deceptive POF, which is a local POF and not the global POF. Some of the benchmark
functions discussed in Section 3.2.1 are multi-modal. However, none of the benchmark
functions discussed in Section 3.2.1 has a deceptive optimum. This section proposes an
approach that can be used to adjust existing DMOOPs in such a way that the DMOOPs
have a deceptive POF.

The WFG suite of Huband et al. [85] also introduced an approach to develop MOOPs
with a deceptive POF. Similar to their approach to develop MOOPs with isolated POFs,
a transformation function is used as follows:

yi(xi; A;B;C) =

 
by �A+Bc

�
1 � C + A�B

B
�

A�B
+

1
B

+

bA+B � yc
�
1 � C + 1�A�B

B
�

1 �A�B

!

(jy �Aj �B) + 1 (3.71)

where A 2 (0; 1), 0 < B << 1, 0 < C << 1, A � B > 0 and A + B < 1. A
represents the value at which xi is mapped to zero and therefore the global minimum of
the transformation function. B is the \aperture" size of the basin leading to A and C is
the value of the deceptive optimum.

By applying this transformation (or mapping) function to existing DMOOPs, DMOOPs
with a deceptive POF can be developed. For example, by calculating yj in Equa-
tion (3.69) and yi in Equation (3.70) using Equation (3.71), FDA5iso and dMOP2iso

will have deceptive POFs. Example values for A, B and C are 0.35, 0.001 and 0.05
respectively.

Li and Zhang [106] identi�ed a shortcoming of MOO benchmark functions, namely
that the POS is de�ned by a simple function, e.g. xi = sin(0:5�t). Therefore, they
presented MOOPs that have complicated POSs, where the POS is de�ned by non-linear
curves in decision space, e.g. xj = sin

�
6�x1 + j�

n

�
; 8j = 2; 3; : : : ; n. This shortcoming

is also true for benchmark functions that were developed for DMOO. The next sec-
tion introduces new DMOOPs with complicated POSs, based on the MOOPs of Li and

 
 
 



Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 73

Zhang [106].

3.2.4 Dynamic Multi-objective Optimisation Problems with

Complicated Pareto Optimal Sets

This section proposes new DMOOPs that have been developed based on the MOOPs
of Li and Zhang [106]. The benchmark functions are constructed in such a way that
the number of decision variables can be scaled easily, the resulting POFs are easily
understood, and the DMOOPs hinder an algorithm to converge to the POF by requiring
an algorithm to �nd a POS that are de�ned by non-linear curves. Therefore, they adhere
to the benchmark function characteristics as de�ned by Deb et al.. The DMOOPs are
de�ned as:

HE3 =

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(x); g(x; t) � h(f1(x); g(x; t)))

f1(x) = x1 + 2
jJ1j
P

j2J1

 

xj � x
0:5

�
1:0+ 3(j�2)

n�2

�

1

!2

g(x) = 2 �
p
x1 + 2

jJ2j
P

j2J2

 

xj � x
0:5

�
1:0+ 3(j�2)

n�2

�

1

!2

h(f1; g) = 1 �
�

f1
g

�H(t)

where :
H(t) = 0:75 sin(0:5�t) + 1:25; t = 1

nt

j
�
�t

k

J1 = fjj j is odd and 2 � j � ng
J2 = fjj j is even and 2 � j � ng
xi 2 [0; 1]

(3.72)

The POF changes over time, but the POS remains the same. Therefore, HE3 is a Type
III DMOOP. The POS and POF of HE3 are:

POS : xj = x
0:5

�
3(j�2)

n�2

�

1 ; 8j = 2; 3; : : : ; n:

POF : y = (2 �
p
x1)

"

1 �
�

x1

2 �
p
x1

�H(t)
#

The POF and POS of HE3 are illustrated in Figures 3.10 and 3.11 respectively. It is
important to note that, unlike most of the other DMOOPs, the POS of HE3 to HE10
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are di�erent for each decision variable.

