
Part I

Optimisation Background

9

Chapter 2

Formal Definitions

“We should forget about small efficiencies, say about 97% of the time: pre-

mature optimization is the root of all evil.” – Donald E. Knuth

In the modern world of today optimisation occurs in many aspects and areas of everyday

life. For example, a manufacturer wants to increase his profit and therefore the cost of

the manufacturing process has to be as low as possible. If this is approached as an

unconstrained SOOP, it can be defined as follows:

Example 2.1: A manufacturer wants to minimise the cost of the manufacturing

process.

However, many optimisation problems have more than one goal and some problems

occur in a changing environment. Example 2.1 can be defined with more than one goal

to increase a manufacturer’s profit, namely minimising the cost of the manufacturing

process and maximising the number of manufactured goods produced per day.

This chapter provides a theoretical overview of optimisation, presenting theory and

definitions that are needed throughout the thesis. It does not give a complete overview of

all aspects of MOO, dynamic single-objective optimisation (DSOO) and DMOO. How-

ever, this chapter highlights the most important information that is required to under-

stand concepts discussed in later chapters. Section 2.1 discusses the main concepts of

optimisation theory, highlighting the different types of optima and characteristics of op-

timisation problems. The theory of MOO is summarised in Section 2.2, where a MOO

10

Chapter 2. Formal Definitions 11

problem is defined and the goal of solving MOO problems is clarified. Section 2.3 dis-

cusses DSOO and highlights the various types of environments for DSOOPs. DMOO,

and the different types of DMOO problems, are presented in Section 2.4.

2.1 Single Objective Optimisation

This section discusses the main concepts of SOO. Section 2.1.1 discusses SOO theory that

is required to understand the main concepts of MOO theory and Section 2.1.2 discusses

the type of solutions that can be obtained for SOOPs.

2.1.1 Optimisation Concepts

Each optimisation problem contains one or more objective functions and a set of decision

variables and most optimisation problems contain a set of constraints. Optimisation

problems can be classified according to a number of characteristics, including the number

of decision variables, the type of decision variables, the degree of linearity of the objective

functions, the type of constraints, the number of optimisation criteria or objectives and

the number of optima [36, 55]. These concepts are discussed in more detail below.

The objective function represents the quantity to be optimised, i.e. the quantity

to be minimised or maximised. The objective function is also referred to as the cost

function or optimisation criterion. If the problem that has to be optimised is expressed

using only one objective function, it is referred to as a SOOP. However, if a problem has

more than one objective that have to be optimised simultaneously, it is called a MOOP.

Each objective function has a vector of decision variables that influence the value

of the objective function. Therefore, a search algorithm iteratively modifies the value of

these variables to find the optimum for the objective function. If x represents the set

of variables, the value of the objective function for the specific values of the variables

can be quantified by f(x). Therefore, f(x) also quantifies the quality of the candidate

solution, x.

A problem with only one decision variable to optimise (only one variable influences

the objective function) is referred to as a univariate problem. A multivariate problem

is a problem where more than one variable influence the objective function. When the

Chapter 2. Formal Definitions 12

type of decision variables is taken into account and a problem’s decision variables have

only continuous values, i.e. xk ∈ R, ∀k = 1, . . . , nx, the problem is referred to as a

continuous-valued problem. The domain of a discrete-valued optimisation problem has a

limited number of discrete values. Combinatorial problems are problems were solutions

are permutations of integer-valued variables. When the decision variables can only have

0 or 1 as value, the problem is called a binary-valued problem.

When an objective function is linear in its variables, the problem is a linear problem.

A quadratic problem has a quadratic objective function. However, when any other non-

linear objective functions are used, the problem is referred to as a non-linear problem.

If an optimisation problem has constraints, the set of constraints restricts the values

that can be assigned to the set of decision variables. Equality constraints restrict a

variable to a specific value, for example g(x2) = 3. Inequality constraints can take one

of two forms, namely:

• Boundary constraints that restrict the domain of values that can be assigned to

each variable and thereby define the search space. For example, −1 ≤ x1 ≤ 1

restricts the value that variable x1 can have to values between -1 and 1.

• Constraints of the form c(x) ≤ 0 or c(x) ≥ 0.

Values of x that satisfy the constraints form the feasible search space that is a subset

of the search space. Problems that only use boundary constraints are generally referred

to as unconstrained problems. However, when problems also have equality or inequality

constraints, these problems are referred to as constrained optimisation problems.

When solving an optimisation problem with either equality or inequality constraints,

the optimisation method’s goal is to assign values from the specified domain to the

decision variables in order to optimise the objective function and to satisfy the con-

straints. Therefore, the optimisation algorithm searches for a solution in the feasible

search space, x ∈ F ⊆ S ⊆ Rnx , that will obtain the smallest possible objective function

value, f(x), for a minimisation problem (or largest possible value for a maximisation

problem). Throughout this thesis, unless stated differently, minimisation is assumed.

Chapter 2. Formal Definitions 13

Mathematically, a SOOP is defined as:

minimise : f(x)

subject to : gi(x) ≤ 0, i = 1, . . . , ng

hj(x) = 0, j = 1, . . . , nh

x ∈ [xmin , xmax]
nx (2.1)

where nx is the number of decision variables; x = (x1, x2, . . . , xnx
) ∈ S ⊆ Rnx ; ng is the

number of inequality constraints, g; nh is the number of equality constraints, h; and

x ∈ [xmin , xmax]
nx refers to the boundary constraints (domain of x), with xmin and xmax

referring to the lower- and upper bounds of the feasible values for decision variables x.

The research in this thesis focuses on unconstrained optimisation problems.

The next section discusses the various types of solutions that can be found when

solving a SOOP.

2.1.2 Types of Solutions

This section discusses the type of solutions with various degrees of quality that can be

obtained when solving SOOPs.

Solutions found by an optimisation algorithm can be classified according to their

quality, where the main types of solutions for a minimisation problem are the global

minimum and local minimum. The various degrees of solution quality, in terms of the

global minima and local minima, are defined below.

Definition 2.1. Global minima: The solution x∗
i ∈ F , with F ⊆ S, is a global

minimum of the objective function f , if

f(x∗
i) ≤ f(x), ∀x ∈ F, x∗

i 6= x, ∀i = 1, . . . , q (2.2)

where q is the number of global minima of the SOOP.

Therefore, the best candidate solutions that lead to the smallest value of the objective

function is called the global minima. The various types of minima are illustrated in

Figure 2.1, with the point x2 as the global minimum of the function. It is important to

Chapter 2. Formal Definitions 14

note that an optimisation problem can have more than one global minimum. A problem

with only one solution (or optimum) is a uni-modal problem, but if more than one

optimum exists, the problem is referred to as a multi-modal problem.

Local minima can be either strong or weak, defined as follows:

Definition 2.2. Strong local minima: The solution x∗
Ni

∈ N ⊆ F is a strong local

minimum of the objective function f , if

x∗
Ni
< f(x), ∀x ∈ N, x∗

Ni
6= x, ∀i = 1, . . . , q (2.3)

where N ⊆ F is a subset of points in the feasible space that is in the neighbourhood of

x∗
N and q is the number of strong local minima of the SOOP. The point x1 in Figure 2.1

is a strong local minimum.

Definition 2.3. Weak local minimum: The solution x∗
Ni

∈ N ⊆ F is a weak local

minimum of the objective function f , if

f(x∗
Ni
) ≤ f(x), ∀x ∈ N, x∗

Ni
6= x, ∀i = 1, . . . , q (2.4)

where q is the number of weak local minima of the SOOP. Point x3 in Figure 2.1 is a

weak local minima.

2.2 Multi-objective Optimisation

Many optimisation problems have more than one objective. The manufacturing example

given earlier in Example 2.1 can be extended to a MOOP as follows:

Example 2.2: A manufacturer wants to maximise its profit. However, many fac-

tors have an influence on profit, for example the time required to manufacture a specific

number of products, the time that a specific machine is idle and the cost of the manu-

facturing process. Therefore, the goals or objectives of the manufacturer are to minimise

the time required to manufacture a specific number of products, to minimise the time

that a specific machine is idle, and to minimise the cost of the manufacturing process.

Chapter 2. Formal Definitions 15

Figure 2.1: Optima of a minimisation function

However, using a specific machine can be more expensive to use than another, and the

more expensive machine may require less time to manufacture the same number of prod-

ucts than a machine that is cheaper to operate. Therefore, in order to manufacture the

maximum number of products in a certain time, using the more expensive machine will

minimise the time required, but will increase the cost.

This example highlights an important problem with many MOOPs, namely that the

objectives are in conflict with one another – minimising the time that the more expensive

machine is idle increases the operational cost and vice versa. In this thesis, when referring

to MOO, MOOPs with conflicting objectives are implied.

This section discusses the theory and definitions with regards to MOO [36, 55]. A

MOOP is defined in Section 2.2.1 and the concept of optima is extended for MOO in

Section 2.2.2. Section 2.2.3 discusses the goal when solving a MOOP and how this goal

differs from situations when solving a SOOP.

Chapter 2. Formal Definitions 16

2.2.1 Multi-objective Optimisation Problems

This section extends the mathematical definition of a SOOP (refer to Equation 2.1) to

mathematically define a MOOP.

Let a single objective function be defined as fk : Rnx → R. Then f(x) = (f1(x), f2(x),

. . . , fnk
(x)) ∈ Ospace ⊆ Rnm represents an objective vector containing nk objective func-

tion evaluations, and Ospace is the objective space.

Using the notation defined above, a MOOP can be mathematically defined as follows:

minimise : f(x)

subject to : gi(x) ≤ 0, i = 1, . . . , ng

hj(x) = 0, j = 1, . . . , nh

x ∈ [xmin , xmax]
nx (2.5)

2.2.2 Pareto-optimal Set and Pareto Optimal Front

For SOOPs, where only one objective is optimised, local and global optima are defined as

presented in Section 2.1.2. However, when dealing with a MOOP, the various objectives

are normally in conflict with one another, i.e. improvement in one objective leads to a

worse solution for at least one other objective. For the manufacturing example (Example

2.2 in Section 2.2) the various objectives, namely to minimise the time required to

manufacture a specific number of products, to minimise the time that a specific machine

is idle, and ro minimise cost, are in conflict with one another. MOOPs do not have specific

optima, but trade-off solutions. Therefore, for MOOPs, the definition of optimality has

to be re-defined. This section discusses the new definition of optimality for MOO.

When solving a MOOP the goal is to find a set of trade-off solutions where for each

of these solutions no objective can be improved without causing a worse solution for

at least one of the other objectives. These solutions are referred to as non-dominated

solutions and the set of such solutions is called the non-dominated set or Pareto-optimal

set (POS). The corresponding objective vectors in the objective space that lead to the

non-dominated solutions are referred to as the POF or Pareto-front. These concepts and

definitions are now discussed in more detail.

Chapter 2. Formal Definitions 17

For MOOPs, when one decision vector dominates another, the dominating decision

vector is considered as a better decision vector. Decision vector domination is defined

as follows:

Definition 2.4. Decision Vector Domination: A decision vector x1 dominates an-

other decision vector x2, denoted by x1 ≺ x2, if and only if

• x1 is at least as good as x2 for all the objectives, i.e. fk(x1) ≤ fk(x2), ∀k =

1, . . . , nk; and

• x1 is strictly better than x2 for at least one objective, i.e. ∃k = 1, . . . , nk : fk(x1) <

fk(x2) .

where nk is the number of objective functions.

A slightly less strict comparison can be made between two decision vectors using the

concept of weak domination, defined as:

Definition 2.5. Weak Decision Vector Domination: A decision vector x1 weakly

dominates another decision vector x2, denoted by x1 � x2, if and only if

x1 is at least as good as x2 for all the objectives, i.e. fk(x1) ≤ fk(x2), ∀k = 1, . . . , nk

The decision vectors that lead to the best trade-off solutions, are called Pareto-

optimal, defined as follows:

Definition 2.6. Pareto-optimal: A decision vector x∗ is Pareto-optimal if there does

not exist a decision vector x 6= x∗ ∈ F that dominates x∗, i.e. ∄k : fk(x) < fk(x
∗). If x∗

is Pareto-optimal, the objective vector, f(x∗), is also Pareto-optimal.

Together, all the Pareto-optimal decision vectors form the Pareto-optimal set (POS),

defined as:

Definition 2.7. Pareto-optimal Set: The POS, P ∗, is formed by the set of all Pareto-

optimal decision vectors, i.e.

P ∗ = {x∗ ∈ F |∄x ∈ F : x ≺ x∗} (2.6)

Chapter 2. Formal Definitions 18

The POS contains the best trade-off solutions for the MOOP. The corresponding

objective vectors form the Pareto-optimal front (POF), which is defined as follows:

Definition 2.8. Pareto-optimal Front: For the objective vector f(x) and the POS

P ∗, the POF, PF ∗ ⊆ Ospace is defined as

PF ∗ = {f = (f1(x
∗), f2(x

∗), . . . , fnk
(x∗))}, ∀x∗ ∈ P ∗ (2.7)

Therefore, the POF contains the set of objective vectors that corresponds to the

POS, i.e. the set of decision vectors that are non-dominated. The POF can have various

shapes, e.g. a convex POF or a concave POF, as can be seen in Section 3.1.

Some MOO algorithms make use of ǫ-domination and an ǫ-approximate POF, pro-

posed by Laumanns et al. [101], which are extensions of Definitions 2.4 and 2.8 above.

With ǫ-domination, a decision vector x dominates not only all decision vectors as defined

in Definition 2.4, but also all decision vectors that are within a distance ǫ of x. The ǫ

value can be selected by the decision maker to control the size of the set of solutions [80].

Furthermore, ǫ-domination provides a way for algorithms to find solutions that converge

to the POF and that has a good diversity [101]. ǫ-domination for decision vectors and

objective vectors, and an ǫ-approximate POF are defined below in Definitions 2.9, ??

and 2.10 respectively.

Definition 2.9. Decision Vector ǫ-Domination: A decision vector x1 ǫ-dominates

another decision vector x2, denoted by x1 ≺ǫ x2, if and only if

• fk(x1)/(1 + ǫ) ≤ fk(x2), ∀k = 1, . . . , nk, ǫ > 0; and

• ∃k = 1, . . . , nk : fk(x1)/(1 + ǫ) < fk(x2), ǫ > 0 .

Definition 2.10. ǫ-approximate Pareto-optimal Front: For the objective vector

f(x) and an ǫ > 0, the ǫ-approximate POF, PF ∗
ǫ ⊆ Ospace, contains all objective vectors

which are not ǫ-dominated by any other objective vector and is therefore defined as

PF ∗
ǫ = {f = (f1(x

∗), f2(x
∗), . . . , fnk

(x∗)), ∀x∗ ∈ P ∗ |∄x ∈ F :

f(x) ≺ǫ fk(x
∗), ∀k = 1, . . . , nk} (2.8)

Chapter 2. Formal Definitions 19

2.2.3 Solving a Multi-objective Optimisation Problem

When solving a MOOP, the goal is to approximate the true POF. If the problem requires

a single solution, the best trade-off solution is selected for the specific problem from the

set of solutions represented by the POF. Therefore, the goal is to find an approximation

of the true POF such that:

• The distance between the found POF and the true POF is minimised.

• The set of non-dominated solutions is as diverse as possible and as evenly spread

out along the found POF as possible.

• The set of non-dominated solutions contains as many solutions as possible.

• The solutions that have been found and that forms the found POF are stored for

later reference.

Similar to a SOOP having global and local optima, a MOOP can have a global POF

or local POFs. Definitions 2.1 to 2.3 for SOO is extended for MOO as follows:

Definition 2.11. Global POF: PF ∗
g is the global POF of a DMOOP, f , if

f(x∗) ≺ f(x), ∀x ∈ F |x /∈ P ∗, ∀x∗ ∈ P ∗, x∗ 6= x (2.9)

where P ∗ is the POS of f .

Therefore, the best candidate solutions that lead to the best trade-off solutions, form

the POS and the corresponding values in the objective space result in the global POF

or the true POF. A MOOP can have many local POFs, with a local POF defined as

follows:

Definition 2.12. Local POF: PF ∗
li

is a local POF of a DMOOP, f , if

f(x∗
Ni
) ≺ f(x), ∀x ∈ N |x /∈ P ∗, x∗

Ni
6= x, x∗

Ni
∈ N, ∀i = 1, . . . , q (2.10)

where N ⊆ F is a subset of points in the feasible space that is in the neighbourhood of

x∗
Ni

and q is the number of local POFs.

When a MOOP has local POFs, an algorithm can become stuck in one of the local

POFs and this will prevent the algorithm from converging to the global POF.

Chapter 2. Formal Definitions 20

2.3 Dynamic Single-objective Optimisation

In many real-world situations the objective function that has to be optimised is not

static. A change in the objective function and/or the constraints can lead to a change

in the environment. The change in the objective function and/or constraints causes a

change in the search landscape, S, and/or the feasible space F , and causes changes to

the optima of the problem, i.e. optima can change in position or value, or optima can

disappear while new optima can appear. The manufacturing example, Example 2.1, can

be extended to illustrate a DSOOP as follows:

Example 2.3: A manufacturer wants to minimise the cost of the manufacturing

process. If the cost is calculated by taking the cost of using the machines into account,

then if one machine breaks down, the environment changes. There will be idle time while

the machine is being replaced and the new machine may not be exactly the same as the

previous one – the new machine may be more expensive to use and/or may need longer

time to complete the manufacturing process. Therefore, the previous solution cannot be

used anymore, and a new solution for the changed situation has to be found.

This section discusses the theory and definitions [55] with regards to DSOO. A

DSOOP is mathematically defined in Section 2.3.1 and Section 2.3.2 discusses the various

classifications of dynamic environments.

2.3.1 Dynamic Single-objective Optimisation Problem

A DSOOP can formally be defined as follows:

Minimise : f(x, t), x = (x1, . . . , xnx
)

Subject to : gi(x, t) ≤ 0, i = 1, . . . , ng

hj(x, t) = 0, j = 1, . . . , nh

x ∈ [xmin ; xmax]
nx (2.11)

In order to solve the DSOOP, the goal is to find

x∗(t) = minx∈F (t) f(x, t) (2.12)

Chapter 2. Formal Definitions 21

where x∗(t) is the optimum at time step t and F (t) is the feasible space at time t.

Since the optima change with time, the goal of an optimisation algorithm for dynamic

environments is to locate an optimum and track its trajectory as closely as possible, and

to find new optima that may appear.

2.3.2 Dynamic Environment Types

Dynamic environments or DSOOPs can change in various ways over time. When a

change occurs in the environment, temporal severity refers to the frequency of change

that the environment experiences and spatial severity refers to the extend of change in

the position of the optima.

Based on real-world problems, De Jong [91] identified four types of changes that can

occur in a dynamic environment:

• Drifting landscapes, where the optima moves gradually over time, for example

aging equipment in a large production plant.

• Significant changes in the optima location, where peaks of high fitness shrink

and new regions of high fitness emerge that was previously uninteresting regions,

for example competitive market places where opportunities for high profit fluctuate

as the levels of competition change over time.

• Cyclic patterns in the landscape, where a relatively small number of states re-

occur over time, for example seasonal climate changes.

• Abrubt and discontinuous changes in the landscape, for example a power

station failure on a distribution grid.

Eberhart and Shi [53] defined the following three generic dynamic environment types

for SOO:

• Type I environments where the location of the optimum in the problem space,

x∗(t), changes, but f(x∗(t)) remains unchanged. The spatial severity, ζ, measures

the change in x∗(t).

• Type II environments where x∗(t) remains unchanged, but the objective func-

tion value at x∗(t), f(x∗(t)), changes.

• Type III environments where both x∗(t) and f(x∗(t)) changes. The change in

x∗(t) is indicated by ζ.

Chapter 2. Formal Definitions 22

These three types are summarised in Table 2.1.

Table 2.1: Dynamic environment types as defined by Eberhart and Shi [53]

Optimum Location

Optimum Value No Change Change

No Change Static Type I

Change Type II Type III

Branke [12] categorised dynamic environments according to the following character-

istics:

• Frequency of change or temporal severity that determines how often the envi-

ronment changes.

• Severity of change or spatial severity that are normally measured as the distance

between the current and the previous optimum.

• Predictability of change that indicates whether the changes occur randomly or

with a pattern that can be learned or predicted by an algorithm.

• Cycle length or cycle accuracy that indicates how long it takes before the

environment returns to a previous state and how accurate or similar the returned

state is with regards to the previous state.

More recently, Duhain [50] classified dynamic environments as follows:

• Static environments, where the environment does not change over time or the

changes to the environment have such a small influence on the problem that they

do not affect the performance of the algorithm for the duration of the simulation.

• Progressively changing environments, where the temporal severity is high,

but the spatial severity (change in x∗(t)) is low. Therefore, the environment

changes in a progressive manner. Algorithms that solve problems with a pro-

gressively changing environment can use knowledge that was obtained earlier (the

previous optima) to find the new optima that will be in close proximity of the

previous optima.

• Abruptly changing environments, where the temporal severity is low, but the

Chapter 2. Formal Definitions 23

spatial severity is high. Therefore, previous knowledge will not be as useful as in

the case of a progressively changing environment.

• Chaotic environments where both the temporal and spatial severity are high.

These four types are summarised in Table 2.2. Duhain’s classification is similar to De

Jong, but more generic and using the concepts of temporal severity and spatial severity.

If the temporal severity is high, the environment changes frequently and therefore

an algorithm would have to converge to the optima at a specific time step quickly and

adapt quickly after a change to find the new optima. A high spatial severity occurs

when x∗(t+1) differs severely from x∗(t) and therefore an algorithm has to find the new

optima that is far from the previous location in the search space. It is important to note

that not all problems’ environment will remain one type for the whole duration of the

simulation, but can change over time from one type of environment to another.

Table 2.2: Dynamic environment types as defined by Duhain [50]

Spatial Severity

Temporal Severity Low High

Low Static Abrupt

High Progressive Chaotic

2.4 Dynamic Multi-objective Optimisation

In most situations the optimisation problem is not static, and has more than one ob-

jective. Example 2.2 (refer to Section 2.2) can be extended to illustrate a DMOOP as

follows:

Example 2.4: A manufacturer wants to maximise its profit. Therefore, the goals

or objectives of the manufacturer are to minimise the time required to manufacture a

specific number of products, to minimise the time that a specific machine is idle, and

to minimise the cost of the manufacturing process. When a machine breaks down, the

environment changes. This change in the environment may also influence more than one

Chapter 2. Formal Definitions 24

objective function. The breakdown of a machine can occur quite frequently and other

changes can also occur. For example, the operational cost of a specific machine may

change when it breaks down and is replaced by another machine that is not exactly the

same as the replaced machine, the time required to complete the manufacturing process

may take longer for a machine as it gets older, etc. Since this manufacturing problem

is not static in nature, but dynamic, the previous solutions or POF will not be valid

anymore and a new POF has to be found.

This section discusses DMOO in more detail. Section 2.4.1 provides a mathematical

definition of a DMOOP and the various types of dynamic DMOOPs are discussed in

Section 2.4.2.

2.4.1 Dynamic Multi-objective Optimisation Problem

This section provides a mathematical definition of a DMOOP.

A DMOOP can be defined as:

Minimise : f(x, t), x = (x1, . . . , xnx
)

Subject to : gi(x, t) ≤ 0, i = 1, . . . , ng

hj(x, t) = 0, j = 1, . . . , nh

x ∈ [xmin ; xmax]
nx (2.13)

Unlike DSOOPs with only one objective function, DMOOPs have many objective

functions. Therefore, in order to solve the DMOOP the goal is to track the POF over

time, i.e.

PF ∗(t) = {f(t) = (f1(x
∗, t), f2(x

∗, t), . . . , fnk
(x∗, t)} , ∀x∗ ∈ P ∗(t) (2.14)

The next section discusses the various types of DMOOPs, as well as the various ways

in which the POF can be affected when a change occurs in the environment.

