Identification of Commonly Used Traditional Medicines by Planar Chromatography for Quality Control Purposes

Jabulile Vuyiswa Manana

Dissertation submitted to the faculty of Health Sciences, Department of Pharmacology, University of Pretoria, in fulfillment of the requirements for the degree of

Magister Scientiae
With specialization in Pharmacology

Promoter: Prof. J. N. Eloff

Date of submission: February, 2003
Declaration

I declare that this dissertation is my own unaided work conducted under the supervision of Prof. J. N. Eloff. It is submitted to the Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, for the Degree of Magister Scientiae. It has not been submitted before for any degree or examination in any other University.

[Signature]

Jabulile Vuyiswa Manana
Abstract

South Africa contains more than 9% of the world higher plant species diversity, of which many are used to treat human and livestock health problems. Unfortunately, the motivation to put medicinal plants on the market is frequently not to provide an essential service but to make money. In some overseas countries falsification of selling plant materials adulterated with cheaper products by dishonest traders is a problem. In South Africa a number of patients have become ill or died after using wrong plant or dose. It is frequently difficult or impossible to identify a plant from the root, bulb or bark form sold in most markets. Thus far, not much has been done to address this problem. Quality control of medicinal plants is therefore an important topic wherever traditional or herbal medicines are used. Planar chromatography has been used widely to verify the identity of phytomedicines used in the western herbal industry. Thin layer chromatography (TLC) atlases are available for many herbal medicines. This study proposes to use TLC to verify the identity of plant species of the bark and bulb material sold in Pretoria informal market.

After interviewing herbal traders and healers, plants were selected on the basis of availability, cost, toxicity and accessibility. Reference plant materials based on the traditional name provided were obtained from the Pretoria National Botanical Garden and Agricultural Research Council. Powdered material of the market and reference species were extracted with three solvents (ethanol, acetone and hexane) and final crude extracts separated in three TLC systems (polar, intermediate and non-polar systems) and the compound composition was detected using three spray reagents. As an indication of biological activity, the antibacterial activity of the selected materials was determined using four bacteria by bioautography and minimum inhibitory concentration methods.

In general, the plant materials sold by different traders in Pretoria had a similar chemical profile to the reference samples, although there were variations in the chemical profile of the same species from different areas. Although TLC technique is useful in the identification of traditional plants, it is not able to differentiate closely related plant species due to the similarities in chemical compositions and slight variation. Environmental factors did not have a major impact on the on the chemical composition of *Artemisia afra*. In conclusion, identification of traditional medicines by planar chromatography is possible, although it may be complicated by chemical variation and geographic differences. Planar chromatography can also be used to determine the magnitude of adulteration in markets that sell African traditional medicines and to determine the identity of illegally collected over-
exploited plant medicines. It therefore appears that plants sold in the Pretoria Traditional medicine market are correctly identified.

Samevatting

Suid-Afrika beskik oor meer as 9% van die wêreld se hoërplant spesies. Baie van hierdie plante word gebruik vir behandeling van mens- en diersiektes. Dikwels is die doel van verskaffers van medisinale plante eerder om geld te maak en nie om 'n essensiële diens te lewer nie. Omdat dit prakties onmoontlik is om gemaalde plantaardige produkte te identifiseer, het dit dikwels in die buiteland gebeur dat die etiket van westere kruimedyse nie ooreenstem met die plantmateriaal in die houer nie. In Suid-Afrika is pasiente al vergiftig omdat die verkoerde plant of dosis gebruik is. Dit is dikwels onmoontlik om 'n plant van die wortel, bol of bas wat verkoop word, te identifiseer. Min is tot dusver gedaan om die omvang van die probleem aan te spreek. Gehaltebeheer van tradisionele medisinale plante is gevolglik 'n belangrik onderwerp. Dunlaag chromatografie [DLC] is al in die buiteland gebruik vir die identifisering van westere kruimedyse en DLC atlasses is beskikbaar. In hierdie studie is beplan om DLC te gebruik om te bepaal tot watter mate die plante wat in Pretoria verkoop word, korrek geïdentifiseer is.