Figure 3.10: POF of HE3 with nt = 10 and �t = 10 for 1000 iterations

(a) POS of x2 (b) POS of x5

Figure 3.11: POS of HE3 for two decision variables, x2 and x5, with nt = 10 and �t = 10 for

1000 iterations
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HE4 =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(x); g(x; t) � h(f1(x); g(x; t)))

f1(x) = x1 + 2
jJ1j
P

j2J1

�
xj � sin(6�x1 + j�

n )
�2

g(x) = 2 �
p
x1 + 2

jJ2j
P

j2J2

�
xj � sin(6�x1 + j�

n )
�2

h(f1; g) = 1 �
�

f1
g

�H(t)

where :
H(t) = 0:75 sin(0:5�t) + 1:25; t = 1

nt

j
�
�t

k

J1 = fjj j is odd and 2 � j � ng
J2 = fjj j is even and 2 � j � ng
x1 2 [0; 1]; xi 2 [�1; 1]; 8i = 2; 3; : : : ; n

(3.73)

The POF of HE4 changes over time, but the POS remains the same. Therefore, HE4 is
a Type III DMOOP. The POS and POF of HE4 are:

POS : xj = sin
�

6�x1 +
j�
n

�
; 8j = 2; 3; : : : ; n:

POF : y = (2 �
p
x1)

"

1 �
�

x1

2 �
p
x1

�H(t)
#

The POS of HE4 is illustrated in Figure 3.12. The POF is similar to the POF of HE3
(refer to Figure 3.10).

HE5 =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(x); g(x; t) � h(f1(x); g(x; t)))

f1(x) = x1 + 2
jJ1j
P

j2J1

�
xj � 0:8x1 cos

�
6�x1 + j�

n

��2

g(x) = 2 �
p
x1 + 2

jJ2j
P

j2J2

�
xj � 0:8 cos

�
6�x1 + j�

n

��2

h(f1; g) = 1 �
�

f1
g

�H(t)

where :
H(t) = 0:75 sin(0:5�t) + 1:25; t = 1

nt

j
�
�t

k

J1 = fjj j is odd and 2 � j � ng
J2 = fjj j is even and 2 � j � ng
x1 2 [0; 1]; xi 2 [�1; 1]; 8i = 2; 3; : : : ; n

(3.74)

HE5 is a Type III DMOOP, since the POF changes over time, but the POS remains the
same. The POS and POF of HE5 are:
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(a) POS of x2 (b) POS of x5

Figure 3.12: POS of HE4 for two decision variables, x2 and x5, with nt = 10 and �t = 10 for

1000 iterations

POS : xj =

8
><

>:

0:8x1 cos
�

6�x1 + j�
n

�
; j 2 J1

0:8x1 sin
�

6�x1 + j�
n

�
; j 2 J2

POF : y = (2 �
p
x1)

"

1 �
�

x1

2 �
p
x1

�H(t)
#

The POS of HE5 is illustrated in Figure 3.13. The POF is similar to the POF of HE3,
illustrated in Figure 3.10.

HE6 =

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(x); g(x; t) � h(f1(x); g(x; t)))

f1(x) = x1 + 2
jJ1j
P

j2J1

�
xj � 0:8x1 cos

�
6�x1+ j�

n
3

��2

g(x) = 2 �
p
x1 + 2

jJ2j
P

j2J2

�
xj � 0:8 cos

�
6�x1 + j�

n

��2

h(f1; g) = 1 �
�

f1
g

�H(t)

where :
H(t) = 0:75 sin(0:5�t) + 1:25; t = 1

nt

j
�
�t

k

J1 = fjj j is odd and 2 � j � ng
J2 = fjj j is even and 2 � j � ng
x1 2 [0; 1]; xi 2 [�1; 1]; 8i = 2; 3; : : : ; n

(3.75)

For HE6, the POF changes over time, but the POS remains the same. Therefore, HE6
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(a) POS of x2 (b) POS of x5