2.4.2 Dynamic Environment Types

This section discusses the categorisation of DMOOPs, as well as the possible influences

of a change in the environment on the POF.

Chapter 2. Formal Definitions 25

Similar to the classification of dynamic environment types for DSOOPs (refer to

Section 2.3.2), Farina et al. [58] classified dynamic environments for DMOOPs into four

categories, namely:

• Type I environment where the POS (optimal set of decision variables) changes,

but the POF (corresponding objective function values) remains unchanged.

• Type II environment where both the POS and the POF change.

• Type III environment where the POS remains unchanged, but the POF changes.

• Type IV environment where both the POS and the POF remain unchanged,

even though an objective function or a constraint may have changed.

These four types are summarised in Table 2.3.

Table 2.3: Dynamic Environment Types for DMOO problems

POS

POF No Change Change

No Change Type IV Type I

Change Type III Type II

When a change occurs in the environment, the POF can change as follows over time:

1. Existing solutions in the POF becomes dominated and therefore are not part of

the POF any more.

2. The shape of the POF remains the same, but its location in the objective space

change over time. In these cases the POF shifts over time. This kind of change

of the POF occurs with type I DMOOPs and are the easiest kind of DMOOPs to

solve.

3. The shape of the POF changes over time. For example:

• The POF changes from convex to concave or vice versa.

• The POF changes from a continuous front to a disconnected front, i.e. vari-

ous disconnected continuous-valued areas.

This kind of change of the POF occurs with either type II or type III DMOOPs.

When the shape of the POF changes over time, an algorithm has to track the

Chapter 2. Formal Definitions 26

changing POF and obtain a diverse set of solutions for the new shape of the

POF. Therefore, if the shape of the POF changes over time, an algorithm may

struggle to find a diverse set of solutions after a change has occurred.

4. The density of the solutions in the POF changes over time. For example:

• The solutions in the POF becomes more/less dense.

• The number of solutions in the POF becomes more/less.

This kind of change in the POF can occur with all types of DMOOPs. When the

number of solutions or the densitiy of the solutions in the POF change overtime,

algorithms may struggle to find a diverse set of solutions.

2.5 Summary

This chapter discussed aspects of optimisation relevant to this thesis. Section 2.1.1

discussed optimisation problems and their characteristics with regards to the problem’s

objective functions, decision variables and constraints. Different types of solutions exist

for an optimisation problem of which the main types are global and local minima, as

defined in Section 2.1.2. Section 2.2.1 defined a MOOP and in order to re-define the

optima for a MOOP, the concepts of a POS and POF were discussed in Section 2.2.2.

Since most MOOPs do not have a single solution because of conflicting objectives, the

goal when solving MOOPs were summarised in Section 2.2.3. Furthermore, the concepts

of local and global optima for SOO have been extended to define local and global POFs

for MOO in Section 2.2.3.

In real life, optimisation problems are not static in nature and change over time.

Therefore, both DSOO and DMOO were introduced in this chapter. DSOO was dis-

cussed in Section 2.3 and a DSOOP was defined in Section 2.3.1. The environment of

a DSOOP can change in various ways, as discussed in Section 2.3.2. However, many

dynamic optimisation problems do not have only one objective and therefore DMOO

was introduced in Section 2.4 and a DMOOP was defined in Section 2.4.1. Similar to

DSOOPs, the environment of a DMOOP and the POF can change in various ways over

time, as discussed in Section 2.4.2.

There exist many different approaches that are used to solve optimisation problems:

Chapter 2. Formal Definitions 27

Population-based algorithms within the field of computational intelligence (CI), such as

evolutionary algorithms (EAs), PSO algorithms, and ant algorithms, are widely used

to solve optimisation problems. Various population-based approaches that are used to

solve MOO and DMOO problems are discussed in Chapters 6, 7 and 8.

The next chapter discusses bechmark functions that are used to evaluate whether an

algorithm can solve DMOOPs.

Chapter 3

Analysis of Dynamic Multi-objective

Optimisation Benchmark Functions

“Without a standard there is no logical basis for making a decision or taking

action.” – Joseph M. Juran

Dynamic multi-objective optimisation problems are created by adjusting MOOPs in

one or more of the following ways: changing the objective functions over time or changing

the constraints over time. This thesis focusses on unconstrained DMOOPs with static

boundary constraints and objective functions that change over time.

In order to determine whether an algorithm can solve DMOOPs efficiently, DMOOPs

should be used that test the ability of the algorithm to overcome certain difficulties.

These DMOOPs are called benchmark functions. One of the main problems in the field

of DMOO is a lack of standard benchmark functions. This chapter seeks to address this

problem by evaluating the current state-of-the-art benchmark functions presented in the

DMOO literature to establish whether they efficiently evaluate the abilities of DMOO

algorithms.

MOO benchmark functions adapted to develop DMOOPs and characteristics that an

ideal set of MOO benchmark functions should have are discussed in Section 3.1. Cur-

rent benchmark functions used in the DMOO literature are discussed in Section 3.2.

Furthermore, approaches to develop DMOOPs with either an isolated or deceptive POF

are proposed. New DMOOPs with complicated POSs, i.e. POSs that are defined by

28

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 29

non-linear functions and where each decision variable has a different POS are intro-

duced. Characteristics that an ideal DMOO benchmark function suite should have, are

also presented and benchmark functions are suggested for each identified characteristic.

Finally, a summary of this chapter is provided in Section 3.3.

3.1 Multi-objective Optimisation Benchmark Func-

tions

Benchmark functions test how well an algorithm can overcome various types of difficul-

ties when trying to find the true POF. When an algorithm solves a MOOP its goal is

to find solutions that are as close as possible to the true POF and that have an uniform

spread. Therefore, benchmark problems should test whether an algorithm can achieve

this goal when faced with either multi-modality, deception (such as local POFs and iso-

lated optima that may prevent the algorithm from converging towards the true POF; or

a POF that is non-convex, discontinuous or non-uniform that may prevent the algorithm

from finding an uniform spread of solutions [36, 49].

Section 3.1.1 discusses characteristics of ideal benchmark functions suites. Further-

more, two MOO benchmark function suites, namely the ZDT [38] and DTLZ func-

tions [49], that were adapted to develop DMOOPs are discussed in Sections 3.1.2 and 3.1.3

respectively.

3.1.1 Ideal Benchmark Function Characteristics

This section discusses characteristics that an ideal benchmark function suite should ex-

hibit.

Deb et al. [49] constructed the ZDT [38, 169] and DTLZ [49] MOOP suites in such

a way that the benchmark functions are:

• easy to construct,

• scalable in terms of the number of decision variables as well as the number of

objective functions,

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 30

• producing a POF that is easy to understand with the POF’s shape and location

known, and

• hindering an algorithm to converge to the true POF and to produce a good distri-

bution of solutions.

According to Deb et al. [38], an algorithm can be hindered in converging to the true

POF when a benchmark function is multi-modal, deceptive, has an isolated optimum,

or contains noise. Deceptive functions have at least two optima in the search space, but

the search space favours the deceptive optimum, which is a local POF and not the true

global POF. If a function is multi-modal, it has many POFs and a DMOO algorithm

can become stuck in a local POF. If an open subset of decision variable values maps

to a single objective function value, the objective function is referred to as an objective

function with flat regions, i.e. regions where small perturbations of the decision variable

values do not change the objective function value. The lack of gradient information

for the flat regions may cause an algorithm to struggle to converge to the optima. For

DMOOPs, if the majority of the fitness landscape is fairly flat and no useful information

is provided with regards to the location of the POF, the POF is referred to as being

isolated. Therefore, if the DMOOP has an isolated POF, a DMOO algorithm may

struggle to converge towards it. Even if the POF is not completely isolated from the

rest of the search space, i.e. the majority of the fitness landscape is not fairly flat, an

algorithm may struggle to converge towards the POF if the density of solutions close to

the POF is significantly less than in the rest of the search space.

The following properties of the true POF may cause difficulty for an algorithm to

find a diverse set of solutions: convexity or non-convexity in the POF, a discontinuous

POF, or a non-uniform spacing of solutions in the POS or POF [38, 40]. When a

POF is convex, it may be difficult to solve the DMOOP by algorithms that assign a

solution’s fitness based on the number of solutions that the solution dominates (Pareto

ranking) [38]. This fitness assignment favours intermediate or middling solutions that

perform reasonably well with regards to all objective functions more than solutions that

perform very good with regards to one objective and not so good with regards to the other

objectives. Therefore, this fitness assignment may cause bias towards certain portions

of the POF that contain intermediate solutions. If the POF is discontinous and has a

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 31

set of disconnected continuous sub-regions, an algorithm may struggle to find all regions

of the POF. Even though an algorithm may find solutions within each region, when the

solutions compete amongst each other (for storage in the archive or for a rank), solutions

from certain sub-regions may be outranked and therefore may be removed from the non-

dominated solution set. If the POS or POF is not uniformly spaced, an algorithm may

struggle to find a diverse set of non-dominated solutions [40].

3.1.2 ZDT Functions

Deb introduced a tunable two-objective optimisation problem, defined as [38]:

Minimise: f(x) = (f1(xI), f2(x))

Subject to: f1(xI) = f1(x1, x2, . . . , xm)

f2(xII) = g(xII) · h(f1(xI), g(xII))

xII = (xm+1, . . . , xn)

(3.1)

where f1, g > 0. MOOPs with specific features can be created by changing the f1, g and

h functions:

• the selected h function influences the convexity or discontiuity of the POF.

• a difficult g function affects the level of difficulty that an algorithm experiences

when converging to the true POF.

• the selected f1 function affects the diversity or spread of solutions in the POF.

Based on this two-objective optimisation problem and the guidelines produced by

Deb et al [38] as discussed in Section 3.1.1, Zitzler, Deb and Thiele introduced six

benchmark functions referred to as the ZDT functions (first letter of the surnames of the

three authors) [169]. Each of the functions are structured according to Equation (3.1)

and addresses one of the six difficulties discussed in Section 3.1.1. The mathematical

equations (Equations (3.2) to (3.7)) of these functions are presented below:

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 32

ZDT1 =



















































Minimise : f(x) = (f1(x1), g(xII) · h(f1(x1), g(xII)))

f1(xI) = x1

g(xII) = 1 + 9
∑m

i=2
xi

m−1

h(f1, g) = 1−
√

f1
g

where :

xII = (xm+1, . . . , xn), xi ∈ [0, 1]

(3.2)

where m = 30. ZDT1 has a convex POF that is formed with g(xII) = 1. Therefore the

POF of ZDT1 is 1−
√
f1 and the POS is xi = 0, ∀i ∈ xII.

ZDT2 =







































Minimise : f(x) = (f1(x1), g(xII) · h(f1(x1), g(xII)))

f1(x1) = x1

g(xII) = 1 + 9
∑m

i=2
xi

m−1

h(f1(x1), g(xII)) = 1−
(

f1
g

)2

xII = (xm+1, . . . , xn), xi ∈ [0, 1]

(3.3)

where m = 30. The POF is non-convex with POF = 1 − f 2
1 . The POS of ZDT2 is

xi = 0, ∀i ∈ xII.

ZDT3 =



















































Minimise : f(x) = (f1(x1), g(xII) · h(f1(x1), g(xII)))

f1(x1) = x1

g(xII) = 1 + 9
∑m

i=2
xi

m−1

h(f1(x1), g(xII)) = 1−
√

f1
g − f1

g sin(10πf1)

where :

x1 ∈ [0, 1], xII = (xm+1, . . . , xn) ∈ [−5, 5]

(3.4)

where m = 10. ZDT3 has a discrete POF that consists of several discontinuous convex

parts. The sine function in h causes discontinuity in the POF, but not in the decision

space. The POF is 1−
√
f1 − f1 sin(10πf1). The POS of ZDT3 is xi = 0, ∀i ∈ xII.

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 33

ZDT4 =



















































Minimise : f(x) = (f1(x1), g(xII) · h(f1(x1), g(xII)))

f1(x1) = x1

g(xII) = 1 + 10(m− 1) +
∑m

i=2(x
2
i − 10 cos(4πxi))

h(f1(x1), g(xII)) = 1−
√

f1
g

where :

x1 ∈ [0, 1], xII = (xm+1, . . . , xn) ∈ [−5, 5]

(3.5)

wherem = 10. The POF of ZDT4 has 219 local POFs and therefore tests the algorithm’s

ability to deal with multi-modality. The global POF is formed with g(xII) = 1 and is

1 −
√
f1. The global POS is xi = 0, ∀i ∈ xII. The best local POF can be found with

g(xII) = 1.25.

ZDT5 =







































































Minimise : f(x) = (f1(x1), g(xII) · h(f1(x1), g(xII)))

f1(x1) = u(x1)

g(xII) = 1 + 9
∑m

i=2 v(u(xi))

h(f1(x1), g(xII)) =
1
f1

where :

x1 ∈ {0, 1}30, xII = (xm+1, . . . , xn) ∈ {0, 1}5

v(u(xi)) =







2 + u(xi), if u(xi) < 5

1, if u(xi) = 5

(3.6)

where m = 11. ZDT5 is a deceptive problem where xi is represented by a binary string.

The global POF is formed with g(xII) = 10. The best deceptive POF can be found

where g(xII) = 11. The global and local POFs are convex.

ZDT6 =























































Minimise : f(x) = (f1(x1), g(xII) · h(f1(x1), g(xII)))

f1(x1) = 1− exp(−4x1) sin
6(6πx1)

g(xII) = 1 + 9
(∑m

i=2 xi

m−1

)0.25

h(f1(x1), g(xII)) = 1−
(

f1
g

)2

where :

xII = (xm+1, . . . , xn), xi ∈ [0, 1]

(3.7)

wherem = 10. ZDT6 causes two difficulties for algorithms because of the non-uniformity

of the search space, namely: (i) the solutions are non-uniformly distributed along the

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 34

global POF, and (ii) the solutions are the least dense close to the POF and most dense

away from the POF. ZDT6 has a non-convex POF 1 − f 2
1 . The POS of ZDT6 is xi =

0, ∀i ∈ xII.

The ZDT functions are all two-objective optimisation problems. Therefore, Deb et

al. [49] introduced test problems that can be scaled in terms of the number of objective

functions.

3.1.3 DTLZ Functions

This section discusses two approaches, as well as a benchmark function generator, that

were used to develop the Deb, Thiele, Laumanns and Zitzler (DTLZ) benchmark func-

tions.

Spherical Coordinates Approach

Deb et al. [49] defined a test problem that has a POF in the first quadrant of a sphere

with radius one and where all objective functions have non-negative values (add figure

to refer to). Mathematically, using spherical coordinates (θ, γ and r = 1), the POF is

defined as

POF =







































f1(θ, γ) = cos θ cos
(

γ +
π

4

)

f2(θ, γ) = cos θ sin
(

γ +
π

4

)

f3(θ, γ) = sin(θ)

where 0 ≤ θ ≤ π

2
,
−π
4

≤ γ ≤ π

4

(3.8)

Any two points of the surface defined by Equation (3.8) are non-dominated if all

three objective functions are minimised. By defining the rest of the search space above

this surface, the POF is defined as the unit sphere. This can be done by constructing

the rest of the search space parallel to the surface defined in Equation (3.8) as follows:

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 35

POF =











































































Minimise :

f1(θ, γ, r) = (1 + g(r)) cos θ cos
(

γ +
π

4

)

f2(θ, γ) = (1 + g(r)) cos θ sin
(

γ +
π

4

)

f3(θ, γ) = (1 + g(r)) sin(θ)

where :

0 ≤ θ ≤ π

2
,

−π
4

≤ γ ≤ π

4

g(r) ≥ 0

(3.9)

where the POS is 0 ≤ θ∗ ≤ π
2
, −π

4
≤ γ∗ ≤ π

4
, g(r)∗ = 0. Although this three-objective

problem has three independent variables (θ, γ and r), the variables can be meta-variables

and can be considered as a function of n decision variables, i.e. θ = θ(x1, . . . , xn),

γ = γ(x1, . . . , xn), r = r(x1, . . . , xn). These functions must adhere to the lower and

upper bounds of the three variables and can be used to introduce difficulties to the

optimisation problem.

Constraint Surface Approach

Another approach used by Deb et al. to develop benchmark functions are based on a

constraint surface [49]. Firstly, a search space is defined as follows:























































Minimise :

f1(x)

. . .

fM (x)

where :

fLi ≤ fi(x) ≤ fUi , ∀ i = 1, 2, . . . ,M

(3.10)

where fL
i and fU

i refers to the lower bound and upper bound of the objective function

fi respectively. The POS has only one solution, namely a solution that consists of the

lower bound value of each objective, namely (fL
1 , f

L
2 , . . . , f

L
M)T .

A set of constraints, that can be linear or non-linear, can be added to the problem in

Equation (3.10), where each constraint eliminates a portion of the original rectangular

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 36

region. Therefore, the optimisation problem of Equation (3.10) becomes:



































































Minimise :

f1(x)

. . .

fM (x)

where :

fLi ≤ fi(x) ≤ fUi ∀ i = 1, 2, . . . ,M

gj(f1, f2, . . . , fM) ≥ 0, ∀ j = 1, 2, . . . , J

(3.11)

In order to solve this MOOP, the goal of an algorithm becomes to find the non-

dominated part of the feasible space’s boundary. The density of solutions in the search

space can be modified by using non-linear functions for fi.

Benchmark Function Generator

Based on the constraint surface approach, Deb [40, p.361] suggested a generic MOOP

generator where the number of objectives can be scaled. Mathematically, the generator

is defined as






































































Minimise :

f1(x1)

...

fM−1(xM−1)

fM (x) = g(xM) · h(f1, . . . , fM−1, g)

where :

xi ∈ R|xi|, ∀i = 1, 2, . . . ,M

(3.12)

where POF = fM = g x h(f1, f2, . . . , fM−1).

Using the concepts of Equations 3.9 and 3.12, Deb et al. [49] presented the DTLZ

functions. The mathematical equations (Equations 3.13 to 3.19) of these functions are

presented below:

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 37

DTLZ1 =







































































































































Minimise :

f1(x) =
1

2
x1x2 . . . xM−1(1 + g(xM))

f2(x) =
1

2
x1x2 . . . (1− xM−1)(1 + g(xM))

...

fM−1(x) =
1

2
x1(1− x2)(1 + g(xM))

fM (x) =
1

2
(1− x1)(1 + g(xM))

where :

g(xM) = 100

(

|xM|+
∑

xi∈xM

(xi − 0.5)2 − cos(20π(xi − 0.5))

)

0 ≤ xi ≤ 1, ∀i = 1, 2, . . . , n

|xM| = k n =M + k − 1

(3.13)

where k = 5. The POF of DTLZ1 is a linear hyperplane with a POS of x∗i = 0.5, ∀xi ∈
xM. The POF of DTLZ1 is

∑M
m=1 f

∗
m = 0.5. DTLZ1 introduces the difficulty of decep-

tion, since the search space has (11k − 1) local POFs.

DTLZ2 =















































































































Minimise :

f1(x) = (1 + g(xM)) cos
(x1π

2

)

. . . cos
(xM−1π

2

)

f2(x) = (1 + g(xM)) cos
(x1π

2

)

. . . sin
(xM−1π

2

)

...

fM (x) = (1 + g(xM)) sin
(xM−1π

2

)

where :

g(xM) =
∑

xi∈xM

(xi − 0.5)2

0 ≤ xi ≤ 1, ∀i = 1, 2, . . . , n

|xM| = k; n =M + k − 1

(3.14)

where k = 10. The POF of DTLZ2 is a sphere of radius one, namely
∑M

m=1(f
∗
m)

2 = 1.

The POS is x∗i = 0.5, ∀xi ∈ xM.

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 38

DTLZ3 =



















































































































Minimise :

f1(x) = (1 + g(xM)) cos
(x1π

2

)

. . . cos
(xM−1π

2

)

f2(x) = (1 + g(xM)) cos
(x1π

2

)

. . . sin
(xM−1π

2

)

...

fM (x) = (1 + g(xM)) sin
(xM−1π

2

)

where :

g(xM) = 100

(

|xM|+
∑

xi∈xM

(xi − 0.5)2 − cos(20π(xi − 0.5))

)

0 ≤ xi ≤ 1, ∀i = 1, 2, . . . , n

|xM| = k; n =M + k − 1

(3.15)

where k = 10. Similar to DTLZ2, the POF of DTLZ3 is a sphere of radius one, namely
∑M

m=1(f
∗
m)

2 = 1 with a POS of x∗i = 0.5, ∀xi ∈ xM. However, this MOOP has many

local POFs and will test an algorithm’s ability to converge to the global POF in the

presence of many local POFs.

DTLZ4 =



























































































































Minimise :

f1(x) = (1 + g(xM)) cos
(y1π

2

)

. . . cos
(yM−1π

2

)

f2(x) = (1 + g(xM)) cos
(y1π

2

)

. . . sin
(yM−1π

2

)

...

fM (x) = (1 + g(xM)) sin
(yM−1π

2

)

where :

g(xM) =
∑

xi∈xM

(xi − 0.5)2

yi = xαi

0 ≤ xi ≤ 1, ∀i = 1, 2, . . . , n

|xM| = k; n =M + k − 1

(3.16)

where k = 10 and α = 100. Similar to DTLZ2 and DTLZ3, the POF of DTLZ4 is

a sphere of radius,
∑M

m=1(f
∗
m)

2 = 1 and the POS is x∗i = 0.5, ∀xi ∈ xM. However,

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 39

by introducing the mapping of the x-variables, a dense set of solutions exists near the

fM − f1 plane.

DTLZ5 =























































































































Minimise :

f1(x) = (1 + g(xM)) cos(θ1) cos(θ2) . . . cos(θM−1)

f2(x) = (1 + g(xM)) cos(θ1) cos(θ2) . . . sin(θM−1)

...

fM (x) = (1 + g(xM)) sin(θM−1)

where :

g(xM) =
∑

xi∈xM

x0.1i

θi =
π

4(1 + g(r))
(1 + 2g(r)xi), ∀i = 1, 2, . . . , n

0 ≤ xi ≤ 1, ∀i = 1, 2, . . . , n

|xM| = k; n =M + k − 1

(3.17)

where k = 10. The POF of DTLZ5 is a degenerated curve.

DTLZ6 =



















































































































Minimise :

f1(x1) = x1

...

fM−1(xM−1) = xM−1

fM (x) = g(xM) · h(f1, . . . , fM−1, g)

where :

g(xM) = 1 +
9

|xM|
∑

xi∈xM

xi

h =M −
M−1
∑

i=1

fi
1 + g

(1 + sin(3πfi))

xi ∈ R|xi|, ∀i = 1, 2, . . . ,M

(3.18)

where k = 20. DTLZ6 is based on Equation (3.12) and has 2M−1 disconnected Pareto

optimal regions in the search space.

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 40

DTLZ7 =



































































































Minimise :

fj(x) =
1

⌊ n
M ⌋

⌊ j n
M

⌋
∑

⌊(j−1) n
M

⌋
xi, j = 1, . . . ,M

where :

gj(x) = fM (x) + 4fj(x)− 1 ≥ 0, ∀j = 1, . . . , (M − 1)

gM (x) = 2fM (x) +
M−1
min

i,j=1;i 6=j
[fi(x) + fj(x)]− 1 ≥ 0

h =M −
M−1
∑

i=1

fi
1 + g

(1 + sin(3πfi))

0 ≤ xi ≤ 1, ∀i = 1, 2, . . . , n

(3.19)

where n = 10M . DTLZ7 is based on Equation (3.11) and has M constraints. Its POF

is a combination of a hyperplane (represented by constraint gM) and a straight line

(intersection of the first (M-1) constraints with f1 = f2 = . . . = fM−1).

Many benchmark functions for DMOO were based on the ZDT and DTLZ static MOO

(SMOO) benchmark functions. The next section discusses DMOO benchmark functions

that were proposed in the DMOO literature and the gaps that can be identified in the

currently available DMOOPs.

