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Chapter 9

Introduction to Dynamic Vector

Evaluated Particle Swarm

Optimisation Algorithm

‘‘Goals allow you to control the direction of change in your favor.”

–Brian Tracy

This chapter discusses the VEPSO algorithm that has been adapted to solve DMOOPs.

The adapted VEPSO algorithm, dynamic VEPSO (DVEPSO), is discussed in Section 9.1.

Section 9.2 discusses the tasks of the DVEPSO algorithm that are performed at the

top-algorithm level, while Section 9.3 discusses the tasks of the sub-swarms that are per-

formed at the lower-algorithm level. Experiments that were conducted to investigate the

influence of various guide update approaches on the performance of DVEPSO are dis-

cussed in Section 9.4. Information is provided with regards to the benchmark functions,

performance measures and the default configuration of the DVEPSO algorithm used for

the experiments, as well as the statistical analysis that was conducted on the obtained

data. Furthermore, the obtained results are analysed and discussed. A summary of this

chapter is provided in Section 9.5.
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9.1 Dynamic Vector Evaluated Particle Swarm Op-

timisation Algorithm

This section discusses the changes made to the SMOO VEPSO algorithm discussed in

Section 7.2 in order to solve DMOOPs. The adapted algorithm, DVEPSO, is presented

in Algorithm 9.

Algorithm 9 DVEPSO for DMOO

1. for number of iterations do

2. check whether a change has occurred

3. if change has occurred

4. respond to change

5. remove dominated solutions from archive

6. perform PSO iteration

7. if new solutions are non-dominated

8. if space in archive

9. add new solutions to archive

10. else

11. remove solutions from archive

12. add new solutions to archive

13. select sentry particles

Similar to VEPSO, the DVEPSO algorithm consists of two layers, namely a top layer

that manages the sub-swarms and a lower layer that contains the sub-swarms. This is

illustrated in Figure 9.1.

In order to track a changing POF an algorithm must be able to detect that a change in

the environment has occurred and then respond to the change appropriately. Therefore,

when solving DMOOPs, the sub-swarms in the lower layer check whether the environ-

ment has changed, in addition to optimising the assigned objective function. When

VEPSO is used to solve static MOOPs, sharing of knowledge between the sub-swarms

and the management of the archive (as discussed in Section 7.2) are managed at the top

level. However, the top layer of DVEPSO also manages the way in which the sub-swarms
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Figure 9.1: The two layers of the DVEPSO algorithm

respond to a change once the change has been detected.

9.2 Top-level Tasks

This section discusses a task that is performed at the top level of the DVEPSO algorithm,

namely responding to a change in the environment. This task is performed in addition

to the top-level tasks performed by VEPSO (refer to Section 7.2).

If a change has been detected by one or more of the sub-swarms, DVEPSO has to

respond to the change to ensure tracking of the changing POF. When a change has been

detected, one of the following responses are used:

• re-evaluate all particles in the sub-swarm, or

• re-initialise a percentage of the particles in the sub-swarm.

Re-evaluating the particles ensures that all previously obtained information is preserved.

However, the particles already converged towards the POF, and therefore the diversity
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of the swarm has to be increased to increase exploration of a new environment. If re-

evaluation is used, additional ways should be used to increase the swarm’s diversity.

However, re-initialisation introduces diversity by re-initialising a certain percentage of

the swarm’s particles. Re-initialisation preserves previously obtained information from

the particles that are not re-initialised. However, it may occur that particles with optimal

positions in the new environment are re-initialised and thereby the information is lost.

Greeff and Engelbrecht [72] proposed that the above listed responses can be applied to

either all sub-swarms, or to only the sub-swarm(s) whose objective function has changed.

Applying the response to all sub-swarms increases the diversity of all sub-swarms and

thereby increases the exploration of the sub-swarms. If a sub-swarm’s objective function

did not change and re-initialisation is used, a percentage of previously obtained informa-

tion is removed. However, the increasing diversity may lead to exploration of the search

space that was not explored before.

After one of the above responses was applied, the following re-evaluations or updates

are performed:

• The pbest of each particle is reset to the particle’s current position. This ensures

that the particle is not biased towards the previous optima. If the new optima is

far away from the previous optima and the particle is biased towards the previous

optima, it may become stuck at the previous optima or a local optima without

finding the new optima.

• Once the particles’ pbests are reset, a new gbest is determined. This ensures that

the gbest does not attract the other particles towards a previous optimum that is

not optimal anymore.

Furthermore, if a change in the environment occurs, the following approaches are

proposed to manage the archive [78]:

• remove all solutions from the archive (referred to as ac), or

• re-evaluate the solutions in the archive against the current DMOOP. Then, all

solutions that were previously non-dominated but became dominated after the

change in the environment occurred, are:

– removed from the archive (referred to as are). This approach does not use

previously obtained knowledge in the new environment. When an environ-
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ment change is severe, previously found solutions that are still non-dominated

in the new environment, may cause new non-dominated solutions that are in

close proximity of the previous solutions to be removed from the archive, even

if they are more optimal than the previously found solution. This may occur

when selecting which solutions to remove from a full archive are based on

removing solutions from crowded regions of the approximated POF.

– hill-climbing is applied to a dominated solution in an attempt to change these

solutions back to non-dominated solutions. If hill-climbing is unsuccessful,

the dominated solution is removed from the archive. However, if hill-climbing

is successful, the dominated solution is removed from the archive and the new

solution obtained through hill-climbing is added to the archive. This approach

is referred to as areh. This approach re-uses previously obtained knowledge

in the new environment and will only be useful if the environmental change

is not severe.

• when a change in the environment occurs, a number of particles whose positions

represent non-dominated solutions are randomly selected. The average change

that the selected particles experience in each objective (or dimension), cavgk , is

calculated. Then, if a selected particle’s objective value differs by a threshold βk

(e.g. βk = cavgk/2.0), the solutions in the archive that are within a specied radius

cr (e.g. distance to closest selected particle/2.0) from the selected particle, are

deleted. This approach is referred to as ar. If ar is used to manage the archive, then

before ar is executed, either are or areh is performed. If are was fist performed, this

approach is referred to as ara. Otherwise, if areh was first performed, this approach

is referred to as arah. Applying ar to the archive removes solutions from a certain

region of the archive (that falls within the radius cr of a selected particle) if the

environment changes drastically for the decision variable values that produced the

solutions of the specific region. This ensures that newly found solutions are added

to the archive when the environment changes drastically, increasing the diversity

of the archive.
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9.3 Low-level Tasks

This section discusses the tasks of change detection and guide updates that are performed

at the lower-level of DVEPSO by the sub-swarms. These tasks are performed in addition

to the other low-level tasks performed by VEPSO (refer to Section 7.2).

9.3.1 Change Detection

In order to solve DMOOPs, DVEPSO must be able to detect a change that occurred in

the environment. Change detection is done using sentry particles [22], where a specified

number of particles are randomly selected and re-evaluated after the algorithm performed

the specific iteration, but before the next iteration starts. If the sentry particle’s fitness

value differs after re-evaluation with more than a specified value, the swarm is notified

that a change in the environment has occurred. If a change in the environment of a

sub-swarm has occurred, the sub-swarm alerts the top-level of DVEPSO. The top-level

then informs the sub-swarms which response to execute.

9.3.2 Guide Update Approaches

Similar to VEPSO, the search process of DVEPSO is driven through the local and

global guides. VEPSO uses no Pareto-dominance information for the guide updates.

However, for DVEPSO, guide update approaches that use Pareto-dominance information

and therefore do dominance checking are also investigated. The following guide update

approaches are proposed for DVEPSO [71]:

• The standard VEPSO guide update, where the particle’s fitness is measured with

regards to only the objective function that the specific swarm optimises. Only if

an improvement in the fitness of the current guide can be obtained, is the guide

updated. No Pareto-dominance information is used. With reference to a local

guide, this approach is referred to as ps and with reference to a global guide, gs.

• The dominant approach, where each particle’s fitness is measured with respect

to all objectives of the DMOOP. If the particle’s position dominates the current

local guide, the particle’s current position is selected as the new local guide. This
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strategy is referred to as pd. If this approach is used to update a global guide, it

is referred to as gd.

• The non-dominated approach, where a guide is updated if the new position is non-

dominated with respect to the guide. When used as a local guide update, it is

referred to as pn, and gn if used as a global guide update.

• The random approach, where a guide is updated if the new position is non-

dominated with respect to the guide, by randomly selecting either the particle

position or the corresponding guide. When used as a local guide update, it is

referred to as pr and gr if used as a global guide update.

The effectiveness of these approaches when used by DVEPSO is unknown. Therefore,

experiments were conducted to investigate the influence of these guide update approaches

on the performance of DVEPSO. The next section discusses the experiments and the

results that were obtained from the experiments.

9.4 Effectiveness of Guide Update Approaches

Various guide update approaches exist as discussed in Section 9.3. This section describes

experiments that were conducted to investigate the influence of the various guide update

approaches on the performance of DVEPSO. It should be noted that this section focuses

on guide update approaches, and not on guide selection approaches. Guide selection

approaches focus on the selection of solutions from the archive to guide the optimisation

process to ensure a diverse set of solutions. The guides that are selected from the archive

are then used as the local (personal best) and global guides (global best) of the PSO

algorithm. The guide update approaches discussed in this section focus on methods that

are used to update the swarm’s local (personal best) and global (global best) guides

using the solutions found by the particles.

Section 9.4.1 discusses the experimental setup and the benchmark functions and

performance measures that were used to evaluate the performance of the various guide

update approaches. The DVEPSO configuration used for the experiments, as well as the

statistical analysis process that was performed on the obtained data, are also discussed.

The results obtained from the experiments are discussed in Section 9.4.2.
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9.4.1 Experimental Setup

All combinations of the local and global guide updates discussed in Section 9.3 were used

in the experiments.

All experiments consisted of 30 independent runs and each run continued for 1000

iterations. For all benchmark functions, the severity of change (nt) was set to 1, 10 and

20 and the frequency of change (τt) was set to either 10, 25 or 50. This selection of

nt and τt values enables the evaluation of DVEPSO in both a fast and slowly changing

environment, and an evironment that changes either gradually or severely over time.

The PSO parameters were set to values that lead to convergent behaviour [63], namely

w = 0.72 and c1 = c2 = 1.49. Convergent behaviour ensures that the particles converge

towards the current POF. After a change in the environment, diversity is introduced into

the swarm to ensure more exploration to find the new POF.

All code was implemented in the Computational Intelligence library (CIlib) [122].

All simulations were run on the Sun Hybrid System’s Harpertown and Nehalem Systems

of the Center for High Performance Computing [24]. The SUN Nehalem system has an

Intel Nehalem processor of 2.93 GHz, 2304 CPU cores, 3465 Gb of Memory and produces

24 TFlops at peak performance [24]. The SUN Harpertown system has an Intel Xeon

processor of 3.0 GHz, 384 CPU cores, 768 Gb of Memory and produces 3 TFlops at peak

performance [24].

Benchmark Functions

Based on the analysis of DMOOPs in Chapter 3, fifteen benchmark functions were se-

lected of various DMOOP Types to study the influence of guide update approaches

on the performance of DVEPSO, namely a modified version of DIMP2 with a concave

POF (referred to as DIMP2 in the rest of the thesis), FDA1Zhou, FDA2, FDA2Camara,

FDA3 [58], FDA3Camara, dMOP2, dMOP3, dMOP2iso, dMOP2dec, HE1, HE2, HE6, HE7

and HE9.

DIMP2 is a Type I problem where each decision variable has its own rate of change,

except the variable x1 that controls the spread of solutions. FDA1Zhou has non-linear

dependencies between the decision variables and is a Type II problem. FDA2 and dMOP2

are Type II DMOOPs with a POF that changes from convex to concave. FDA2Camara
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also has a POF that changes from convex to concave over time, but is a Type III DMOOP.

FDA3 and FDA3Camara are Type II DMOOPs with a convex POF where the density of

solutions in the POF changes over time. dMOP3 is a Type I DMOOP with a convex

POF where the spread of the POF solutions changes over time. HE1 and HE2 are both

a Type III DMOOP with a discontinuous POF that consists of various disconnected

continuous sub-regions. HE6, HE7 and HE9 are Type III DMOOPs where each decision

variable has a different POS and the POSs are non-linear functions. dMOP2iso and

dMOP2dec are similar to dMOP2, but with an isolated and deceptive POF respectively.

Even though the DMOOPs FDA2 and FDA3 are problematic (refer to Section 3.2.1),

they were selected for the experiments to determine whether DVEPSO can still track

the changing POF in spite of the issues with these DMOO functions.

Performance Measures

Chapter 4 discussed the analysis of DMOO performance measures. Based on this ana-

lysis, three performance measures were selected for this study, to determine the perfor-

mance of DVEPSO for the different guide update approaches.

The first performance measure is the number of non-dominated solutions (NS) in the

found POF. Even though this measure does not provide any information with regards

to the quality of the solutions, it provides additional information when comparing the

performance of various algorithms.

The second performance measure is the accalt measure (see Equation (4.25)), referred

to in this chapter as acc. A low acc value indicates a good performance. The calculation

of acc requires sampled solutions of the true POF, POF ′. For these experiments, POF ′

solutions were created for each DMOOP by dividing the range of each variable into one

thousand equally sized intervals. For each combination of decision variable values the

objective function values were calculated using the equation of the true POF, POF , for

the specific DMOOP. This process was followed for each nt-τt combination. The HV

was calculated according to [7], using the source code available at [61].

The effect of the changes in the environment on acc of the algorithm is quantified

by the third measure, namely stab (refer to Equation (4.21)), where a low stab value

indicates good performance.
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Algorithm Configuration

The following default configuration of DVEPSO was used for the experiments:

• Each swarm has 20 particles and a random swarm topology is used.

• The non-dominated solutions found so far is stored in an archive with size set to

100. If the archive is full, a solution from a crowded region in the found POF is

removed. The croweded region is determined by calculating the distance between

each solution in the archive and its nearest solution in the archive, and selecting

the solution(s) with the smallest distance value.

• Sentry particles is used for change detection (refer to lines 2 and 13 in Algo-

rithm 9). If a change has been detected, 30% of the particles of the swarm(s)

whose objective function changed is re-initialised (refer to line 4 in Algorithm 9).

The non-dominated solutions in the archive are re-evaluated and the solutions

that have become dominated are removed from the archive (refer to line 5 in Al-

gorithm 9). Each particle’s pbest is set to its current position and a new gbest is

determined.

Statistical Analysis

This section discusses the statistical analysis procedure performed on the obtained data.

For each function and for each nt-τt combination, a Kruskal-Wallis test was performed

over the obtained data to determine whether there is a statistical significant difference in

performance. For each performance measure the obtained data is the mean of the perfor-

mance measure values for each iteration just before a change occurred in the environment

over 30 runs. If this test indicated that there was a difference, pairwise Mann-Whitney

U tests were performed between the pairs of obtained data for all the guide update

approaches.

For each pair of guide update approaches, if the pairwise Mann-Whitney U test indi-

cated a statistically significant difference, a win was recorded for the winning algorithm

and a loss for the losing algorithm.

All statistical tests were performed for a confidence level of 95%. The null hypothesis

was that there is no statistical significant difference between the performance of the va-

rious guide update approaches. The alternative hypothesis was that there is a difference
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in mean performance.

9.4.2 Results

This section presents the results obtained by the various guide update approaches. The

results are discussed considering the various nt-τt combinations, with regards to three

performance measures and with regards to DMOOP Types I to III. General observations

are also highlighted. Tables 9.1 to 9.13 present the wins and losses. Only the tables

highlighting interesting trends are discussed and therefore presented in this section. The

other wins and losses tables are presented in Appendix D. Only statistical significant

values are included in the tables. The p-values obtained for the various Mann-Whitney U

tests, as well as the average performance measure values, are presented in Appendix D.

Results with regards to Performance Measures

Table 9.1 presents the wins and losses for each performance measure calculated over all

DMOOPs and all nt-τt combinations.

