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Abstract

Most optimisation problems in everyday life are not static in nature, have multiple objec-
tives and at least two of the objectives are in conflict with one another. However, most
research focusses on either static multi-objective optimisation (MOO) or dynamic single-
objective optimisation (DSOQO). Furthermore, most research on dynamic multi-objective
optimisation (DMOOQO) focusses on evolutionary algorithms (EAs) and only a few par-
ticle swarm optimisation (PSO) algorithms exist. This thesis proposes a multi-swarm
PSO algorithm, dynamic Vector Evaluated Particle Swarm Optimisation (DVEPSO), to
solve dynamic multi-objective optimisation problems (DMOOPs). In order to determine
whether an algorithm solves DMOO efficiently, functions are required that resembles
real world DMOOPs, called benchmark functions, as well as functions that quantify the
performance of the algorithm, called performance measures. However, one major prob-
lem in the field of DMOO is a lack of standard benchmark functions and performance
measures. To address this problem, an overview is provided from the current literature
and shortcomings of current DMOO benchmark functions and performance measures are
discussed. In addition, new DMOOPs are introduced to address the identified shortcom-
ings of current benchmark functions. Guides guide the optimisation process of DVEPSO.
Therefore, various guide update approaches are investigated. Furthermore, a sensitivity
analysis of DVEPSO is conducted to determine the influence of various parameters on the
performance of DVEPSO. The investigated parameters include approaches to manage
boundary constraint violations, approaches to share knowledge between the sub-swarms

and responses to changes in the environment that are applied to either the particles
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of the sub-swarms or the non-dominated solutions stored in the archive. From these
experiments the best DVEPSO configuration is determined and compared against four
state-of-the-art DMOO algorithms.

Keywords: dynamic multi-objective optimisation, particle swarm optimisation, dy-
namic vector evaluated particle swarm optimisation algorithm, benchmark functions,
performance measures, guide updates, management of boundary constraint violations,

response strategies, knowledge sharing
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“You have to be fast on your feet and adaptive or else a strateqy is useless.”
— Charles de Gaulle
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