3.2 Dynamic Multi-Objective Optimisation Bench-

mark functions

This section discusses benchmark functions used to evaluate the performance of DMOO

algorithms. Benchmark functions that have been proposed in the DMOO literature are

discussed in Section 3.2.1. Sections 3.2.2 and 3.2.3 present new approaches to develop

DMOOPs with an isolated POF and deceptive POF respectively. New DMOOPs with

complicated POSs are introduced in Section 3.2.4. Characteristics of an ideal set or suite

of benchmark functions are presented in Section 3.2.5 and DMOOPs are suggested for

each characteristic.

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 41

3.2.1 Dynamic Multi-Objective Optimisation Benchmark Func-

tions Currently Used

This section discusses benchmark functions used in the DMOO literature to evaluate

whether DMOO algorithms can efficiently solve DMOOPs.

Due to space constraints, only POSs and POFs with different characteristics will be

illustrated in this section. In all two-objective figures f2 refers to gh.

Guan et al. [74] suggested to create DMOOPs by replacing objective functions with

new objective functions over time. The advantage of Guan et al.’s approach is that the

new objective function(s) can cause a severe change in the DMOOP and by selecting

the objective functions carefully, various types of changes can be incorporated into the

DMOOP. Recently, Wang and Li [156] presented a DMOOP where the one subfunction

of an objective function changes over time. When objective functions are changed over

time, as in the approaches followed by Guan et al. and Wang and Li, the objective

functions should be selected carefully to ensure that the resulting objective functions

hinder the algorithm in finding the POF in various ways as discussed in Section 3.1.1.

Another approach was followed by Jin and Sendhoff [90], where a two-objective DMOOP

is constructed from a three-objective MOO function. The approach of Jin and Sendhoff

has been used by various researchers [110, 111, 112, 108]. However, the adherence to the

guidelines of Deb et al. by the benchmark functions suggested by Guan et al., Wang and

Li, and Jin and Sendhoff will depend on the specific objective functions that are used.

Based on the ZDT [38, 169] and DTLZ [49] functions, Farina et al. [58] developed

the first suite of DMOOPs, namely the FDA benchmark functions. The FDA functions

are constructed in such a way that they are one of the first three DMOOP types of

DMOOPs, where either the POS or POF changes over time, or both the POS and POF

change over time.

The DMOOPs of the FDA DMOOP suite are easy to construct and the number

of decision variables are easily scalable. FDA4 and FDA5 are constructed in such a

way that they are easily scalable with regards to both the number of decision variables

and the number of objective functions. The FDA benchmark functions are of Type I,

II and III DMOOPs and the POF of these DMOOPs is either convex, non-convex or

changes from convex to concave over time. Therefore, the FDA DMOOP suite exhibits

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 42

the characteristics that benchmark functions should have, as defined by Deb et al. [38].

The five FDA DMOOPs are defined as follows:

FDA1 =































































Minimize : f(x, t) = (f1(xI), g(xII, t) · h(f1(xI), g(xII, t)))

f1(xI) = x1

g(xII, t) = 1 +
∑

xi∈xII
(xi −G(t))2

h(f1, g) = 1−
√

f1
g

where :

G(t) = sin(0.5πt), t = 1
nt

⌊

τ
τt

⌋

xI ∈ [0, 1]; xII = (x2, . . . , xn) ∈ [−1, 1]n−1

(3.20)

For FDA1, values in the decision variable space (POS) change over time, but the values

in the objective space (POF) remain the same. Therefore, it is a Type I DMOOP. It

has a convex POF with POF = 1 −
√
f1, as illustrated in Figure 3.1(b). The POS

is xi = G(t), ∀xi ∈ xII as illustrated in Figure 3.1(a). Appendix C explains how to

determine the POS and POF of a DMOOP.

(a) POS (b) POF

Figure 3.1: POS and POF of FDA1 with nt = 10 and τt = 10 for 1000 iterations

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 43

FDA2 =



















































































Minimize : f(x, t) = (f1(xI), g(xII) · h (xIII, f1(xI), g (xII) , t))

f1(xI) = x1

g(xII) = 1 +
∑

xi∈xII
x2i

h(xIII, f1, g, t) = 1−
(

f1
g

)H2(t)

where :

H(t) = 0.75 + 0.75 sin(0.5πt), t = 1
nt

⌊

τ
τt

⌋

H2(t) =
(

H(t) +
∑

xi∈xIII
(xi −H(t))2

)−1

xI ∈ [0, 1]; xIIi
,xIIIi

∈ [−1, 1]

(3.21)

FDA2 has a POF that changes from convex to concave. It is a Type II DMOOP, since

both the POS and POF change over time. For FDA2, POF = 1− f
H(t)−1

1 , as illustrated

in Figure 3.2(a). The POS of FDA2 is xi = 0, ∀xi ∈ xII and xi = H(t), ∀xi ∈ xIII. It

should be noted that many researchers refer to FDA2 as a Type III DMOOP due to an

error at the DMOOP definition in [58]. However, before the definition of FDA2 in [58],

the explanation of the effect of the h function on the DMOOP states that the h function

in FDA2 causes the POF to only change through a change in xIII and that FDA2 is

therefore a Type II DMOOP.

(a) POF of FDA2 (b) POF of FDA3

Figure 3.2: POF of FDA2 and FDA3 with nt = 10 and τt = 10 for 1000 iterations

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 44

FDA3 =











































































Minimize : f(x, t) = (f1(xI, t), g(xII, t) · h(f1(xI), g(xII, t)))

f1(xI, t) =
∑

xi∈xI
x
F (t)
i

g(xII, t) = 1 +G(t) +
∑

xi∈xII
(xi −G(t))2

h(f1, g) = 1−
√

f1
g

where :

G(t) = |sin(0.5πt)|
F (t) = 102 sin(0.5πt), t = 1

nt

⌊

τ
τt

⌋

xIi
∈ [0, 1]; xIIi

∈ [−1, 1]

(3.22)

FDA3 has a convex POF and both the values of the POS and POF change. Therefore it

is called a Type II DMOOP. For FDA3, POF = (1+G(t))
(

1−
√

f1
1+G(t)

)

, as illustrated

in Figure 9.5. The POS is xi = G(t), ∀xi ∈ xII, similar to the POS of FDA1 (refer to

Figure 3.1(b)). The f1 function of the two-objective FDA DMOOPs regulate the spread

of solutions in objective space. Therefore, when f1 changes over time, as is the case with

FDA3, the spread of solutions in the POF changes over time.

FDA4 =







































































































Minimize : f(x, t) = (f1(x, g(xII, t)), . . . , fk(x, g(xII, t)))

f1(x, g, t) = (1 + g(xII, t))
∏M−1

i=1 cos
(

xiπ
2

)

fk(x, g, t) = (1 + g(xII, t))
(

∏M−1
i=1 cos

(

xiπ
2

)

)

sin
(yM−k+1π

2

)

, ∀k = 2, . . . ,M − 1
...

fm(x, g, t) = (1 + g(xII, t))
∏M−1

i=1 sin
(

x1π
2

)

where :

g(xII, t) =
∑

xi∈xII
(xi −G(t))2

G(t) = |sin(0.5πt)|, t = 1
nt

⌊

τ
τt

⌋

xII = (xM , . . . , xn); xi ∈ [0, 1], ∀i = 1, . . . , n

(3.23)

For FDA4, values in the decision variable space (POS) change over time, but the values

in the objective space (POF) remain the same. Therefore, it is a Type I DMOOP. It has a

non-convex POF with the true POF (POF) defined as f 2
1+f

2
2+f

2
3 = 1 for three objective

functions, as illustrated in Figure 3.3. The POS of FDA4 is xi = G(t), ∀xi ∈ xII, similar

to FDA1 (refer to Figure 3.1(b)).

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 45

Figure 3.3: POF of FDA4 with three objective functions [58]

FDA5 =











































































































































Minimize : f(x, t) = (f1(x, g(xII, t)), . . . , fk(x, g(xII, t)))

f1(x, g, t) = (1 + g(xII, t))
∏M−1

i=1 cos
(yiπ

2

)

fk(x, g, t) = (1 + g(xII, t))
(

∏M−1
i=1 cos

(yiπ
2

)

)

sin
(yM−k+1π

2

)

, ∀k = 2, . . . ,M − 1
...

fm(x, g, t) = (1 + g(xII, t))
∏M−1

i=1 sin
(y1π

2

)

where :

g(xII, t) = G(t) +
∑

xi∈xII
(xi −G(t))2

G(t) = |sin(0.5πt)|, t = 1
nt

⌊

τ
τt

⌋

yi = x
F (t)
i , ∀i = 1, . . . , (M − 1)

F (t) = 1 + 100 sin4(0.5πt)

xII = (xM , . . . , xn)

xi ∈ [0, 1], ∀i = 1, . . . , n

(3.24)

FDA5 has a non-convex POF, where both the values in the decision variable space (POS)

and the objective space (POF) change over time. Therefore, it is a Type II DMOOP.

Furthermore, the spread of solutions in the POF changes over time. For FDA5 with three

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 46

objective functions, the POF is f 2
1 + f 2

2 + f 2
3 = (1 +G(t))2 as illustrated in Figure 3.4.

The POS of FDA5 is xi = G(t), ∀xi ∈ xII, similar to FDA1 (refer to Figure 3.1(b)).

Figure 3.4: POF of FDA5 with three objective functions for four time steps [58]

Many researchers have used the FDA DMOOPs over the years as highlighted in

Table 3.1. In Table 3.1 the symbol M indicates that the authors have used a modi-

fied version of the specific FDA DMOOP, I indicates that the authors have introduced

the specific DMOOPs and the column Other indicates whether the authors have used

DMOOPs other than the FDA set. Table 3.1 shows that most researchers used the FDA1

DMOOP, which is of Type I where the POS changes over time, but the POF remains

the same. Clearly, FDA1 is the easiest DMOOP of the FDA suite to solve. Therefore,

using the FDA1 DMOOP alone to test whether an algorithm can solve DMOOPs is not

sufficient.

Several researchers have used the FDA2 DMOOP. However, the POF of FDA2

changes from a convex to a concave shape only for specific values of the decision vari-

ables [46, 117], as can be seen for example in [77, 78] and Figure 4.2. Therefore, even

if an algorithm finds Pareto-optimal solutions, it may find a convex POF instead of a

concave POF. To address this issue, several modifications to the h or g function of FDA2

have been suggested, as shown in Table 3.2. Underlying problems with FDA3 also lead

to several modifications to FDA3 being suggested, as indicated in Table 3.3. In order to

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 47

test an algorithm’s ability to solve Type III DMOOPs, Talukder [144] modified FDA5

to a Type III DMOO, as indicated in Table 3.4.

A generalisation of the FDA functions, DTF, was suggested by Mehnen et al. [117]:

DTF =































































Minimize : f(x, t) = (f1(xI, t), g(xII, t) · h(f1(xI, t), g(xII, t), t))

f1(xI, t) = x
β(t)
1

g(xII, t) = 1 +
∑

xi∈xII
((xi − γ(t))2 − cos(ω(t(τ)))π(xi − γ(t)) + 1)

h(f1, g, t) = 2−
(

f1
g

)α(t)
−
(

f1
g

)

|sin(ψ(t)πf1))|α(t)

where :

t = 1
nt

⌊

τ
τt

⌋

xI ∈ [0, 1], xIIi
∈ [−1, 1]

(3.25)

where β represents the spread of solutions, α the curvature of the POF, γ the optimal

decision variable values or POS, ψ the number of POF sections, and ω the number

of local POFs. For example, a Type II DMOOP can be constructed from DTF by

setting the following parameter values: n = 20, α(t) = 0.2 + 4.8t2, β(t) = 102 sin(0.5πt),

γ(t) = sin(0.5πt), ψ(t) = ts with s ∈ R and ω(t) ∝ ψ(t).

DTF is constructed in such a way that the number of disconnected continuous POF

sections, the number of local POFs, the curvature of the POF, the spread of the solutions,

and the optimal decision variable values that represent the POS can be easily specified.

Table 3.2: Usage of modified FDA2 DMOOP to test algorithms’ performance

Year Authors Changes Modified FDA2 DMOOP

2006 Mehnen et al. [117] Changed the g and H2

functions to develop

a Type III DMOOP.

POF is 1 − f
H2(t)
1

and the POS is xi =

0, ∀xi ∈ xII and xi =

−1, ∀xi ∈ xIII.



























































f1(xI) = x1
g(xII) = 1 +

∑

xi∈xII
x2i+

∑

xi∈xIII
(xi + 1)2

h(xIII, f1, g, t) = 1−
(

f1
g

)H2(t)

where :
H2(t) = 0.2 + 4.8t(τ)2

t = 1
nt

⌊

τ
τt

⌋

xI ∈ [0, 1]; xIIi ,xIIIi ∈ [−1, 1]

(3.26)

Continued on next page

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 48

Year Authors Changes Modified FDA2 DMOOP

2007

2010

Deb et al. [46] and

Liu et al. [113]

Developed a Type III

DMOOP by changing

the h, H and H2

functions and the cal-

culation of t. The

POF is 1 −
(

f21
)H2(t)

and the POS is xi =

0, ∀xi ∈ xII and xi =

−1, ∀xi ∈ xIII.







































































f1(xI) = x1
g(xII) = 1 +

∑

xi∈xII
x2i

h(xIII, f1, g, t) = 1−
(

(

f1
g

)2
)H2(t)

where :
H2(t) = H(t) +

∑

xi∈xIII
(xi −H(t)/4)2

H(t) = 2 sin(0.5π(t− 1))

t = 2
⌊

τ
τt

⌋

τt
τmax−τt

xI ∈ [0, 1]; xIIi ,xIIIi ∈ [−1, 1]

τmax = 200, |xII | = 5, |xIII | = 7
(3.27)

2007 Zheng [165] Changed the h func-

tion to develop a Type

III DMOOP. POF

is
(

1−
√
f1
)H2(t)

and POS is

xi = 0, ∀xi ∈ xII,xIII.



























































f1(xI) = x1
g(xII) = 1 +

∑

xi∈xII
x2i

h(xIII, f1, g, t) =
(

1−
√

f1
g

)H2(t)

where :

H2(t) =
(

H(t) +
∑

xi∈xIII
(xi −H(t))2

)−1

H(t) = 0.75 + 0.75 sin(0.5πt)

t = 1
nt

⌊

τ
τt

⌋

xI ∈ [0, 1]; xIIi ,xIIIi ∈ [−1, 1]
(3.28)

2008

2009

Isaacs et al. [87]

and Ray et al. [127]

Developed a Type III

DMOOP by changing

the H2 function. Very

similar to modifica-

tion made by Mehnen

et al. [117]. POF

is 1 − f
H2(t)
1 and

the POS is xi =

0, ∀xi ∈ xII and xi =

−1, ∀xi ∈ xIII.



























































f1(xI) = x1
g(xII) = 1 +

∑

xi∈xII
x2i+

∑

xi∈xIII
(xi + 1)2

h(xIII, f1, g, t) = 1−
(

f1
g

)H2(t)

where :
H2(t) = 0.2 + 4.8t2

t = 1
nt

⌊

τ
τt

⌋

xI ∈ [0, 1]; xIIi ,xIIIi ∈ [−1, 1]

(3.29)

Continued on next page

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 49

Year Authors Changes Modified FDA2 DMOOP

2009 Salazar

Lechuga [102]

Changed the h func-

tion to develop a

Type III DMOOP.

1 − f
H2(t)
1 is the

POF and the POS is

xi = 0, ∀xi ∈ xII.



















































f1(xI) = x1
g(xII) = 1 +

∑

xi∈xII
x2i

h(xIII, f1, g, t) = 1−
(

f1
g

)H2(t)

where :
H2(t) = 0.75 + 0.75 sin(0.5πt)

t = 1
nt

⌊

τ
τt

⌋

xI ∈ [0, 1]; xIIi ,xIIIi ∈ [−1, 1]

(3.30)

2010 Cámara et al. [17]

[16] [138]

Changed the H

and H2 func-

tions to develop

a Type III DMOOP.

1 − f
H2(t)
1 is the

POF and the POS is

xi = 0, ∀xi ∈ xII and

xi = −1, ∀xi ∈ xIII.



























































f1(xI) = x1
g(xII) = 1 +

∑

xi∈xII
x2i

h(xIII, f1, g, t) = 1−
(

f1
g

)H2(t)

where :
H2(t) = H(t) +

∑

xi∈xIII
(xi −H(t)/2)2

H(t) = z− cos(πt/4)

t = 1
nt

⌊

τ
τt

⌋

xI ∈ [0, 1]; xIIi ,xIIIi ∈ [−1, 1]
(3.31)

Tang et al. [149] suggested a similar approach than Farina et al., constructing DMOOPs

based on the ZDT functions of Deb et al. [38]. Three objective functions are constructed

similar to the DMOOPs of Farina et al. and provide an additional explanation of how

the POF is calculated. For two objective DMOOPs, the following format is used:







Minimise : f(x) = (f1(xI), f2(xII))

f1(xI) = f1(xI)
f2(xII) = u(t)g(xII)v(t) [h (f(xI), g(xII)v(t))]

(3.36)

with u(t) and v(t) functions of time t. The selection of u(t) and v(t) lead to the con-

struction of various types of DMOOPs:

• u(t) = 1 and v(t) that changes over time, create a DMOOP of Type I.

• v(t) = 1 and u(t) that changes over time, create a DMOOP of Type III.

• u(t) and v(t) that change over time, create a DMOOP of Type II.

The formulation of the DMOOP using Equation (3.36) can therefore lead to the

creation of various types of DMOOPs by changing the values of v(t) and u(t). It is very

similar to the FDA DMOOPs, but by formulating the DMOOP in this way, the required

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 50

Table 3.1: Usage of FDA DMOOP to test algorithms’ performance

Year Authors FDA1 FDA2 FDA3 FDA4 FDA5 Other

2004 Farina et al. [58] (I) x x x x x

2005 Amato and Farina [1] x

2005 Shang et al. [135] x x

2006 Hatzakis and Wallis [76] x

2006 Mehnen et al. [117] x M x x

2006 Zheng et al. [160] x x x

2007 Bingul [10] x

2007 Cámara et al. [19] [18] x x

2007 Deb et al. [46] M

2007 Liu and Wang [112] x x x

2007 Zheng [165] x M M x x

2007 Zhou et al. [166] x M

2008 Greeff and Engelbrecht [72] x x x

2008 Isaacs et al. [87] x M

2008 Talukder [144] [96] x M M

2008 Tan and Goh [146] x

2008 Wang and Dang [153] x x x

2009 Chen et al. [23] x x

2009 Goh and Tan [67] [66] x x

2009 Isaacs et al. [88] x M

2009 Ray et al. [127] x M

2009 Salazar Lechuga [102] x M

2009 Wang and Li [155] x x

2010 Cámara et al. [17] [16] [138] x M M x x

2010 Greeff and Engelbrecht [71] x x x x

2010 Koo et al. [100] x x x

2010 Liu et al. [113] x M x

2010 Liu et al. [110] x x

2010 Wang and Li [156] x x x x

2011 Helbig and Engelbrecht [78] x x x x

type of DMOOP can be easily created. Since these functions are based on the ZDT

functions, they adhere to the characteristics of benchmark functions recommended by

Deb et al. An example Type III DMOOP using Equation (3.36) where v(t) = 1 and

u(t) = t2 is:

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 51















































Minimise : f(x) = (f1(xI), f2(xII))

f1(xI) = 1− exp(−4x1) sin
6(6πx1)

f2(xII) = t2g

(

1−
(

f1
g

)2
)

where :

g = 1 + 9
(∑n

i=2 xi

n−1

)0.25

xi ∈ [0, 1], ∀i = 1, 2, . . . , 10

(3.37)

Table 3.3: Usage of modified FDA3 DMOOP to test algorithms’ performance

Year Authors Changes Modified FDA3 DMOOP

2007 Zheng [165] Modified the f1

function to de-

velop a Type II

DMOOP. POF is (1 +

G(t))
(

1−
√

f1
1+G(t)

)

and POS is

xi = G(t), ∀xi ∈ xII.























































f1(xI, t) =
1

|xI|

∑

xi∈xI
x
F (t)
i

g(xII, t) = 1 +G(t) +
∑

xi∈xII
(xi −G(t))2

h(f1, g) = 1−
√

f1
g

where :
G(t) = |sin(0.5πt)|
F (t) = 102 sin(0.5πt)

t = 1
nt

⌊

τ
τt

⌋

xIi ∈ [0, 1]; xIIi ∈ [−1, 1]
(3.32)

2008 Talukder [144] [96] Changed FDA3 from

a Type II to a Type

III DMOOP by mod-

ifying the g function.

The POF is (1 +

G(t))
(

1−
√

f1
1+G(t)

)

and POS is

xi = 0, ∀xi ∈ xII.























































f1(xI, t) =
∑

xi∈xI
x
F (t)
i

g(xII, t) = 1 +G(t) +
∑

xi∈xII
x2i

h(f1, g) = 1−
√

f1
g

where :
G(t) = |sin(0.5πt)|
F (t) = 102 sin(0.5πt)

t = 1
nt

⌊

τ
τt

⌋

xIi ∈ [0, 1]; xIIi ∈ [−1, 1]

(3.33)

2010 Cámara et al. [17] Modified the f1

function to de-

velop a Type II

DMOOP. POF is (1 +

G(t))
(

1−
√

f1
1+G(t)

)

and POS is

xi = G(t), ∀xi ∈ xII.































































f1(xI, t) = x
F (t)
1

g(xII, t) = 1 +G(t) +
∑

xi∈xII
(xi −G(t))2

h(f1, g) = 1−
√

f1
g

where :
G(t) = |sin(0.5πt)|
F (t) = 102 sin(0.5πt)

t = 1
nt

⌊

τ
τt

⌋

xI ∈ [0, 1]; xIIi ∈ [−1, 1]
xII = (x2, . . . , xn)

(3.34)

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 52

Table 3.4: Usage of modified FDA5 DMOOP to test algorithms’ performance

Year Authors Changes Modified FDA5 DMOOP

2008 Talukder [144] Changed FDA5 from a

Type II to a Type III

DMOOP by modifying

the g and F functions.

POF is
∑

f2k = (1 +

G(t))2 and POS is xi =

0, ∀xi ∈ xII.







































































































f1(x, g, t) = (1 + g(xII, t))
∏M−1

i=1 cos
(

yiπ
2

)

fk(x, g, t) = (1 + g(xII, t))
(

∏M−1
i=1 cos

(

yiπ
2

)

)

sin
(yM−k+1π

2

)

, ∀k = 1, . . . ,M − 1
...

fm(x, g, t) = (1 + g(xII, t))
∏M−1

i=1 sin
(

y1π
2

)

where :
g(xII, t) = G(t) +

∑

xi∈xII
x2i

G(t) = |sin(0.5πt)|, t = 1
nt

⌊

τ
τt

⌋

yi = x
F (t)
i , ∀i = 1, . . . , (M − 1)

F (t) = 102 sin(0.5πt)

xII = (xM , . . . , xn)
xi ∈ [0, 1], ∀i = 1, . . . , n

(3.35)

Wang and Li [155, 156] recently also suggested new Type I DMOOPs that are created

by adapting the ZDT functions. These functions are shown in Table 3.6.

Based on the construction guidelines of Farina et al. [58], Goh and Tan [67] presented

three DMOOPs, namely dMOP1, dMOP2 and dMOP3. dMOP1 and dMOP2 have a

POF that changes from convex to concave over time, with dMOP1 being a Type III

DMOOP and dMOP2 a Type II DMOOP. In the FDA DMOOP suite, FDA2 also has a

POF that changes from convex to concave over time, and FDA2 is a Type II DMOOP.