Table 9.1: Overall Wins and Losses for Various Performance Measures

PM Results pbest-gbest combination

s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

acc Wins 222 219 229 287 150 146 164 149 165 161 156 162 171 138 144 188
acc Losses 347 345 313 225 169 165 109 128 149 120 123 123 152 151 137 95
acc Diff -125 -126 -84 62 -19 -19 55 21 16 41 33 39 19 -13 7 93
acc Rank 15 16 14 2 12 12 3 7 9 4 6 5 8 11 10 1

stab Wins 297 246 300 267 61 50 39 62 72 32 59 28 64 35 60 34
stab Losses 111 110 69 96 88 132 126 113 84 113 102 126 84 136 89 127
stab Diff 186 136 231 171 -27 -82 -87 -51 -12 -81 -43 -98 -20 -101 -29 -93
stab Rank 2 4 1 3 7 12 13 10 5 11 9 15 6 16 8 14

NS Wins 267 396 348 449 67 226 243 132 81 236 141 241 62 233 135 251
NS Losses 303 205 212 171 384 148 131 190 380 133 165 158 377 141 182 141
NS Diff -36 191 136 278 -317 78 112 -58 -299 103 -24 83 -315 92 -47 110
NS Rank 11 2 3 1 16 9 4 13 14 6 10 8 15 7 12 5

With regards to acc, the following observations are made:

• The best and second best performance were obtained by pd-gr and ps-gr respec-

tively.

• All ps combinations, except ps-gr, performed poorly and ps-gn obtained the worst

 
 
 



Chapter 9. Introduction to Dynamic Vector Evaluated Particle Swarm Optimisation

Algorithm 205

rank. With regards to the gs combinations, ps-gs and pn-gs performed poorly.

However, pd-gs and pr-gs performed reasonably well.

• For the pn combinations, pn-gd and pn-gr performed well, but pn-gs and pn-gn per-

formed poorly. All gn combinations performed poorly, except pr-gn that performed

well.

• All the pd combinations performed average, except pd-gr that obtained the best

performance. For the gd combinations, pn-gd and pr-gd performed well. However,

ps-gd and pd-gd performed badly.

• All pr combinations performed reasonably well and all gr combinations performed

really well.

• With the exception of pr-gr, using the same update approach for both pbest and

gbest lead to a poor performance.

The following observations are made with regards to stab:

• The best performance was obtained by ps-gd and the worst by pd-gn.

• In contrast to their performance with regards to acc, all ps combinations performed

really well with regards to stab. Furthermore, all gs combinations performed well.

• Except pn-gs that performed well, all pn combinations performed average or poorly.

The gn combinations obtained a mixed performance with regards to stab. A good

performance was obtained by ps-gn, an average performance by pr-gn and a poor

performance by pn-gn and pd-gn.

• For the pd combinations, pd-gs and pd-gd performed well. However, pd-gn and pd-

gr performed really bad. All gd combinations performed well, except pn-gd that

performed poorly.

• In contrast with the pr combinations’ performance with regards to acc, pr-gs per-

formed well with regards to stab, pr-gn and pr-gd performed average and pr-gr

performed poorly. All gr combinations performed rather poorly, except ps-gr that

performed well.

• Using the same update approach for both pbest and gbest produced a really good

performance for ps-gs, an average performance for pd-gd and a poor performance

for pn-gn and pr-gr.
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With regards to NS, the following observations are made:

• The best performance was obtained by ps-gr and pn-gs performed the worst.

• All ps combinations produced good results, except ps-gs. However, all gs combina-

tions performed poorly.

• Two pn combinations performed poorly, namely pn-gs and pn-gr. However, pn-

gr performed well and pn-gn performed average. All gn combinations performed

average, except ps-gn that performed well.

• For the pd combinations, pd-gn and pd-gr performed well, while pd-gs and pd-gd

performed poorly. Mixed results were also obtained by gd. Good performance

was achieved with ps-gd and pn-gd. However, average and poor performance were

obtained by pr-gd and pd-gd respectively.

• All pr combinations performed average, except pr-gs that performed poorly. All gr

combinations performed well or average, except pn-gr that performed badly.

• Using the same update approach for both pbest and gbest lead to either average

(pn-gn and pr-gr) or poor performance (ps-gs and pd-gd).

The guide update approach of the original VEPSO algorithm, ps-gs, obtained the

second lowest rank with regards to acc, the second best rank with regards to stab and

the eleventh rank with regards to NS. Therefore, the guide update approaches that use

Pareto-dominance information outperformed this approach with regards to all perfor-

mance measures.

Another approach to measure the performance of a DMOO algorithm, is to analyse

the performance of the algorithm in various types of environments, such as a fast or slow

changing environment and a gradually or severely changing environment. Therefore, the

next section discusses the overall performance of the guide update approaches, measured

over all performance measures and all nt-τt combinations.

Results with regards to Various Frequencies and Severities of Change

The wins and losses calculated over all performance measures and DMOOPs for the

various nt-τt combinations are presented in Table 9.2.

For a fast changing environment (nt = 10 and τt = 10) the following observations are

made:
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• The best performance was obtained by ps-gr and pn-gs performed the worst.

• All ps combinations performed really well. Two gs combinations performed well,

namely ps-gs and pr-gs. The other two gs combinations performed poorly.

• A poor performance was obtained by all pn combinations, except pn-gd that per-

formed well. In contrast, a good performance was obtained by all gn combinations,

except pn-gn.

• All pr combinations performed average, except pr-gs that performed poorly. How-

ever, all gr combinations performed well, except pn-gr.

• An good or average performance was obtained by all pd combinations, except pd-gs

that obtained a poor performance. In addition, a good or average performance

was obtained by all gd combinations.

Table 9.2: Overall Wins and Losses for Various Frequencies and Severities of Change

nt τt ResultsResults pbest-gbest combination

s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

10 25 Diff 81 123 145 98 -102 -14 -17 -20 -86 -22 -5 -17 -98 -34 -25 -7
10 25 Rank 4 2 1 3 16 7 8 10 14 11 5 8 15 13 12 6

10 50 Wins 126 172 151 219 55 124 136 72 68 133 72 130 58 116 75 148
10 50 Losses 174 141 135 127 159 92 71 86 148 75 74 87 156 97 81 65
10 50 Diff -48 31 16 92 -104 32 65 -14 -80 58 -2 43 -98 19 -6 83
10 50 Rank 13 7 9 1 16 6 3 12 14 4 10 5 15 8 11 2

1 10 Wins 174 169 180 200 82 85 101 76 100 87 85 80 89 96 75 95
1 10 Losses 197 177 176 106 117 105 71 109 116 71 83 82 100 93 96 75
1 10 Diff -23 -8 4 94 -35 -20 30 -33 -16 16 2 -2 -11 3 -21 20
1 10 Rank 14 9 5 1 16 12 2 15 11 4 7 8 10 6 13 3

20 10 Wins 125 144 144 177 54 81 67 62 57 73 61 70 50 68 61 65
20 10 Losses 142 100 106 76 101 65 74 67 98 59 81 71 105 76 69 69
20 10 Diff -17 44 38 101 -47 16 -7 -5 -41 14 -20 -1 -55 -8 -8 -4
20 10 Rank 12 2 3 1 15 4 9 8 14 5 13 6 16 10 10 7

The following observations are made for a slower changing environment, i.e. with τt = 25

and τt = 50:

• The best performance for τt = 25 and τt = 50 were obtained by ps-gd and ps-gr

respectively. For both τt = 25 and τt = 50, the worst performance was obtained

by pn-gs.

• All ps combinations performed poorly, except ps-gs that performed well for τt = 25.

For both τt = 25 and τt = 50, all gs combinations performed poorly, except ps-gs
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that performed well for τt = 25.

• For τt = 25 all pn combinations performed average, except pn-gs that performed

poorly. However, with τt = 50, pn-gn and pn-gd performed well, while the other

two pn combinations performed poorly. For τt = 50 all gn combinations performed

well. However, for τt = 25, ps-gn and pn-gn performed well, while pd-gn and pr-gn

performed poorly.

• In both environments, all pr combinations performed well or average, except pr-gs

that performed poorly. All gr combinations performed well for both τt = 25 and

τt = 50, except pn-gr that performed average for τt = 25 and poorly for τt = 50.

• All pd combinations performed poorly for τt = 25, except pd-gr that performed well.

However, for τt = 50, pd-gr and pd-gn obtained a good performance, while the other

two pd combinations performed poorly. For the gd combinations, all combinations

performed well for τt = 25, except pd-gd. For τt = 50, all gd combinations obtained

an average performance.

For a severely changing environment (nt = 1), the following observations are made:

• The best rank was obtained by ps-gr and the worst rank by pn-gs.

• All ps combinations performed well, except ps-gs that performed poorly. In con-

trast, all gs combinations performed rather poorly.

• Only one pn combination, namely pn-gd performed well, while the other pn combi-

nations performed poorly. On the other hand, all gn combinations performed well,

except pn-gn that performed poorly.

• An average performance was obtained by pr-gs, and the other pr combinations

performed well. With the exception of pd-gr that performed really bad, all gr

combinations obtained a good rank.

• A good rank was obtained by pd-gn and pd-gr, an average rank by pd-gs and a poor

rank by pd-gd. All gd combinations performed well, except pd-gd that performed

badly.

The following observations are made for a gradually changing environment (nt = 20):

• The best performance was obtained by ps-gr, while pd-gs performed the worst.

• A really good performance was obtained by all ps combinations, except ps-gs that
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performed poorly. In contrast, a very bad rank was obtained by all gs combinations.

• All pn combinations performed well, except pn that obtained a very poor perfor-

mance. A good performance was also obtained by all gn combinations.

• Two pr combinations performed well, namely pr-gn and pr-gr. However, the other

two pr combinations performed badly. All gr combinations performed well.

• All pd combinations obtained an average performance, except pd-gs that obtained

a very bad performance. A good or average performance was obtained by all gd

combinations, except pr-gd that performed poorly.

The original VEPSO algorithm’s guide update approach, ps-gs, obtained the third

and fourth highest rank for nt = 10 and τt = 10, and nt = 10 and τt = 25 respectively.

However, ps-gs obtained rank thirteen, fourteen and twelve for nt = 10 and τt = 50,

nt = 1 and τt = 10, and nt = 20 and τt = 10 respectively. Therefore, ps-gs struggles in

slower changing environments, as well as environments that change either gradually or

more severely.

Results for Various Dynamic Multi-objective Optimisation Problem Types

The DMOOPs against which DVEPSO was tested against, are of various DMOOP Types.

With the different DMOOP Types, the POS or POF or both change over time. This

section discusses the performance of the various guide update approaches with regards

to the DMOOP Types I, II and III.

Type I DMOOPs

The wins and losses of the guide update approaches for Type I DMOOPs with regards

to the performance measures over all nt-τt combinations are presented in Table 9.3. The

Type I DMOOPs are DIMP2 and dMOP3.

The following observations are made with regards to acc:

• The best performance with regards to acc was obtained by pr-gs and the worst

performance by ps-gs.

• All ps combinations performed really poor. Two gs combinations performed well,

namely pr-gs and pd-gs. However, the other two gs combinations obtained a poor

rank.
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• Two pn combinations, pn-gd and pn-gr, performed well, while the other two pn

combinations performed poorly. A similar trend was observed with the gd combi-

nations, where pd-gn and pr-gn performed well and the other two gn combinations

obtained a poor performance.

• For the pr combinations, pr-gs and pr-gn performed really well and pr-gd and pr-gr

performed average.

• All pd combinations performed really well. In contrast, all gd combinations ob-

tained an average performance, except ps-gd that performed poorly.

Table 9.3: Overall Wins and Losses solving Type I DMOOPs for Various Performance Mea-

sures

PM Results pbest-gbest combination

s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

acc Wins 0 0 1 0 26 27 33 30 34 31 31 28 29 28 32 32
acc Losses 82 76 70 72 12 16 8 2 0 1 9 4 2 2 6 0
acc Diff -82 -76 -69 -72 14 11 25 28 34 30 22 24 27 26 26 32
acc Rank 16 15 13 14 11 12 8 4 1 3 10 9 5 6 6 2

stab Wins 1 0 0 0 10 8 13 10 16 8 9 9 8 11 10 14
stab Losses 32 36 19 15 1 5 2 1 0 0 9 2 0 1 4 0
stab Diff -31 -36 -19 -15 9 3 11 9 16 8 0 7 8 10 6 14
stab Rank 15 16 14 13 5 11 3 5 1 7 12 9 7 4 10 2

NS Wins 0 11 0 0 13 14 12 12 12 12 12 13 12 12 12 12
NS Losses 36 36 36 36 1 1 3 1 1 1 2 0 1 1 1 2
NS Diff -36 -25 -36 -36 12 13 9 11 11 11 10 13 11 11 11 10
NS Rank 14 13 14 14 3 1 12 4 4 4 10 1 4 4 4 10

all Wins 1 11 1 0 49 49 58 52 62 51 52 50 49 51 54 58
all Losses 150 148 125 123 14 22 13 4 1 2 20 6 3 4 11 2
all Diff -149 -137 -124 -123 35 27 45 48 61 49 32 44 46 47 43 56
all Rank 16 15 14 13 10 12 7 4 1 3 11 8 6 5 9 2

With regards to stab, the following observations are made:

• Similar to acc, the best rank was obtained by pr-gs. The worst rank was obtained

by ps-gn.

• Similar to their performance with regards to acc, all ps combinations performed

poorly. With regards to the gs combinations, all gs combinations obtained a good

performance, except ps-gs.

• All pn combinations performed well, except pn-gn that performed badly. Similar to
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acc, pd-gn and pr-gn performed well, while the other two gn combinations obtained

a poor performance.

• A good performance was obtained by all pr combinations, except pr-gd that per-

formed poorly. Similarly, all gr combinations performed well, except ps-gr that

obtained a poor rank.

• All pd combinations performed well, except pd-gd that performed average. The gd

combinations obtained mixed results. A good performance was obtained by pn-gd,

an average performance by pd-gd and a poor performance by pr-gd and ps-gd.

The following observations are made with regards to NS:

• The best performance was obtained by pr-gr.

• Once again, all ps combinations performed poorly. However, all gs combinations

performed well, except ps-gs that performed badly.

• Similar to acc and stab, all pn combinations obtained a good performance, except

pn-gn that performed poorly. The same trend was observed for gd combinations,

with all performing well, except ps-gn that performed badly.

• All pr combinations performed well, with the exception of pr-gd that performed

average. Two gr combinations, pr-gr and pn-gr, performed well, pd-gr performed

average and ps-gr performed poorly.

• With the exception of pd-gr that performed average, all pr combinations performed

well. In contrast, pd-gd performed well, pr-gd performed average and the other two

gd combinations performed badly.

Table 9.4 presents the wins and losses measured over all performance measures for the

various nt-τt combinations for Type I DMOOPs.