Na onderhoude met verkopers en gebruikers van tradisionele plantmedisyne, is plante uitgesoek op basis van beskikbaarheid, koste, toksisiteit en gemak om te versamel. Verwysings plantmateriaal is vanaf die Pretoria Nasionale Botaniese Tuin en Landbou-navorsingsraad verkry. Gemaalde materiaal is ge-ekstraheer met drie ekstraheermiddels met verschillende polariteit en geskei deur silika gel dunlaagchromatografie. As maatstaf van biologiese aktwiteit is antibakteriese aktwiteit bepaal deur minimum inhiberende konsentrasie te bepaal met vier bakterieë. Deur bio-autografie is die verskeidenheid en eienkappe van die inhiberende verbinding oor bepaal.

Oor die algemeen het die chemiese profiel en antibakteriese aktwiteit van die materiaal wat verkoop is, ooreengestem met die verwysingsmateriaal. Hoewel DLC bruikbaar is in die identifikasie van verschillende plante werk dit nie goed vir na-verwante plante nie. Omgewings faktore het nie 'n baie groot invloed gehad op die chemiese samestelling van *Artemisia afra* nie. DLC was ook bruikbaar om plante wat bedreig is en onwettig versamel is te identiseer vir moontlike vervolging van oortreders. Dit blyk dus dat plante wat op die Pretoria tradisionele medisyne mark verkoop word, korrek geïdentifiseer is.
Acknowledgements

I wish to express my gratitude for the contributions made to my success by:

- Prof. J. N. Eloff for his supervision towards the completion of this research
- Prof T. Marwala, Dr D. Katerere and Mrs E. Scott for editorial work
- My family and friends who supported me in times of academic and other stresses.
- Organizations who financially supported this research:
 1. National Research Foundation
 2. Biomox Pharmaceuticals
 3. THRIP
- The suppliers of medicinal plants
 1. Ms. P. Swart and the staff of Pretoria National Botanical Garden for supplying *Acacia caffra, Acacia karroo, Artemisia afra, Croton sylvaticus*, and *Peliophorum africanum*.
 2. The staff of the Agricultural Research Council in Roodeplaat for supplying *Artemisia afra* and *Boophane hymanthoides*.
 3. Dr. C. J. Geldenhuys for supplying overexploited plant species.
 4. Mr. H. Wessels for supplying *Artemisia afra* samples grown in his farm, Warden district, KwaZulu-Natal
 6. Prof J. N. Eloff for supplying *Warburgia salutaris*
Table of Contents

Declaration i
Abstract ii
Abstraak iii
Acknowledgments iv
Table of contents v
List of figures vii
List of tables xiii
Abbreviations xiv
Conference Presentations xvii

1 General Introduction 1

1.1 Problems with traditional medicines 2
1.2 Thin layer chromatography (TLC) 6
 1.2.1 Advantages of TLC 10
1.3 Chemotaxonomy and fingerprinting of plants 11
1.4 Problem statement and objectives 12
1.5 Conclusion 13

2 Materials and methods 14

2.1 Introduction 14
2.2 Selection of commonly used medicinal plants in Pretoria area 14
2.3 Processing of plant materials 15
2.4 TLC Analysis 15
2.5 Bio-autography 17
2.6 Minimum inhibitory concentration (MIC) 18
2.7 Conclusion 20

3 Selection of commonly used traditional medicines 21

3.1 Introduction 21
3.2 Results and discussion 22
 3.2.1 *Acacia caffra* (Fabaceae) 29
 3.2.2 *Acacia karro* (Fabaceae) 30
 3.2.3 *Artemisia afra* (Asteraceae) 30
 3.2.4 *Boophane haemanthoides* (Amaryllidaceae) 31
3.2.5 *Croton sylvaticus* (Euphorbiaceae) 31
3.2.6 *Peltophorum africatum* (Rosaceae) 32
3.2.7 *Warburgia salutaris* (Canellaceae) 33

3.3 Conclusion 34

4 Use of Thin Layer Chromatography (TLC) to identify medicinal plants 35

4.1 Introduction 35

4.2 Results and discussion 36

4.2.1 Thin Layer Chromatography Identification 36

4.2.1.1 *Warburgia salutaris* (Molaka) 36
4.2.1.2 *Peltophorum africatum* (Moselha) 38
4.2.1.3 *Croton sylvaticus* (Umahlanganisa) 41
4.2.1.4 *Boophane haemanthoides* (Legwama) 43
4.2.1.5 *Artemisia afra* (Lengana) 43
4.2.1.6 *Acacia caffra* (Moselhana) 46