However, dMOP1 and dMOP2 do not suffer from the decision variable selection problem

that FDA2 suffers from. dMOP1 tests whether a DMOO algorithm can solve problems

where the POF changes from convex to concave but the POS remains the same over

time, and dMOP2 adds the difficulty of solving this problem with a changing POS and

POF. dMOP3 is very similar to FDA1, however the variable that controls the spread

of the POF solutions, x1 in FDA1, changes over time. This may cause an algorithm to

struggle to maintain a diverse set of solutions as the POS changes over time. The dMOP

benchmark functions are defined as follows:

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 53

dMOP1 =



































































Minimize : f(x, t) = (f1(xI), g(xII) · h(f1(xI), g(xII), t))

f1(xI) = x1
g(xII) = 1 + 9

∑

xi∈xII
(xi)

2

h(f1, g, t) = 1−
(

f1
g

)H(t)

where :
H(t) = 0.75 sin(0.5πt) + 1.25

t = 1
nt

⌊

τ
τt

⌋

xi ∈ [0, 1]; xI = (x1)
xII = (x2, . . . , xn)

(3.38)

The POF of dMOP1 changes from convex to concave over time, but the POF remains

the same. Therefore, it is a Type III problem, with POF = 1 − f
H(t)
1 , as illustrated in

Figure 3.5. The POS of dMOP1 is xi = 0, ∀xi ∈ xII, similar to FDA2.

Figure 3.5: POF of dMOP1 with nt = 10 and τt = 10 for 1000 iterations

dMOP2 =











































































Minimize : f(x, t) = (f1(xI), g(xII, t) · h(f1(xI), g(xII, t), t))

f1(xI) = x1
g(xII, t) = 1 + 9

∑

xi∈xII
(xi −G(t))2

h(f1, g, t) = 1−
(

f1
g

)H(t)

where :
H(t) = 0.75 sin(0.5πt) + 1.25,
G(t) = sin(0.5πt)

t = 1
nt

⌊

τ
τt

⌋

xi ∈ [0, 1]; xI = (x1)
xII = (x2, . . . , xn)

(3.39)

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 54

dMOP2 has a POF that changes from convex to concave, where the values in both the

POS and POF change. Therefore, dMOP2 is a Type II problem, with POF = 1− f
H(t)
1 ,

similar to dMOP1 (refer to Figure 3.5). The POS of dMOP2 is xi = G(t), ∀xi ∈ xII,

similar to FDA1 (refer to Figure 3.1(b)).

dMOP3 =



















































Minimize : f(x, t) = (f1(xI), g(xII, t) · h(f1(xI), g(xII, t)))

f1(xI) = xr
g(xII, t) = 1 + 9

∑

xi∈xII\xr
(xi −G(t))2

h(f1, g) = 1−
√

f1
g

where :

G(t) = sin(0.5πt), t = 1
nt

⌊

τ
τt

⌋

xi ∈ [0, 1]; r =
⋃

(1, 2, . . . , n)

(3.40)

dMOP3 has a convex POF where the POS changes over time, but the POF remains

the same. dMOP3 is therefore a Type I DMOOP and the spread of the POF solutions

changes over time. Similar to FDA1, for dMOP3, POF = 1−
√
f1 (refer to Figure 3.1(b))

and the POS is xi = G(t), ∀xi ∈ xII \ xr (refer to Figure 3.1(a)).

More recently, Li and Zhang [105] and Deb et al. [48] presented MOOPs with decision

variable dependencies (or linkages). Zhou et al. [166] modified FDA1 to incorporate

dependencies between the decision variables. The modified FDA1 DMOOP is defined as

follows:

ZJZ =







































































Minimize : f(x, t) = (f1(xI), g(xII, t) · h(f1(xI), g(xII, t)))

f1(xI) = x1

g(xII, t) = 1 +
∑

xi∈xII

(

xi −G(t)− x
H(t)
1

)2

h(f1, g) = 1−
(

f1
g

)H(t)

where :
G(t) = sin(0.5πt)
H(t) = 1.5 +G(t)

t = 1
nt

⌊

τ
τt

⌋

xI ∈ [0, 1]; xII = (x2, . . . , xn) ∈ [−1, 2]n−1

(3.41)

For ZJZ, the values of both the POS and POF change over time. Therefore, it is

a Type II DMOOP. ZJZ’s POF is similar to dMOP1 (refer to Figure 3.5) and changes

from convex to concave over time, with POF = 1− f
H(t)
1 . However, there are non-linear

dependencies between the decision variables that make the DMOOP more difficult to

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 55

solve. The POS of ZJZ is xi = G(t) + x
H(t)
1 , ∀xi ∈ xII, as illustrated in Figure 3.6.

Changes made to FDA1 to develop new DMOOPs are summarised in Table 3.5.

Figure 3.6: POS of ZJZ with nt = 10 and τt = 10 for 1000 iterations

Table 3.5: Usage of modified FDA1 DMOOP to test algorithms’ performance

Year Authors Changes Modified FDA1 DMOOP

2007 Zhou et

al. [166]

Modified FDA1 from a

Type I to a Type II

DMOOP with non-linear

dependencies between the

decision variables. POF is

1− f
H(t)
1 and POS is xi =

G(t) + x
H(t)
1 , ∀xi ∈ xII.























































f1(xI) = x1

g(xII, t) = 1 +
∑

xi∈xII

(

xi −G(t)− x
H(t)
1

)2

h(f1, g) = 1−
(

f1
g

)H(t)

where :

G(t) = sin(0.5πt), t = 1
nt

⌊

τ
τt

⌋

H(t) = 1.5 +G(t)
xI ∈ [0, 1]; xII = (x2, . . . , xn) ∈ [−1, 1]n−1

(3.42)

Another shortcoming of the FDA DMOOP suite is that all DMOOP objective func-

tions consist of decision variables with the same rate of change over time. Koo et al. [100]

suggested two new benchmark functions where each decision variable has its own rate of

change, except the variable x1 that controls the spread of solutions. These two functions,

DIMP1 and DIMP2, are defined as follows:

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 56

DIMP1 =



















































Minimize : f(x, t) = (f1(xI), g(xII, t) · h(f1(xI), g(xII, t)))

f1(xI) = x1
g(xII, t) = 1 +

∑

xi∈xII
(xi −Gi(t))

2

h(f1, g) = 1−
(

f1
g

)2

where :

Gi(t) = sin
(

0.5πt+ 2π
(

i
n+1

))2
, t = 1

nt

⌊

τ
τt

⌋

xI = (x1) ∈ [0, 1], xII = (x2, x3, . . . , xn) ∈ [−1, 1]n−1

(3.43)

The POS of DIMP1 changes over time, but the POF remains the same. Therefore,

DIMP1 is a Type I DMOOP, with POF = 1− f 2
1 (as illustrated in Figure 3.7) and the

POS is xi = G(t), ∀xi ∈ xII, similar to FDA1 (refer to Figure 3.1(a)).

Figure 3.7: POF of DIMP1 with nt = 10 and τt = 10 for 1000 iterations

DIMP2 =



































































Minimize : f(x, t) = (f1(xI), g(xII, t) · (f1(xI), g(xII, t)))

f1(xI) = x1
g(xII, t) = 1 + 2(n− 1)+
∑

xi∈xII
[(xi −Gi(t))

2−
2 cos(3π(xi −Gi(t)))]

h(f1, g) = 1−
√

f1
g

where :

Gi(t) = sin
(

0.5πt+ 2π
(

i
n+1

))2
, t = 1

nt

⌊

τ
τt

⌋

xI ∈ [0, 1], xII ∈ [−2, 2]n−1

(3.44)

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 57

DIMP2 is a Type I problem, since its POS changes over time but its POF remains the

same. Similar to FDA1, DIMP2’s POF is 1−
√
f1 (refer to Figure 3.1(b)) and the POS

is xi = G(t), ∀xi ∈ xII (refer to Figure 3.1(a)).

The FDA and dMOP MOOPs only contain DMOOPs with a continuous POF. Two

discontinous functions, namely TP1mod and TP2mod, were presented by Greeff and Engel-

brecht [72]. However, these two functions do not allow easy scalability of the number of

decision variables. Therefore, TP1mod and TP2mod do not adhere to the characteristics of

benchmark functions that are recommended by Deb et al. Recently, Helbig and Engel-

brecht [78] presented two DMOOPs with a discontinuous POF, namely HE1 and HE2.

These two functions are based on the ZDT3 [169] MOOP that was developed in such

a way that it adheres to the characteristics recommended by Deb et al. HE1 and HE2

were developed by adapting ZDT3 to be dynamic and therefore adhere to the benchmark

function characteristics recommended by Deb et al. HE1 and HE2 are defined as:

HE1 =















































Minimize : f(x, t) = (f1(xI), g(xII) · h(f1(xI), g(xII), t))

f1(xI) = x1
g(xII) = 1 + 9

n−1

∑

xi∈xII
xi

h(f1, g, t) = 1−
√

f1
g − f1

g sin(10πtf1)

where :

t = 1
nt

⌊

τ
τt

⌋

xi ∈ [0, 1]; xI = (x1); xII = (x2, . . . , xn)

(3.45)

HE2 =



















































Minimize : f(x, t) = (f1(xI), g(xII) · h(f1(xI), g(xII), t))

f1(xI) = xi
g(xII) = 1 + 9

n−1

∑

xi∈xII
xi

h(f1, g, t) = 1−
(√

f1
g

)H(t)

−
(

f1
g

)H(t)
sin(10πf1)

where :

H(t) = 0.75 sin(0.5πt) + 1.25; t = 1
nt

⌊

τ
τt

⌋

xi ∈ [0, 1]; xI = (x1); xII = (x2, . . . , xn)

(3.46)

Both HE1 and HE2 have a discontinuous POF, with various disconnected continuous

sub-regions. Both are Type III DMOOPs, since their POFs change over time, but their

POSs remain the same. For HE1, POF = 1 −
√
f1 − f1 sin(10πtf1) as illustrated in

Figure 3.8(a), and for HE2, POF = 1−
(√

f1
)H(t) − f

H(t)
1 sin(0.5πf1) as illustrated in

Figure 9.9. The POS for both HE1 and HE2 is xi = 0, ∀xi ∈ xII, similar to FDA2.

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 58

(a) POF of HE1 (b) POF of HE2

Figure 3.8: POF of HE1 and HE2 with nt = 10 and τt = 10 for 1000 iterations

Avdagić et al. [2] introduced an adaptation of the DTLZ problems to develop the

following types of benchmark functions: Type I DMOOP where the POS changes co-

herently over time, but the POF remains the same, Type II DMOOP where the shape

of the POS continuously changes and the POF also changes over time, and a Type II

DMOOP where the number of objective functions change over time [2]. These benchmark

functions are developed from the following general equation:

DTLZAv =







































































Minimize : q(x) = (q1(x), . . . , qm(x))
q1(x) = a1x

c1
1 x

c1
2 . . . xc1m−1(1− xm)c1g1(x) + b1

q2(x) = a2x
c2
1 x

c2
2 . . . (1− xm−1)

c2(1− xm)c2g2(x) + b2
...

qm−1(x) = am−1x
cm−1

1 (1− x2)
cm−1 . . . (1− xm−1)

cm−1(1− xm)cm−1

gm−1(x) + bm−1

qm(x) = am(1− x1)
cm(1− x2)

cm . . . (1− xm−1)
cm(1− xm)cmgm(x)

+bm
where :
gi = 1− di cos(20πxi)
ai, bi, ci, di ∈ R

(3.47)

A Type I DMOOP with a continuously changing POS is created by using Equa-

tion (3.47) and setting the following parameter values: ai = 1, di = 0, bi = bik, where

k represents the iteration and ci = 1 or ci = 2. Similarly, a Type II DMOOP with

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 59

continuously changing POS and POF are developed by setting the following parameter

values: ai = 1, bi = bik, cik = 5bik and di = 0. To develop a Type II DMOOP with

a changing number of objectives, the same parameters are used as those spesified for

the Type II DMOOP, with two objective functions being used for a certain number of

iterations and then three objective functions are used for the other iterations. These

additional types of DMOOPs, which are not part of the FDA benchmark function set,

may become important if these kind of changes occur in a real-world problem.

Recently, Huang et al. [84] pointed out that all DMOOPs assume that the current

found POS does not affect the future POS or POF. To the best knowledge of the author

of this thesis, none of the suggested DMOOPs have a POS or POF that depends on

the previous POS or POF. Furthermore, most DMOOPs consist of a static number of

decision variables and objective functions. Therefore, Huang et al. [84] introduced four

DMOOPs that incorporate these scenarios, defined as follows:

T1 =



















































Minimize : f(x, t) = (f1(x, t), f2(x, t))

f1(x, t) =
∑d1(t)

i=1

(

x2i − 10 cos(2πxi) + 10
)

f2(x, t) = (x1 − 1)2 +
∑d2(t)

i=2

(

x2i − xi−1

)2

where :
d1(t) = ⌊n| sin(t)|⌋
d2(t) = ⌊n| cos3(2t)|⌋
t = 1

nt

⌊

τ
τt

⌋

(3.48)

with d1 and d2 varying the number of decision variables over time. The minimum for f1

is 0 and the POS for f1 is xi = 0, ∀i = 1, . . . , d1(t). The minimum for f2 is 0 with the

POS xi = 1, ∀i = 1, . . . , d2(t). Both the POF and POS remain static, but the number

of decision variables changes over time. Therefore, T1 is a type IV DMOOP.

T2 =































































Minimize : f(x, t) = (f1(x, t), . . . , fm(x, t))

f1(x, t) = (1 + g(xII))
∏m(t)−1

i=1 cos
(

πxi

2

)

fk(x, t) = (1 + g(xII))
∏m(t)−k

i=1 cos
(

πxi

2

)

sin
(

πxm(t)−k+1

2

)

,

∀k = 2, . . . ,m(t)− 1fm(x, t) = (1 + g(xII))
∏m(t)−1

i=1 sin
(

πx1
2

)

where :

g(xII) =
∑m(t)

i=1 (xi − 0.5)2

m(t) = ⌊M | sin(0.5πt)|⌋, t = 1
nt

⌊

τ
τt

⌋

xi ∈ [0, 1]

(3.49)

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 60

with M representing the maximum number of objective functions and m varying the

number of objective functions over time. T2 is a Type III DMOOP, since its POF changes

over time, but its POS remains the same. The POS of T2 is xi = 0.5, ∀i = 1, . . . ,m(t)

and the POF is
∑m(t)

i f2i = 1.

T3 =



































































Minimize : f(x, t) = (f1(x, t), f2(x, t))

f1(x, t) = R(x, t) cos
(

πx1
2

)

f2(x, t) = R(x, t) sin
(

πx1
2

)

where :
R(x, t) = R̄(x, t− 1, t) +G(x, t)

R̄(x, t) = 1
P

∑P
j Rj(x, t− 1)

R̄(x,−1) = 1

G(x, t) =
∑n

i=2

(

xi − R̄(x, t− 1)
)2
, t = 1

nt

⌊

τ
τt

⌋

x1 ∈ [0, 1], xi ∈ [R̄(x, t)− 100, R̄(x, t) + 100], ∀i = 2, . . . , n

(3.50)

with the value of R(x, t) depending on previous values of R. Therefore, if a slight error

occurs with regards to the found value of R at time t, this error will increase over time,

influencing the algorithm’s ability to find the solutions at the next time steps. Both

the POS and POF remain static. Therefore, T3 is a Type IV DMOOP. The POS is

xi = R̄(x, t− 1), ∀i = 2, . . . , n. The POF is f 2
1 + f 2

2 = 1. Similar to T1, T4 is a type IV

DMOOP, defined as:

T4 =







































Minimize : f(x, t) = (f1(x, t), f2(x, t))

f1(x, t) =
∑n

i=1

(

x2i − 10 cos(2πxi) + 10
)

f2(x, t) = (x1 − r(t))2 +
∑n

i=2

(

x2i − xi−1

)2

where :
r(x, t) = 1

n

∑

xi∈x (xi − 0)

t = 1
nt

⌊

τ
τt

⌋

(3.51)

with r representing the average error of the decision variables of the selected POS

(POS∗). Since the POS of T4 is xi = 0, ∀i = 1, 2, . . . , n, the average error of the

decision variables of POS∗ is r(x, t) = 1
n

∑

xi∈x (xi − 0). The selected trade-off solution

set, POS∗, is derived from the current POS by a decision making mechanism used by the

decision maker. Therefore, for T4, the POF depends on the decision making mechanism

used at previous time steps.

Mehnen et al. [117] suggested that simpler benchmark functions are required to anal-

yse the effect of different dynamic properties in a more isolated manner. For this reason,

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 61

they presented the DSW DMOOPs generator that are based on the static MOOP of

Shaffer [131]. The DSW DMOOPs are parabolic and are similar to the sphere function

that are typically used to test whether an algorithm can solve DSOOPs. The DSW

benchmark generator is defined as:

DSW =































Minimize : f(x, t) = (f1(x, t), f2(x, t))

f1(x, t) = (a11x1 + a12|x1| − b1G(t))
2 +

∑n
i=2 x

2
i

f2(x, t) = (a21x1 + a22|x1| − b2G(t)− 2)2 +
∑n

i=2 x
2
i

where :

G(t) = t(τ)s, t = 1
nt

⌊

τ
τt

⌋

(3.52)

with s representing the severity of change. Using Equation (3.52), the following three

benchmark functions are created:

DSW1 :

{

x ∈ [−50, 50]n, a11 = 1, a12 = 0, a21 = 1,
a22 = 0, b1 = 1, b2 = 1

(3.53)

DSW1 has a dynamic POF and POS, and is therefore a Type II DMOOP. The POS

of DSW1 is x1 ∈ [G(t), G(t) + 2] and xi = 0, ∀i = 2, 3, . . . , n. The POF is POF =
(√

f1 − 2
)2

with f1 = (x1 − G(t))2, as illustrated in Figure 3.9(a). DSW1 is similar to

the spherical SOOP function where the center of the sphere is linearly shifted over time.

(a) POF of DSW1 (b) POF of DSW2

Figure 3.9: POF of DSW1 and DSW2 with nt = 10 and τt = 10 for 1000 iterations

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 62

DSW2 :

{

x ∈ [−50, 50]n, a11 = 0, a12 = 1, a21 = 0,
a22 = 1, b1 = 1, b2 = 1

(3.54)

Both the POS and POF of DSW2 change over time. Therefore, DSW2 is a Type II

DMOOP. DSW2 has a disconnected POS, with x1 ∈ [−G(t)−2,−G(t)]∪ [G(t), G(t)+2]

and xi = 0, ∀i = 2, 3, . . . , n. If a periodical G(t) is used, the POSs will join and depart

periodically. The POF of DSW2 is similar to that of DSW1, namely POF =
(√

f1 − 2
)2
,

but with f1 = (|x1| −G(t))2, as illustrated in Figure 3.9(b).

DSW3 :

{

x ∈ [−50, 50]n, a11 = 1, a12 = 0, a21 = 1,
a22 = 0, b1 = 0, b2 = 1

(3.55)

DSW3 has a changing POF and POS, and is therefore a Type II DMOOP. For DSW3

the POS is x1 ∈ [0, G(t) + 2] and the POF is POF =
(√

f1 −G(t)− 2
)2

with f1 = x21.

Setting b1 = 0 causes one border of the POS interval for x1, namely G(t) + 2, to change

over time, while the other border, 0, remains static.

The DMOOPs that have been discussed above are summarised in Table 3.6 (excluding

the FDA and modified FDA functions summarised in Tables 3.1 to 3.4).

None of the DMOOPs discussed in this section have an isolated or deceptive POF.

The next section discusses an approach to construct DMOOPs with an isolated POF.

Table 3.6: Usage of other DMOOP to test algorithms’ performance

YearAuthors Other DMOOPs DMOOPs Definition
2004

2006

2007

2007

2010

Jin and

Sendhoff [90] (I)

Liu and Wang [111]

Li et al. [108]

Liu and Wang [112]

Liu et al. [110]

Constructing two-

objective DMOOPs

from a three-objective

MOOP. Various f1

and f2 functions can

be used to create

Type I to III

DMOOPs.































Minimize : f(x) = (f1(x), f2(x), f3(x))

Is changed to:

Minimize : (F1, F2)
where :
F1 = wf1(x) + (1− w)f2(x)
F2 = wf1(x) + (1− w)f3(x)
with w changing over time

(3.56)

Continued on next page

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 63

YearAuthors Other DMOOPs DMOOPs Definition
2005 Guan et al. [74] DMOOPs created by

replacing objective

functions with new

objective functions

over time. G1 is an

example of a Type III

DMOOP.

G1 =



































































Minimise :
{

G = (f1, f2) for t
G = (f1, f

′
2) for t∗

where :

f1 = x1

f2 = g(x)

(

1−
(

x1

g(x)

)2
)

f ′2 = g(x)

(

1−
√

x1

g(x)

)

g(x) = 1 + 9
n−1

∑n
i=2 xi

xi ∈ [0, 1]

(3.57)

G2 =



























































Minimise :
{

G = (f1, f2, f3, f4) for t
G = (f1, f2, f3, f

′
4) for t∗

where :

f1 = (x1 − 2)2 + 4x22
f2 = x21 + (x2 − 3)(x3 − 3)
f3 = x2x3x4
f4 = x1x4 + x2x3

f ′4 = 1/
(

x1.52 x2.53 x4
)

xi ∈ [1, 10]
(3.58)

2005 Guan et al. [74]

(cont.)

DMOOPs created by

replacing objective

functions with new

objective functions

over time.
G3 =



































































Minimise :
{

G = (f1, f2, f3, f4) for t
G = (f1, f2, f

′
3, f

′
4) for t∗

where :

f1 = (x1 − 2)2 + 4x22
f2 = x21 + (x2 − 3)(x3 − 3)
f3 = 1− exp(−4x1) sin

6(6πx1)
f4 = x1x4 + x2x3
f ′3 = x2x3x4
f ′4 = 1/

(

x1.52 x2.53 x4
)

xi ∈ [1, 10]
(3.59)

Continued on next page

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 64

YearAuthors Other DMOOPs DMOOPs Definition
2006 Mehnen et al. [117] DMOOP DTF ena-

bling easy specifica-

tion of the number of

separated POF

sections, the number

of local POFs, the

curvature of the POF,

the spread of the

solutions and the

optimal decision

variable values that

represent the POS.

Type I-III DMOOPs

can be created.

DSW DMOOP

generator that is

based on the static

MOOP of Shaffer.

DMOOP Types I-III

can be created.

Equation (3.25)

Equations (3.52) to (3.55)

2007 Tang et al. [149] DMOOPs based on

the ZDT functions of

Deb et al. [38]. Can

construct DMOOPs

of Type I-III.

Equation (3.36)

Continued on next page

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 65

YearAuthors Other DMOOPs DMOOPs Definition
2008 Greeff and

Engelbrecht [72]

TP1mod and TP2mod

DMOOPs with

discontinuous POFs.

Both TP1mod and

TP2mod are Type III

DMOOPs.

TP1mod:























































Minimize : f(x) = (f1(x), f2(x))

f1(x) =







−x for x ≤ 1
−2 + x for 1 < x ≤ 3
4− x for 3 < x ≤ 4
−4 + x for x > 4

f2(x) = (x− 5)2 +G(t)
where :
G(t) = | sin(0.5πt)
t = 1

nt

⌊

τ
τt

⌋

−100 ≤ x ≤ 100
(3.60)

TP2mod:







































































Minimize : f(x) = (f1(x), f2(x))

f1(x) = 2 + (x2 − 1)2 − 10c1G(t)+
(x1 − 2)2

f2(x) = 9x1 + (x2 − 1)2 − 10c2G(t)
where :

c1(x) =
{

c1 for c1 ≤ 0
0 for c1 > 0

c2(x) =
{

c2 for c2 ≤ 0
0 for c2 > 0

G(t) = | sin(0.5πt)
t = 1

nt

⌊

τ
τt

⌋

x1, x2 ∈ [−20, 20]
(3.61)

Continued on next page

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 66

YearAuthors Other DMOOPs DMOOPs Definition
2009 Avdagić et al. [2] Adapted the DTLZ

problems to develop a

Type II homogenous

DMOOP where the

POS changes

uniformly at each

iteration, a non-

homogenous Type II

DMOOP where the

POS continuously

changes and results in

the POF that changes

as well, and a non-

homogenous Type II

DMOOP where the

number of objective

functions change over

time.