The following observations are made with regards to the obtained results:

• All ps combinations performed poorly for all nt-τt combinations, except ps-gs that

performed well for nt = 20 and τt = 10. For the gs combinations, three combina-

tions performed well with one performing poorly for nt = 10 and τt = 10, nt = 10

and τt = 25, and nt = 20 and τt = 10. For nt = 10 and τt = 50, and nt = 1 and

τt = 10, two gs combinations performed well, and two combinations performed

badly.
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Table 9.4: Overall Wins and Losses solving Type I DMOOPs for Various Frequencies

and Severities of Change

nt τt Results pbest-gbest combination

s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

10 10 Wins 0 0 0 0 22 22 21 20 24 23 22 22 22 23 27 33
10 10 Losses 63 80 68 63 0 0 2 3 0 0 0 0 0 0 2 0
10 10 Diff -63 -80 -68 -63 22 22 19 17 24 23 22 22 22 23 25 33
10 10 Rank 13 16 15 13 6 6 11 12 3 4 6 6 6 4 2 1

10 25 Wins 0 0 1 0 9 6 6 11 7 5 5 7 5 4 7 7
10 25 Losses 30 14 12 22 0 0 0 0 0 0 0 0 0 2 0 0
10 25 Diff -30 -14 -11 -22 9 6 6 11 7 5 5 7 5 2 7 7
10 25 Rank 16 14 13 15 2 7 7 1 3 9 9 3 9 12 3 3

10 50 Wins 0 11 0 0 6 5 7 6 6 6 11 8 7 7 6 6
10 50 Losses 21 24 13 13 2 7 1 1 1 1 2 2 1 1 1 1
10 50 Diff -21 -13 -13 -13 4 -2 6 5 5 5 9 6 6 6 5 5
10 50 Rank 16 13 13 13 11 12 2 6 6 6 1 2 2 2 6 6

1 10 Wins 0 0 0 0 9 10 24 11 24 12 14 10 15 11 10 11
1 10 Losses 36 30 25 25 12 15 2 0 0 1 1 4 0 1 8 1
1 10 Diff -36 -30 -25 -25 -3 -5 22 11 24 11 13 6 15 10 2 10
1 10 Rank 16 15 13 13 11 12 2 5 1 5 4 9 3 7 10 7

20 10 Wins 1 0 0 0 3 6 0 4 1 5 0 3 0 6 4 1
20 10 Losses 0 0 7 0 0 0 8 0 0 0 17 0 2 0 0 0
20 10 Diff 1 0 -7 0 3 6 -8 4 1 5 -17 3 -2 6 4 1
20 10 Rank 8 11 14 11 6 1 15 4 8 3 16 6 13 1 4 8

all all Wins 1 11 1 0 49 49 58 52 62 51 52 50 49 51 54 58
all all Losses 150 148 125 123 14 22 13 4 1 2 20 6 3 4 11 2
all all Diff -149 -137 -124 -123 35 27 45 48 61 49 32 44 46 47 43 56
all all Rank 16 15 14 13 10 12 7 4 1 3 11 8 6 5 9 2

• Two pn combinations performed well and two poorly for nt = 10 and τt = 10,

nt = 10 and τt = 50, and nt = 1 and τt = 10. All pn combinations performed well

for nt = 10 and τt = 25. For nt = 20 and τt = 10, three pn combinations performed

well and only one performed badly. The gn combinations also obtained mixed

results. For nt = 10 and τt = 10, and nt = 20 and τt = 10, three combinations

performed well and one performed badly. On the other hand, for the other nt-τt

combinations two gn combinations performed well and two poorly.

• All pr combinations performed well for all nt-τt combinations, except pr-gd that

performed poorly for nt = 20 and τt = 10. For all nt-τt combinations, three gr

combinations obtained a good performance and one combination obtained a poor

performance, except for nt = 10 and τt = 10 where two combinations performed
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badly.

• For the pd combinations, all performed well for nt = 10 and τt = 10, nt = 10 and

τt = 50, and nt = 1 and τt = 10. For nt = 10 and τt = 25, and nt = 20 and

τt = 10, all pd combinations, except ps-gd, obtained a good performance. Three of

the gd combinations obtained a good performance and one combination obtained

a poor performance for nt = 10 and τt = 25, and nt = 10 and τt = 50. For nt = 10

and τt = 10, and nt = 1 and τt = 10, two combinations performed well and two

performed poorly. Furthermore, for nt = 20 and τt = 10, only one gd combination

obtained a good performance and the other three obtained a bad performance.

Type II DMOOPs

The wins and losses for Type II DMOOPs with regards to the performance measures over

all nt-τt combinations are presented in Table 9.5. The Type II DMOOPs are FDA1Zhou,

FDA2, FDA3, FDA3Camara, dMOP2, dMOP2iso and dMOP2dec.

Table 9.5: Overall Wins and Losses solving Type II DMOOPs for Various Performance Mea-

sures

PM Results pbest-gbest combination

s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

acc Wins 62 95 87 144 47 76 73 47 56 82 53 81 51 70 45 86
acc Losses 181 144 155 73 64 48 30 68 58 32 58 35 64 48 62 35
acc Diff -119 -49 -68 71 -17 28 43 -21 -2 50 -5 46 -13 22 -17 51
acc Rank 16 14 15 1 11 6 5 13 8 3 9 4 10 7 11 2

stab Wins 100 109 111 92 46 33 15 46 50 16 46 13 49 16 45 16
stab Losses 52 37 34 68 30 71 69 43 27 59 36 70 28 80 28 71
stab Diff 48 72 77 24 16 -38 -54 3 23 -43 10 -57 21 -64 17 -55
stab Rank 3 2 1 4 8 11 13 10 5 12 9 15 6 16 7 14

NS Wins 52 83 67 126 32 109 141 43 45 107 47 139 25 107 49 146
NS Losses 147 110 125 81 132 45 28 73 127 44 72 38 135 56 75 30
NS Diff -95 -27 -58 45 -100 64 113 -30 -82 63 -25 101 -110 51 -26 116
NS Rank 14 10 12 7 15 4 2 11 13 5 8 3 16 6 9 1

all Wins 214 287 265 362 125 218 229 136 151 205 146 233 125 193 139 248
all Losses 380 291 314 222 226 164 127 184 212 135 166 143 227 184 165 136
all Diff -166 -4 -49 140 -101 54 102 -48 -61 70 -20 90 -102 9 -26 112
all Rank 16 8 12 1 14 6 3 11 13 5 9 4 15 7 10 2

The following are observed with regards to acc:

• The best performance was achieved by ps-gr and the worst by ps-gs.
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• All ps combinations performed poorly, except ps-gr that performed really well.

Two gs combinations, pr-gs and pd-gs performed average and the other two gs

combinations obtained a poor performance.

• Two pn combinations, pn-gs and pn-gr performed well and the other two performed

badly. All gn combinations performed well, except ps-gn that performed poorly.

• A good performance was obtained by all pr combinations. With the exception of

pn-gr that performed poorly, all gr combinations obtained a good performance.

• The pd combinations obtained mixed results. A good performance was obtained

by pd-gn and pd-gr, an average performance by pd-gs and a poor performance by

pd-gd. Two gs combinations obtained a good performance, namely pn-gd and pr-gd.

The other two gd combinations performed badly.

The following observations are made with regards to stab:

• The best rank was obtained by ps-gd and the worst by pd-gn.

• In contrast to acc, all ps combinations performed really well with regards to stab,

obtaining the top four ranks. Furthermore, all gs combinations obtained a good

performance.

• Two pn combinations, pn-gs and pn-gr obtained an average performance. The other

two pn combinations performed poorly. All gn combinations performed badly with

the exception of ps-gn that performed very good.

• For the pr combinations, pr-gs and pr-gd performed well, but the other two com-

binations performed badly. The gr combinations obtained mixed results, with

ps-gr performing well, pn-gr performing average and the other two gr combinations

performing poorly.

• Two pd combinations obtained a good performance, namely pd-gr and pd-gn. Fur-

thermore, an average performance was obtained by pd-gs and a poor performance

by pd-gd. In contrast, all gd combinations performed well, except ps-gd that per-

formed badly.

The following are observed with regards to NS:

• The best performance was achieved by pd-gr and the worst by pd-gs.

• Two ps combinations, ps-gr and ps-gn, performed well. The other two ps combina-
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tions performed poorly. A bad performance was also obtained by all gs combina-

tions.

• For the pn combinations, pn-gn and pn-gd performed well, but the other two pn

combinations performed badly. All gn combinations performed well or average.

• All pr combinations, except pr-gs, performed well. Similarly, all gr combinations

obtained a good performance, except pn-gr that performed poorly.

• For the pd combinations, all performed well, except pd-gs that performed badly.

Similarly, all gd combinations obtained a good rank, except ps-gd that obtained a

poor rank.

Table 9.6 presents the wins and losses measured over all performance measures for the

various nt-τt combinations for Type II DMOOPs.

Table 9.6: Overall Wins and Losses solving Type II DMOOPs for Various Frequencies and

Severities of Change

nt τt Results pbest-gbest combination

s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

10 10 Wins 58 64 67 89 31 35 46 32 28 38 26 46 36 40 32 48
10 10 Losses 85 76 67 41 45 48 30 38 38 39 40 32 38 33 39 27
10 10 Diff -27 -12 0 48 -14 -13 16 -6 -10 -1 -14 14 -2 7 -7 21
10 10 Rank 16 12 6 1 14 13 3 9 11 7 14 4 8 5 10 2

10 25 Wins 72 75 81 75 14 39 29 22 23 30 41 34 21 20 22 44
10 25 Losses 44 39 30 41 62 33 32 38 58 33 33 34 61 34 36 34
10 25 Diff 28 36 51 34 -48 6 -3 -16 -35 -3 8 0 -40 -14 -14 10
10 25 Rank 4 2 1 3 16 7 9 13 14 9 6 8 15 11 11 5

10 50 Wins 25 54 39 83 34 76 90 37 45 78 38 90 25 77 45 96
10 50 Losses 103 75 93 82 77 41 33 40 71 32 41 41 82 54 37 30
10 50 Diff -78 -21 -54 1 -43 35 57 -3 -26 46 -3 49 -57 23 8 66
10 50 Rank 16 11 14 8 13 5 2 9 12 4 9 3 15 6 7 1

1 10 Wins 42 65 57 67 24 35 32 26 27 31 26 30 22 34 24 32
1 10 Losses 78 64 77 38 21 27 18 46 28 16 31 21 22 33 31 23
1 10 Diff -36 1 -20 29 3 8 14 -20 -1 15 -5 9 0 1 -7 9
1 10 Rank 16 8 14 1 7 6 3 14 11 2 12 4 10 8 13 4

20 10 Wins 17 29 21 48 22 33 32 19 28 28 15 33 21 22 16 28
20 10 Losses 70 37 47 20 21 15 14 22 17 15 21 15 24 30 22 22
20 10 Diff -53 -8 -26 28 1 18 18 -3 11 13 -6 18 -3 -8 -6 6
20 10 Rank 16 13 15 1 8 2 2 9 6 5 11 2 9 13 11 7

all all Wins 214 287 265 362 125 218 229 136 151 205 146 233 125 193 139 248
all all Losses 380 291 314 222 226 164 127 184 212 135 166 143 227 184 165 136
all all Diff -166 -4 -49 140 -101 54 102 -48 -61 70 -20 90 -102 9 -26 112
all all Rank 16 8 12 1 14 6 3 11 13 5 9 4 15 7 10 2
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The following observations are made with regards to the obtained results:

• All ps combinations performed well for nt = 10 and τt = 25. For nt = 10 and

τt = 10, and nt = 1 and τt = 10, two ps combinations performed well and two

performed poorly. For the other two nt-τt combinations, only one ps combination

performed well and the other ps combinations performed badly. For nt = 20 and

τt = 10, all gs combinations performed well, except one that performed really bad.

For nt = 10 and τt = 10, nt = 10 and τt = 25, and nt = 1 and τt = 10, three

ps combinations performed poorly and only one performed well. Furthermore, for

nt = 20 and τt = 10, all gs combinations obtained a poor performance.

• For nt = 20 and τt = 10, all pn combinations obtained a good performance.

Three pn combinations performed well and one performed poorly for nt = 10 and

τt = 50, and nt = 1 and τt = 10. However, for nt = 10 and τt = 10, and

nt = 10 and τt = 25, two pn combinations obtained a good performance and the

other two a poor performance. All gn combinations performed well for nt = 1 and

τt = 10. For nt = 10 and τt = 25, and nt = 10 and τt = 50, all gn combinations

obtained a good performance, except one that performed badly. For the other two

nt-τt combinations, two gn combinations obtained good ranks and the other two

obtained poor ranks.

• All pr combinations, except one, obtained a good performance for nt = 10 and

τt = 25, nt = 10 and τt = 50, and nt = 20 and τt = 10. For nt = 10 and τt = 10,

and nt = 1 and τt = 10, two pr combinations performed well and two performed

badly. For the gr combinations, all performed well for nt = 10 and τt = 10, nt = 10

and τt = 50, and nt = 20 and τt = 10. Furthermore, for nt = 10 and τt = 25, and

nt = 1 and τt = 10, only one gr combination performed poorly and all the other

obtained a good performance.

• For nt = 10 and τt = 10, all pd combinations performed well or average. Three pd

combinations performed well with only one pd combination performing badly for

nt = 10 and τt = 25. For nt = 20 and τt = 10, two pd combinations obtained a

good performance and two obtained a poor performance. Only one pd combination

performed well for nt = 10 and τt = 25, with three pd combinations obtaining a

poor performance. For nt = 10 and τt = 10, nt = 10 and τt = 25, and nt =
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10 and τt = 50, all gd combinations performed well, except one that performed

poorly. However, three gd combinations obtained a poor performance and only

one performed well for nt = 1 and τt = 10, and nt = 20 and τt = 10.

Type III DMOOPs

The wins and losses of the guide update approaches for Type III DMOOPs with regards

to the performance measures over all nt-τt combinations are presented in Table 9.7. The

Type III DMOOPs are FDA2Camara, HE1, HE2, HE6, HE7 and HE9.

Table 9.7: Overall Wins and Losses solving Type III DMOOPs for Various Performance Mea-

sures

PM Results pbest-gbest combination

s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

acc Wins 160 124 141 143 77 43 58 72 75 48 72 53 91 40 67 70
acc Losses 84 125 88 80 93 101 71 58 91 87 56 84 86 101 69 60
acc Diff 76 -1 53 63 -16 -58 -13 14 -16 -39 16 -31 5 -61 -2 10
acc Rank 1 8 3 2 11 15 10 5 11 14 4 13 7 16 9 6

stab Wins 196 137 189 175 5 9 11 6 6 8 4 6 7 8 5 4
stab Losses 27 37 16 13 57 56 55 69 57 54 57 54 56 55 57 56
stab Diff 169 100 173 162 -52 -47 -44 -63 -51 -46 -53 -48 -49 -47 -52 -52
stab Rank 2 4 1 3 12 7 5 16 11 6 15 9 10 7 12 12

NS Wins 215 302 281 323 22 103 90 77 24 117 82 89 25 114 74 93
NS Losses 128 66 61 57 258 105 100 123 259 91 101 121 249 90 113 109
NS Diff 87 236 220 266 -236 -2 -10 -46 -235 26 -19 -32 -224 24 -39 -16
NS Rank 4 2 3 1 16 7 8 13 15 5 10 11 14 6 12 9

all Wins 571 563 611 641 104 155 159 155 105 173 158 148 123 162 146 167
all Losses 239 228 165 150 408 262 226 250 407 232 214 259 391 246 239 225
all Diff 332 335 446 491 -304 -107 -67 -95 -302 -59 -56 -111 -268 -84 -93 -58
all Rank 4 3 2 1 16 12 8 11 15 7 5 13 14 9 10 6

The following observations are made with regards to acc:

• The best performance was obtained by ps-gs and the worst performance by pd-gn.

• All ps combinations performed well. Two gs combinations, ps-gs and pd-gs, ob-

tained a good performance, while the other two gs combinations performed poorly.

• The pn combinations obtained mixed results, with pn-gr performing well, pn-gd

performing average and the other two pn combinations performing badly. All gn

combinations obtained a poor performance, except ps-gn that performed well.

• All pr combinations obtained a poor performance, except pr-gd that obtained a
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good performance. In contrast, all gr combinations performed well, except pr-gr

that performed poorly.

• A good performance was obtained by all pd combinations, except pd-gn that per-

formed badly. Furthermore, all gd combinations performed well or average.

With regards to stab, the following observations are made:

• A ps combination, ps-gd, obtained the best performance. The worst performance

was obtained by pn-gr.

• All ps combinations performed very well, obtaining the top four ranks. However,

only one gs combination, ps-gs performed well, while the others performed poorly.

• Two pn combinations obtained a good or average performance, namely pn-gr and

pn-gd. The other two pn combinations perfromed badly. In contrast, all gn combi-

nations obtained a good rank.

• For the pr combinations, pr-gd and pr-gr performed well, while the other two pr

combinations performed poorly. Similarly, ps-gr and pr-gr obtained a good perfor-

mance, while the other gr combinations obtained a poor performance.

• Only one pd combination, pd-gn, performed well. All other pd combinations per-

formed badly. For the gd combinations, ps-gd and pn-gd obtained a good perfor-

mance, but the other gd combinations obtained a poor performance.