4.2.2 Bio-autography 48

4.2.3 Minimum Inhibitory Concentration and Total activity 51

4.3 Conclusion 58

5 Application of Thin Layer Chromatography (TLC): Characterization of traditional medicines 59

5.1 Introduction 59

5.2 Results and discussion 60

5.2.1 Application of TLC to differentiate Fabaceae species 60

5.2.2 Environmental influence on the chemical composition of *Artemisia afra* species 61

5.2.3 Determination of adulteration in traditional medicine markets 71

5.2.3.1 Determination of adulteration in *Peltophorum africatum* (Moselha) species 75
5.2.3.2 Determination of adulteration in *Warburgia salutaris* (Molaka) species 78

5.3 Conclusion 81
6 The Use of planar chromatography to identify overexploited medicinal plants

6.1 Introduction 83

6.2 Results and discussion 84

6.2.1 TLC analysis of over-exploited traditional medicines 84
6.2.1.1 Cryptocarya myrtifolia 44
6.2.1.2 Ocotea bullata 86
6.2.1.3 Rapanea Melanophloeae 88
6.2.1.4 Zanthoxylum dayvi 88
6.2.1.5 Prunus africana 91
6.2.2 Antibacterial activity analysis 93

6.3 Conclusion 95

7 General conclusions 96

8 References 98

9 Appendix 106
List of figures

Figure 2.1. The schematic illustration of experimental procedures followed in this study.

Figure 4.1 TLC profiles of Molaka (ME, MA and MH) and Warburgia salutaris (RE, RA and RH) showing chemical components sprayed with p-anisaldehyde, vanillin-sulphuric acid and vanillin-phosphoric acid respectively. Key: ME: market ethanol extract; RE: reference ethanol extract; MA: market acetone extracts; RA: reference acetone extract; MH: market hexane extract; RH: reference hexane extract; BEA: benzene, ethanol and ammonium separation system; CEF: chloroform, ethyl acetate and formic acid separation system and EMW: ethyl acetate, methanol and water separation system.

Figure 4.2 TLC profiles of Mosethla (ME, MA and MH) and Peltophorum africanum (RE, RA and RH) extracts sprayed with p-anisaldehyde, vanillin sulphuric acid and vanillin phosphoric acid respectively. Key: ME: market ethanol extract; RE: reference ethanol extract; MA: market acetone extracts; RA: reference acetone extract; MH: market hexane extract; RH: reference hexane extract; BEA: benzene, ethanol and ammonium separation system; CEF: chloroform, ethyl acetate and formic acid separation system and EMW: ethyl acetate, methanol and water separation system.

Figure 4.3 TLC profiles of market Umahlanganisa (ME, MA and MH) and reference Croton sylvaticus (RE, RA and RH) extracts sprayed with p-anisaldehyde, vanillin sulphuric acid and vanillin phosphoric acid spray reagents. Key: ME: market ethanol extract; RE: reference ethanol extract; MA: market acetone extracts; RA: reference acetone extract; MH: market hexane extract; RH: reference hexane extract; BEA: benzene, ethanol and ammonium separation system; CEF: chloroform, ethyl acetate and formic acid separation system and EMW: ethyl acetate, methanol and water separation system.

Figure 4.4 TLC profiles of Legwama and Boophane haemanthooides extracts sprayed with both p-anisaldehyde and vanillin-sulphuric acid. Key: ME: market ethanol extract; RE: reference ethanol extract; MA: market acetone extracts; RA: reference acetone extract; MH: market hexane extract; RH: reference hexane extract; BEA: benzene, ethanol and ammonium separation system; CEF: chloroform, ethyl acetate and formic acid separation system and EMW: ethyl acetate, methanol and water separation system.

Figure 4.5 The TLC profile of Lengana and Artemisia afra extracts sprayed with p-anisaldehyde, vanillin-sulphuric acid and vanillin-phosphoric acid respectively. Key: ME: market ethanol extract; AE: ARC ethanol extract; BE: PNBG ethanol extract; MA: market acetone extracts; AA: ARC acetone extract; BA: PNBG acetone extract; MH: market hexane extract.
extract; AH: ARC hexane extract; BH: PNBG hexane extract BEA: benzene, ethanol and ammonium separation system; CEF: chloroform, ethyl acetate and formic acid separation system and EMW: ethyl acetate, methanol and water separation system.