Equation (3.47)

2009 Goh and

Tan [67] [66]

Three DMOOPs,

namely dMOP1

(Type III), dMOP2

(Type II) and

dMOP3 (Type I).

dMOP1 and dMOP2

have a POF that

changes from convex

to concave over time.

dMOP3 is very

similar to FDA1,

however the variable

that controls the

spread of the POF

solutions changes over

time.

Equations (3.38) to (3.40)

Continued on next page

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 67

YearAuthors Other DMOOPs DMOOPs Definition
2009

2010

Wang and Li [155]

Wang and Li [156]

Modified ZDT

functions to create

the Type I DMZDT

DMOOPs.

POF of DMZDT1 is

1−
√
f1 and the POS

is |xi−t/nt|
H(t) = 0.

POF of DMZDT2 is

1− f21 and the POS is
|xi−t/nt|

H(t) = 0.

DMZDT1:










































































Minimize : f(x, t) = (f1(xI), g(xII, t)·
h(f1(xI), g(xII, t)))

f1(xI) = x1

g(xII, t) = 1 +
9
∑

xi∈xII
|yi(t)|

D−1

h(f1, g) = 1−
√

f1
g

where :

yi(t) =
|xi−t/nt|

H(t) , ∀i = 2, . . . , D

H(t) = max{|1− t
nt

|, | − 1− t
nt

|}
t =

⌊

fc
FESc

⌋

xI ∈ [0, 1]; xII = (x2, . . . , xn) ∈ [−1, 1]n−1

(3.62)

DMZDT2:










































































Minimize : f(x, t) = (f1(xI), g(xII, t)·
h(f1(xI), g(xII, t)))

f1(xI) = x1

g(xII, t) = 1 +
9
∑

xi∈xII
|yi(t)|

D−1

h(f1, g) = 1−
(

f1
g

)2

where :

yi(t) =
|xi−t/nt|

H(t) , ∀i = 2, . . . , D

H(t) = max{|1− t
nt

|, | − 1− t
nt

|}
t =

⌊

fc
FESc

⌋

xI ∈ [0, 1]; xII = (x2, . . . , xn) ∈ [−1, 1]n−1

(3.63)

Continued on next page

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 68

YearAuthors Other DMOOPs DMOOPs Definition
2009

2010

Wang and Li [155]

Wang and Li [156]

(continued)

POF of DMZDT3 is

1−
√
f1 −

f1 sin(10πf1). The

POF is discontinuous.

The POS is
|xi−t/nt|

H(t) = 0.

DMZDT4 has many

local POFs. POF of

DMZDT4 is 1−
√
f1

and the POS is
|xi−t/nt|

H(t) = 0.

DMZDT3:










































































Minimize : f(x, t) = (f1(xI), g(xII, t)·
h(f1(xI), g(xII, t)))

f1(xI) = x1

g(xII, t) = 1 +
9
∑

xi∈xII
|yi(t)|

D−1

h(f1, g) = 1−
√

f1
g − f1

g sin(10πf1)

where :

yi(t) =
|xi−t/nt|

H(t) , ∀i = 2, . . . , D

H(t) = max{|1− t
nt

|, | − 1− t
nt

|}
t =

⌊

fc
FESc

⌋

xI ∈ [0, 1]; xII = (x2, . . . , xn) ∈ [−1, 1]n−1

(3.64)

DMZDT4:














































































Minimize : f(x, t) = (f1(xI), g(xII, t)·
h(f1(xI), g(xII, t)))

f1(xI) = x1
g(xII, t) = 10D − 9+
∑

xi∈xII

[

yi(t)
2 − 10 cos(4π|yi|)

]

h(f1, g) = 1−
√

f1
g

where :

yi(t) =
|xi−t/nt|

H(t) , ∀i = 2, . . . , D

H(t) = max{|1− t
nt

|, | − 1− t
nt

|}
t =

⌊

fc
FESc

⌋

xI ∈ [0, 1]; xII = (x2, . . . , xn) ∈ [−1, 1]n−1

(3.65)

2009

2010

Wang and Li [155]

Wang and Li [156]

Type II DMOOP,

WYL, where an

objective changes

over time.

WYL:






























Minimize :










DMZDT1 if t%4 = 0
DMZDT2 if t%4 = 1
DMZDT3 if t%4 = 2
DMZDT4 if t%4 = 3

where :
% is the modulus operator

(3.66)

Continued on next page

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 69

YearAuthors Other DMOOPs DMOOPs Definition
2010 Koo et al. [100] Type I DMOOPs

DIMP1 and DIMP2,

where each decision

variable has its own

rate of change, except

the variable x1 that

controls the spread of

solutions.

Equations (3.43) and (3.44)

2010 Liu et al. [113] DMOP3 is a three-

objective Type I

DMOOP similar to

FDA4 of Farina et al.

The three-objective

POF is

f21 + f22 + f23 = 1

and the POS is

xi = G(t), ∀xi ∈ xII.

DMOP3:


















































































Minimize : f(x, t) = (f1(x, g(xII, t)),
f2(x, g(xII, t)), f3(x, g(xII, t)))

f1(x, g, t) = (1 + g(xII, t))) cos(0.5πx1)
cos(0.5πx2)

f2(x, g, t) = (1 + g(xII, t))) cos(0.5πx1)
sin(0.5πx2)

f3(x, g, t) = (1 + g(xII, t))) sin(0.5πx2)
where :
g(xII, t) =

∑

xi∈xII
(xi −G(t))

2

G(t) = |sin(0.5πt)|
t = 1

nt

⌊

τ
τt

⌋

xII = (x3, . . . , xn)
xi ∈ [0, 1], ∀i = 1, . . . , n

(3.67)

2011 Huang et al. [84] Type IV DMOOPs

where the current

found POS affects the

future POS or POF,

a Type IV DMOOP

where the number of

decision variables

change over time and

a Type II DMOOP

where the number of

objective functions

change over time.

Equations (3.48) to (3.51)

2011 Helbig and

Engelbrecht [78]

Type III DMOOPs

HE1 and HE2 with a

discontinuous POF

and based on the

ZDT3 [169] MOOP.

Equations (3.45) and (3.46)

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 70

3.2.2 Dynamic Multi-objective Optimisation Problems with an

Isolated Pareto Optimal Front

Objective functions contain flat regions when an open subset of decision variable values

maps to a single objective function value. The POF of DMOOPs with objective functions

that have flat regions are also referred to as an isolated POF. The lack of gradient

information for the flat regions may cause difficulty for a DMOO algorithm to converge

to the POF. However, no DMOOPs with an isolated POF have been proposed. Therefore,

this section proposes an approach that can be used to develop DMOOPs with an isolated

POF.

Huband et al. introduced a suite of static MOOPs referred to as the WFG benchmark

functions to address shortcomings of other MOO test suites [85]. One of the shortcom-

ings that the WFG suite addresses, is the development of MOOPs where the objective

functions have flat regions. This approach is adapted so that it can be applied to current

DMOOPs.

The flat regions are created by mapping the decision variables to new values using

the following equation [85]:

yi(xi, A,B,C) =A+min(0, ⌊xi −B⌋)A(B − xi)

B
−min(0, ⌊C − y⌋)(1−A)(xi − C)

1− C
(3.68)

where A,B,C ∈ [0, 1], B < C, B = 0 =⇒ A = 0 ∧ C 6= 0, C = 1 =⇒ A = 1 ∧ B 6= 0.

All values of xi between B and C are mapped to the value of A. Therefore, the region

between B and C forms the flat region.

This mapping can be applied to existing DMOOPs. Two examples are provided

below, namely the adjustment of FDA5 (refer to Equation (3.24)) and dMOP2 (refer to

Equation (3.39)):

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 71

FDA5iso =











































































































Minimize : f(x, t) = (f1(x, g(xII, t)), . . . , fk(x, g(xII, t)))

f1(x, g, t) = (1 + g(xII, t))
∏M−1

i=1 cos
(yiπ

2

)

fk(x, g, t) = (1 + g(xII, t))
(

∏M−1
i=1 cos

(yiπ
2

)

)

sin
(yM−k+1π

2

)

, ∀k = 1, . . . ,M − 1
...

fm(x, g, t) = (1 + g(xII, t))
∏M−1

i=1 sin
(y1π

2

)

where :
g(xII, t) =

∑

xj∈xII
(yj −G(t))2

G(t) = |sin(0.5πt)|, t = 1
nt

⌊

τ
τt

⌋

yi = x
F (t)
i , ∀i = 1, . . . , (M − 1)

yj = yj(xj , A,B,C), ∀xj ∈ xII

F (t) = 1 + 100 sin4(0.5πt)

xII = (xM , . . . , xn), xi ∈ [0, 1], ∀i = 1, . . . , n

(3.69)

where yj is calculated using Equation (3.68). A, B and C can, for example, be selected as

G(t), 0.001 and 0.05 respectively. Similar to FDA5 (refer to Equation (3.24)), FDA5iso is

a Type II DMOOP and the POF of FDA5iso is f
2
1 + f

2
2 + f

2
3 = (1 +G(t))2 (as illustrated

in Figure 3.4). The POS of FDA5iso is xi = G(t), ∀xi ∈ xII, similar to FDA1 (refer to

Figure 3.1(b)).

dMOP2iso =



































































Minimize : f(x, t) = (f1(xI), g(xII, t) · h(f1(xI), g(xII, t), t))

f1(xI) = x1
g(xII, t) = 1 + 9

∑

xi∈xII
(yi −G(t))2

h(f1, g, t) = 1−
(

f1
g

)H(t)

where :
yi = yi(xi, A,B,C), ∀xi ∈ xII

H(t) = 0.75 sin(0.5πt) + 1.25,

G(t) = sin(0.5πt), t = 1
nt

⌊

τ
τt

⌋

xi ∈ [0, 1]; xI = (x1), xII = (x2, . . . , xn)

(3.70)

where yi is calculated using Equation (3.68). Example values for A, B and C are G(t),

0.001 and 0.05 respectively. Similar to dMOP2 (refer to Equation (3.39)), dMOP2iso is

a Type II problem, with POF = 1− f
H(t)
1 (refer to Figure 3.5). The POS of dMOP2iso

is xi = G(t), ∀xi ∈ xII, similar to FDA1 (refer to Figure 3.1(b)).

The next section discusses an approach that can be used to develop DMOOPs with

a deceptive POF.

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 72

3.2.3 Dynamic Multi-objective Optimisation Problems with a

Deceptive Pareto Optimal Front

DMOOPs with a deceptive POF have at least two optima, but the search space favours

the deceptive POF, which is a local POF and not the global POF. Some of the benchmark

functions discussed in Section 3.2.1 are multi-modal. However, none of the benchmark

functions discussed in Section 3.2.1 has a deceptive optimum. This section proposes an

approach that can be used to adjust existing DMOOPs in such a way that the DMOOPs

have a deceptive POF.

The WFG suite of Huband et al. [85] also introduced an approach to develop MOOPs

with a deceptive POF. Similar to their approach to develop MOOPs with isolated POFs,

a transformation function is used as follows:

yi(xi, A,B,C) =

(

⌊y −A+B⌋
(

1− C + A−B
B

)

A−B
+

1

B
+

⌊A+B − y⌋
(

1− C + 1−A−B
B

)

1−A−B

)

(|y −A| −B) + 1 (3.71)

where A ∈ (0, 1), 0 < B << 1, 0 < C << 1, A − B > 0 and A + B < 1. A

represents the value at which xi is mapped to zero and therefore the global minimum of

the transformation function. B is the “aperture” size of the basin leading to A and C is

the value of the deceptive optimum.

By applying this transformation (or mapping) function to existing DMOOPs, DMOOPs

with a deceptive POF can be developed. For example, by calculating yj in Equa-

tion (3.69) and yi in Equation (3.70) using Equation (3.71), FDA5iso and dMOP2iso

will have deceptive POFs. Example values for A, B and C are 0.35, 0.001 and 0.05

respectively.

Li and Zhang [106] identified a shortcoming of MOO benchmark functions, namely

that the POS is defined by a simple function, e.g. xi = sin(0.5πt). Therefore, they

presented MOOPs that have complicated POSs, where the POS is defined by non-linear

curves in decision space, e.g. xj = sin
(

6πx1 +
jπ
n

)

, ∀j = 2, 3, . . . , n. This shortcoming

is also true for benchmark functions that were developed for DMOO. The next sec-

tion introduces new DMOOPs with complicated POSs, based on the MOOPs of Li and

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 73

Zhang [106].

3.2.4 Dynamic Multi-objective Optimisation Problems with

Complicated Pareto Optimal Sets

This section proposes new DMOOPs that have been developed based on the MOOPs

of Li and Zhang [106]. The benchmark functions are constructed in such a way that

the number of decision variables can be scaled easily, the resulting POFs are easily

understood, and the DMOOPs hinder an algorithm to converge to the POF by requiring

an algorithm to find a POS that are defined by non-linear curves. Therefore, they adhere

to the benchmark function characteristics as defined by Deb et al.. The DMOOPs are

defined as:

HE3 =































































































Minimize : f(x, t) = (f1(x), g(x, t) · h(f1(x), g(x, t)))

f1(x) = x1 +
2

|J1|
∑

j∈J1

(

xj − x
0.5

(

1.0+
3(j−2)
n−2

)

1

)2

g(x) = 2−√
x1 +

2
|J2|
∑

j∈J2

(

xj − x
0.5

(

1.0+
3(j−2)
n−2

)

1

)2

h(f1, g) = 1−
(

f1
g

)H(t)

where :

H(t) = 0.75 sin(0.5πt) + 1.25, t = 1
nt

⌊

τ
τt

⌋

J1 = {j| j is odd and 2 ≤ j ≤ n}
J2 = {j| j is even and 2 ≤ j ≤ n}
xi ∈ [0, 1]

(3.72)

The POF changes over time, but the POS remains the same. Therefore, HE3 is a Type

III DMOOP. The POS and POF of HE3 are:

POS : xj = x
0.5

(

3(j−2)
n−2

)

1 , ∀j = 2, 3, . . . , n.

POF : y = (2−√
x1)

[

1−
(

x1
2−√

x1

)H(t)
]

The POF and POS of HE3 are illustrated in Figures 3.10 and 3.11 respectively. It is

important to note that, unlike most of the other DMOOPs, the POS of HE3 to HE10

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 74

are different for each decision variable.

Figure 3.10: POF of HE3 with nt = 10 and τt = 10 for 1000 iterations

(a) POS of x2 (b) POS of x5

Figure 3.11: POS of HE3 for two decision variables, x2 and x5, with nt = 10 and τt = 10 for

1000 iterations

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 75

HE4 =















































































Minimize : f(x, t) = (f1(x), g(x, t) · h(f1(x), g(x, t)))

f1(x) = x1 +
2

|J1|
∑

j∈J1

(

xj − sin(6πx1 +
jπ
n)
)2

g(x) = 2−√
x1 +

2
|J2|
∑

j∈J2

(

xj − sin(6πx1 +
jπ
n)
)2

h(f1, g) = 1−
(

f1
g

)H(t)

where :

H(t) = 0.75 sin(0.5πt) + 1.25, t = 1
nt

⌊

τ
τt

⌋

J1 = {j| j is odd and 2 ≤ j ≤ n}
J2 = {j| j is even and 2 ≤ j ≤ n}
x1 ∈ [0, 1], xi ∈ [−1, 1], ∀i = 2, 3, . . . , n

(3.73)

The POF of HE4 changes over time, but the POS remains the same. Therefore, HE4 is

a Type III DMOOP. The POS and POF of HE4 are:

POS : xj = sin

(

6πx1 +
jπ

n

)

, ∀j = 2, 3, . . . , n.

POF : y = (2−√
x1)

[

1−
(

x1
2−√

x1

)H(t)
]

The POS of HE4 is illustrated in Figure 3.12. The POF is similar to the POF of HE3

(refer to Figure 3.10).

HE5 =















































































Minimize : f(x, t) = (f1(x), g(x, t) · h(f1(x), g(x, t)))

f1(x) = x1 +
2

|J1|
∑

j∈J1

(

xj − 0.8x1 cos
(

6πx1 +
jπ
n

))2

g(x) = 2−√
x1 +

2
|J2|
∑

j∈J2

(

xj − 0.8 cos
(

6πx1 +
jπ
n

))2

h(f1, g) = 1−
(

f1
g

)H(t)

where :

H(t) = 0.75 sin(0.5πt) + 1.25, t = 1
nt

⌊

τ
τt

⌋

J1 = {j| j is odd and 2 ≤ j ≤ n}
J2 = {j| j is even and 2 ≤ j ≤ n}
x1 ∈ [0, 1], xi ∈ [−1, 1], ∀i = 2, 3, . . . , n

(3.74)

HE5 is a Type III DMOOP, since the POF changes over time, but the POS remains the

same. The POS and POF of HE5 are:

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 76

(a) POS of x2 (b) POS of x5

Figure 3.12: POS of HE4 for two decision variables, x2 and x5, with nt = 10 and τt = 10 for

1000 iterations

POS : xj =











0.8x1 cos
(

6πx1 +
jπ
n

)

, j ∈ J1

0.8x1 sin
(

6πx1 +
jπ
n

)

, j ∈ J2

POF : y = (2−√
x1)

[

1−
(

x1
2−√

x1

)H(t)
]

The POS of HE5 is illustrated in Figure 3.13. The POF is similar to the POF of HE3,

illustrated in Figure 3.10.

HE6 =



















































































Minimize : f(x, t) = (f1(x), g(x, t) · h(f1(x), g(x, t)))

f1(x) = x1 +
2

|J1|
∑

j∈J1

(

xj − 0.8x1 cos

(

6πx1+
jπ
n

3

))2

g(x) = 2−√
x1 +

2
|J2|
∑

j∈J2

(

xj − 0.8 cos
(

6πx1 +
jπ
n

))2

h(f1, g) = 1−
(

f1
g

)H(t)

where :

H(t) = 0.75 sin(0.5πt) + 1.25, t = 1
nt

⌊

τ
τt

⌋

J1 = {j| j is odd and 2 ≤ j ≤ n}
J2 = {j| j is even and 2 ≤ j ≤ n}
x1 ∈ [0, 1], xi ∈ [−1, 1], ∀i = 2, 3, . . . , n

(3.75)

For HE6, the POF changes over time, but the POS remains the same. Therefore, HE6

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 77

(a) POS of x2 (b) POS of x5

Figure 3.13: POS of HE5 for two decision variables, x2 and x5, with nt = 10 and τt = 10 for

1000 iterations

is a Type III DMOOP. The POS and POF of HE6 are:

POS : xj =











0.8x1 cos

(

6πx1+
jπ
n

3

)

, j ∈ J1

0.8x1 sin
(

6πx1 +
jπ
n

)

, j ∈ J2

POF : y = (2−√
x1)

[

1−
(

x1
2−√

x1

)H(t)
]

The POF of HE6 is similar to the POF of HE3 (refer to Figure 3.10). The POS of HE6

is illustrated in Figure 3.14.

HE7 =































































Minimize : f(x, t) = (f1(x), g(x, t) · h(f1(x), g(x, t)))

f1(x) = x1 +
2

|J1|
∑

j∈J1

(

xj −
[

0.3x21 cos
(

24πx1 +
4jπ
n

)

+ 0.6x1

]

cos
(

6πx1 +
jπ
n

))2

g(x) = 2−√
x1 +

2
|J2|
∑

j∈J2

(

xj −
[

0.3x21 cos
(

24πx1 +
4jπ
n

)

+ 0.6x1

]

sin
(

6πx1 +
jπ
n

))2

where :

H(t) = 0.75 sin(0.5πt) + 1.25, t = 1
nt

⌊

τ
τt

⌋

J1 = {j| j is odd and 2 ≤ j ≤ n}
J2 = {j| j is even and 2 ≤ j ≤ n}
x1 ∈ [0, 1], xi ∈ [−1, 1], ∀i = 2, 3, . . . , n

(3.76)

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 78

(a) POS of x2 (b) POS of x5

Figure 3.14: POS of HE6 for two decision variables, x2 and x5, with nt = 10 and τt = 10 for

1000 iterations

HE7 is a Type III DMOOP, since the POF changes over time, but the POS remains the

same. The POS and POF of HE7 are:

POS : xj =































a cos

(

6πx1+
jπ
n

3

)

, j ∈ J1

a sin
(

6πx1 +
jπ
n

)

, j ∈ J2
with:

a =
[

0.3x21 cos
(

24πx1 +
4jπ
n

)

+ 0.6x1

]

POF : y = (2−√
x1)

[

1−
(

x1
2−√

x1

)H(t)
]

The POS of HE7 is illustrated in Figure 3.15. The POF is similar to the POF of HE3,

as illustrated in Figure 3.10.

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 79

(a) POS of x2 (b) POS of x5

Figure 3.15: POS of HE7 for two decision variables, x2 and x5, with nt = 10 and τt = 10 for

1000 iterations

HE8 =



























































































Minimize : f(x, t) = (f1(x), g(x, t) · h(f1(x), g(x, t)))

f1(x) = x1 +
2

|J1|
∑

j∈J1

(

4y2j − cos(8yiπ) + 1.0
)

g(x) = 2−√
x1 +

2
|J2|
∑

j∈J2

(

4y2j − cos(8yiπ) + 1.0
)

h(f1, g) = 1−
(

f1
g

)H(t)

where :

H(t) = 0.75 sin(0.5πt) + 1.25, t = 1
nt

⌊

τ
τt

⌋

J1 = {j| j is odd and 2 ≤ j ≤ n}
J2 = {j| j is even and 2 ≤ j ≤ n}

yj = xj − x

(

0.5
(

1.0+
3(j−2)
n−2

))

1 , ∀j = 2, 3, . . . , n
xi ∈ [0, 1] ∀i = 1, 2, . . . , n

(3.77)

The POF of HE8 changes over time, but the POS remains the same. Therefore, HE8 is

a Type III DMOOP. The POS (refer to Figure 3.11) and POF (refer to Figure 3.10) of

HE8 are:

POS : xj = x
0.5

(

3(j−2)
n−2

)

1 , ∀j = 2, 3, . . . , n.

POF : y = (2−√
x1)

[

1−
(

x1
2−√

x1

)H(t)
]

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 80

HE9 =































































































Minimize : f(x, t) = (f1(x), g(x, t) · h(f1(x), g(x, t)))

f1(x) = x1 +
2

|J1|
∑

j∈J1(4
∑

j∈J1 y
2
j −

∏

j∈J1 cos
(

20yjπ√
j

)

+ 2.0)

g(x) = 2−√
x1 +

2
|J2|
∑

j∈J2(4
∑

j∈J2 y
2
j − 2

∏

j∈J2 cos
(

20yjπ√
j

)

+ 2.0)

h(f1, g) = 1−
(

f1
g

)H(t)

where :

H(t) = 0.75 sin(0.5πt) + 1.25, t = 1
nt

⌊

τ
τt

⌋

J1 = {j| j is odd and 2 ≤ j ≤ n}
J2 = {j| j is even and 2 ≤ j ≤ n}

yj = xj − x

(

0.5
(

1.0+
3(j−2)
n−2

))

1 , ∀j = 2, 3, . . . , n

xi ∈ [0, 1] ∀i = 1, 2, . . . , n

(3.78)

For HE9, the POF changes over time, but the POS remains the same. Therefore, HE9

is a Type III DMOOP. The POS (refer to Figure 3.11) and POF (refer to Figure 3.10)

of HE9 are:

POS : xj = x
0.5

(

3(j−2)
n−2

)

1 , ∀j = 2, 3, . . . , n.