The following observations are made with regards to NS:

• The best performance was obtained by ps-gr and the worst performance by pn-gs.

• Similar to stab, all ps combinations performed well, obtaining the top four ranks.

However, similar to stab, for gs only ps-gs obtained a good performance and the

other gs combinations performed poorly.

• Similar to stab, pn-gr and pn-gd performed well, while the other pn combinations

performed badly. Furthermore, also similar to stab, all gn combinations obtained

a good performance.

• Two pr combinations, pr-gn and pr-gd, obtained a good or average performance.

The other two pr combinations obtained a poor performance. For gr, ps-gr and

pd-gr performed well, while the other gr combinations performed badly.

• For pd, pd-gn and pd-gr performed well, while pd-gs and pd-gd obtained a poor
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performance. Two gd combinations, ps-gd and pn-gd obtained a good performance.

Furthermore, pr-gd obtained an average performance and pd-gd performed poorly.

Table 9.8 presents the wins and losses measured over all performance measures for the

various nt-τt combinations for Type III DMOOPs.

Table 9.8: Overall Wins and Losses solving Type III DMOOPs for Various Frequencies and

Severities of Change

nt τt Results pbest-gbest combination

s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

10 10 Wins 121 115 132 136 14 24 33 34 12 31 35 30 16 30 30 26
10 10 Losses 35 48 20 31 85 58 46 49 86 44 40 53 78 50 47 49
10 10 Diff 86 67 112 105 -71 -34 -13 -15 -74 -13 -5 -23 -62 -20 -17 -23
10 10 Rank 3 4 1 2 15 13 6 8 16 6 5 11 14 10 9 11

10 25 Wins 110 122 121 107 9 18 20 26 11 21 21 24 12 21 22 20
10 25 Losses 27 21 16 21 72 44 40 41 69 45 39 48 75 43 40 44
10 25 Diff 83 101 105 86 -63 -26 -20 -15 -58 -24 -18 -24 -63 -22 -18 -24
10 25 Rank 4 2 1 3 15 13 8 5 14 10 6 10 15 9 6 10

10 50 Wins 101 107 112 136 15 43 39 29 17 49 23 32 26 32 24 46
10 50 Losses 58 49 39 35 87 47 37 52 83 45 41 45 81 48 50 34
10 50 Diff 43 58 73 101 -72 -4 2 -23 -66 4 -18 -13 -55 -16 -26 12
10 50 Rank 4 3 2 1 16 8 7 12 15 6 11 9 14 10 13 5

1 10 Wins 132 104 123 133 49 40 45 39 49 44 45 40 52 51 41 52
1 10 Losses 83 83 74 43 84 63 51 63 88 54 51 57 78 59 57 51
1 10 Diff 49 21 49 90 -35 -23 -6 -24 -39 -10 -6 -17 -26 -8 -16 1
1 10 Rank 2 4 2 1 15 12 6 13 16 9 6 11 14 8 10 5

20 10 Wins 107 115 123 129 17 30 22 27 16 28 34 22 17 28 29 23
20 10 Losses 36 27 16 20 80 50 52 45 81 44 43 56 79 46 45 47
20 10 Diff 71 88 107 109 -63 -20 -30 -18 -65 -16 -9 -34 -62 -18 -16 -24
20 10 Rank 4 3 2 1 15 10 12 8 16 6 5 13 14 8 6 11

all all Wins 571 563 611 641 104 155 159 155 105 173 158 148 123 162 146 167
all all Losses 239 228 165 150 408 262 226 250 407 232 214 259 391 246 239 225
all all Diff 332 335 446 491 -304 -107 -67 -95 -302 -59 -56 -111 -268 -84 -93 -58
all all Rank 4 3 2 1 16 12 8 11 15 7 5 13 14 9 10 6

The following are observed with regards to the obtained results:

• All ps combinations performed really well, obtaining the top four ranks for all nt-τt

combinations. For gs mixed results were obtained. For nt = 1 and τt = 10, two gs

combinations obtained a good performance, while the other two performed badly.

For the other nt-τt combinations, only one gs combination performed well, while

the other three gs combinations obtained a poor performance.
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• For nt = 1 and τt = 10, only one pn combination obtained a good performance,

while the other pn combinations performed poorly. Two pn combinations performed

well for the other nt-τt combinations, while the other two pn combinations obtained

a bad rank. For nt = 10 and τt = 50, and nt = 1 and τt = 10, all gn combinations

obtained a good or average performance. Three gn combinations performed well

and one performed poorly for all the other nt-τt combinations.

• Three pr combinations obtained a good performance and one, pr-gs, a poor per-

formance for nt = 10 and τt = 25, and nt = 1 and τt = 10. For the other nt-τt

combinations, two pr combinations produced good ranks and two produced poor

ranks. All gr combinations performed good or average for nt = 10 and τt = 25.

For nt = 10 and τt = 10, two gr combinations obtained a good performance and

two obtained a poor performance. Three gr combinations obtained good ranks and

one obtained a poor rank for all the other nt-τt combinations.

• A similar trend to pr was observed for pd. For nt = 10 and τt = 10, nt = 10 and

τt = 25, and nt = 1 and τt = 10, all gd combinations performed good or average.

Three gd combinations obtained a good rank and one obtained a poor rank for

nt = 20 and τt = 10. Furthermore, for nt = 10 and τt = 50, two gd combinations

performed well, and two performed badly.

General Observations with regards to DMOOP Types

It is interesting to note the difference in performance obtained by the ps combinations

for the three types of DMOOPs. It should be noted that although the ps combinations

ranked poorly for the Type I DMOOPs and three ps combinations ranked poorly for the

Type II DMOOPs, it does not indicate that they didn’t successfully track the changing

POF. It only indicates that the other guide-update approaches’ performance measure

values were statistically better, resulting in more wins. This is indicated in Figure 9.2.

Figure 9.2 illustrates the approximated POF of the best performing ps combination

(ps-gr) and the best performing guide update approach for the Type I DMOOPs (pr-

gs). When solving DIMP2, both guide update approaches successfully found the POF.

However, over the various runs, ps-gr did find more outlier solutions that were further

away from the true POF than pr-gs. Therefore, pr-gs obtained a better rank. For

dMOP3, both guide update approaches found solutions close to the true POF. Even
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though pr-gs found more outlier solutions than ps-gr in some of the runs, pr-gs found

much more solutions with a better spread than ps-gr. Therefore, pr-gs obtained better

perfomance measure values.
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Figure 9.2: POF ∗ of ps-gr on the right and pr-gs on the left for nt = 10 and τt = 10

The next section discusses the overall performance of the various guide update ap-

proaches. This overall perfromance is measured over all performance measures and all

nt-τt combinations.

Overall Performance

The overall wins and losses obtained by the various guide update approaches are pre-

sented in Table 9.9.
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With regards to the overall performance of the guide update approaches, the following

observations are made:

• The best overall rank was obtained by ps-gr and the worst by pn-gs.

• All ps combinations obtained a good rank. However, all gs combinations, except

ps-gs, ranked the worst.

• Two pn combinations, namely pn-gd and pn-gn, obtained a good and average rank

respectively. The other two pn combinations obtained a bad rank. On the other

hand, an average or good performance was obtained by all gn combinations.

• Two pd combinations performed well, namely pd-gn and pd-gr. The other two pd

combinations performed poorly. Similarly, two gd combinations, namely ps-gd and

pn-gd, performed well, while the other two performed poorly.

• For the pr combinations, pr-gn and pr-gr performed average and the other two pr

combinations obtained a poor rank. In contrast, all gr combinations, except pn-gr,

performed well.

Table 9.9: Overall Wins and Losses by the various guide update approaches

Results pbest-gbest combination

s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

Wins 786 861 877 1003 278 422 446 343 318 429 356 431 297 406 339 473
Losses 761 660 594 492 641 445 366 431 613 366 390 407 613 428 408 363
Diff 25 201 283 511 -363 -23 80 -88 -295 63 -34 24 -316 -22 -69 110
Rank 7 3 2 1 16 10 5 13 14 6 11 8 15 9 12 4

The best performing guide update approach, ps-gr uses no Pareto-dominance informa-

tion for the pbest update. This enables the swarm to focus on optimising its specific ob-

jective, without taking the other objectives into account. However, for the gbest update

Pareto-dominance information is taken into account. When a pbest is non-dominated

with regards to the gbest, either the pbest or the current gbest is randomly selected as

the new gbest. Therefore, Pareto-dominance is not required for a gbest update.

POFs found by DVEPSO using the ps-gr guide update approach during a single

run for DIMP2 are illustrated in Figure 9.3. In Figure 9.3, POFs found for nt = 10

and τt = 10 (fast changing environment) are shown on the left and for nt = 1 and

τt = 10 (severely changing environment) are shown on the right. The figures indicate
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that DVEPSO successfully tracked the changing POF of DIMP2 in both a fast changing

and severely changing environment.
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Figure 9.3: POF ∗ for DIMP2 of DVEPSO using ps-gr for nt = 10 and τt = 10 on the left

and for nt = 1 and τt = 10 on the right

Figures 9.4 and 9.5 illustrate POFs found by DVEPSO using the ps-gr guide update

approach during a single run for the FDA DMOOPs. Figures 9.4(a) and 9.4(b) indicate

that DVEPSO successfully tracked the changing POF over time for FDA1Zhou in both

a fast changing and severely changing environment. For FDA2, DVEPSO struggled to

track the changing POF for every change in the environment, but did find a POF ∗ close

to POF for many time steps, even though the spread of solutions were not that good.

This is illustrated in Figures 9.4(c) and 9.4(d). However, for FDA2Camara, DVEPSO

successfully tracked the changing POF ∗ over time with a good spread of solutions as

indicated in Figures 9.4(e) and 9.4(f). From Figure 9.5 it can be seen that DVEPSO

successfully tracked the changing POF , finding a good spread of solutions for both

FDA3 and FDA3Camara with a fast changing environment. However, with a severely

changing environment, DVEPSO did not find as good a spread of solutions as in the

case with a fast changing environment.

POFs found by DVEPSO using the ps-gr guide update approach during a single run

for the dMOP DMOOPs are illustrated in Figures 9.6 and 9.7. When solving dMOP2,

DVEPSO successfully tracked the changing POF over time for both a fast changing,
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Figure 9.4: POF ∗ for FDA1 and FDA2 functions of DVEPSO using ps-gr for nt = 10 and

τt = 10 on the left and for nt = 1 and τt = 10 on the right
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Figure 9.5: POF ∗ for FDA3 functions of DVEPSO using ps-gr for nt = 10 and τt = 10 on

the left and for nt = 1 and τt = 10 on the right

and severely changing environment, as illustrated in Figure 9.6. However, DVEPSO

also found many outlier solutions. Figure 9.6 indicates the outlier solutions found by

DVEPSO while solving the dMOP2 functions. The POF ∗ found by DVEPSO for the

dMOP2 functions without the outliers are shown in Figure 9.7. When dMOP2 had a

deceptive POF, DVEPSO found outlier solutions that were very far away from POF as

can be seen in Figure 9.6(h). These outlier solutions caused large reference vectors being

used to calculate the HV values and therefore very large acc values were reported (refer

to Appendix D).

When solving dMOP3 with a fast changing environment, DVEPSO found a good
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spread of solutions in the area of POF . However, with a severely changing environment,

DVEPSO found a reasonable spread of solutions reasonably close to POF . This is

illustrated in Figures 9.6(a) and 9.6(b).

POFs found by DVEPSO using the ps-gr guide update approach during a single run

for the HE DMOOPs are illustrated in Figures 9.8 and 9.9. Figure 9.8 indicates that

DVEPSO struggled to converge to the discontinuous POFs of HE1 and HE2. When

solving HE6 and HE7, DVEPSO found a POF ∗ that was close to POF . However,

DVEPSO also found many solutions further away from POF as can be seen in Figure 9.9.

When solving HE9, DVEPSO only found a few solutions and struggled to converge to

the POF , as illustrated in Figures 9.9(e) and 9.9(f).

The original VEPSO algorithm’s guide update approach, ps-gs, obtained the seventh

overall rank. The other three ps combinations obtained the top three overall ranks.

Therefore, the results indicate that using Pareto-dominance information to update the

guides, enhances the performance of DVEPSO.

The next section discusses general observations with regards to the performance of

the various guide update approaches solving the various DMOOPs.

General Observations

It is interesting to note that ps-gr, which ranked the best of all guide update approaches,

performed much better solving FDA2 than the modified FDA2 function, FDA2Camara.

The FDA2 DMOOP was adapted because the POF of the original DMOOP changes

from convex to concave for only specific decision variable values (refer to Section 3.2.1).

However, it should be noted that the results only indicate that relative to the other guide

update approaches, ps-gr, performed better for FDA2 than for FDA2Camara. Table 9.10

presents the wins and losses of the various guide update approaches for FDA2. When

solving FDA2, ps-gr obtained the best performance with regards to acc over all nt-τt, the

tenth rank with regards to stab and the seventh rank with regards to NS. This lead to

an overall rank of four.
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Figure 9.6: POF ∗ for dMOP functions of DVEPSO using ps-gr for nt = 10 and τt = 10 on

the left and for nt = 1 and τt = 10 on the right
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Figure 9.7: Zoomed in areas of POF ∗ for dMOP functions of DVEPSO using ps-gr for nt = 10

and τt = 10 on the left and for nt = 1 and τt = 10 on the right

 
 
 



Chapter 9. Introduction to Dynamic Vector Evaluated Particle Swarm Optimisation

Algorithm 229

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

f2

f1

(a) POF ∗ for HE1

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

f2

f1

(b) POF ∗ for HE1

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

f2

f1

(c) POF ∗ for HE2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

f2

f1

(d) POF ∗ for HE2

Figure 9.8: POF ∗ for HE1 and HE2 of DVEPSO using ps-gr for nt = 10 and τt = 10 on the

left and for nt = 1 and τt = 10 on the right

Table 9.10: Wins and Losses of FDA2

nt τt PM Results pbest-gbest combination
s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

10 10 acc Wins 0 0 1 12 4 9 9 3 3 9 3 12 3 10 3 12
10 10 acc Losses 14 13 13 0 7 3 1 7 7 3 8 0 7 3 7 0
10 10 acc Diff -14 -13 -12 12 -3 6 8 -4 -4 6 -5 12 -4 7 -4 12
10 10 acc Rank 16 15 14 1 8 6 4 9 9 6 13 1 9 5 9 1

10 25 acc Wins 1 1 0 14 3 8 8 3 4 9 4 8 3 5 3 9
10 25 acc Losses 13 13 15 0 9 1 1 6 6 1 2 1 7 2 6 0
10 25 acc Diff -12 -12 -15 14 -6 7 7 -3 -2 8 2 7 -4 3 -3 9
10 25 acc Rank 14 14 16 1 13 4 4 10 9 3 8 4 12 7 10 2
10 50 acc Wins 1 1 0 10 2 10 13 2 2 10 2 13 2 9 2 14
10 50 acc Losses 13 7 15 3 7 3 0 7 7 3 7 1 7 6 7 0

Continued on next page
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nt τt PM Results pbest-gbest combination
s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

10 50 acc Diff -12 -6 -15 7 -5 7 13 -5 -5 7 -5 12 -5 3 -5 14
10 50 acc Rank 15 14 16 4 8 4 2 8 8 4 8 3 8 7 8 1