Figure 3.13: POS of HE5 for two decision variables, x2 and x5, with nt = 10 and �t = 10 for

1000 iterations

is a Type III DMOOP. The POS and POF of HE6 are:

POS : xj =

8
><

>:

0:8x1 cos
�

6�x1+ j�
n

3

�
; j 2 J1

0:8x1 sin
�

6�x1 + j�
n

�
; j 2 J2

POF : y = (2 �
p
x1)

"

1 �
�

x1

2 �
p
x1

�H(t)
#

The POF of HE6 is similar to the POF of HE3 (refer to Figure 3.10). The POS of HE6
is illustrated in Figure 3.14.

HE7 =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(x); g(x; t) � h(f1(x); g(x; t)))

f1(x) = x1 + 2
jJ1j
P

j2J1

�
xj �

h
0:3x2

1 cos
�

24�x1 + 4j�
n

�
+ 0:6x1

i
cos
�

6�x1 + j�
n

��2

g(x) = 2 �
p
x1 + 2

jJ2j
P

j2J2

�
xj �

h
0:3x2

1 cos
�

24�x1 + 4j�
n

�
+ 0:6x1

i
sin
�

6�x1 + j�
n

��2

where :
H(t) = 0:75 sin(0:5�t) + 1:25; t = 1

nt

j
�
�t

k

J1 = fjj j is odd and 2 � j � ng
J2 = fjj j is even and 2 � j � ng
x1 2 [0; 1]; xi 2 [�1; 1]; 8i = 2; 3; : : : ; n

(3.76)
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(a) POS of x2 (b) POS of x5

Figure 3.14: POS of HE6 for two decision variables, x2 and x5, with nt = 10 and �t = 10 for

1000 iterations

HE7 is a Type III DMOOP, since the POF changes over time, but the POS remains the
same. The POS and POF of HE7 are:

POS : xj =

8
>>>>>><

>>>>>>:

a cos
�

6�x1+ j�
n

3

�
; j 2 J1

a sin
�

6�x1 + j�
n

�
; j 2 J2

with:

a =
h
0:3x2

1 cos
�

24�x1 + 4j�
n

�
+ 0:6x1

i

POF : y = (2 �
p
x1)

"

1 �
�

x1

2 �
p
x1

�H(t)
#

The POS of HE7 is illustrated in Figure 3.15. The POF is similar to the POF of HE3,
as illustrated in Figure 3.10.
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(a) POS of x2 (b) POS of x5

Figure 3.15: POS of HE7 for two decision variables, x2 and x5, with nt = 10 and �t = 10 for

1000 iterations

HE8 =

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(x); g(x; t) � h(f1(x); g(x; t)))

f1(x) = x1 + 2
jJ1j
P

j2J1

�
4y2

j � cos(8yi�) + 1:0
�

g(x) = 2 �
p
x1 + 2

jJ2j
P

j2J2

�
4y2

j � cos(8yi�) + 1:0
�

h(f1; g) = 1 �
�

f1
g

�H(t)

where :
H(t) = 0:75 sin(0:5�t) + 1:25; t = 1

nt

j
�
�t

k

J1 = fjj j is odd and 2 � j � ng
J2 = fjj j is even and 2 � j � ng

yj = xj � x

�
0:5

�
1:0+ 3(j�2)

n�2

��

1 ; 8j = 2; 3; : : : ; n
xi 2 [0; 1] 8i = 1; 2; : : : ; n

(3.77)

The POF of HE8 changes over time, but the POS remains the same. Therefore, HE8 is
a Type III DMOOP. The POS (refer to Figure 3.11) and POF (refer to Figure 3.10) of
HE8 are:

POS : xj = x
0:5

�
3(j�2)

n�2

�

1 ; 8j = 2; 3; : : : ; n:

POF : y = (2 �
p
x1)

"