POF : y = (2−√
x1)

[

1−
(

x1
2−√

x1

)H(t)
]

HE10 =















































































Minimize : f(x, t) = (f1(x), g(x, t)·
h(f1(x), g(x, t)))

f1(x) = x1 +
2

|J1|
∑

j∈J1

(

xj − sin(6πx1 +
jπ
n)
)2

g(x) = 2− x21 +
2

|J2|
∑

j∈J2

(

xj − sin(6πx1 +
jπ
n)
)2

h(f1, g) = 1−
(

f1
g

)H(t)

where :

H(t) = 0.75 sin(0.5πt) + 1.25, t = 1
nt

⌊

τ
τt

⌋

J1 = {j| j is odd and 2 ≤ j ≤ n}
J2 = {j| j is even and 2 ≤ j ≤ n}
xi ∈ [0, 1] ∀i = 1, 2, . . . , n

(3.79)

The POF of HE10 changes over time, but the POS remains the same. Therefore, HE10

is a Type I DMOOP. The POS (refer to Figure 3.12) and POF (refer to Figure 3.10) of

HE10 are:

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 81

POS : xj = sin

(

6πx1 +
jπ

n

)

, ∀j = 2, 3, . . . , n.

POF : y = (2−√
x1)

[

1−
(

x1
2−√

x1

)H(t)
]

Taking into consideration the benchmark functions currently being used for DMOO

(discussed in Section 3.2.1) and the ideal characteristics of benchmark functions (dis-

cussed in Section 3.1.1), it becomes clear that many different types of DMOOPs have

been suggested to be used as benchmark functions. Therefore, when a new DMOO algo-

rithm has been developed, the selection of benchmark functions to test the algorithm’s

ability to solve DMOOPs is a daunting task.

3.2.5 Ideal Set of Dynamic Multi-objective Optimisation Bench-

mark Functions

This section presents the characteristics of an ideal benchmark function set and suggests

DMOOPs that can be used to sufficiently test an algorithm’s ability to solve DMOOPs.

From Section 3.2.1 the following characteristics were identified that an ideal MOO

(static or dynamic) set of benchmark functions should have:

1. The set of benchmark functions should test for the following difficulties to converge

towards the POF:

• Multimodality.

• Deception.

• Isolated optimum.

2. The set of benchmark functions should test for the following difficulties to obtain

a diverse set of solutions:

• Convexity or non-convexity in the POF.

• Discontinuous POF, i.e. disconnected sub-regions that are continuous.

• Non-uniform distribution of solutions in the POF.

3. The benchmark functions should have various types or shapes of POSs, where the

POS is also non-linear curves and not only linear functions.

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 82

4. The benchmark functions should have decision variables with dependencies or

linkages.

In addition, the following characteristics were identified that an ideal DMOOP bench-

mark function suite should have:

1. The set of benchmark functions should have a non-uniform distribution of solu-

tions in the POF, where the distribution of solutions changes over time.

2. The shape of the POFs should change over time from convex to non-convex or

vice versa.

3. The benchmark functions should have decision variables with different rates of

change over time.

4. The benchmark functions should include cases where the POF depends on the

values of previous POSs or POFs.

5. The benchmark functions should enable changing the number of decision variables

over time.

6. The benchmark functions should enbale changing the number of objective func-

tions over time.

For each characteristic a set of DMOOPs was identified from Sections 3.2.1, 3.2.2

and 3.2.3. The proposed ideal benchmark functions suite from which DMOOPs can

be selected to evaluate the performance of dynamic MOAs (DMOAs) are presented in

Tables 3.7 and 3.8.

When a selection of DMOOPs are made, it should be done in such a way that various

types of DMOOPs are selected for each characteristic, or the benchmark suite should at

least have type II DMOOPs for some characteristics. The reason for this is to ensure that

an algorithm can overcome a certain difficulty in various types of DMOO environments.

In addition to the benchmark functions listed in Table 3.7, the generic benchmark

function generators can be used to create benchmark functions of various types with

specific characteristics as outlined in this section, for example DTF (refer to Equa-

tion (3.25)), DTLZAv (refer to Equation (3.47)), DSW (refer to Equation (3.52)), and

the DMOOP of Tang (refer to Equation (3.36)).

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 83

Table 3.7: Set of DMOO Benchmark Functions for each Identified Characteristic for MOOPs

in general

Characteristic DMOOP Type: Suggested DMOOPs

1. DMOOPs that cause difficulties to converge

towards the POF:

– Multi-modal DMOOPs Type I: DMZDT4 (Equation (3.65))

– DMOOPs with a deceptive optimum Various: DMOOPs developed according to Sec-

tion 3.2.3

– DMOOPs with an isolated optimum Various: DMOOPs developed according to Sec-

tion 3.2.2

2. DMOOPs that cause difficulties to find a

diverse set of solutions:

– DMOOP with convex POF • Type I: FDA1 (Equation (3.20)),

DMZDT1 (Equation (3.62))

• Type II: Modified FDA3 functions (refer to

Table 3.6)

• Type III: dMOP1 (Equation (3.38))

– DMOOPs with non-convex POF • Type I: DMZDT2 (Equation (3.63)), FDA4

(Equation (3.23)), DMOP3 (Equation (3.67))

• Type II: FDA5 (Equation (3.24))

• Type III: Modified FDA5 functions (Equa-

tion (3.35)

– DMOOPs with discontinuous POF • Type I: DMZDT3 (Equation (3.64))

• Type III: HE1 (Equation (3.45)), HE2 (Equa-

tion (3.46))

– DMOOPs with non-uniform spread of solutions • Type I: dMOP3 (Equation (3.40))

• Type II: FDA5 (Equation (3.24)), Modified

FDA3 functions (refer to Table 3.6)

• Type III: modified FDA5 functions (Equa-

tion (3.35)

3. DMOOPs with various types or shapes of

POSs
• Type I, II: DTLZAv (Equation (3.47))

• Type II: ZJZ (Equation (3.41)), DSW2 (Equa-

tion (3.54)), DSW3 (Equation (3.55))

• Type III: HE3-HE10 (Equations (3.72) -

(3.79)), Modified FDA2 functions (Equa-

tions (3.26)- (3.31))

4. DMOOPs with dependencies or linkages be-

tween the decision variables
• Type II: ZJZ (Equation (3.41))

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 84

Table 3.8: Set of DMOO Benchmark Functions for each Identified Characteristic for DMOOPs

Characteristic DMOOP

1. DMOOPs where the distribution of solu-

tions changes over time
• Type I: dMOP3 (Equation (3.40))

• Type II: FDA5 (Equation (3.24)), Modified

FDA3 functions (refer to Table 3.6)

• Type III: modified FDA5 functions (Equa-

tion (3.35)

2. DMOOPs where the POF changes from con-

vex to non-convex or vice versa over time
• Type II: dMOP2 (Equation (3.39)), ZJZ

(Equation (3.41))

• Type III: dMOP1 (Equation (3.38)), Modified

FDA2 functions (Equations (3.26)- (3.31))

3. DMOOPs with decision variables with dif-

ferent rates of change
• Type I: DIMP1 (Equation (3.43)), DIMP2

(Equation (3.44))

4. DMOOPs where the current POF depends

on the previous POF
• Type IV: T3 (Equation (3.50)), T4 (Equa-

tion (3.51))

5. DMOOPs where the number of decision

variables change over time
• Type IV: T1 (Equation (3.48))

6. DMOOPs where the number of objective

functions change over time
• Type I, II: DTLZAv (Equation (3.47))

• Type III: T2 (Equation (3.49))

3.3 Summary

This chapter provided an overview of the benchmark functions that have been used to test

whether DMOO algorithms can overcome specific difficulties that can occur in real-world

problems. MOO benchmark functions that have been adapted for DMOO, namely the

ZDT and DTLZ MOOPs, were discussed. Since there is no standard DMOO benchmark

functions yet, this chapter discussed the characteristics that an ideal benchmark function

suite should have and suggested benchmark functions that can be used to test for each

Chapter 3. Analysis of Dynamic Multi-objective Optimisation Benchmark Functions 85

of these recommended characteristics.

The next chapter provides an overview of performance measures suggested for DMOO.

Chapter 4

Analysis of Dynamic Multi-objective

Optimisation Performance Measures

“You get what you measure. Measure the wrong thing and you get the wrong

behaviors.” – John H. Lingle

In order to determine whether an algorithm can solve DMOOPs efficiently, it should

be tested against DMOOPs that test the ability of the algorithm to overcome certain

difficulties, called benchmark functions. However, to quantify the performance of the

algorithm, and to compare the performance of one algorithm against that of another

algorithm, performance measures are required.

One of the main problems in the field of DMOO is a lack of standard benchmark

functions and standard performance measures. An analysis of benchmark functions

for DMOO was presented in Chapter 3. This chapter evaluates the current performance

measures presented in the DMOO literature to establish whether they efficiently evaluate

the performance of DMOO algorithms.

Section 4.1 discusses performance measures that have been used for MOO and adapted

for DMOO. Performance measures currently used in the DMOO literature are discussed

in Section 4.2. Section 4.3 highlights issues with current performance measures that are

frequently used to measure the performance of DMOO algorithms. Finally, a summary

is provided in Section 4.4.

86

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 87

4.1 Static Multi-objective Optimisation Performance

Measures

Performance measures enable the quantification and measuring of an algorithm’s per-

formance with regards to a specific requirement, such as the number of non-dominated

solutions found, closeness to the true POF (accuracy), and the diversity or spread of the

solutions. According to Zitzler et al. [173], a performance measure is defined as follows:

Definition 4.1. Performance Measure: A m-ary performance measure, P , is a func-

tion P : Ωm → R, that assigns each of the m approximated POFs, POF ∗
1 , POF

∗
2 , . . . ,

POF ∗
m a real value P (POF ∗

1 , POF
∗
2 , ..., POF

∗
m).

This section discusses static MOO measures that have been adapted in the literature

and used in DMOO. The discussion on static MOO performance measures is by no

means complete, and the reader is referred to [40, 99, 114, 167] for detailed information

on performance measures used for static MOO.

Outperformance relations that are used to evaluate performance measures are dis-

cussed in Section 4.1.1. Section 4.1.2 discusses performance measures that quantify an

algorithm’s performance with regards to accuracy, i.e. the found non-dominated solu-

tions’ (POF ∗) closeness to the true POF (POF). Performance measures that measure

the diversity or spread of the found solutions are discussed in Section 4.1.3. Section 4.1.4

discusses performance measures that measure the overall quality of the found solutions,

taking into account both accuracy and diversity.

4.1.1 Outperformance Relations

This section discusses outperformance relations that performance measures should ideally

adhere to. When an algorithm solves a MOOP where the objective functions are in con-

flict with one another, the algorithm tries to find the best possible set of non-dominated

solutions, i.e. a set of solutions that are as close as possible to POF and where the

solutions are diverse and evenly spread along POF ∗. Once POF ∗ is found, a decision

maker selects one of these solutions according to his/her own defined preferences.

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 88

Hansen and Jaszkiewicz [75] introduced an outperformance relation under the fol-

lowing assumptions:

• The preferences of the decision maker is not known a priori.

• Let POF ∗
A and POF ∗

B be two approximated POFs. Then, POF ∗
A outperforms

POF ∗
B if the decision maker finds:

– a better solution in POF ∗
A than in POF ∗

B for specific preferences, and

– for another set of preferences the solution selected from POF ∗
A is not worse

than solutions found in POF ∗
B.

• All possible preferences of the decision maker can be modelled with utility functions

that belong to a set of utility functions, U .

Definition 4.2. Outperformance Relation (subject to a set of utility functions):

Let A and B be two sets representing approximations of the same POFs. Let U |A > B ⊆
U denote a subset of utility functions for which A is better than B, i.e. U |A > B =

{u∗ ∈ U |u∗(A) > u∗(B)}. Then A outperforms (O) B if there exists a non-empty subset

of the utility functions set U for which A achieves better values than B, while the

opposite is not true. Mathematically the outperformance relation is defined as: A OU B

if U(A > B) 6= ∅ and U(B > A) = ∅.

The weakest assumption about the decision maker’s preferences that is generally

made when solving MOOPs is that the utility function is compatible with the dominance

relation, i.e. the decision maker prefers non-dominated solutions [128]. Therefore, the

decision maker can limit his/her selection of the best solution to the set ND(A∪B), i.e.

the non-dominated solutions in A∪B. Based on the dominance relation assumption, the

following three dominance based relations were defined by Hansen and Jaszkiewicz [75]:

Definition 4.3. Weak Outperformance: A weakly outperforms (OW) B if, for each

solution in B, there exists a solution in A that is equal to or dominates the solution in B

and at least one solution in A is not contained in B. Weak outperformance is defined as:

A OW B if A 6= B and ND(A∪B) = A, where ND(A∪B) is the set of non-dominated

solutions obtained from the unified set, (A ∪ B).

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 89

Definition 4.4. Strong Outperformance: A strongly outperforms (OS) B if, for each

solution in B, there exists a solution in A that is equal to or dominates the solution in B

and at least one solution in B is dominated by a solution in A. Strong outperformance is

mathematically defined as: A OS B if A 6= B, ND(A∪B) = A and B\ND(A∪B) =

∅.

Definition 4.5. Complete Outperformance: A completely outperforms B if each

solution in B is dominated by a solution in A. Complete outperformance is defined as:

A OC B if A 6= B, ND(A ∪ B) = A and B ∩ND(A ∪ B) = ∅.

These outperformance relations only identify whether one set is better than another

set, but doesn’t quantify with how much the one set is better than the other. How-

ever, according to Knowles [99], performance measures that are not compatible with

these outperformance relations, cannot be relied on to provide evaluations that are com-

patible with Pareto dominance. Based on the outperformance relations, Hansen and

Jaszkiewicz [75] defined compatibility and weak compatibility with an outperformance

relation:

Definition 4.6. Weak Compatibility: A performance measure is weakly compatible

with an outperformance relation if, for each pair of non-dominated sets, A and B, where

A O B, the performance measure will evaluate A as being not worse than B.

Definition 4.7. Compatibility: A performance measure is compatible with an out-

performance relation if for each pair of non-dominated sets, A and B, where A O B, the

performance measure will evaluate A as being better than B.

In addition to the outperformance relations, Knowles [99] introduced the concepts of

monotony and relativity that are important when evaluating the efficiency of performance

measures.

Definition 4.8. Monotony: Let C be a set containing a new non-dominated solution.

Then the performance measure will evaluate A
⋃

C as being not worse than A.

Definition 4.9. Relativity: Let D be a set containing the solutions of the true POF.

Then the performance measure will evaluate D as being better than any POF ∗ found

by the algorithms being evaluated.

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 90

Weak compability with OW is sufficient for weak monotony and weak relativity [99].

From the above definitions it should be clear that OC ⊂ OS ⊂ OW , i.e. complete

outperformance is the strongest outperformance relation, and weak outperformance is

the weakest outperformance relation. Therefore, it is most difficult for a performance

measure to be compatible with OW , and the easiest for a performance measure to be

compatible with OC [99]. According to Knowles [99], performance measures that are

not compatible with these outperformance relations, cannot be relied on to provide

evaluations that are compatible with Pareto dominance.

If a performance measure is compatible with the concept of monotony, it will not

decrease a set’s evaluation if a new non-dominated point is added, which adheres to the

goal of finding a diverse set of solutions. Furthermore, if a performance measure does

not adhere to the concept of relativity, it will evaluate an approximation set as being

better than the true POF, which is not accurate.

Knowles [99] evaluated the performance measures frequently used in MOO accord-

ing to their compatibility with the outperformance relations defined by Hansen and

Jaszkiewicz. The MOO performance measures’ compatability with the outperformance

relations are highlighted below where the performance measures are discussed in more

detail.

4.1.2 Accuracy Performance Measures

This section discusses performance measures that are used to measure the accuracy of

POF ∗ that is found by a MOO algorithm, i.e. how close POF ∗ is to POF .

Generational Distance

The generational distance (GD) measures the convergence of the approximated set to-

wards the true POF (POF). The GD is defined as:

GD =

√

∑nPOF∗

i=1 d2i

nPOF ∗

(4.1)

where nPOF ∗ is the number of solutions in POF ∗ and di is the Euclidean distance in the

objective space between solution i of POF ∗ and the nearest member of POF ′. POF ′

contains sampled solutions of POF that are used as a reference set. Therefore, GD

determines how close POF ∗ is to the sampled solutions of POF .

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 91

GD is easy to calculate and intuitive. However, knowledge about POF is required and

a reference set, POF ′, has to be available. It is important that the reference set contains

a diverse set of solutions, since the selection of the solutions will impact on the results

obtained from this performance measure. Furthermore, since the distance metric is used,

scaling and normalisation of the objectives is required. GD is not weakly compatible with

OW , but is compatible with OS. Unfortunately, this performance measure will rate a

POF ∗ with only one solution that is on POF ′ better than another POF ∗ that has

one hundred solutions that are very close to POF ′. Therefore, GD does not adhere to

the property of monotony. Furthermore, GD does not adhere to the concept of weak

relativity, because any subset of POF ′ will not necessarily have the best GD value when

compared to POF ∗s found by MOO algorithms.

It should be noted that GD is computationally expensive, especially for large or

unlimited archives or when DMOOPs with a large number of objectives are used.

Inverted Generational Distance

To overcome non-adherence to the concept of monotony by GD, Sierra and Coello

Coello [137] introduced the inverse generational distance (IGD). The mathematical def-

inition of IGD is the same as GD in Equation (4.1), except for the way in which the

distance is calculated:

IGD =

√

∑nPOF ′

i=1 d2i

nPOF ′

(4.2)

where nPOF ′ is the number of solutions in POF ′ and di is the Euclidean distance in the

objective space between solution i of POF ′ and the nearest member of POF ∗.

IGD is compatible with relativity, since POF ′ obtains an IGD value of zero and POF ∗

will only receive an IGD value of zero if POF ∗ = POF ′. Furthermore, IGD is compatible

with monotony, because it will rate a POF ∗ with more non-dominated solutions that are

close to POF as a better set than another POF ∗ that only has one solution that falls

within POF ′. However, IGD is computationally expensive to calculate for a larger POF ′

or a larger POF ∗, since for each solution in POF ′, the distance between that solution

and each of the solutions in POF ∗ has to be calculated. The usage of the distance

function also requires scaling and normalisation of the objective function values, as is

the case with GD.

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 92

Error Ratio

Van Veldhuizen [151] introduced the error ratio that measures the ratio of non-dominated

solutions in POF ∗ that are elements of POF ′ to the non-dominated solutions in POF ∗

that are not elements of POF ′. The error ratio is defined as

E =

∑nPOF∗

i=1 ei
nPOF ∗

(4.3)

where ei = 0 if xi ∈ POF ′, ∀xi ∈ POF ∗ and ei = 1 if xi /∈ POF ′, ∀xi ∈ POF ∗. A small

error ratio indicates a good performance.

If POF ∗
A has two solutions with one solution in POF ′, E = 0.5. However, if POF ∗

B

has one hundred solutions with one solution in POF ′ and the other solutions very close

to POF ′, E = 0.99. According to E, POF ∗
A is a better set of solutions than POF ∗

B.

However, POF ∗
B is more desirable. Therefore, E is only weakly compatible with OC . E

has weak relativity, because any subset of POF ′ will achieve the lowest E value, namely

E = 0. It is not compatible with monotony, because if a non-dominated solution is

added to POF ∗ that is not an element of POF ′, it will increase E.

The compatibility of the accuracy performance measures with the outperformance

relations and the concepts of monotony and relativity is summarised in Table 4.1. In

Tables 4.1 to 4.3 and Tables 4.4 to 4.11, M and R refer to the concepts of monotony and

relativity respectively, C and W indicate that the performance measure is compatible or

weakly compatible with the relation respectively and “–” indicates that the performance

measure is neither compatible nor weakly compatible with the relation.

Table 4.1: Compatibility of accuracy performance measures

Performance Measure OW OS OC M R

GD – C C – –

IGD W C C W C

E – – W – W

4.1.3 Diversity Performance Measures

This section discusses performance measures that are used to measure the diversity of

the solutions contained in POF ∗. Diversity can be measured either by measuring how

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 93

evenly the solutions are spread along POF ∗ or the extent of POF ∗.

Number of Solutions

The easiest performance measure to calculate is the number of non-dominated solutions

(NS) in POF ∗. Van Veldhuizen [151] referred to this metric as the overall nondominated

vector generation (ONVG). Even though this measure does not provide any information

with regards to the quality of the solutions, it provides additional information when

comparing the performance of various algorithms. For example, one algorithm may have

a better GD value, but only half of the NS that have been found by the other algorithm.

NS is not weakly compatible with any of the outperformance relations. According to

Knowles [99], weak compatability with OW is necessary to ensure weak monotony. How-

ever, with NS this is not the case. Adding a non-dominated solution to POF ∗ increases,

and thereby improves, NS. Therefore, NS is compatible with monotony. Furthermore,

NS is weakly compatible with relativity only if the size of POF ∗ is smaller or equal to

the size of POF ′.

Spacing Metric of Schott

The Spacing metric, introduced by Schott [132], measures how evenly the points of

POF ∗, are distributed in the objective space. Spacing is calculated as:

S =

√

√

√

√

1

nPOF ∗ − 1

nPOF∗
∑

m=1

(davg − dm)2

with

dm = minj=1,...,nPOF∗ ;j 6=i

{

nk
∑

k=1

|fk(x)− fkj(x)|
}

(4.4)

where dm is the minimum value of the sum of the absolute difference in objective function

values between the m-th solution in POF ∗ and any other solution in POF ∗, davg is the

average of all dm values and nk is the number of objective functions. If S = 0, the non-

dominated solutions of POF ∗ is uniformly spread or spaced [40]. However, this does

not mean that the solutions are necessarily good, since they can be uniformly spaced in

POF ∗, but not necessarily uniformly spaced in POF [99, 55].

The spacing metric of Schott is not even weakly compatible with OW [99]. Adding a

non-dominated solution to POF ∗ will not necessarily decrease the value of S and POF ′

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 94

does not necessarily have the lowest spacing metric value. Therefore, S does not adhere

to the principles of either monotony or relativity.

It should be noted that this performance measure was designed to be used with other

performance measures, has a low computational cost, and can provide useful information

about the distribution of the found solutions [99]. Since the Euclidean distance is used

in the calculation of the measure, the objectives should be normalised before calculating

the measure.

Spacing Metric of Deb

S provides information with regards to how evenly the non-dominated solutions are

spaced on POF ∗. However, it does not provide any information with regards to the

extent of spread of the solutions. To address this shortcoming, Deb [42] introduced a

measure of spread, defined as:

∆ =

∑nk

k=1 d
e
k +

∑nPOF∗

i=1 |di − davg|
∑nk

k=1 d
e
k + nPOF ∗davg

(4.5)

with di any distance measure between neighbouring solutions, davg is the mean of these

distance measures and dek is the distance between the extreme solutions of POF ∗ and

POF ′.

Similar to S, ∆ is not compatible with OW and does not adhere to monotony or

relativity.

Maximum Spread

Zitzler [167] introduced a measure of maximum spread that measures the length of the

diagonal of the hyperbox that is created by the extreme function values of the non-

dominated set. The maximum spread is defined as:

MS =

√

√

√

√

nk
∑

k=1

(

POF ∗
i − POF ∗

i

)2
(4.6)

where POF ∗
k and POF ∗

k is the maximum and minimum value of the k-th objective in

POF ∗ respectively. A high MS value indicates a good extend (or spread) of solutions.

This measure can be normalised in the following way [40]:

MSnorm =

√

√

√

√

1

nk

nk
∑

k=1

(

POF ∗
k − POF ∗

k

POFk − POFk

)2

(4.7)

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 95

If POF ∗
A outperforms POF ∗

B (weakly, strongly or completely), but the non-dominated

solutions of POF ∗
B have a larger extent than the non-dominated solutions of POF ∗

B, then

POF ∗
A will obtain a higher MS value. Therefore, MS is not weakly compatible with

any of the outperformance relations. Adding a non-dominated solution to POF ∗ will

not necessarily lead to a higher MS value. Therefore, MS adheres to weak monotony.

POF ′ will obtain the maximum MS value, but even a POF ∗ that only has two non-

dominated solutions at the extreme points of POF ′ will also obtain the maximum MS

value. Therefore, MS adheres to weak relativity.