1 10 acc Wins 2 0 1 15 6 10 5 5 5 12 4 5 5 12 3 5
1 10 acc Losses 13 15 14 0 3 1 3 5 4 1 11 4 4 1 12 4
1 10 acc Diff -11 -15 -13 15 3 9 2 0 1 11 -7 1 1 11 -9 1
1 10 acc Rank 14 16 15 1 5 4 6 11 7 2 12 7 7 2 13 7
20 10 acc Wins 0 2 0 12 4 10 9 4 4 9 4 12 3 9 4 10
20 10 acc Losses 14 13 14 0 7 2 0 7 7 2 7 0 12 3 7 1
20 10 acc Diff -14 -11 -14 12 -3 8 9 -3 -3 7 -3 12 -9 6 -3 9
20 10 acc Rank 15 14 15 1 8 5 3 8 8 6 8 1 13 7 8 3
all all acc Wins 4 4 2 63 19 47 44 17 18 49 17 50 16 45 15 50
all all acc Losses 67 61 71 3 33 10 5 32 31 10 35 6 37 15 39 5
all all acc Diff -63 -57 -69 60 -14 37 39 -15 -13 39 -18 44 -21 30 -24 45
all all acc Rank 15 14 16 1 9 6 4 10 8 4 11 3 12 7 13 2
10 10 stab Wins 14 7 13 6 6 0 0 6 6 0 6 0 6 0 6 0
10 10 stab Losses 0 1 0 2 2 10 10 2 2 10 2 10 3 10 2 10
10 10 stab Diff 14 6 13 4 4 -10 -10 4 4 -10 4 -10 3 -10 4 -10
10 10 stab Rank 1 3 2 4 4 11 11 4 4 11 4 11 10 11 4 11
10 25 stab Wins 7 7 9 0 7 0 0 7 6 0 7 0 7 0 7 0
10 25 stab Losses 0 0 0 9 0 9 9 0 1 8 0 9 0 9 1 9
10 25 stab Diff 7 7 9 -9 7 -9 -9 7 5 -8 7 -9 7 -9 6 -9
10 25 stab Rank 2 2 1 11 2 11 11 2 9 10 2 11 2 11 8 11
10 50 stab Wins 7 7 7 0 7 0 0 7 7 0 7 0 7 4 7 0
10 50 stab Losses 0 0 0 9 0 9 10 0 0 10 0 10 0 9 0 10
10 50 stab Diff 7 7 7 -9 7 -9 -10 7 7 -10 7 -10 7 -5 7 -10
10 50 stab Rank 1 1 1 11 1 11 13 1 1 13 1 13 1 10 1 13
1 10 stab Wins 2 4 2 2 2 0 0 2 1 2 1 0 2 0 4 0
1 10 stab Losses 1 0 1 0 0 10 1 0 0 0 0 0 0 10 0 1
1 10 stab Diff 1 4 1 2 2 -10 -1 2 1 2 1 0 2 -10 4 -1
1 10 stab Rank 8 1 8 3 3 15 13 3 8 3 8 12 3 15 1 13
20 10 stab Wins 14 8 13 3 7 1 0 7 6 1 4 0 7 0 7 0
20 10 stab Losses 0 1 0 7 2 8 12 2 2 8 3 10 2 9 2 10
20 10 stab Diff 14 7 13 -4 5 -7 -12 5 4 -7 1 -10 5 -9 5 -10
20 10 stab Rank 1 3 2 10 4 11 16 4 8 11 9 14 4 13 4 14
all all stab Wins 44 33 44 11 29 1 0 29 26 3 25 0 29 4 31 0
all all stab Losses 1 2 1 27 4 46 42 4 5 36 5 39 5 47 5 40
all all stab Diff 43 31 43 -16 25 -45 -42 25 21 -33 20 -39 24 -43 26 -40
all all stab Rank 1 3 1 10 5 16 14 5 8 11 9 12 7 15 4 13
10 10 NS Wins 0 1 1 3 3 10 13 3 3 10 4 13 3 10 3 13
10 10 NS Losses 14 14 13 7 6 3 0 6 6 3 6 0 6 3 6 0
10 10 NS Diff -14 -13 -12 -4 -3 7 13 -3 -3 7 -2 13 -3 7 -3 13
10 10 NS Rank 16 15 14 13 8 4 1 8 8 4 7 1 8 4 8 1

10 25 NS Wins 1 0 0 7 0 2 9 0 0 1 0 9 0 1 0 9
10 25 NS Losses 5 4 7 0 5 0 0 4 3 0 3 0 4 0 4 0
10 25 NS Diff -4 -4 -7 7 -5 2 9 -4 -3 1 -3 9 -4 1 -4 9
10 25 NS Rank 10 10 16 4 15 5 1 10 8 6 8 1 10 6 10 1

10 50 NS Wins 0 0 0 10 2 10 13 0 4 10 0 13 0 9 2 14
10 50 NS Losses 8 7 10 3 7 3 0 7 7 3 10 1 8 6 7 0
10 50 NS Diff -8 -7 -10 7 -5 7 13 -7 -3 7 -10 12 -8 3 -5 14
10 50 NS Rank 13 11 15 4 9 4 2 11 8 4 15 3 13 7 9 1

Continued on next page
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nt τt PM Results pbest-gbest combination
s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

1 10 NS Wins 1 0 1 2 4 10 11 4 4 5 4 10 4 9 4 11
1 10 NS Losses 13 15 12 12 5 0 0 5 4 2 5 0 5 0 6 0
1 10 NS Diff -12 -15 -11 -10 -1 10 11 -1 0 3 -1 10 -1 9 -2 11
1 10 NS Rank 15 16 14 13 8 3 1 8 7 6 8 3 8 5 12 1

20 10 NS Wins 0 0 0 6 1 8 13 4 3 8 3 13 2 10 2 13
20 10 NS Losses 13 10 12 3 7 4 0 6 4 3 6 0 7 3 8 0
20 10 NS Diff -13 -10 -12 3 -6 4 13 -2 -1 5 -3 13 -5 7 -6 13
20 10 NS Rank 16 14 15 7 12 6 1 9 8 5 10 1 11 4 12 1

all all NS Wins 2 1 2 28 10 40 59 11 14 34 11 58 9 39 11 60
all all NS Losses 53 50 54 25 30 10 0 28 24 11 30 1 30 12 31 0
all all NS Diff -51 -49 -52 3 -20 30 59 -17 -10 23 -19 57 -21 27 -20 60
all all NS Rank 15 14 16 7 11 4 2 9 8 6 10 3 13 5 11 1

10 10 all Wins 14 8 15 21 13 19 22 12 12 19 13 25 12 20 12 25
10 10 all Losses 28 28 26 9 15 16 11 15 15 16 16 10 16 16 15 10
10 10 all Diff -14 -20 -11 12 -2 3 11 -3 -3 3 -3 15 -4 4 -3 15
10 10 all Rank 15 16 14 3 8 6 4 9 9 6 9 1 13 5 9 1

10 25 all Wins 9 8 9 21 10 10 17 10 10 10 11 17 10 6 10 18
10 25 all Losses 18 17 22 9 14 10 10 10 10 9 5 10 11 11 11 9
10 25 all Diff -9 -9 -13 12 -4 0 7 0 0 1 6 7 -1 -5 -1 9
10 25 all Rank 14 14 16 1 12 7 3 7 7 6 5 3 10 13 10 2
10 50 all Wins 8 8 7 20 11 20 26 9 13 20 9 26 9 22 11 28
10 50 all Losses 21 14 25 15 14 15 10 14 14 16 17 12 15 21 14 10
10 50 all Diff -13 -6 -18 5 -3 5 16 -5 -1 4 -8 14 -6 1 -3 18
10 50 all Rank 15 12 16 4 9 4 2 11 8 6 14 3 12 7 9 1

1 10 all Wins 5 4 4 19 12 20 16 11 10 19 9 15 11 21 11 16
1 10 all Losses 27 30 27 12 8 11 4 10 8 3 16 4 9 11 18 5
1 10 all Diff -22 -26 -23 7 4 9 12 1 2 16 -7 11 2 10 -7 11
1 10 all Rank 14 16 15 7 8 6 2 11 9 1 12 3 9 5 12 3
20 10 all Wins 14 10 13 21 12 19 22 15 13 18 11 25 12 19 13 23
20 10 all Losses 27 24 26 10 16 14 12 15 13 13 16 10 21 15 17 11
20 10 all Diff -13 -14 -13 11 -4 5 10 0 0 5 -5 15 -9 4 -4 12
20 10 all Rank 14 16 14 3 10 5 4 8 8 5 12 1 13 7 10 2
all all all Wins 50 38 48 102 58 88 103 57 58 86 53 108 54 88 57 110
all all all Losses 121 113 126 55 67 66 47 64 60 57 70 46 72 74 75 45
all all all Diff -71 -75 -78 47 -9 22 56 -7 -2 29 -17 62 -18 14 -18 65
all all all Rank 14 15 16 4 10 6 3 9 8 5 11 2 12 7 12 1

The wins and losses of the various guide update approaches for FDA2Camara are

presented in Table 9.11. When solving FDA2Camara, there was no statistical significant

difference between the performance of the various guide update approaches with regards

to acc for nt = 10 and τt = 10, nt = 10 and nt = 25, nt = 10 and τt = 50, and nt = 20 and

τt = 10. With regards to stab, there was no statistical significant difference for nt = 10
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Figure 9.9: POF ∗ of HE6, HE7 and HE9 DVEPSO using ps-gr for nt = 10 and τt = 10 on

the left and for nt = 1 and τt = 10 on the right
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and τt = 10, and nt = 10 and nt = 25. For nt = 10 and τt = 25, and nt = 20 and τt = 10,

there was no statistical significant difference between the performance of the various guide

update approaches with regards to NS. Over all performance measures for nt = 10 and

τt = 25, there was no statistical significant difference between the performance of the

various guide update approaches. Therefore, even though ps-gr performed quite poor

for FDA2Camara, there was no statistical significant difference between the performance

of the various guide update approaches when solving FDA2Camara. A similar trend was

observed for FDA3 and FDA3Camara.

Table 9.11: Wins and Losses of FDA2Camara

nt τt PM Results pbest-gbest combination
s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

10 10 acc Wins 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
10 10 acc Losses 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10 acc Diff 0 -13 0 1 1 1 1 1 1 1 1 1 1 1 1 1
10 10 acc Rank 14 16 14 1 1 1 1 1 1 1 1 1 1 1 1 1

1 10 acc Wins 0 0 0 2 3 3 3 3 3 3 3 3 3 3 3 3
1 10 acc Losses 13 13 12 0 0 0 0 0 0 0 0 0 0 0 0 0
1 10 acc Diff -13 -13 -12 2 3 3 3 3 3 3 3 3 3 3 3 3
1 10 acc Rank 15 15 14 13 1 1 1 1 1 1 1 1 1 1 1 1

all all acc Wins 0 0 0 3 4 4 4 4 4 4 4 4 4 4 4 4
all all acc Losses 13 26 12 0 0 0 0 0 0 0 0 0 0 0 0 0
all all acc Diff -13 -26 -12 3 4 4 4 4 4 4 4 4 4 4 4 4
all all acc Rank 15 16 14 13 1 1 1 1 1 1 1 1 1 1 1 1

10 10 stab Wins 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10 stab Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10 stab Diff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10 stab Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 25 stab Wins 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 25 stab Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 25 stab Diff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 25 stab Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 50 stab Wins 0 0 1 0 1 4 4 3 3 1 0 0 3 1 0 0
10 50 stab Losses 9 5 0 5 0 0 0 0 0 0 2 0 0 0 0 0
10 50 stab Diff -9 -5 1 -5 1 4 4 3 3 1 -2 0 3 1 0 0
10 50 stab Rank 16 14 6 14 6 1 1 3 3 6 13 10 3 6 10 10
1 10 stab Wins 0 0 0 2 3 3 3 3 3 3 3 3 3 3 3 3
1 10 stab Losses 13 13 12 0 0 0 0 0 0 0 0 0 0 0 0 0
1 10 stab Diff -13 -13 -12 2 3 3 3 3 3 3 3 3 3 3 3 3
1 10 stab Rank 15 15 14 13 1 1 1 1 1 1 1 1 1 1 1 1

20 10 stab Wins 0 0 0 0 0 1 0 0 0 2 0 0 0 2 1 0
20 10 stab Losses 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 10 stab Diff -4 -2 0 0 0 1 0 0 0 2 0 0 0 2 1 0
20 10 stab Rank 16 15 5 5 5 3 5 5 5 1 5 5 5 1 3 5
all all stab Wins 0 0 1 2 4 8 7 6 6 6 3 3 6 6 4 3
all all stab Losses 26 20 12 5 0 0 0 0 0 0 2 0 0 0 0 0

Continued on next page
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nt τt PM Results pbest-gbest combination
s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

all all stab Diff -26 -20 -11 -3 4 8 7 6 6 6 1 3 6 6 4 3
all all stab Rank 16 15 14 13 8 1 2 3 3 3 12 10 3 3 8 10
10 10 NS Wins 0 0 0 0 2 1 2 2 2 2 0 1 2 1 2 2
10 10 NS Losses 0 8 0 11 0 0 0 0 0 0 0 0 0 0 0 0
10 10 NS Diff 0 -8 0 -11 2 1 2 2 2 2 0 1 2 1 2 2
10 10 NS Rank 12 15 12 16 1 9 1 1 1 1 12 9 1 9 1 1

10 50 NS Wins 0 0 0 10 2 10 13 0 4 10 0 13 0 9 2 14
10 50 NS Losses 8 7 10 3 7 3 0 7 7 3 10 1 8 6 7 0
10 50 NS Diff -8 -7 -10 7 -5 7 13 -7 -3 7 -10 12 -8 3 -5 14
10 50 NS Rank 13 11 15 4 9 4 2 11 8 4 15 3 13 7 9 1

1 10 NS Wins 0 2 0 0 4 4 4 4 4 4 4 4 4 4 4 4
1 10 NS Losses 12 12 13 13 0 0 0 0 0 0 0 0 0 0 0 0
1 10 NS Diff -12 -10 -13 -13 4 4 4 4 4 4 4 4 4 4 4 4
1 10 NS Rank 14 13 15 15 1 1 1 1 1 1 1 1 1 1 1 1

all all NS Wins 0 2 0 10 8 15 19 6 10 16 4 18 6 14 8 20
all all NS Losses 20 27 23 27 7 3 0 7 7 3 10 1 8 6 7 0
all all NS Diff -20 -25 -23 -17 1 12 19 -1 3 13 -6 17 -2 8 1 20
all all NS Rank 14 16 15 13 8 5 2 10 7 4 12 3 11 6 8 1

10 10 all Wins 0 0 0 1 3 2 3 3 3 3 1 2 3 2 3 3
10 10 all Losses 0 21 0 11 0 0 0 0 0 0 0 0 0 0 0 0
10 10 all Diff 0 -21 0 -10 3 2 3 3 3 3 1 2 3 2 3 3
10 10 all Rank 13 16 13 15 1 9 1 1 1 1 12 9 1 9 1 1

10 50 all Wins 0 0 1 10 3 14 17 3 7 11 0 13 3 10 2 14
10 50 all Losses 17 12 10 8 7 3 0 7 7 3 12 1 8 6 7 0
10 50 all Diff -17 -12 -9 2 -4 11 17 -4 0 8 -12 12 -5 4 -5 14
10 50 all Rank 16 14 13 7 9 4 1 9 8 5 14 3 11 6 11 2
1 10 all Wins 0 2 0 4 10 10 10 10 10 10 10 10 10 10 10 10
1 10 all Losses 38 38 37 13 0 0 0 0 0 0 0 0 0 0 0 0
1 10 all Diff -38 -36 -37 -9 10 10 10 10 10 10 10 10 10 10 10 10
1 10 all Rank 16 14 15 13 1 1 1 1 1 1 1 1 1 1 1 1

20 10 all Wins 0 0 0 0 0 1 0 0 0 2 0 0 0 2 1 0
20 10 all Losses 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 10 all Diff -4 -2 0 0 0 1 0 0 0 2 0 0 0 2 1 0
20 10 all Rank 16 15 5 5 5 3 5 5 5 1 5 5 5 1 3 5
all all all Wins 0 2 1 15 16 27 30 16 20 26 11 25 16 24 16 27
all all all Losses 59 73 47 32 7 3 0 7 7 3 12 1 8 6 7 0
all all all Diff -59 -71 -46 -17 9 24 30 9 13 23 -1 24 8 18 9 27
all all all Rank 15 16 14 13 8 3 1 8 7 5 12 3 11 6 8 2

The average performance measure values at each iteration just before a change in

the environment occurred obtained by DVEPSO using either ps-gs or ps-gr guide update

approaches, are illustrated in Figures 9.10 to 9.12. In Figures 9.10 to 9.12 the values

obtained by ps-gs and ps-gr are illustrated with a magenta triangle and blue circle re-
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spectively. The wins and losses of Table 9.11 are calculated based on these performance

measure values. Similar figures for the other DMOOPs can be found in Appendix D.