1 �
�

x1

2 �
p
x1

�H(t)
#
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HE9 =

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(x); g(x; t) � h(f1(x); g(x; t)))

f1(x) = x1 + 2
jJ1j
P

j2J1
(4
P

j2J1
y2

j �
Q

j2J1
cos
�

20yj�p
j

�
+ 2:0)

g(x) = 2 �
p
x1 + 2

jJ2j
P

j2J2
(4
P

j2J2
y2

j � 2
Q

j2J2
cos
�

20yj�p
j

�
+ 2:0)

h(f1; g) = 1 �
�

f1
g

�H(t)

where :
H(t) = 0:75 sin(0:5�t) + 1:25; t = 1

nt

j
�
�t

k

J1 = fjj j is odd and 2 � j � ng
J2 = fjj j is even and 2 � j � ng

yj = xj � x

�
0:5

�
1:0+ 3(j�2)

n�2

��

1 ; 8j = 2; 3; : : : ; n
xi 2 [0; 1] 8i = 1; 2; : : : ; n

(3.78)

For HE9, the POF changes over time, but the POS remains the same. Therefore, HE9
is a Type III DMOOP. The POS (refer to Figure 3.11) and POF (refer to Figure 3.10)
of HE9 are:

POS : xj = x
0:5

�
3(j�2)

n�2

�

1 ; 8j = 2; 3; : : : ; n:

POF : y = (2 �
p
x1)

"

1 �
�

x1

2 �
p
x1

�H(t)
#

HE10 =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

Minimize : f(x; t) = (f1(x); g(x; t)�
h(f1(x); g(x; t)))

f1(x) = x1 + 2
jJ1j
P

j2J1

�
xj � sin(6�x1 + j�

n )
�2

g(x) = 2 � x2
1 + 2

jJ2j
P

j2J2

�
xj � sin(6�x1 + j�

n )
�2

h(f1; g) = 1 �
�

f1
g

�H(t)

where :
H(t) = 0:75 sin(0:5�t) + 1:25; t = 1

nt

j
�
�t

k

J1 = fjj j is odd and 2 � j � ng
J2 = fjj j is even and 2 � j � ng
xi 2 [0; 1] 8i = 1; 2; : : : ; n

(3.79)

The POF of HE10 changes over time, but the POS remains the same. Therefore, HE10
is a Type I DMOOP. The POS (refer to Figure 3.12) and POF (refer to Figure 3.10) of
HE10 are:
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POS : xj = sin
�

6�x1 +
j�
n

�
; 8j = 2; 3; : : : ; n:

POF : y = (2 �
p
x1)

"

1 �
�

x1

2 �
p
x1

�H(t)
#

Taking into consideration the benchmark functions currently being used for DMOO
(discussed in Section 3.2.1) and the ideal characteristics of benchmark functions (dis-
cussed in Section 3.1.1), it becomes clear that many di�erent types of DMOOPs have
been suggested to be used as benchmark functions. Therefore, when a new DMOO algo-
rithm has been developed, the selection of benchmark functions to test the algorithm’s
ability to solve DMOOPs is a daunting task.

3.2.5 Ideal Set of Dynamic Multi-objective Optimisation Bench-

mark Functions

This section presents the characteristics of an ideal benchmark function set and suggests
DMOOPs that can be used to su�ciently test an algorithm’s ability to solve DMOOPs.

From Section 3.2.1 the following characteristics were identi�ed that an ideal MOO
(static or dynamic) set of benchmark functions should have:

1. The set of benchmark functions should test for the following di�culties to converge
towards the POF:

� Multimodality.
� Deception.
� Isolated optimum.

2. The set of benchmark functions should test for the following di�culties to obtain
a diverse set of solutions:

� Convexity or non-convexity in the POF.
� Discontinuous POF, i.e. disconnected sub-regions that are continuous.
� Non-uniform distribution of solutions in the POF.