C-Metric

The set coverage metric (C-metric) introduced by Zitzler [167] measures the proportion

of solutions in set B that are weakly dominated by solutions in set A. The C-metric is

defined as:

C(A,B) =
|{b ∈ B| ∃a ∈ A : a � b}|

|B| (4.8)

If C(A,B) = 1, all solutions in set B are weakly dominated by set A and if C(A,B) =

0 no solution in set B is weakly dominated by set A. Let POF ∗
A and POF ∗

B be the

approximated POFs found by two algorithms with POF ∗
A ⊂ POF ∗

B, ND(POF ∗
B) =

POF ∗
B. Then C(POF ∗

A, POF
∗
B) < 1 and C(POF ∗

B, POF
∗
A) = 1. Therefore, POF ∗

B

outperforms POF ∗
A. Under the assumption that, if C(A,B) = 1 and C(B,A) < 1

evaluates set A as being better than set B, the C-metric is compatable with OW [99].

It is important to note that the domination operator is not a symmetric operator,

i.e. C(A,B) is not necessarily equal to 1− C(B,A). Therefore, if many algorithms are

compared against each other, this metric would have to be calculated twice for each

possible combination of algorithms. However, it should be noted that the C-metric is

cycle-inducing, in other words if more than two sets are compared, the sets may not be

ordered and in these cases no conclusions can be made [99].

If POF is known, set A can be selected as the set of sampled points of the true

POF, POF ′, and set B as the POF ∗ found by the algorithm. Then the C-metric can

be calculated separately for each algorithm. Let POF ∗
A and POF ∗

B be the approxi-

mated POFs found by two algorithms as defined above and POF ′ a reference set with

ND(POF ′) = POF ′ and POF ∗
B ⊆ POF ′. Then, C(POF ′, POF ∗

A) = C(POF ∗
B) = 1

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 96

and C(POF ∗
A, POF

′) < C(POF ∗
B, POF

′). In order to ensure compatibility with OW ,

POF ∗
A has to be evaluated by the C-metric as being worse than POF ∗

B. Therefore,

the following assumption should be made: if C(R,E) = C(R,E) = 1 and C(E,R) <

C(D,R), then E performs worse than D with regards to the C-metric, where D and E

are two sets that are compared with one another using the reference set R [99]. Under

this aforementioned assumption, the C-metric is compatible with OW when a reference

set is used.

The C-metric does not adhere to the concept of monotony, since POF ∗ can add a non-

dominated solution that is weakly dominated by the set that POF ∗ is compared against.

However, the C-metric is weakly compatible with relativity, since C(POF ∗, POF ′) can-

not obtain a higher C-metric value than C(POF ′, POF ∗).

U-measure

Leung and Wang [103] introduced the U -measure to measure the diversity of the found

non-dominated solutions. Let R = rk be the set of reference points, where rk is the

extreme point of objective k of the union of all non-dominated solution of all POF ∗’s

found by the algorithms for the same POF that are compared with one another. Let χ

be the set {di} and χ the set of {dj}, where di is the distance between two neighbouring

solutions and dj is the distance between a reference point, rk, and its nearest neighbour.

Let d∗avg be the average of the distances in χ and let χ∗ be the set {d′j|d′j = dj + d∗avg}.
Then, the U -measure is defined as:

U =
1

nPOF ∗

nPOF∗
∑

j=1

∣

∣

∣

∣

d′j
dideal

− 1

∣

∣

∣

∣

with

dideal =

nPOF∗
∑

j=1

d′j
nPOF ∗

(4.9)

A smaller U -measure value indicates better uniformity of the non-dominated solutions

of POF ∗. Since distances are calculated in the U -measure, the objectives have to be

normalised. Similar to S and ∆, the U -measure is not weakly compatible with any of

the outperformance relations and does not adhere to monotony or relativity.

Table 4.2 summarises the compatibility of the diversity performance measures with

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 97

the outperformance relations and the concepts of monotony and relativity. In Tables 4.2

to 4.3, C∗ and W∗ indicate that the performance measure is either compatible or weakly

compatible with the relation, but only under certain conditions.

Table 4.2: Compatibility of diversity performance measures

Performance Measure OW OS OC M R
NS – – – C W∗

S – – – – –
∆ – – – – –
MS – – – W W
C W∗ C C – W
U – – – – –

4.1.4 Combined Performance Measures

This section discusses performance measures that measure the quality of the solutions

of the found POF, by taking into account both the accuracy and diversity of the set of

solutions.

Hypervolume

The hypervolume or S-metric (first referred to as “the size of the space covered”) mea-

sures how much of the objective space is dominated by a non-dominated set [171, 172].

The definition of a dominated region and the traditional definition of the hypervolume

are as follows:

Definition 4.10. Dominated Region: Let f1 = {f11 , f12 , . . . , f1k} be a solution in

the objective space and fref a reference vector dominated by f1. Then the region that is

dominated by f1 and bounded by fref is defined as the set,

R(f1, fref) ,
{

fr | fr ≺ fref and f1 ≺ fr, fr ∈ RK
}

(4.10)

Let A be a non-dominated set of vectors, fi, for i = 1, . . . , |A|. Then the region dominated

by A and bounded by the reference vector, fref , is defined as the set:

R(A, fref) ,
⋃

i=1,...,|A|
R(fi, fref) (4.11)

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 98

Definition 4.11. Hypervolume: The hypervolume (HV) or S-metric of set A with re-

spect to the reference vector fref is the hyperarea or Lebesgue integral of the set R(A, fref).

The reference vector can be any vector outside the feasible objective space, since

this will result in a non-negative value for all possible non-dominated sets in the feasible

objective space. Usually, the reference vector or reference point that is used in the HV

calculation is the vector that consists of the worst value for each objective of the union of

all non-dominated solutions of all POF ∗ that are compared against each other. It should

be noted that the selected reference vector will affect the ordering of the non-dominated

sets that are compared against each other, since all of the non-dominated sets use the

same reference vector [99]. A high HV value indicates a good approximation set.

The HV is compatible with OW if the upper boundary of the dominated region is set

in such a way that all feasible non-dominated sets that are evaluated have a positive HV

value. The HV is therefore compatible with the outperformance relations. The HV is

weakly compatible with monotony and weakly compatible with relativity. It is scaling

independent and no prior knowledge of the true POF is required. According to Zitzler et

al. [168] the HV is the only performance measure in the literature that has the following

two qualities:

• If an approximation set A dominates another set B the HV provides a strictly

better value for A.

• If a set obtains the maximum possible HV value for a MOOP, it contains all

Pareto-optimal objective values.

One flaw of the HV is that it is biased towards convex areas of the POF [168]. Fur-

thermore, it is computationally expensive to calculate, with a computational cost of

O(nk+1) with k representing the number of objectives [99]. However, recent research de-

veloped algorithms that reduce the computational cost of the HV. For example, Fonseca

et al. proposed an O(|A| log |A|) algorithm [62] and Beume and Rudolph proposed an

algorithm with a complexity of O(|A|k/2) [8], where A is the non-dominated set and k is

the number of objectives.

Hypervolume Ratio

To overcome the bias of the HV towards convex regions of the POF, Van Veldhuizen [151]

proposed the hypervolume ratio (HVR), defined as:

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 99

HV R =
HV (POF ∗)
HV (POF)

(4.12)

The HVR normalises the HV and, assuming that the maximum HV is obtained by

the true POF, the value of the HVR will be between 0 and 1. A high HVR indicates a

good approximated POF. It should be noted that, for the HVR calculation, the reference

vector is selected as the worst objective values for each objective from the union of the

non-dominated solutions of all POF ∗ that are compared against each other, as well as

POF ′.

Similar to the HV, the HVR is compatible with OW if the upper boundary of the dom-

inated region is set in such a way that all feasible non-dominated sets that are evaluated

have a positive HV value. Therefore, the HVR is compatible with the outperformance

relations. Furthermore, the HVR is weakly compatible with monotony and relativity.

ǫ-metric

Zitzler et al. [173] presented the ǫ-metric to compare approximated sets. It measures

the factor by which an approximation set is worse than another approximation set with

respect to all objectives, i.e. it provides the factor ǫ where for any solution in set B there

is at least one solution in set A that is not worse by a factor of ǫ in all objectives. The

ǫ-measure uses the concept of ǫ-dominance.

Using the definitions of objective vector domination and objective vector ǫ-domination

(refer to Section 2.2.2), the ǫ-metric is defined as:

Iǫ(A,B) = inf
ǫ∈R

{∀f2 ∈ B|∃f1 ∈ A : f1(xk) ≺ǫ f2(xk)} (4.13)

The ǫ-metric is not weakly compatible with OW , but is compatible with OS and OC .

The ǫ-metric is not weakly compatible with monotonoy, but is weakly compatible with

relativity.

The compatibility of the combined performance measures with the outperformance

relations are summarised in Table 4.3.

The next section discusses how these MOO performance measures were adapted for

DMOO. Performance measures developed specifically for DMOO are also discussed.

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 100

Table 4.3: Compatibility of combined performance measures

Performance Measure OW OS OC M R
HV C∗ C∗ C∗ W∗ W∗

HVR C∗ C∗ C∗ W∗ W∗

Iǫ – C C – W

4.2 Current Dynamic Multi-objective Optimisation

Performance Measures

This section discusses performance measures that are currently being used to evaluate the

performance of DMOO algorithms. Section 4.2.1 discusses performance measures that

measure the accuracy of the found POF. Performance measures that are used to measure

the diversity of the non-dominated solutions are discussed in Section 4.2.2. Section 4.2.3

discusses the measurement of an algorithm’s robustness after an environment change

occurs. Combined performance measures that measure accuracy and diversity of the

non-dominated solutions are discussed in Section 4.2.4.

4.2.1 Accuracy Performance Measures

This section discusses performance measures that are used to measure the accuracy of a

POF ∗.

GD Measure

Mehnen et al. [117] used the GD metric to evaluate the performance of algorithms solving

DMOOPs. They calculated the GD metric in decision space, since the DMOOPs that

were used in the study had POSs that dynamically shifted over time, and named the

performance measureGτ . If GD is calculated in decision space, GD measures the distance

of the approximated POS, POS∗, to the true POS, POS. Zhou et al. [166] used the

GD metric (and the variance of GD) in objective space for DMOO, but referred to

the performance measure as the distance indicator D. A number of other researchers

have used GD to evaluate DMOO algorithms, as shown in Table 4.5. Goh and Tan [67]

adapted GD for DMOO as follows:

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 101

V D =
1

τ

τ
∑

t=1

V D(τ)

with

V D(τ) =

√

nPOF ∗

∑nPOF∗

i=1 d2i (τ%τt)

nPOF ∗

where τ is the current iteration number and τt is the frequency of change. The perfor-

mance measure, referred to as variational distance (VD), is calculated in the decision

space every iteration just before a change in the environment occurs.

Similar to GD, VD is not weakly compatible with OW , but is compatible with OS

and OC . It is not weakly compatible with monotony, but is weakly compatible with

relativity. Since distance is used in the calculation of VD, the objectives have to be

normalised.

When solving DMOOPs, similar to VD, the performance measure is calculated every

iteration just before an environmental change occurs. Therefore, prior knowledge of

when changes occur is required. However, if a performance measure is calculated while

the algorithm is running (also referred to as online calculation), prior knowledge about

changes in the environment is not required. In this case the performance measure can be

calculated on the non-dominated solutions that were obtained at the iteration just before

the change occurred. Furthermore, if the performance measure is calculated after the

algorithm has completed its runs (also referred to as offline calculation), the algorithm

can keep record of the iterations when changes occurred.

Success Ratio

Similar to the error ratio (refer to Section 4.1.2), Mehnen et al. [117] used the success

ratio to quantify the ratio of the found solutions that are members of the true POF. The

success ratio is defined as

SCτ =
|{x|f(x) ∈ POF ′}|

nPOF ∗

(4.14)

where a high success ratio, SCτ , indicates good performance.

If an algorithm finds many non-dominated solutions that are not pareto-optimal but

very close to POF ′, the POF ∗ will obtain a lower SCτ value than an algorithm that

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 102

finds only one pareto-optimal solution. Therefore, SCτ is only weakly compatible with

OC and is not weakly compatible with either OW or OS.

If a non-dominated solution is added to POF ∗ that is not Pareto-optimal, the value

of SCτ decreases and therefore SCτ is not compatible with monotony. Since POF ′

will obtain the same SCτ value than subsets of POF ′, SCτ is weakly compatible with

relativity.

The compatibility of the accuracy performance measures with the outperformance

relations and the concepts of monotony and relativity is summarised in Table 4.4.

Table 4.4: Compatibility of accuracy performance measures

Performance Measure OW OS OC M R
GD – C C – W
SCτ – – W – W

In Tables 4.5 to 4.8, x indicates that the performance measure was used, x∗ indicates

that the performance measure was calculated in decision space and x⊲ indicates that the

variance of the performance measure was used. The usage of the accuracy performance

measures in the DMOO literature is summarised in Table 4.5. Table 4.5 shows that most

researchers have used the GD or V D performance measure to quantify the accuracy of

POF ∗.

4.2.2 Diversity Performance Measures

This section discusses performance measures that are used to measure the diversity of

the solutions contained in the approximated POF.

MS ′ measure

Goh and Tan [67] introduced an adapted version of MS (refer to Equation (4.7) in

Section 4.1.3) to measure how well POF ∗ covers POF ′. Contrary to MS, the adapted

MS, MS ′, takes into account the proximity of POF ∗ to POF ′. MS ′ is defined as:

MS′ =

√

√

√

√

1

nk

nk
∑

k=1

[

min[POF ∗
k , POF

′
k]−max[POF ∗

k , POF
′
k]

POF ′
k − POF ′

k

]2

(4.15)

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 103

Table 4.5: Usage of DMOO accuracy performance measures

Year Authors Accuracy
GD IGD VD Acc SC

2004 Farina et al. [58] x, x∗

2005 Guan et al. [74] x, x⊲

2006 Hatzakis and Wallace [76] x, x⊲, x∗, x∗⊲

2006 Mehnen et al. [117] x∗ x
2007 Cámara et al. [18] [15] x
2007 Li et al. [108] x
2007 Zhou et al. [166] x, x⊲

2008 Isaacs et al. [87] x, x∗

2008 Tan and Goh [146] x∗

2009 Cámara et al. [16] x
2009 Chen et al. [23] x
2009 Wang and Li [155] x, x⊲

2009 Goh and Tan [67] [66] x∗

2009 Isaacs et al. [88] x, x∗

2009 Salazar Lechuga [102] x, x⊲

2009 Ray [127] x, x∗

2010 Cámara et al. [17] [138] x
2010 Koo et al. [100] x∗

2010 Wang and Li [156] x
2011 Helbig and Engelbrecht [78] x x

Similar to MS, MS ′ is not weakly compatible with any of the outperformance rela-

tions. Adding a non-dominated solution to POF ∗ will not necessarily lead to a higher

MS ′ value. Therefore, MS ′ adhere to weak monotony. POF ′ will obtain the maximum

MS value, but even a POF ∗ that has only two non-dominated solutions at the extreme

points of POF ′ will also obtain the maximum MS value. Therefore, MS ′ adheres to

weak relativity.

PL measure

Since many diversity performance measures are based on the Euclidean distance and

therefore do not take the shape of the POF into account, Mehnen et al. [117] introduced

a performance measure, the PL measure, that is based on path lengths or path integrals.

The length of the path between two solutions is defined as:

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 104

Definition 4.12. Length of Path between Two Solutions: Let γ be the path

between two solutions in objective space, a and b, that is differentiable in [a,b]. Then

the length of a path between [a,b] on γ is defined as:

L(γ, a,b) :=

∫ a

b

|γ̇| dt =
∫ a

b

√

γ̇1
2 + . . .+ ˙γm

2 dt (4.16)

where γ̇ is the derivative of γ and |γ̇| is the Euclidean norm of γ̇.

The PL performance measure is the normalised product of the path between sorted

neighbouring solutions on POF , defined as

PLτ :=
ln
(

∏

f(xi)∈POF ζ(x)
)

ln eLPOF

=

∑

f(xi)∈POF ln(ζ(x))

LPOF

(4.17)

where ζ(xi) = L(γ, f(xi), f(xi+1)) + 1 and f represents the objective functions. For the

calculation of PL, a solution is considered as being in POF if the solution is within an

Table 4.6: Usage of DMOO combined performance measures

Year Authors Quality
HV HVR HVD HVmax ǫbin OSPA

2007 Deb et al. [46] x
2007 Cámara et al. [18] [15] x
2007 Li et al. [108] x
2007 Zheng [165] x x, x⊲

2007 Zhou et al. [166] x
2008 Greeff and Engelbrecht [72] x
2008 Talukder [144] x
2008 Talukder [96] x
2009 Avdagić et al. [2] x
2009 Cámara et al. [16] x x
2010 Azevedo and Araújo [3] x
2010 Cámara et al. [17] [138] x x
2010 Greeff and Engelbrecht [71] x
2010 Kim et al. [97] x
2010 Wang and Li [156] x
2011 Deb [41] x
2011 Helbig and Engelbrecht [78] x
2011 Tantar et al. [150] x

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 105

ǫ-region near POF .

In order to calculate the PL performance measure, an analytic closed description of

the true POF is required. However, according to Mehnen et al. the calculation of the

PL measure is complicated when a DMOOP:

• has more than two objectives, or

• has a discontinuous POF.

In these situations Mehnen et al. [117] recommend the usage of S [132] (refer to Sec-

tion 4.1.3).

PL is not weakly compatible with the outperformance relations. However, it is weakly

compatible with monotony, since the value of PL increases when a new non-dominated

solution that is within ǫ-distance of POF is added to POF ∗.

Set Coverage Metric

Guan et al. [74] introduced a set coverage measure that is based on the S and D metrics

introduced by Zitzler [167]. The HV of the objective space that is dominated by POF ∗

but not by POF ′, referred to as the D-metric, is defined as

D(POF ∗, POF ′) = HV (POF ∗ + POF ′)−HV (POF ′) (4.18)

The set coverage metric is then defined as

η =
D(POF ∗, POF ′)
HV (POF ′)

+
D(POF ′, POF ∗)
HV (POF ′)

(4.19)

Therefore, the set coverage metric, η, is the normalised sum of the:

• HV of the objective space that is dominated by POF ∗ and not by POF ′, and

• HV of the objective space that is dominated by POF ′ and not by POF ∗.

η is weakly compatible withOW if the HV is weakly compatible withOW . Therefore, η

is weakly compatible with OW if the reference vector is selected in such a manner that all

feasible non-dominated sets that are evaluated have a positive HV value. If the reference

vector is selected in this manner, η is compatible with all the outperformance relations.

Furthermore, η is then weakly compatible with monotony and weakly compatible with

relativity.

Pareto Front Extent

Zhang and Qian [164] introduced the coverage scope (CS) measure to quantify the av-

erage width or coverage of the non-dominated set. CS is calculated by averaging the

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 106

maximum distance between each solution in POF ∗ and the other solutions in POF ∗.

Therefore, CS is defined as

CS =
1

nPOF ∗

nPOF∗
∑

i=1

max{‖ f(xi)− f(xj) ‖} (4.20)

with xi,xj ∈ POF ∗, i ≥ 1 and j ≤ nPOF ∗ .

A higher CS value indicates a better performance. CS is similar to S [132] (refer

to Section 4.1.3), but use the maximum distance where S uses the minimum distance

between the non-dominated solutions in POF ∗. Similar to S, CS is not weakly compat-

ible with the outperformance relations. Furthermore, CS is not weakly compatible with

monotony, since adding a non-dominated solution to POF ∗ can decrease the CS value.

The CS value of POF ′ can be less than the CS value of POF ∗. Therefore, CS is not

weakly compatible with relativity.

A summary of the compatibility of diversity performance measures is shown in Ta-

ble 4.8. In Table 4.8, Co presents Corig and Cm presents Cmod. Table 4.8 indicates that

most researchers used S andMS to quantify the diversity of the non-dominated solutions

in POF ∗.

Table 4.7: Compatibility of diversity performance measures

Performance Measure OW OS OC M R
MS′ – – – W W
PL – – – W –
η C∗ C∗ C∗ W∗ W∗

CS – – – – –

4.2.3 Robustness Performance Measures

This section discusses performance measures that quantify the robustness of the algo-

rithm, i.e. how well the algorithm recovers after an environment change occurs.

Stability Measure

The effect of the changes in the environment on the accuracy (acc defined in Equa-

tion 4.23) of the algorithm can be quantified by the measure of stability that was intro-

duced by Weicker [157] for DSOO and adapted for DMOO by Cámara et al. [138].

C
h
a
p
ter

4
.

A
n
a
lysis

o
f
D
yn
a
m
ic
M
u
lti-o

b
jective

O
p
tim

isa
tio

n
P
erfo

rm
a
n
ce

M
ea
su
res

107
Table 4.8: Usage of DMOO diversity performance measures

Year Authors Diversity/Spread
NS Co Cm PFE Spac U PL MS Spread Entropy Accum NE

(Schott) (Deb)
2005 Guan et al. [74] x x x
2006 Mehnen et al. [117] x x
2006 Zheng et al. [160] x
2008 Greeff and Engelbrecht [72] x x
2008 Tan and Goh [146] x
2008 Wang and Dang [153] x x
2009 Avdagić et al. [2] x
2009 Goh and Tan [67] [66] x
2009 Chen et al. [23] x
2010 Azevedo and Araújo [3] x x
2010 Greeff and Engelbrecht [71] x
2010 Koo et al. [100] x
2010 Liu [110] x
2011 Helbig and Engelbrecht [78] x x
2011 Zang et al. [164] x x x

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 108

Stability is defined as

stab(t) = max{0, acc(t− 1)− acc(t)} (4.21)

where a low stab value indicates good performance.

The compatibility of stab depends on the definition of acc. If acc as defined in

Equation (4.23) is used, stab is compatible with OW if acc is compatible with OW .

Under these conditions, stab is compatible with the outperformance relations and weakly

compatible with monotony and relativity.

Reactivity Measure

Cámara et al. [138] presented a measure of reactivity based on the reactivity performance

measure introduced by Weicker [157] for DSOO. Reactivity measures how long it takes

for an algorithm to recover after a change in the environment, by determining how

long it takes for an algorithm to reach a specified accuracy threshold. The reactivity

performance measure is defined as

react(t, ǫ) = min

{

t′ − t|t < t′ < τmax, t
′ ∈ N,

acc(t′)
acc(t)

≥ (1− ǫ)

}

(4.22)

where τmax is the maximum number of iterations or generations.

Similar to stab, react is weakly compatible with OW if acc is weakly compatible

with OW . react’s compatibility with monotony and relativity also depends on acc’s

compatibility with monotony and relativity.

The compatibility with the outperformance relations by the robustness performance

measures is summarised in Table 4.9.

Table 4.9: Compatibility of robustness performance measures

Performance Measure OW OS OC M R
stab C∗ C∗ C∗ W∗ W∗

react C∗ C∗ C∗ W∗ W∗

Table 4.10 summarises the usage of performance measures that quantifies robustness

in the DMOO literature.

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 109

Table 4.10: Usage of DMOO robustness performance measures

Year Authors Robustness
Stb React

2007 Cámara et al. [18] [15] x x
2009 Cámara et al. [16] x x
2010 Cámara et al. [17] [138] x x
2011 Helbig and Engelbrecht [78] x

4.2.4 Combined Performance Measures

This section discusses performance measures used to quantify the overall quality of the

found POF, i.e. they do not measure only one aspect such as convergence to the true

POF or the diversity of the solutions.

Accuracy Measure

A measure of accuracy introduced by Weicker for DSOO [157] was adapted by Cámara

et al. [138] for DMOO. This measure quantifies the quality of the solutions as a relation

between the HV of POF ∗ and the maximum HV that has been found so far. The

accuracy measure is defined as

acc(t) =
HV (POF ∗(t))

HVmax(POF ∗(t))
(4.23)

The accuracy measure, acc, is compatible with OW if the upper boundary of the

dominated region is set in such a way that all feasible non-dominated sets that are

evaluated have a positive HV value (refer to Section 4.1.4). Under these conditions, acc

is compatible with the outperformance relations and weakly compatible with monotony

and relativity.