Figure 9.10 shows that ps-gr outperformed ps-gs with regards to acc for all nt-τt

combinations. This is confirmed in Table 9.11 where ps-gr obtained the highest rank of

all guide update approaches for the wins and losses with regards to acc.

Figure 9.11 indicates that ps-gs outperformed ps-gr with regards to stab for all nt-τt

combinations. Table 9.11 confirms this observation, since ps-gs obtained the highest rank

of all guide update approaches for the wins and losses with regards to stab.

Figure 9.12 shows that ps-gr outperformed ps-gs with regards to NS for all nt-τt

combinations. This is confirmed in Table 9.11 where ps-gr obtained a higher rank than

ps-gr for the wins and losses with regards to NS.

When solving DMOOPs with discontinuous POFs, the ps combinations outperformed

the other guide update approaches. Table 9.12 presents the wins and losses for HE1 of

the various guide update approaches. A similar trend was observed for HE2.

Table 9.12: Wins and Losses of HE1

nt τt PM Results pbest-gbest combination
s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

10 10 acc Wins 15 12 14 13 6 1 3 9 3 6 8 1 8 0 8 2
10 10 acc Losses 0 3 1 2 8 13 10 4 10 8 5 12 4 15 4 10
10 10 acc Diff 15 9 13 11 -2 -12 -7 5 -7 -2 3 -11 4 -15 4 -8
10 10 acc Rank 1 4 2 3 9 15 11 5 11 9 8 14 6 16 6 13
10 25 acc Wins 14 12 14 13 4 1 3 7 6 0 7 11 2 2 2 7
10 25 acc Losses 0 3 0 2 8 14 9 5 5 15 5 4 9 11 10 5
10 25 acc Diff 14 9 14 11 -4 -13 -6 2 1 -15 2 7 -7 -9 -8 2
10 25 acc Rank 1 4 1 3 10 15 11 6 9 16 6 5 12 14 13 6
10 50 acc Wins 14 12 13 14 5 0 0 4 5 1 1 0 11 0 3 6
10 50 acc Losses 0 3 2 0 5 12 10 5 5 8 6 9 4 10 5 5
10 50 acc Diff 14 9 11 14 0 -12 -10 -1 0 -7 -5 -9 7 -10 -2 1
10 50 acc Rank 1 4 3 1 7 16 14 9 7 12 11 13 5 14 10 6
1 10 acc Wins 14 12 15 13 7 0 6 4 7 0 5 3 5 0 4 6
1 10 acc Losses 1 3 0 2 4 13 4 8 4 13 6 12 4 13 10 4
1 10 acc Diff 13 9 15 11 3 -13 2 -4 3 -13 -1 -9 1 -13 -6 2
1 10 acc Rank 2 4 1 3 5 14 7 11 5 14 10 13 9 14 12 7
20 10 acc Wins 14 12 14 13 7 3 4 9 4 0 9 1 7 0 9 3
20 10 acc Losses 0 3 0 2 7 11 9 4 9 13 4 13 7 14 4 9
20 10 acc Diff 14 9 14 11 0 -8 -5 5 -5 -13 5 -12 0 -14 5 -6
20 10 acc Rank 1 4 1 3 8 13 10 5 10 15 5 14 8 16 5 12
all all acc Wins 71 60 70 66 29 5 16 33 25 7 30 16 33 2 26 24
all all acc Losses 1 15 3 8 32 63 42 26 33 57 26 50 28 63 33 33
all all acc Diff 70 45 67 58 -3 -58 -26 7 -8 -50 4 -34 5 -61 -7 -9
all all acc Rank 1 4 2 3 8 15 12 5 10 14 7 13 6 16 9 11

Continued on next page
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nt τt PM Results pbest-gbest combination
s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

10 10 stab Wins 12 12 12 13 0 1 0 0 0 0 1 0 0 1 0 0
10 10 stab Losses 0 1 0 0 4 4 4 7 4 4 4 4 4 4 4 4
10 10 stab Diff 12 11 12 13 -4 -3 -4 -7 -4 -4 -3 -4 -4 -3 -4 -4
10 10 stab Rank 2 4 2 1 8 5 8 16 8 8 5 8 8 5 8 8
10 25 stab Wins 12 12 12 12 1 0 1 0 0 1 0 0 0 1 0 0
10 25 stab Losses 0 0 0 0 4 4 4 8 4 4 4 4 4 4 4 4
10 25 stab Diff 12 12 12 12 -3 -4 -3 -8 -4 -3 -4 -4 -4 -3 -4 -4
10 25 stab Rank 1 1 1 1 5 9 5 16 9 5 9 9 9 5 9 9
10 50 stab Wins 12 12 12 12 0 0 0 0 0 0 0 0 0 0 0 0
10 50 stab Losses 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4
10 50 stab Diff 12 12 12 12 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4
10 50 stab Rank 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5
1 10 stab Wins 15 12 13 13 0 0 3 0 0 1 0 3 1 0 1 1
1 10 stab Losses 0 3 1 1 6 4 4 10 6 4 4 4 4 4 4 4
1 10 stab Diff 15 9 12 12 -6 -4 -1 -10 -6 -3 -4 -1 -3 -4 -3 -3
1 10 stab Rank 1 4 2 2 14 11 5 16 14 7 11 5 7 11 7 7
20 10 stab Wins 12 12 12 12 0 0 0 0 0 0 0 0 0 0 0 0
20 10 stab Losses 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4
20 10 stab Diff 12 12 12 12 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4
20 10 stab Rank 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5
all all stab Wins 63 60 61 62 1 1 4 0 0 2 1 3 1 2 1 1
all all stab Losses 0 4 1 1 22 20 20 33 22 20 20 20 20 20 20 20
all all stab Diff 63 56 60 61 -21 -19 -16 -33 -22 -18 -19 -17 -19 -18 -19 -19
all all stab Rank 1 4 3 2 14 9 5 16 15 7 9 6 9 7 9 9
10 10 NS Wins 15 13 14 12 1 1 8 0 1 3 4 9 0 8 0 0
10 10 NS Losses 0 2 1 3 8 7 4 12 7 7 5 4 7 4 9 9
10 10 NS Diff 15 11 13 9 -7 -6 4 -12 -6 -4 -1 5 -7 4 -9 -9
10 10 NS Rank 1 3 2 4 12 10 6 16 10 9 8 5 12 6 14 14
10 25 NS Wins 13 15 13 12 0 2 2 2 0 6 0 0 5 4 3 0
10 25 NS Losses 1 0 2 2 6 4 4 6 6 4 8 11 4 4 4 11
10 25 NS Diff 12 15 11 10 -6 -2 -2 -4 -6 2 -8 -11 1 0 -1 -11
10 25 NS Rank 2 1 3 4 12 9 9 11 12 5 14 15 6 7 8 15
10 50 NS Wins 14 12 12 15 0 5 0 0 0 4 0 0 0 1 0 0
10 50 NS Losses 1 2 2 0 4 4 6 4 7 4 4 5 6 4 4 6
10 50 NS Diff 13 10 10 15 -4 1 -6 -4 -7 0 -4 -5 -6 -3 -4 -6
10 50 NS Rank 2 3 3 1 8 5 13 8 16 6 8 12 13 7 8 13
1 10 NS Wins 13 13 15 12 1 9 4 3 0 8 3 4 1 9 3 1
1 10 NS Losses 1 1 0 3 12 4 7 7 15 4 7 6 9 4 7 12
1 10 NS Diff 12 12 15 9 -11 5 -3 -4 -15 4 -4 -2 -8 5 -4 -11
1 10 NS Rank 2 2 1 4 14 5 9 10 16 7 10 8 13 5 10 14
20 10 NS Wins 15 13 14 12 3 6 0 0 8 7 2 3 3 8 0 1
20 10 NS Losses 0 2 1 3 8 4 13 12 4 4 8 7 6 4 11 8
20 10 NS Diff 15 11 13 9 -5 2 -13 -12 4 3 -6 -4 -3 4 -11 -7
20 10 NS Rank 1 3 2 4 11 8 16 15 5 7 12 10 9 5 14 13
all all NS Wins 70 66 68 63 5 23 14 5 9 28 9 16 9 30 6 2
all all NS Losses 3 7 6 11 38 23 34 41 39 23 32 33 32 20 35 46
all all NS Diff 67 59 62 52 -33 0 -20 -36 -30 5 -23 -17 -23 10 -29 -44
all all NS Rank 1 3 2 4 14 7 9 15 13 6 10 8 10 5 12 16
10 10 all Wins 42 37 40 38 7 3 11 9 4 9 13 10 8 9 8 2
10 10 all Losses 0 6 2 5 20 24 18 23 21 19 14 20 15 23 17 23

Continued on next page
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nt τt PM Results pbest-gbest combination
s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

10 10 all Diff 42 31 38 33 -13 -21 -7 -14 -17 -10 -1 -10 -7 -14 -9 -21
10 10 all Rank 1 4 2 3 11 15 6 12 14 9 5 9 6 12 8 15
10 25 all Wins 39 39 39 37 5 3 6 9 6 7 7 11 7 7 5 7
10 25 all Losses 1 3 2 4 18 22 17 19 15 23 17 19 17 19 18 20
10 25 all Diff 38 36 37 33 -13 -19 -11 -10 -9 -16 -10 -8 -10 -12 -13 -13
10 25 all Rank 1 3 2 4 12 16 10 7 6 15 7 5 7 11 12 12
10 50 all Wins 40 36 37 41 5 5 0 4 5 5 1 0 11 1 3 6
10 50 all Losses 1 5 4 0 13 20 20 13 16 16 14 18 14 18 13 15
10 50 all Diff 39 31 33 41 -8 -15 -20 -9 -11 -11 -13 -18 -3 -17 -10 -9
10 50 all Rank 2 4 3 1 6 13 16 7 10 10 12 15 5 14 9 7
1 10 all Wins 42 37 43 38 8 9 13 7 7 9 8 10 7 9 8 8
1 10 all Losses 2 7 1 6 22 21 15 25 25 21 17 22 17 21 21 20
1 10 all Diff 40 30 42 32 -14 -12 -2 -18 -18 -12 -9 -12 -10 -12 -13 -12
1 10 all Rank 2 4 1 3 14 8 5 15 15 8 6 8 7 8 13 8
20 10 all Wins 41 37 40 37 10 9 4 9 12 7 11 4 10 8 9 4
20 10 all Losses 0 5 1 5 19 19 26 20 17 21 16 24 17 22 19 21
20 10 all Diff 41 32 39 32 -9 -10 -22 -11 -5 -14 -5 -20 -7 -14 -10 -17
20 10 all Rank 1 3 2 3 8 9 16 11 5 12 5 15 7 12 9 14
all all all Wins 204 186 199 191 35 29 34 38 34 37 40 35 43 34 33 27
all all all Losses 4 26 10 20 92 106 96 100 94 100 78 103 80 103 88 99
all all all Diff 200 160 189 171 -57 -77 -62 -62 -60 -63 -38 -68 -37 -69 -55 -72
all all all Rank 1 4 2 3 8 16 10 10 9 12 6 13 5 14 7 15

When solving DMOOPs where each decision variable has its own POS and the POS

is a non-linear function, the ps combinations outperformed the other guide update ap-

proaches. This was observed for HE6, HE7 and HE9. The only exception is with ps-gs,

that performed poorly for HE7. The wins and losses obtained by the various guide

update approaches for HE7 is presented in Table 9.13.

Table 9.13: Wins and Losses of HE7

nt τt PM Results pbest-gbest combination
s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

1 10 acc Wins 10 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0
1 10 acc Losses 0 4 4 4 0 4 4 3 0 4 4 4 0 4 4 3
1 10 acc Diff 10 -4 -4 -4 12 -4 -4 -3 12 -4 -4 -4 12 -4 -4 -3
1 10 acc Rank 4 7 7 7 1 7 7 5 1 7 7 7 1 7 7 5
all all acc Wins 10 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0
all all acc Losses 0 4 4 4 0 4 4 3 0 4 4 4 0 4 4 3
all all acc Diff 10 -4 -4 -4 12 -4 -4 -3 12 -4 -4 -4 12 -4 -4 -3
all all acc Rank 4 7 7 7 1 7 7 5 1 7 7 7 1 7 7 5
10 10 NS Wins 3 13 13 13 0 4 4 4 0 4 4 5 0 4 4 4
10 10 NS Losses 12 0 0 0 13 4 3 3 13 3 3 3 13 3 3 3
10 10 NS Diff -9 13 13 13 -13 0 1 1 -13 1 1 2 -13 1 1 1
10 10 NS Rank 13 1 1 1 14 12 5 5 14 5 5 4 14 5 5 5
10 25 NS Wins 1 7 5 7 0 4 4 4 0 4 4 3 0 3 4 3
10 25 NS Losses 9 0 0 0 12 0 0 0 12 0 0 3 13 2 0 2

Continued on next page
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nt τt PM Results pbest-gbest combination
s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

10 25 NS Diff -8 7 5 7 -12 4 4 4 -12 4 4 0 -13 1 4 1
10 25 NS Rank 13 1 3 1 14 4 4 4 14 4 4 12 16 10 4 10
10 50 NS Wins 3 8 5 9 0 3 3 3 0 4 4 3 0 3 3 3
10 50 NS Losses 5 0 0 0 13 0 0 3 13 0 0 2 13 2 2 1
10 50 NS Diff -2 8 5 9 -13 3 3 0 -13 4 4 1 -13 1 1 2
10 50 NS Rank 13 2 3 1 14 6 6 12 14 4 4 9 14 9 9 8
1 10 NS Wins 3 13 13 13 0 4 4 4 0 4 4 4 0 4 4 4
1 10 NS Losses 12 0 0 0 13 3 3 3 13 3 3 3 13 3 3 3
1 10 NS Diff -9 13 13 13 -13 1 1 1 -13 1 1 1 -13 1 1 1
1 10 NS Rank 13 1 1 1 14 4 4 4 14 4 4 4 14 4 4 4
20 10 NS Wins 3 13 13 13 0 4 4 4 0 4 4 4 1 4 4 4
20 10 NS Losses 12 0 0 0 14 3 3 3 13 3 3 3 13 3 3 3
20 10 NS Diff -9 13 13 13 -14 1 1 1 -13 1 1 1 -12 1 1 1
20 10 NS Rank 13 1 1 1 16 4 4 4 15 4 4 4 14 4 4 4
all all NS Wins 13 54 49 55 0 19 19 19 0 20 20 19 1 18 19 18
all all NS Losses 50 0 0 0 65 10 9 12 64 9 9 14 65 13 11 12
all all NS Diff -37 54 49 55 -65 9 10 7 -64 11 11 5 -64 5 8 6
all all NS Rank 13 2 3 1 16 7 6 9 14 4 4 11 14 11 8 10
10 10 all Wins 3 13 13 13 0 4 4 4 0 4 4 5 0 4 4 4
10 10 all Losses 12 0 0 0 13 4 3 3 13 3 3 3 13 3 3 3
10 10 all Diff -9 13 13 13 -13 0 1 1 -13 1 1 2 -13 1 1 1
10 10 all Rank 13 1 1 1 14 12 5 5 14 5 5 4 14 5 5 5
10 25 all Wins 1 7 5 7 0 4 4 4 0 4 4 3 0 3 4 3
10 25 all Losses 9 0 0 0 12 0 0 0 12 0 0 3 13 2 0 2
10 25 all Diff -8 7 5 7 -12 4 4 4 -12 4 4 0 -13 1 4 1
10 25 all Rank 13 1 3 1 14 4 4 4 14 4 4 12 16 10 4 10
10 50 all Wins 3 8 5 9 0 3 3 3 0 4 4 3 0 3 3 3
10 50 all Losses 5 0 0 0 13 0 0 3 13 0 0 2 13 2 2 1
10 50 all Diff -2 8 5 9 -13 3 3 0 -13 4 4 1 -13 1 1 2
10 50 all Rank 13 2 3 1 14 6 6 12 14 4 4 9 14 9 9 8
1 10 all Wins 13 13 13 13 12 4 4 4 12 4 4 4 12 4 4 4
1 10 all Losses 12 4 4 4 13 7 7 6 13 7 7 7 13 7 7 6
1 10 all Diff 1 9 9 9 -1 -3 -3 -2 -1 -3 -3 -3 -1 -3 -3 -2
1 10 all Rank 4 1 1 1 5 10 10 8 5 10 10 10 5 10 10 8
20 10 all Wins 3 13 13 13 0 4 4 4 0 4 4 4 1 4 4 4
20 10 all Losses 12 0 0 0 14 3 3 3 13 3 3 3 13 3 3 3
20 10 all Diff -9 13 13 13 -14 1 1 1 -13 1 1 1 -12 1 1 1
20 10 all Rank 13 1 1 1 16 4 4 4 15 4 4 4 14 4 4 4
all all all Wins 23 54 49 55 12 19 19 19 12 20 20 19 13 18 19 18
all all all Losses 50 4 4 4 65 14 13 15 64 13 13 18 65 17 15 15
all all all Diff -27 50 45 51 -53 5 6 4 -52 7 7 1 -52 1 4 3
all all all Rank 13 2 3 1 16 7 6 8 14 4 4 11 14 11 8 10