Figure 4.6 TLC profiles of Mosethlana and *Acacia caffra* extracts sprayed with p-anisaldehyde, vanillin sulphuric acid and vanillin phosphoric acid respectively. Key: ME: market ethanol extract; RE: reference ethanol extract; MA: market acetone extracts; RA: reference acetone extract; MH: market hexane extract; RH: reference hexane extract; BEA: benzene, ethanol and ammonium separation system; CEF: chloroform, ethyl acetate and formic acid separation system and EMW: ethyl acetate, methanol and water separation system.

Figure 4.7 Bio-autograms of Molaka and *Warburgia salutaris* against *Staphylococcus aureus*, *Psuedomonas aeruginosa* and *Enterococcus faecalis* respectively. Key: ME: market ethanol extract; EE: reference ethanol extract; MA: market acetone extracts; EA: reference acetone extract; MH: market hexane extract; EH: reference hexane extract; BEA: benzene, ethanol and ammonium separation system; CEF: chloroform, ethyl acetate and formic acid separation system and EMW: ethyl acetate, methanol and water separation system.

Figure 4.8 Bio-autograms of Mosethlana and *Croton sylaticus* against *Staphylococcus aureus*, *Psuedomonas aeruginosa* and *Enterococcus faecalis* respectively. Key: ME: market ethanol extract; BE: reference (PNBG) ethanol extract; MA: market acetone extracts; BA: reference (PNBG) acetone extract; MH: market hexane extract; BH: reference (PNBG) hexane extract; BEA: benzene, ethanol and ammonium separation system; CEF: chloroform, ethyl acetate and formic acid separation system and EMW: ethyl acetate, methanol and water separation system.

Figure 4.9 Total activities of *Acacia caffra* (A) and *Boophone haemanthoides* (B) tested against *Staphylococcus aureus*, *Psuedomonas aeruginosa*, *Enterococcus faecalis* and *E. coli*. Key: ACMB: *Acacia caffra* market sample; ACBB: *Acacia caffra* Pretoria National Botanical Garden sample; BHA: *Boophone haemanthoides* Agricultural Research Council sample; BHMb: *Boophone haemanthoides* market sample; EtOH: ethanol extract; Ace: acetone extract; Hex/Hax: hexane extract.

Figure 4.10 Total activities the *Artemisia afra* (A) and *Croton sylaticus* (B) tested against *Staphylococcus aureus*, *Psuedomonas aeruginosa*, *Enterococcus faecalis* and *E. coli*. Key: ArDg: *Artemisia afra* market sample; ArARC: *Artemisia afra* Agricultural Research Council sample; ArBB: *Artemisia afra* Pretoria National Botanical Garden sample; CSBB: *Croton
sylvaticus Pretoria National Botanical Garden sample; CSMB: *Croton sylvaticus* market sample; EtOH: ethanol; Ace: acetone; Hex: hexane.

Figure 4.11 Total activities of *Peltophorum africanum* (A) and *Warburgia salutaris* (B) tested against *Staphylococcus aureus*, *Psuedomonas aeruginosa*, *Enterococcus faecalis* and *E. coli*. Key: PABB: *Peltophorum africanum* Pretoria National Botanical Garden sample; PAMB: *Peltophorum africanum* market sample; WSLE: *Warburgia salutaris* Pretoria National Botanical Garden leaf sample; WSBE: *Warburgia salutaris* Pretoria National Botanical Garden sample; WSMB: *Warburgia salutaris* market sample; EtOH: ethanol; Ace: acetone; Hex: hexane.

Figure 4.12. Total activities of ethanol, acetone or hexane extracts against *Staphylococcus aureus*, *Psuedomonas aeruginosa*, *Enterococcus faecalis* and *E. coli*.

Figure 5.1 TLC profiles of Fabaceae species extracts, analyzed with p-anisaldehyde spray reagent. Key: MAC: Market *Acacia caffra*; BAC: PNBG *Acacia caffra*, BAK: PNBG *Acacia karoo*, BAM: PNBG *Acacia montana*, MPA: market *Peltophorum africanum* and BPA: PNBG *Peltophorum africanum*.

Figure 5.2 TLC profiles of Fabaceae species extracts of ethanol, acetone and hexane sprayed with vanillin sulphuric acid spray reagent. MAC: Market *Acacia caffra*, BAC: PNBG *Acacia caffra*, BAK: PNBG *Acacia karoo*, BAM: PNBG *Acacia montana*, MPA: market *Peltophorum africanum* and BPA: PNBG *Peltophorum africanum*.