Hypervolume Difference

Zhou et al. [166] suggested to use the hypervolume distance (HVD) to measure the

quality of the found POF. HVD is defined as

HVD = HV (POF ′)−HV (POF ∗) (4.24)

However, when the true POF is unknown, the HVD cannot be used. Zheng used the

maximum HV to measure the quality of the found POF [165].

Cámara et al. [17] extended the definition of their accuracy measure (Equation (4.23))

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 110

to use the HVD when the true POF is known. The alternative accuracy measure is

defined as

accalt(t) = |HV (POF ′(t))−HV (POF ∗(t))| (4.25)

where accalt(t) is the absoluteHVD at time t. The absolute values ensure that accalt(t) ≥
0, even if HV (POF ∗) > HV (POF ′). HVD is compatible with the outperformance

relations if HV is compatible with the outperformance relations.

Optimal Subpattern Assignment Measure

Recently Tantar et al. [150] introduced performance measures that are based on per-

formance measures used in quantifying the tracking quality in multi-object tracking

problems. The performance measures are developed based on the optimal subpattern

assignment (OSPA) measure that can be used to compare sets with different cardinal-

ity [133].

Let P = (F,X,N) define a DMOOP with F and X representing a set of objective

functions and a set of decision variables respectively. N represents the neighbourhood

function described by a ball of center c and radius r, defined as

N(c, r) = {x ∈ X| d(x, c) < r and ∃h|xhc} (4.26)

where d is the distance between a solution, x, and the center point of the neighbourhood,

c, and ∃h|xhc indicates that the neighbourhood can be reached through a transformation

h.

Let A and B respresent two approximated POFs with cardinality of m and n respec-

tively. Then the following two performance measures are defined:

Mloc(X,Y) =





1

nPOF ∗

B

min
j∈P







nPOF∗

A
∑

i=1

d(xi, yj(i))
p











1
p

(4.27)

where d(x,y) = min{c, d(x,y)} is the minimum distance between two solutions that

are cut off by c. When comparing A and B, the solutions from B that are in the

neighbourhood of a given solution from A are determined by considering all permutations

of solutions from B, referred to as the set P . Mloc quantifies the quality of the coverage

of A as compared to B. A drawback of this performance measure is its computational

cost, because of the calculation of permutations for each solution under consideration.

The other performance measure is defined as

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 111

Mcard(X,Y) =

(

cp(nPOF ∗

B
− nPOF ∗

A
)

nPOF ∗

B

) 1
p

(4.28)

Mcard is a cardinality penalty function that is used when |A| 6= |B|, and is zero if the two

sets have the same cardinality. Mcard measures the influence of the cardinality difference

on the overall quality of the larger set, with the cut-off term as the error quantification

factor.

The OSPA metric is then defined as:

OSPA(X,Y) =Mloc(X,Y) +Mcard(X,Y) (4.29)

OSPA is not weakly compatible with the outperformance relations. However, OSPA

is weakly compatible with monotony.

Table 4.11 summarises the compatibility with the outperformance relations by the

combined performance measures.

Table 4.11: Compatibility of combined performance measures

Performance Measure OW OS OC M R
HVD C∗ C∗ C∗ W∗ W∗

accalt C∗ C∗ C∗ W∗ W∗

OSPA – – – W –

When algorithms solve DMOOPs, five major issues should be taken into consideration

when selecting performance measures to quantify the performance of the algorithms,

namely: algorithms losing track of the changing POF, the effect of outlier solutions in

the found POF, boundary constraint violations, calculating the performance measures

in either the objective or decision space, and comparing the performance of the various

algorithms. These issues are discussed in the next section.

4.3 Issues with Current Dynamic Multi-objective Op-

timisation Performance Measures

Section 4.2 discussed a number of performance measures that have been used to quantify

the performance of algorithms on DMOOPs. Even though these measures have been

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 112

used in a number of articles, they suffer from a number of problems mostly related to

aspects of dynamic environments. These problems make general applicability of these

performance measures to all DMOOPs not possible.

Section 4.3.1 discusses misleading results that can occur when algorithms lose track

of the changing POF. The effect of outlier solutions in POF ∗ on the quantification of an

algorithm’s performance is discussed in Section 4.3.2. Section 4.3.3 discusses the effect of

boundary constraints violations on the performance of DMOO algorithms. Furthermore,

performance measures can be calculated in either the objective or decision space as

discussed in Section 4.3.4. Finally, Section 4.3.5 discusses issues when comparing the

performance of the various algorithms.

4.3.1 Losing Track of the Changing Pareto Optimal Front

When a DMOO algorithm loses track of the changing POF, and POF changes over time

in such a way that its HV value decreases, many of the current performance measures

will give misleading results. Figure 4.1 illustrates example POFs where the POF changes

over time in such a way that, if the HV is calculated with the reference vector being

the worst values of each objective, the HV will decrease over time. A decrease in the

HV will occur if for each example the POF changes from convex to concave. Figure 4.1

illustrates three such POFs. In Figure 4.1, the first POF is represented by the bottom

line and the last POF by the top line.

The problem of losing track of the POF was first observed by Helbig and Engel-

brecht [77], where five algorithms were used to solve the FDA2 DMOOP. These algo-

rithms included a dynamic VEPSO (DVEPSO) which uses clamping to manage boundary

constraint violations (DVEPSO-A) [77], DVEPSO that uses per element re-initialisation

to manage boundary constraint violations (DVEPSO-B) [77], NSGA-II where a percent-

age of individuals are randomly selected and replaced with newly created individuals if an

environment change occurs (DNSGA-II-A) [46], NSGA-II where, after an environment

change, a percentage of individuals are randomly selected and replaced with individu-

als that are mutated from existing individuals (DNSGA-II-B) [46], and dCOEA [67].

Figure 4.2 illustrates example POFs obtained by these algorithms in comparison with

POF (Figure 4.2(f)). It is clear from these figures that DNSGA-II-A, DNSGA-II-B

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 113

and dCOEA lost track of the changing POF, with the DVEPSO algorithms being more

successful in tracking the POF. It is therefore expected that the values of the perfor-

mance measures should be better for the DVEPSO algorithms than for the evolutionary

algorithms.

The performance measure values of these algorithms for a change frequency of ten

are presented in Table 4.12. In Table 4.12 NS refers to the number of non-dominated

solutions found, S refers to the spacing measure defined by Schott [132], HV R refers to

the HV ratio [108], Acc and stab refer to measures of accuracy and stability presented

by Cámara et al. [18], and V D and MS refer to the adapted generational distance and

maximum spread performance measures for dynamic environments proposed by Goh and

Tan [67].

As shown in Table 4.12, performance measures V D and MS indicate the DVEPSO

algorithms to be better than the evolutionary algorithms. However, the measures that

make use of the HV , namely HV R, Acc and stab, rank the evolutionary algorithms as

being better than the DVEPSO algorithms. This occurs since the HV value of POF

decreases over time and therefore from the time where an algoritm loses track of the

changing POF , its HV value is higher than that of POF and therefore higher than

that of algorithms that are tracking the changing POF . Since the HV value of POF

decreases over time, HV R (which divides the HV of POF ∗ by the HV of POF) still

does not address this problem.

Tables 4.5 and 4.6 show that the following papers used the HV or HV R without

using any accuracy measure that requires knowledge of the true POF: [2, 3, 15, 18, 16,

17, 41, 46, 72, 71, 96, 138, 144, 165]. Therefore, if any of the algorithms that were

evaluated in these studies lost track of the changing POF , the performance measure

values that were obtained may be misleading.

The issue of an algorithm losing track of the changing POF is unique to DMOO.

In order to overcome this problem, accalt proposed by Cámara et al. (refer to Equa-

tion (4.25) in Section 4.2.4) should be used when the POF is known. Furthermore, if

accalt is used for acc, stab will also be reliable even if an algorithm loses track of POF .

If POF is unknown, as is the case with most real-world problems, the deviation

of the performance measures that use the HV measure should also be calculated. If

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 114

(a) FDA3 (b) FDA2

(c) dMOP2

Figure 4.1: Examples of DMOOPs where the HV value of POF decreases over time

Table 4.12: Performance Measure Values for FDA2

τt Algorithm NS S HVR Acc Stab VD MS R

10 DVEPSO-A 73.4 0.00118 0.99533 0.97848 0.00049 0.45824 0.90878 4

10 DVEPSO-B 63 0.00391 0.99905 0.98157 0.00029 0.43234 0.88916 3

10 DNSGAII-A 39.4 0.00044 1.0044 0.98681 9.565x10−06 0.71581 0.77096 2

10 DNSGAII-B 39.6 0.00042 1.00441 0.98683 9.206x10−06 0.71681 0.77866 1

10 dCOEA 38.4 0.00051 1.00209 0.98454 0.00122 0.70453 0.61923 5

the performance measure’s deviation varies much more for certain algorithms, it may

indicate that one or more of the algorithms have lost track of the changing POF and

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 115

(a) POF ∗ found by DVEPSO-A (b) POF ∗ found by DVEPSO-B

(c) POF ∗ found by DNSGA-II-A (d) POF ∗ found by DNSGA-II-B

(e) POF ∗ found by dCOEA (f) POF of FDA2

Figure 4.2: POF and POF ∗ found by various algorithms for FDA2 with nt = 10, taut = 10

and 1000 iterations

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 116

that the performance measure can not reliably be used to compare the performance of

the different algorithms. Therefore, the graphs of POF ∗s should be plotted and checked

to determine whether any algorithm has lost track of the changing POF.

Even though various performance measures were used, the misleading performance

measures can play a large enough role to influence the overall ranking of the algorithms.

This is shown in Table 4.12. Even though the DVEPSO algorithms ranked the highest

with regards to NS, V D and MS, the measures that make use of the HV value affected

the ranking in such a way that the DVEPSO algorithms ranked as number 3 and 4

respectively and were outranked by the DNSGA-II algorithms - portraying an incorrect

ordering.

It should be noted that the stability measure, stab, proposed by Cámara et al. [18]

measures the change in the values of the accuracy measure at two consecutive time

steps (refer to Section 4.2.3). Under normal circumstances a low stab value indicates

that the performance of the algorithm is not severely affected by the change in the

environment. However, in situations where one or more algorithm(s) lost track of the

changing POF, the lowest stab value will be obtained by the algorithms that lost track of

the changing POF. Therefore, the results obtained with the stab performance measure

will be misleading. Table 4.12 shows that the NSGA-II algorithms obtained a better

stab value than the DVEPSO algorithms. Clearly, as indicated by the POFs shown in

Figure 4.2, this is not the case.

4.3.2 Outliers in the Pareto Optimal Front

When algorithms solve DMOOPs and the environment changes frequently, the POF ∗

that has been found by the algorithm for a specific time step may contain outliers. This

occurs because the algorithm found non-dominated solutions that are further away from

the true POF within the number of iterations or generations available to the algorithm

to solve the specific POF. In the time available before the environment changes, the

algorithm did not find any solutions closer to the true POF that dominated these outlier

solutions. Figure 4.3 illustrates an example POF ∗ that contains outliers.

Outliers will skew results obtained using:

• distance-based performance measures, such as GD, V D, PL, CS and Mloc,

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 117

(a) POF ∗ of dMOP2 with outliers (b) Zoomed into POF region of (a)

(c) POF of dMOP2

Figure 4.3: Example of a POF ∗ that contains outlier solutions.

• performance measures that measure the spread of the solutions, such as MS, and

• the HV performance measure.

The influence of outlier solutions on the calculation of GD and V D is illustrated

in Table 4.13. Due to the large distance between the outliers and POF as shown in

Figures 4.3 and 4.4, the resulting GD and V D is much larger with the outliers present

compared to when the outliers are not present. However, it should be noted that the

severity of the influence of outliers on distance calculations depends on the number of

outliers and their distance from POF .

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 118

Furthermore, when a performance measure, such as MS of Cámara et al. [18], mea-

sures the extend or spread of the approximated POF, these outlier solutions may cause

the performance measure to be misleading with regards to the performance of the algo-

rithm. In Figure 4.4, the outlier solutions’ f1 and f2 values will become the PF ∗
i and

PF ∗
i in the f2 and f1 objective in Equation (4.7) respectively. In Figure 4.4, POF ∗ only

contains non-dominated solutions with f1 values in the range of [0.2, 0.7] and f2 values

in the range of [0, 0.5] without the outlier solutions. However, with the outlier solutions

the f1 values will be calculated as being in the range of [0, 1.0] and f2 values in the range

of [0.2, 3]. This will result in the maximum MS value and will not give a true reflection

of the diversity of solutions that has been found by the algorithm. The influence of the

outliers on the value of MS is shown in Table 4.13.

When solving DMOOPs, many researchers use the HV performance measure, espe-

cially when POF is unknown. When comparing various algorithms’ POF ∗s, the same

reference vector is used. HV values that are calculated with different reference vectors

cannot be compared against each other. Furthermore, outlier solutions influence the ref-

erence vector values that are used to calculate the HV. Typically, the reference vector is

chosen as the worst values obtained for each objective. Therefore, for POF ∗ in Figure 4.4

the reference vector for the HV is [1.1, 3.1] and [1.1, 1.1] with and without the outlier

values respectively. This results in much larger HV values when outliers are present, as

shown in Table 4.14. From Table 4.14 it is clear that HV R and accalt provide a more

accurate representation of the performance of the algorithm, resulting in a better HV R

value without outliers than with the outliers. However, when the HV is used, the POF ∗

with outliers obtain a better HV value than the POF ∗ without the outliers. Therefore,

if POF is unknown and the HV is used, outlier solutions may lead to misleading results

and algorithms being ranked incorrectly.

One approach to manage outliers in POF ∗ is to remove the outliers from POF ∗.

However, no consensus exists on the approach that should be followed to decide which

non-dominated solutions in POF ∗ should be classified as outliers.

It should be noted that, as the number of objectives increases, more outlier solutions

may become present in POF ∗. This is the case, since as the number of objectives

increases, more solutions that are found by the algorithm will be non-dominated with

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 119

regards to the other solutions in POF ∗. Furthermore, outliers in POF ∗ will cause the

same problems when solving static MOOPs. However, since algorithms generally have

longer time to converge towards POF with static MOOPs than with DMOOPs where

the environment changes, the possibility of the occurrence of outliers increases when

solving DMOOPs.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

f2

f1

True POF
Sampled Points of True POF

Approximated POF

Figure 4.4: POF ∗ of FDA1 with outlier solutions

Table 4.13: GD, VD and MS values for FDA1

Outliers GD VD MS
Yes 2.05565 4.596574 0.91833
No 0.00942 0.016311 0.4342

Table 4.14: HV, HVR and HVD values for FDA1

Outliers HV HVR accalt
Yes 2.49898 0.84461 0.45974
No 0.69798 0.91994 0.06074

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 120

4.3.3 Boundary Constraint Violations

The candidate solutions of certain computational intelligence algorithms tend to move

outside the boundary constraints of an optimisation problem while searching for so-

lutions. For example, it has been shown theoretically that most particles in a PSO

algorithm [94] leave the bounds within the first few iterations [55, 63]. If a particle finds

a better solution outside the bounds, its personal best position is set to this new posi-

tion. Should this position be better than the current neighbourhood or global best, other

particles are also pulled outside of the bounds. Consequently, particles may converge

on a solution outside the bounds of the search space. This behaviour of particles was

empirically analyzed by Engelbrecht [56].

If a GA [82] uses blending cross-over, such as parent-centric cross-over [44], offspring

may be generated outside the boundaries of the search space due to the asymptotic tails

of the distributions of the stochastic component of the blending process.

Most evolutionary programming [59] algorithms sample mutational step sizes from

zero-mean distributions with tails that asymptotically approach infinity and negative

infinity. Consequently, large mutational step sizes can potentially be added to parent

individuals, moving offspring outside of the bounds. If such offspring have better fitness

than parent individuals, these offspring survive to the next generation with a chance of

obtaining a solution that does not lie within the bounds of the search space.

With differential evolution’s [142] mutation operator, a weighted difference of two

vectors are added to the parameter vector. If this weighted difference is large, it may

cause the trial vector to move outside the boundary constraints of the optimisation

problem.

Most unconstrained DMOOPs have boundary constraints that limit the search space.

However, if an algorithm does not manage boundary constraint violations, infeasible

solutions may be added to POF ∗. These infeasible solutions may dominate feasible

solutions in POF ∗, which will cause the feasible solutions to be removed from POF ∗.

Furthermore, the infeasible solutions may cause misleading results with regards to an

algorithm’s performance.

Figure 4.5(a) illustrates a POF ∗ that was found by DVEPSO that did not man-

age boundary constraint violations (DVEPSOu) when solving dMOP2, DVEPSO that

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 121

manages boundary constraint violations (DVEPSOc), and the true POF (POF). From

Figure 4.5 it is clear that POF ∗ of DVEPSOu has a larger HV value than both POF ∗ of

DVEPSOc (refer to Figure 4.5(b)) and POF (refer to Figure 4.5(c)). This is confirmed

in Table 4.15. This incorrectly indicates that the POF ∗ that contains solutions that

are outside the bounds of the search space to be better. Therefore, when comparing

various algorithms with one another, it is important to check that all algorithms manage

boundary contraint violations to ensure a fair comparison. It should be noted that the

issue of boundary constraint violations is applicable to both SMOO and DMOO.

Table 4.15: HVR values for dMOP2

Algorithm HVR
DVEPSOu 1.00181
DVEPSOc 0.99978

4.3.4 Objective Space versus Decision Space

Accuracy measures, such as V D or GD, can be calculated with respect to either the

decision or the objective space. Using objective space, V D measures the distance between

the non-dominated solutions of POF ∗ and POF ′. Therefore, V D measures the closeness

of POF ∗ to POF . Since one of the goals of solving a DMOOP is to track the changing

POF, the accuracy should be measured in the objective space. If the V D measure is

calculated in the decision space, the distance between POS∗ and POS is calculated.

Calculating the V D measure in the decision space may be useful to determine how close

POS∗ is from POS. However, if for a DMOOP a small change in the POS causes a big

change in the POF, it may occur that even though the algorithm’s POS∗ is very close

to POS, POF ∗ is quite far from POF . This is illustrated with an example DMOOP

defined as:

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 122

DMOOP1 =











































































Minimize : f(x, t) = (f1(xI), g(xII)·
h (xIII, f1(xI), g (xII) , t))

f1(xI) = x1
g(xII) = 1−∑xi∈xII

√

xi −G(t)−
∑

xj∈xIII
(xj −G(t))2

h(xIII, f1, g, t) = 1−
(

f1
g

)H(t)

where :

G(t) = sin(0.5πt), t = 1
nt

⌊

τ
τt

⌋

H(t) = 1.5 +G(t)
xI ∈ [0, 1]; xII,xIII ∈ [−1, 1]

(4.30)

(a) POF ∗ of dMOP2 with feasible and infeasible

solutions

(b) POF ∗ of dMOP2 with only feasible solutions

(c) POF of dMOP2

Figure 4.5: Example of a POF ∗ that contains infeasible solutions due to boundary constraint

violations

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 123

For DMOOP1, the POS and POF are:

POS : xi = G(t), ∀xi ∈ xII,xIII

POF : y = 1− f
H(t)
1

Let xII = {x1, x2, x3}, xIII = {x4, x5, x6}, t = 0.1, G(t) = 0.156, x1 = {0.14, 0.16, 0.16,
0.16, 0.16, 0.16} and x2 = {0.16, 0.16, 0.16, 0.16, 0.14, 0.16}. Then, measuring the dis-

tance between the solution and the true POS (i.e. in decision space), d(x)dec, x1 and

x2 obtains the same ddec value. However, x1 and x2 produces the following gh values

respectively: 0.937512 and 0.93183. The true POF value for x1 and x2 are 0.961453 and

0.951914 respectively. The difference between the gh values found by x1 and x2 and the

true POF values, dobj, are 0.023941 and 0.020084 respectively. Therefore, even though

in the decision space the difference between x1 and x2 and the true POS produces the

same ddec value, their difference in objective space, dobj, is different, with x2 being closer

to the true POF than x1.

Measuring V D in the decision space will indicate how close the decision variable

values are from POS. However, the V D value measured in decision space will not give a

true reflection of the accuracy of POF ∗ with regards to POF . Therefore, measuring V D

in decision space to determine the accuracy of the algorithm’s found solutions only makes

sense for DMOOPs of Type I where the POS changes over time, but the POF remains

static. However, for DMOOPs of Type II and III, measuring V D in the decision space

will not provide any information with regards to how well the algorithm has tracked

the changing POF and therefore for these type of DMOOPs V D should be measured in

objective space.

The following papers measured either GD or V D in only the decision space: [67, 66,

100, 117, 146]. In [146] only FDA1, which is a Type I DMOOP, was used and therefore

measuring in the decision variable space makes sense. In [100], three DMOOPs of Type

I (FDA1, DIMP1 and DIMP2) were used and one DMOOP of Type II (FDA3). For the

Type II DMOOP, calculating in the decision space will only provide information with

regards to tracking of the changing POS, but not with regards to tracking the changing

POF. In [67, 66, 117], DMOOPs of Types I, II and III were used. For the DMOOP of

Type III, measuring in the decision space only indicates whether POS∗ remains close to

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 124

POS, which remains static over time. Therefore, it provides no information with regards

to how well the algorithm has tracked the changing POF . The issue of calculating

performance measures in either decision or objective space is unique to DMOO, since

with SMOO both the POS and POF remain static.

4.3.5 Comparing Performance of Algorithms

When the performance of various algorithms are compared against one another, typi-

cally various performance measures are used. Some algorithms will perform very well

with regards to certain performance measures and not so well with regards to the other

performance measures. Therefore, typically each algorithm will be ranked according to

its performance with regards to each performance measure. Then, for each algorithm its

average rank is calculated. These averaged ranks are then used to determine how well

each algorithm performed with regards to the other algorithms. However, the perfor-

mance measures that are used for comparing various algorithms should be chosen with

care. If the wrong performance measures are selected, it may lead to incorrect ordering

as discussed in Section 4.3.1 and illustrated in Table 4.12 and [77]. Therefore, if POF is

known, the usage of accalt is suggested. However, more research is required to determine

the best performance measure(s) for cases where POF is unknown.

4.4 Summary

This chapter provided an analysis of performance measures for DMOO. Concepts of out-

performance relations, compatibility, monotony and relativity were introduced that have

been used to evaluate static MOO performance measures. Performance measures that

were used for MOO to measure convergence to the true POF, diversity of the solutions,

as well as overall quality of the approximated POF were discussed. Adaptation of the

MOO performance measures for DMOO was presented, as well as performance measures

that have been introduced specifically for DMOO. Furthermore, problems with current

DMOO performance measures were discussed, indicating that algorithms that lose track

of the POF, outliers in the found POF, and violation of the boundary constraints can

produce misleading results with some performance measures that are currently used to

measure the performance of DMOO algorithms.

Chapter 4. Analysis of Dynamic Multi-objective Optimisation Performance Measures 125

The first part of the thesis provided background with regards to optimisation. The

second part of the thesis discusses CI algorithms used to solve optimisation problems.

The next chapter discusses population-based algorithms used to solve SOOPs.

	Front
	Chapter 1
	PART 1
	Chapter 2
	2.1 Single Objective Optimisation
	2.2 Multi-objective Optimisation
	2.3 Dynamic Single-objective Optimisation
	2.4 Dynamic Multi-objective Optimisation
	2.5 Summary

	Chapter 3
	3.1 Multi-objective Optimisation Benchmark Functions
	3.2 Dynamic Multi-Objective Optimisation Benchmark functions
	3.3 Summary

	Chapter 4
	4.1 Static Multi-objective Optimisation PerformanceMeasures
	4.2 Current Dynamic Multi-objective OptimisationPerformance Measures
	4.3 Issues with Current Dynamic Multi-objective Optimisation Performance Measures
	4.4 Summary

	Part II
	Part III
	Chapter 12
	Back