For dMOP2 it was interesting to observe the difference in performance of the ps

combinations when solving dMOP2, dMOP2 with an isolated POF, dMOP2iso, and
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Figure 9.10: Average values of acc obtained by DVEPSO using either ps-gs or ps-gr solving

FDA2
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(d) stab values for nfda2t = 1 and τt = 10
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Figure 9.11: Average values of stab obtained by DVEPSO using either ps-gs or ps-gr solving

FDA2
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Figure 9.12: Average values of NS obtained by DVEPSO using either ps-gs or ps-gr solving

FDA2
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dMOP2 with a deceptive POF, dMOP2dec. When solving dMOP2, all ps combinations

performed average, except ps-gs that performed the worst. Solving dMOP2iso, ps-gr

and ps-gn performed well, while the other two ps combinations performed poorly. Once

again, ps-gs obtained the worst performance when solving dMOP2iso. However, for

dMOP2dec, all ps combinations performed really well, obtaining the top four overall

ranks. Tables 9.14 to 9.16 present the wins and losses for dMOP2, dMOP2iso and

dMOP2dec respectively.

Table 9.14: Wins and Losses of dMOP2

nt τt PM Results pbest-gbest combination
s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

10 10 acc Wins 7 1 1 1 4 0 4 3 4 3 3 3 3 3 4 3
10 10 acc Losses 0 12 12 12 1 7 1 0 1 0 0 0 0 0 1 0
10 10 acc Diff 7 -11 -11 -11 3 -7 3 3 3 3 3 3 3 3 3 3
10 10 acc Rank 1 14 14 14 2 13 2 2 2 2 2 2 2 2 2 2
10 25 acc Wins 2 3 2 0 1 1 0 0 1 6 3 0 2 1 1 6
10 25 acc Losses 2 3 4 12 0 2 0 3 0 0 1 2 0 0 0 0
10 25 acc Diff 0 0 -2 -12 1 -1 0 -3 1 6 2 -2 2 1 1 6
10 25 acc Rank 9 9 13 16 5 12 9 15 5 1 3 13 3 5 5 1

10 50 acc Wins 0 2 0 1 4 4 4 5 5 4 5 5 5 5 4 4
10 50 acc Losses 13 12 14 12 0 6 0 0 0 0 0 0 0 0 0 0
10 50 acc Diff -13 -10 -14 -11 4 -2 4 5 5 4 5 5 5 5 4 4
10 50 acc Rank 15 13 16 14 7 12 7 1 1 7 1 1 1 1 7 7
1 10 acc Wins 5 5 5 4 0 2 3 0 3 0 1 2 0 0 1 3
1 10 acc Losses 2 0 10 0 2 3 0 6 3 1 0 2 1 2 0 2
1 10 acc Diff 3 5 -5 4 -2 -1 3 -6 0 -1 1 0 -1 -2 1 1
1 10 acc Rank 3 1 15 2 13 10 3 16 8 10 5 8 10 13 5 5
20 10 acc Wins 0 6 4 3 3 1 1 1 2 1 1 1 1 1 1 2
20 10 acc Losses 15 4 1 0 1 0 1 2 1 1 0 0 1 0 1 1
20 10 acc Diff -15 2 3 3 2 1 0 -1 1 0 1 1 0 1 0 1
20 10 acc Rank 16 3 1 1 3 5 11 15 5 11 5 5 11 5 11 5
all all acc Wins 14 17 12 9 12 8 12 9 15 14 13 11 11 10 11 18
all all acc Losses 32 31 41 36 4 18 2 11 5 2 1 4 2 2 2 3
all all acc Diff -18 -14 -29 -27 8 -10 10 -2 10 12 12 7 9 8 9 15
all all acc Rank 14 13 16 15 8 12 4 11 4 2 2 10 6 8 6 1

10 10 stab Wins 6 4 3 2 1 0 1 0 1 0 0 0 0 0 1 0
10 10 stab Losses 0 1 1 1 1 5 3 0 2 0 1 0 0 0 3 1
10 10 stab Diff 6 3 2 1 0 -5 -2 0 -1 0 -1 0 0 0 -2 -1
10 10 stab Rank 1 2 3 4 5 16 14 5 11 5 11 5 5 5 14 11
10 25 stab Wins 1 0 1 0 0 0 0 0 0 2 0 0 0 0 0 2
10 25 stab Losses 0 0 0 4 0 0 0 2 0 0 0 0 0 0 0 0
10 25 stab Diff 1 0 1 -4 0 0 0 -2 0 2 0 0 0 0 0 2
10 25 stab Rank 3 5 3 16 5 5 5 15 5 1 5 5 5 5 5 1

10 50 stab Wins 0 0 0 0 4 4 4 4 5 4 4 4 5 5 4 4
10 50 stab Losses 12 12 12 12 0 3 0 0 0 0 0 0 0 0 0 0
10 50 stab Diff -12 -12 -12 -12 4 1 4 4 5 4 4 4 5 5 4 4
10 50 stab Rank 13 13 13 13 4 12 4 4 1 4 4 4 1 1 4 4
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nt τt PM Results pbest-gbest combination
s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

1 10 stab Wins 1 3 2 3 0 1 0 0 2 0 0 0 0 0 0 1
1 10 stab Losses 0 0 3 0 0 0 0 5 1 0 0 0 0 3 0 1
1 10 stab Diff 1 3 -1 3 0 1 0 -5 1 0 0 0 0 -3 0 0
1 10 stab Rank 3 1 14 1 6 3 6 16 3 6 6 6 6 15 6 6
20 10 stab Wins 3 1 4 11 3 0 0 0 0 0 0 0 0 0 0 0
20 10 stab Losses 3 1 0 0 1 1 1 3 1 1 3 3 1 1 1 1
20 10 stab Diff 0 0 4 11 2 -1 -1 -3 -1 -1 -3 -3 -1 -1 -1 -1
20 10 stab Rank 4 4 2 1 3 6 6 14 6 6 14 14 6 6 6 6
all all stab Wins 11 8 10 16 8 5 5 4 8 6 4 4 5 5 5 7
all all stab Losses 15 14 16 17 2 9 4 10 4 1 4 3 1 4 4 3
all all stab Diff -4 -6 -6 -1 6 -4 1 -6 4 5 0 1 4 1 1 4
all all stab Rank 12 14 14 11 1 12 6 14 3 2 10 6 3 6 6 3
10 25 NS Wins 12 13 13 12 0 3 3 3 1 3 3 3 0 3 3 3
10 25 NS Losses 2 0 0 0 13 4 4 4 13 4 4 4 14 4 4 4
10 25 NS Diff 10 13 13 12 -13 -1 -1 -1 -12 -1 -1 -1 -14 -1 -1 -1
10 25 NS Rank 4 1 1 3 15 5 5 5 14 5 5 5 16 5 5 5
10 50 NS Wins 3 8 5 9 0 3 3 3 0 4 4 3 0 3 3 3
10 50 NS Losses 5 0 0 0 13 0 0 3 13 0 0 2 13 2 2 1
10 50 NS Diff -2 8 5 9 -13 3 3 0 -13 4 4 1 -13 1 1 2
10 50 NS Rank 13 2 3 1 14 6 6 12 14 4 4 9 14 9 9 8
1 10 NS Wins 3 4 10 0 2 2 1 0 3 2 0 0 2 2 2 2
1 10 NS Losses 9 8 1 0 1 1 2 3 0 1 3 3 1 1 1 0
1 10 NS Diff -6 -4 9 0 1 1 -1 -3 3 1 -3 -3 1 1 1 2
1 10 NS Rank 16 15 1 10 4 4 11 12 2 4 12 12 4 4 4 3
all all NS Wins 18 25 28 21 2 8 7 6 4 9 7 6 2 8 8 8
all all NS Losses 16 8 1 0 27 5 6 10 26 5 7 9 28 7 7 5
all all NS Diff 2 17 27 21 -25 3 1 -4 -22 4 0 -3 -26 1 1 3
all all NS Rank 7 3 1 2 15 5 8 13 14 4 11 12 16 8 8 5
10 10 all Wins 13 5 4 3 5 0 5 3 5 3 3 3 3 3 5 3
10 10 all Losses 0 13 13 13 2 12 4 0 3 0 1 0 0 0 4 1
10 10 all Diff 13 -8 -9 -10 3 -12 1 3 2 3 2 3 3 3 1 2
10 10 all Rank 1 13 14 15 2 16 11 2 8 2 8 2 2 2 11 8
10 25 all Wins 15 16 16 12 1 4 3 3 2 11 6 3 2 4 4 11
10 25 all Losses 4 3 4 16 13 6 4 9 13 4 5 6 14 4 4 4
10 25 all Diff 11 13 12 -4 -12 -2 -1 -6 -11 7 1 -3 -12 0 0 7
10 25 all Rank 3 1 2 12 15 10 9 13 14 4 6 11 15 7 7 4
10 50 all Wins 3 10 5 10 8 11 11 12 10 12 13 12 10 13 11 11
10 50 all Losses 30 24 26 24 13 9 0 3 13 0 0 2 13 2 2 1
10 50 all Diff -27 -14 -21 -14 -5 2 11 9 -3 12 13 10 -3 11 9 10
10 50 all Rank 16 13 15 13 12 9 3 7 10 2 1 5 10 3 7 5
1 10 all Wins 9 12 17 7 2 5 4 0 8 2 1 2 2 2 3 6
1 10 all Losses 11 8 14 0 3 4 2 14 4 2 3 5 2 6 1 3
1 10 all Diff -2 4 3 7 -1 1 2 -14 4 0 -2 -3 0 -4 2 3
1 10 all Rank 12 2 4 1 11 8 6 16 2 9 12 14 9 15 6 4
20 10 all Wins 3 7 8 14 6 1 1 1 2 1 1 1 1 1 1 2
20 10 all Losses 18 5 1 0 2 1 2 5 2 2 3 3 2 1 2 2
20 10 all Diff -15 2 7 14 4 0 -1 -4 0 -1 -2 -2 -1 0 -1 0
20 10 all Rank 16 4 2 1 3 5 9 15 5 9 13 13 9 5 9 5
all all all Wins 43 50 50 46 22 21 24 19 27 29 24 21 18 23 24 33
all all all Losses 63 53 58 53 33 32 12 31 35 8 12 16 31 13 13 11
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nt τt PM Results pbest-gbest combination
s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

all all all Diff -20 -3 -8 -7 -11 -11 12 -12 -8 21 12 5 -13 10 11 22
all all all Rank 16 8 10 9 12 12 3 14 10 2 3 7 15 6 5 1

Table 9.15: Wins and Losses of dMOP2iso

nt τt PM Results pbest-gbest combination
s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

10 10 acc Wins 4 9 11 3 0 0 0 1 1 1 1 0 1 1 2 1
10 10 acc Losses 11 1 1 0 3 3 2 1 2 2 1 3 2 2 2 0
10 10 acc Diff -7 8 10 3 -3 -3 -2 0 -1 -1 0 -3 -1 -1 0 1
10 10 acc Rank 16 2 1 3 13 13 12 5 8 8 5 13 8 8 5 4
10 25 acc Wins 0 0 3 1 3 3 2 3 3 3 9 3 4 3 2 5
10 25 acc Losses 13 13 3 11 0 1 2 0 1 0 0 1 0 0 2 0
10 25 acc Diff -13 -13 0 -10 3 2 0 3 2 3 9 2 4 3 0 5
10 25 acc Rank 15 15 11 14 4 8 11 4 8 4 1 8 3 4 11 2
10 50 acc Wins 0 2 3 0 5 4 4 5 5 4 4 4 4 4 6 4
10 50 acc Losses 14 13 12 14 0 0 0 0 0 0 0 0 4 0 0 1
10 50 acc Diff -14 -11 -9 -14 5 4 4 5 5 4 4 4 0 4 6 3
10 50 acc Rank 15 14 13 15 2 5 5 2 2 5 5 5 12 5 1 11
1 10 acc Wins 0 1 4 10 3 3 4 5 3 4 6 4 2 2 3 3
1 10 acc Losses 15 14 11 5 1 1 0 0 1 0 0 0 2 3 1 3
1 10 acc Diff -15 -13 -7 5 2 2 4 5 2 4 6 4 0 -1 2 0
1 10 acc Rank 16 15 14 2 7 7 4 2 7 4 1 4 11 13 7 11
20 10 acc Wins 0 8 0 8 2 6 4 2 4 6 2 2 6 2 2 2
20 10 acc Losses 14 4 14 4 2 0 0 2 2 0 2 2 0 4 2 4
20 10 acc Diff -14 4 -14 4 0 6 4 0 2 6 0 0 6 -2 0 -2
20 10 acc Rank 15 4 15 4 8 1 4 8 7 1 8 8 1 13 8 13
all all acc Wins 4 20 21 22 13 16 14 16 16 18 22 13 17 12 15 15
all all acc Losses 67 45 41 34 6 5 4 3 6 2 3 6 8 9 7 8
all all acc Diff -63 -25 -20 -12 7 11 10 13 10 16 19 7 9 3 8 7
all all acc Rank 16 15 14 13 9 4 5 3 5 2 1 9 7 12 8 9
10 10 stab Wins 0 10 4 12 0 0 0 0 0 0 0 0 0 0 0 0
10 10 stab Losses 2 0 0 0 2 0 3 3 2 2 3 2 1 2 1 3
10 10 stab Diff -2 10 4 12 -2 0 -3 -3 -2 -2 -3 -2 -1 -2 -1 -3
10 10 stab Rank 7 2 3 1 7 4 13 13 7 7 13 7 5 7 5 13
10 25 stab Wins 0 1 3 0 0 0 0 0 0 0 9 0 3 1 0 4
10 25 stab Losses 4 5 0 4 0 1 1 1 1 1 0 1 0 0 2 0
10 25 stab Diff -4 -4 3 -4 0 -1 -1 -1 -1 -1 9 -1 3 1 -2 4
10 25 stab Rank 14 14 3 14 6 7 7 7 7 7 1 7 3 5 13 2
10 50 stab Wins 0 0 1 0 4 4 4 5 5 4 4 2 2 4 5 4
10 50 stab Losses 12 10 10 13 0 0 0 0 0 0 0 0 3 0 0 0
10 50 stab Diff -12 -10 -9 -13 4 4 4 5 5 4 4 2 -1 4 5 4
10 50 stab Rank 15 14 13 16 4 4 4 1 1 4 4 11 12 4 1 4
1 10 stab Wins 6 8 3 3 0 0 0 3 0 0 3 0 0 0 0 0
1 10 stab Losses 3 0 0 0 0 2 3 3 2 2 3 2 0 2 2 2
1 10 stab Diff 3 8 3 3 0 -2 -3 0 -2 -2 0 -2 0 -2 -2 -2
1 10 stab Rank 2 1 2 2 5 9 16 5 9 9 5 9 5 9 9 9
20 10 stab Wins 0 4 0 5 0 2 0 0 1 1 0 0 2 0 0 0
20 10 stab Losses 2 0 2 0 1 0 0 0 0 0 0 0 0 6 0 4
20 10 stab Diff -2 4 -2 5 -1 2 0 0 1 1 0 0 2 -6 0 -4
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nt τt PM Results pbest-gbest combination
s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