Figure 5.3 TLC profiles of *Artemisia afra* species originating from different geographic area and seed sources, sprayed with: p-anisaldehyde, vanillin sulphuric acid and vanillin phosphoric acid spray reagents. Key: D: market sample; V: veldt sample; M: maize land sample; T: private garden sample; B: Pretoria National Botanical Garden sample; A: Agricultural Research Council sample; BEA: benzene, ethanol and ammonium separation system; CEF: chloroform, ethyl acetate and formic acid separation system and EMW: ethyl acetate, methanol and water separation system.

Figure 5.4 Total activities of *Artemisia afra* species tested against *Staphylococcus aureus*, *Psuedomonas aeruginosa*, *Escherichia coli* and *Enterococcus faecalis* microorganisms. Key: ArAveld: *Artemisia afra* veldt sample; ArAmI: *Artemisia afra* maize land sample; ArAg: *Artemisia afra* private garden sample; ArDg: *Artemisia afra* market sample; ArARC: *Artemisia afra* Agricultural Research Council Sample; ArBG: *Artemisia afra* Pretoria National Botanical Garden sample; EtOH: ethanol; Ace: acetone; Hex: hexane.

Figure 5.5 TLC Profiles of *Artemisia afra* species originating from the same seed source, sprayed with p-anisaldehyde and vanillin sulphuric acid spray reagents. Key: N: seed source
sample; A: Agricultural Research Council sample; D: fertilized soil sample; H: shade sample; J: pyrethrum-treated sample; M: maize land sample; L: home garden sample; BEA: benzene, ethanol and ammonium separation system; CEF: chloroform, ethyl acetate and formic acid separation system and EMW: ethyl acetate, methanol and water separation system.

Figure 5.6 Total activities of acetone extracts of the *Artemisia afra* species tested against *Staphylococcus aureus*, *Psuedomonas aeruginosa*, *Escherichia coli* and *Enterococcus faecalis* microorganisms. Key: N: seed source sample; A: Agricultural Research Council sample; D: fertilized soil sample; H: shade sample; J: pyrethrum-treated sample; M: maize land sample; L: home garden sample; BEA: benzene, ethanol and ammonium separation system; CEF: chloroform, ethyl acetate and formic acid separation system and EMW: ethyl acetate, methanol and water separation system.

Figure 5.7 Photographs of the bark of *Warburgia salutaris* (Molaka) bought from vendor A, C, D and E.

Figure 5.8 Photographs of the bark *Peltophorum africanum* (Mosetlha) bought from vendors A, B, C, D and E.

Figure 5.9 TLC profiles of *Peltophorum africanum* bark materials obtained from different vendors (A, B, C, D, E, F) and G extracted with ethanol, acetone and hexane and detected with p-anisaldehyde. Key: BEA: benzene, ethanol and ammonium separation system; CEF: chloroform, ethyl acetate and formic acid separation system and EMW: ethyl acetate, methanol and water separation system.

Figure 5.10 TLC profiles of *Peltophorum africanum* bark materials obtained from different vendors (A, B, C, D, E, F and G) extracted with ethanol, acetone and hexane and detected with vanillin sulphuric acid. Key: BEA: benzene, ethanol and ammonium separation system; CEF: chloroform, ethyl acetate and formic acid separation system and EMW: ethyl acetate, methanol and water separation system.

Figure 5.11 TLC profile of *Warburgia salutaris* species from different vendors (A, C, D, E and G) extracted with ethanol, acetone and hexane. The extracts’ chemical components on the TLC plate were sprayed with p-anisaldehyde. Key: BEA: benzene, ethanol and ammonium separation system; CEF: chloroform, ethyl acetate and formic acid separation system and EMW: ethyl acetate, methanol and water separation system.

Figure 5.12 TLC profile of *Warburgia salutaris* species from different vendors (D, E, F and G) extracted with ethanol, acetone and hexane, sprayed with vanillin sulphuric acid spray reagent. Key: BEA: benzene, ethanol and ammonium separation system; CEF: chloroform,
ethyl acetate and formic acid separation system and EMW: ethyl acetate, methanol and water separation system.

Figure 6.1. TLC profiles of *Cryptocarya myrtifolia* sprayed with *p*-anisaldehyde, vanillin-sulphuric and methanol-phosphoric acid. Key: EE: ethanol-ethanol extract; EA: ethanol-acetone extract; AA: acetone-acetone extract and HA: hexane-acetone extract.