3. The benchmark functions should have various types or shapes of POSs, where the
POS is also non-linear curves and not only linear functions.
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4. The benchmark functions should have decision variables with dependencies or
linkages.

In addition, the following characteristics were identi�ed that an ideal DMOOP bench-
mark function suite should have:

1. The set of benchmark functions should have a non-uniform distribution of solu-
tions in the POF, where the distribution of solutions changes over time.

2. The shape of the POFs should change over time from convex to non-convex or
vice versa.

3. The benchmark functions should have decision variables with di�erent rates of
change over time.

4. The benchmark functions should include cases where the POF depends on the
values of previous POSs or POFs.

5. The benchmark functions should enable changing the number of decision variables
over time.

6. The benchmark functions should enbale changing the number of objective func-
tions over time.

For each characteristic a set of DMOOPs was identi�ed from Sections 3.2.1, 3.2.2
and 3.2.3. The proposed ideal benchmark functions suite from which DMOOPs can
be selected to evaluate the performance of dynamic MOAs (DMOAs) are presented in
Tables 3.7 and 3.8.

When a selection of DMOOPs are made, it should be done in such a way that various
types of DMOOPs are selected for each characteristic, or the benchmark suite should at
least have type II DMOOPs for some characteristics. The reason for this is to ensure that
an algorithm can overcome a certain di�culty in various types of DMOO environments.

In addition to the benchmark functions listed in Table 3.7, the generic benchmark
function generators can be used to create benchmark functions of various types with
speci�c characteristics as outlined in this section, for example DTF (refer to Equa-
tion (3.25)), DTLZAv (refer to Equation (3.47)), DSW (refer to Equation (3.52)), and
the DMOOP of Tang (refer to Equation (3.36)).
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Table 3.7: Set of DMOO Benchmark Functions for each Identi�ed Characteristic for MOOPs

in general

Characteristic DMOOP Type: Suggested DMOOPs
1. DMOOPs that cause di�culties to converge
towards the POF:
{ Multi-modal DMOOPs Type I: DMZDT4 (Equation (3.65))
{ DMOOPs with a deceptive optimum Various: DMOOPs developed according to Sec-

tion 3.2.3
{ DMOOPs with an isolated optimum Various: DMOOPs developed according to Sec-

tion 3.2.2
2. DMOOPs that cause di�culties to �nd a
diverse set of solutions:
{ DMOOP with convex POF

� Type I: FDA1 (Equation (3.20)),
DMZDT1 (Equation (3.62))

� Type II: Modi�ed FDA3 functions (refer to
Table 3.6)

� Type III: dMOP1 (Equation (3.38))

{ DMOOPs with non-convex POF
� Type I: DMZDT2 (Equation (3.63)), FDA4

(Equation (3.23)), DMOP3 (Equation (3.67))
� Type II: FDA5 (Equation (3.24))
� Type III: Modi�ed FDA5 functions (Equa-

tion (3.35)

{ DMOOPs with discontinuous POF
� Type I: DMZDT3 (Equation (3.64))
� Type III: HE1 (Equation (3.45)), HE2 (Equa-

tion (3.46))

{ DMOOPs with non-uniform spread of solutions
� Type I: dMOP3 (Equation (3.40))
� Type II: FDA5 (Equation (3.24)), Modi�ed

FDA3 functions (refer to Table 3.6)
� Type III: modi�ed FDA5 functions (Equa-

tion (3.35)

3. DMOOPs with various types or shapes of
POSs � Type I, II: DTLZAv (Equation (3.47))

� Type II: ZJZ (Equation (3.41)), DSW2 (Equa-
tion (3.54)), DSW3 (Equation (3.55))

� Type III: HE3-HE10 (Equations (3.72) -
(3.79)), Modi�ed FDA2 functions (Equa-
tions (3.26)- (3.31))

4. DMOOPs with dependencies or linkages be-
tween the decision variables � Type II: ZJZ (Equation (3.41))

 
 
 








































































































































































































































































































































































































































































































































































































































