20 10 stab Rank 13 2 13 1 12 3 7 7 5 5 7 7 3 16 7 15
all all stab Wins 6 23 11 20 4 6 4 8 6 5 16 2 7 5 5 8
all all stab Losses 23 15 12 17 3 3 7 7 5 5 6 5 4 10 5 9
all all stab Diff -17 8 -1 3 1 3 -3 1 1 0 10 -3 3 -5 0 -1
all all stab Rank 16 2 11 3 6 3 13 6 6 9 1 13 3 15 9 11
10 25 NS Wins 12 13 13 12 0 3 3 3 1 3 3 3 0 3 3 3
10 25 NS Losses 2 0 0 0 13 4 4 4 13 4 4 4 14 4 4 4
10 25 NS Diff 10 13 13 12 -13 -1 -1 -1 -12 -1 -1 -1 -14 -1 -1 -1
10 25 NS Rank 4 1 1 3 15 5 5 5 14 5 5 5 16 5 5 5
10 50 NS Wins 3 8 5 9 0 3 3 3 0 4 4 3 0 3 3 3
10 50 NS Losses 5 0 0 0 13 0 0 3 13 0 0 2 13 2 2 1
10 50 NS Diff -2 8 5 9 -13 3 3 0 -13 4 4 1 -13 1 1 2
10 50 NS Rank 13 2 3 1 14 6 6 12 14 4 4 9 14 9 9 8
all all NS Wins 15 21 18 21 0 6 6 6 1 7 7 6 0 6 6 6
all all NS Losses 7 0 0 0 26 4 4 7 26 4 4 6 27 6 6 5
all all NS Diff 8 21 18 21 -26 2 2 -1 -25 3 3 0 -27 0 0 1
all all NS Rank 4 1 3 1 15 7 7 13 14 5 5 10 16 10 10 9
10 10 all Wins 4 19 15 15 0 0 0 1 1 1 1 0 1 1 2 1
10 10 all Losses 13 1 1 0 5 3 5 4 4 4 4 5 3 4 3 3
10 10 all Diff -9 18 14 15 -5 -3 -5 -3 -3 -3 -3 -5 -2 -3 -1 -2
10 10 all Rank 16 1 3 2 13 7 13 7 7 7 7 13 5 7 4 5
10 25 all Wins 12 14 19 13 3 6 5 6 4 6 21 6 7 7 5 12
10 25 all Losses 19 18 3 15 13 6 7 5 15 5 4 6 14 4 8 4
10 25 all Diff -7 -4 16 -2 -10 0 -2 1 -11 1 17 0 -7 3 -3 8
10 25 all Rank 13 12 2 9 15 7 9 5 16 5 1 7 13 4 11 3
10 50 all Wins 3 10 9 9 9 11 11 13 10 12 12 9 6 11 14 11
10 50 all Losses 31 23 22 27 13 0 0 3 13 0 0 2 20 2 2 2
10 50 all Diff -28 -13 -13 -18 -4 11 11 10 -3 12 12 7 -14 9 12 9
10 50 all Rank 16 12 12 15 11 4 4 6 10 1 1 9 14 7 1 7
1 10 all Wins 6 9 7 13 3 3 4 8 3 4 9 4 2 2 3 3
1 10 all Losses 18 14 11 5 1 3 3 3 3 2 3 2 2 5 3 5
1 10 all Diff -12 -5 -4 8 2 0 1 5 0 2 6 2 0 -3 0 -2
1 10 all Rank 16 15 14 1 4 8 7 3 8 4 2 4 8 13 8 12
20 10 all Wins 0 12 0 13 2 8 4 2 5 7 2 2 8 2 2 2
20 10 all Losses 16 4 16 4 3 0 0 2 2 0 2 2 0 10 2 8
20 10 all Diff -16 8 -16 9 -1 8 4 0 3 7 0 0 8 -8 0 -6
20 10 all Rank 15 2 15 1 12 2 6 8 7 5 8 8 2 14 8 13
all all all Wins 25 64 50 63 17 28 24 30 23 30 45 21 24 23 26 29
all all all Losses 97 60 53 51 35 12 15 17 37 11 13 17 39 25 18 22
all all all Diff -72 4 -3 12 -18 16 9 13 -14 19 32 4 -15 -2 8 7
all all all Rank 16 9 12 5 15 3 6 4 13 2 1 9 14 11 7 8
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Table 9.16: Wins and Losses of dMOP2dec

nt τt PM Results pbest-gbest combination
s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

10 10 acc Wins 12 12 12 12 0 0 0 4 0 0 0 0 6 0 2 0
10 10 acc Losses 0 0 0 0 7 6 4 4 4 7 5 6 4 4 4 5
10 10 acc Diff 12 12 12 12 -7 -6 -4 0 -4 -7 -5 -6 2 -4 -2 -5
10 10 acc Rank 1 1 1 1 15 13 8 6 8 15 11 13 5 8 7 11
10 25 acc Wins 12 12 12 9 0 1 1 0 4 0 0 4 0 0 0 0
10 25 acc Losses 0 0 0 0 4 4 3 4 3 6 8 3 4 6 4 6
10 25 acc Diff 12 12 12 9 -4 -3 -2 -4 1 -6 -8 1 -4 -6 -4 -6
10 25 acc Rank 1 1 1 4 9 8 7 9 5 13 16 5 9 13 9 13
10 50 acc Wins 5 10 7 3 0 0 0 0 0 0 0 0 0 0 0 0
10 50 acc Losses 0 0 0 0 4 1 3 2 0 0 2 4 3 4 1 1
10 50 acc Diff 5 10 7 3 -4 -1 -3 -2 0 0 -2 -4 -3 -4 -1 -1
10 50 acc Rank 3 1 2 4 14 7 12 10 5 5 10 14 12 14 7 7
1 10 acc Wins 9 12 12 12 0 1 0 0 0 0 0 1 0 1 1 0
1 10 acc Losses 0 0 0 0 4 3 4 8 4 4 4 4 4 3 3 4
1 10 acc Diff 9 12 12 12 -4 -2 -4 -8 -4 -4 -4 -3 -4 -2 -2 -4
1 10 acc Rank 4 1 1 1 9 5 9 16 9 9 9 8 9 5 5 9
20 10 acc Wins 0 6 4 3 3 1 1 1 2 1 1 1 1 1 1 2
20 10 acc Losses 15 4 1 0 1 0 1 2 1 1 0 0 1 0 1 1
20 10 acc Diff -15 2 3 3 2 1 0 -1 1 0 1 1 0 1 0 1
20 10 acc Rank 16 3 1 1 3 5 11 15 5 11 5 5 11 5 11 5
all all acc Wins 38 52 47 39 3 3 2 5 6 1 1 6 7 2 4 2
all all acc Losses 15 4 1 0 20 14 15 20 12 18 19 17 16 17 13 17
all all acc Diff 23 48 46 39 -17 -11 -13 -15 -6 -17 -18 -11 -9 -15 -9 -15
all all acc Rank 4 1 2 3 14 8 10 11 5 14 16 8 6 11 6 11
10 10 stab Wins 12 12 12 12 0 0 0 4 0 0 0 0 6 0 3 0
10 10 stab Losses 0 0 0 0 7 6 4 4 4 7 5 7 4 4 4 5
10 10 stab Diff 12 12 12 12 -7 -6 -4 0 -4 -7 -5 -7 2 -4 -1 -5
10 10 stab Rank 1 1 1 1 14 13 8 6 8 14 11 14 5 8 7 11
10 25 stab Wins 12 12 12 7 0 0 0 0 2 0 0 1 2 0 0 0
10 25 stab Losses 0 0 0 0 4 3 3 4 3 4 6 3 3 4 4 7
10 25 stab Diff 12 12 12 7 -4 -3 -3 -4 -1 -4 -6 -2 -1 -4 -4 -7
10 25 stab Rank 1 1 1 4 10 8 8 10 5 10 15 7 5 10 10 16
10 50 stab Wins 3 8 6 2 0 0 0 0 0 0 0 0 0 0 0 0
10 50 stab Losses 0 0 0 0 4 0 3 1 0 0 2 4 2 2 0 1
10 50 stab Diff 3 8 6 2 -4 0 -3 -1 0 0 -2 -4 -2 -2 0 -1
10 50 stab Rank 3 1 2 4 15 5 14 9 5 5 11 15 11 11 5 9
1 10 stab Wins 9 12 12 12 0 1 1 0 0 0 0 1 0 1 1 0
1 10 stab Losses 0 0 0 0 4 3 4 9 4 4 4 4 4 3 3 4
1 10 stab Diff 9 12 12 12 -4 -2 -3 -9 -4 -4 -4 -3 -4 -2 -2 -4
1 10 stab Rank 4 1 1 1 10 5 8 16 10 10 10 8 10 5 5 10
20 10 stab Wins 3 1 4 11 3 0 0 0 0 0 0 0 0 0 0 0
20 10 stab Losses 3 1 0 0 1 1 1 3 1 1 3 3 1 1 1 1
20 10 stab Diff 0 0 4 11 2 -1 -1 -3 -1 -1 -3 -3 -1 -1 -1 -1
20 10 stab Rank 4 4 2 1 3 6 6 14 6 6 14 14 6 6 6 6
all all stab Wins 39 45 46 44 3 1 1 4 2 0 0 2 8 1 4 0
all all stab Losses 3 1 0 0 20 13 15 21 12 16 20 21 14 14 12 18
all all stab Diff 36 44 46 44 -17 -12 -14 -17 -10 -16 -20 -19 -6 -13 -8 -18
all all stab Rank 4 2 1 2 12 8 10 12 7 11 16 15 5 9 6 14
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nt τt PM Results pbest-gbest combination
s-s s-n s-d s-r n-s n-n n-d n-r r-s r-n r-d r-r d-s d-n d-d d-r

10 25 NS Wins 12 13 13 12 0 3 3 3 1 3 3 3 0 3 3 3
10 25 NS Losses 2 0 0 0 13 4 4 4 13 4 4 4 14 4 4 4
10 25 NS Diff 10 13 13 12 -13 -1 -1 -1 -12 -1 -1 -1 -14 -1 -1 -1
10 25 NS Rank 4 1 1 3 15 5 5 5 14 5 5 5 16 5 5 5
10 50 NS Wins 3 8 5 9 0 3 3 3 0 4 4 3 0 3 3 3
10 50 NS Losses 5 0 0 0 13 0 0 3 13 0 0 2 13 2 2 1
10 50 NS Diff -2 8 5 9 -13 3 3 0 -13 4 4 1 -13 1 1 2
10 50 NS Rank 13 2 3 1 14 6 6 12 14 4 4 9 14 9 9 8
1 10 NS Wins 2 12 0 2 2 0 2 2 1 1 2 2 2 2 0 2
1 10 NS Losses 10 0 0 8 1 3 1 1 1 1 1 1 1 1 3 1
1 10 NS Diff -8 12 0 -6 1 -3 1 1 0 0 1 1 1 1 -3 1
1 10 NS Rank 16 1 10 15 2 13 2 2 10 10 2 2 2 2 13 2
all all NS Wins 17 33 18 23 2 6 8 8 2 8 9 8 2 8 6 8
all all NS Losses 17 0 0 8 27 7 5 8 27 5 5 7 28 7 9 6
all all NS Diff 0 33 18 15 -25 -1 3 0 -25 3 4 1 -26 1 -3 2
all all NS Rank 10 1 2 3 14 12 5 10 14 5 4 8 16 8 13 7
10 10 all Wins 24 24 24 24 0 0 0 8 0 0 0 0 12 0 5 0
10 10 all Losses 0 0 0 0 14 12 8 8 8 14 10 13 8 8 8 10
10 10 all Diff 24 24 24 24 -14 -12 -8 0 -8 -14 -10 -13 4 -8 -3 -10
10 10 all Rank 1 1 1 1 15 13 8 6 8 15 11 14 5 8 7 11
10 25 all Wins 36 37 37 28 0 4 4 3 7 3 3 8 2 3 3 3
10 25 all Losses 2 0 0 0 21 11 10 12 19 14 18 10 21 14 12 17
10 25 all Diff 34 37 37 28 -21 -7 -6 -9 -12 -11 -15 -2 -19 -11 -9 -14
10 25 all Rank 3 1 1 4 16 7 6 8 12 10 14 5 15 10 8 13
10 50 all Wins 11 26 18 14 0 3 3 3 0 4 4 3 0 3 3 3
10 50 all Losses 5 0 0 0 21 1 6 6 13 0 4 10 18 8 3 3
10 50 all Diff 6 26 18 14 -21 2 -3 -3 -13 4 0 -7 -18 -5 0 0
10 50 all Rank 4 1 2 3 16 6 10 10 14 5 7 13 15 12 7 7
1 10 all Wins 20 36 24 26 2 2 3 2 1 1 2 4 2 4 2 2
1 10 all Losses 10 0 0 8 9 9 9 18 9 9 9 9 9 7 9 9
1 10 all Diff 10 36 24 18 -7 -7 -6 -16 -8 -8 -7 -5 -7 -3 -7 -7
1 10 all Rank 4 1 2 3 8 8 7 16 14 14 8 6 8 5 8 8
20 10 all Wins 3 7 8 14 6 1 1 1 2 1 1 1 1 1 1 2
20 10 all Losses 18 5 1 0 2 1 2 5 2 2 3 3 2 1 2 2
20 10 all Diff -15 2 7 14 4 0 -1 -4 0 -1 -2 -2 -1 0 -1 0
20 10 all Rank 16 4 2 1 3 5 9 15 5 9 13 13 9 5 9 5
all all all Wins 94 130 111 106 8 10 11 17 10 9 10 16 17 11 14 10
all all all Losses 35 5 1 8 67 34 35 49 51 39 44 45 58 38 34 41
all all all Diff 59 125 110 98 -59 -24 -24 -32 -41 -30 -34 -29 -41 -27 -20 -31
all all all Rank 4 1 2 3 16 6 6 12 14 10 13 9 14 8 5 11
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9.5 Summary

This chapter discussed the DVEPSO algorithm, which is an adaptation of SMOOVEPSO

for DMOO. Similar to VEPSO, DVEPSO has two layers, namely a top layer that manages

the top-level tasks and a lower layer that consists of the sub-swarms that handle the lower

level tasks. On the lower level, the sub-swarms of DVEPSO checks the environment to

determine whether a change has occurred, in addition to optimising the objectives that

are performed by the sub-swarms of VEPSO. On the top level, in addition to the tasks

of knowledge sharing and archive management performed by VEPSO, DVEPSO also

responds to changes in the environment that were detected by the sub-swarms.

The optimisation process of DVEPSO is guided by local and global guides. Various

ways of updating the local and global guides exist. This chapter investigated the influence

of the various guide update approaches on the performance of DVEPSO. The results

indicated that guide update approaches that incorporate Pareto-dominance knowledge

outperformed the guide update approach of the original VEPSO algorithm that does not

incorporate Pareto-dominance. The guide update approach that achieved the overall best

performance was ps-gr. With this approach, the local guide is updated in such a way

that the particle’s fitness is measured with regards to only the objective function that

the specific swarm optimises. Only if an improvement in the fitness of the current local

guide can be obtained, the guide is updated, and no Pareto-dominance information is

used. The global guide is updated if the new pbest is non-dominated with respect to the

global guide, by randomly selecting either the pbest or the corresponding global guide.

The next chapter investigates the influence of other parameters on the performance

of DVEPSO. These parameters include knowledge sharing swarm topologies, approaches

to manage boundary constraint violations and approaches to respond to environment

changes.
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