Figure 6.2. TLC profile of *Ocotea bullata* sprayed with *p*-anisaldehyde, vanillin-sulphuric and methanol-phosphoric acid spray reagents. Key: EE: ethanol-ethanol extraction, EA: ethanol-acetone extract, AA: acetone-acetone extract and HA: hexane-acetone extract.

Figure 6.3 TLC profiles of *Rapanea melanophloeas* sprayed with *p*-anisaldehyde, vanillin-sulphuric and methanol-phosphoric acid reagents. Key: EE: ethanol-ethanol extraction; EA: ethanol-acetone extract; AA: acetone-acetone extract and HA: hexane-acetone extract.

Figure 6.4 TLC profile of *Zanthoxylum davyi* sprayed with *p*-anisaldehyde, vanillin-sulphuric and methanol-phosphoric acid spray reagents. Key: EA: ethanol-acetone extract; AA: acetone-acetone extract and HA: hexane-acetone extract.

Figure 6.5 TLC profile of *Prunus africana* sprayed with *p*-anisaldehyde, vanillin-sulphuric and methanol-phosphoric acid spray reagents. Key: EE: ethanol-ethanol extraction; EA: ethanol-acetone extract; AA: acetone-acetone extract and HA: hexane-acetone extract.

Figure 6.6 Total activity of the over-exploited species A: *Cryptocarya myrtifolia*, B: *Rapanea melanophloeas*, C: *Ocotea bullata*, and D: *Zanthoxylum davyi* tested against *E. faecalis* (Entero) *S. aureus* (Staph), *P. aeruginosa* (Pseudo) and *E. coli* microorganisms.
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1 Sorbent materials</td>
<td>and mode of separation (Touchstone and Dobbins, 1983)</td>
<td>8</td>
</tr>
<tr>
<td>Table 2.1 Separation systems</td>
<td>used in TLC analysis</td>
<td>16</td>
</tr>
<tr>
<td>Table 2.2. The principles</td>
<td>of detection reagents (Stahl, 1969)</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.3 Details of</td>
<td>microorganisms used to test the biological activity of medicines</td>
<td>18</td>
</tr>
<tr>
<td>Table 3.1 African names and</td>
<td>medicinal uses of plant species that could not be identified from African</td>
<td>23</td>
</tr>
<tr>
<td>name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 3.2 Traditional medicines</td>
<td>commonly used in the Pretoria area</td>
<td>24</td>
</tr>
<tr>
<td>Table 3.3 Medicinal plants</td>
<td>used in kwaZulu-Natal for medicinal purposes (Eloff, 1998)</td>
<td>27</td>
</tr>
<tr>
<td>Table 4.1 MIC values and</td>
<td>total activities of identified plant species per 1-gram material</td>
<td>52</td>
</tr>
<tr>
<td>Table 5.1. List of Artemisia</td>
<td>species originating from different geographic areas and seed sources</td>
<td>64</td>
</tr>
<tr>
<td>afra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 5.2. Artemisia afra</td>
<td>species originating for the same seed source that were grown in different</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>environments</td>
<td></td>
</tr>
<tr>
<td>Table 5.3. A list of Warburgia</td>
<td>Peltophorum africanum species bought from different traders for the same</td>
<td>71</td>
</tr>
<tr>
<td>salutaris*</td>
<td>price (R5.00)</td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>μl</td>
<td>Micro liter</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Agricultural Research Council sample</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Acetone-acetone extract</td>
<td></td>
</tr>
<tr>
<td>ACBB</td>
<td>Acacia caffra Pretoria National Botanical Garden sample</td>
<td></td>
</tr>
<tr>
<td>Ace</td>
<td>Acetone</td>
<td></td>
</tr>
<tr>
<td>ACMB</td>
<td>Acacia caffra market sample</td>
<td></td>
</tr>
<tr>
<td>AE</td>
<td>ARC ethanol extract</td>
<td></td>
</tr>
<tr>
<td>AH</td>
<td>ARC hexane extract</td>
<td></td>
</tr>
<tr>
<td>ArAg</td>
<td>Artemisia afra private garden sample</td>
<td></td>
</tr>
<tr>
<td>ArAmI</td>
<td>Artemisia afra maize land sample</td>
<td></td>
</tr>
<tr>
<td>ArARC</td>
<td>Artemisia afra Agricultural Research Council sample</td>
<td></td>
</tr>
<tr>
<td>ArAveld</td>
<td>Artemisia afra veldt sample</td>
<td></td>
</tr>
<tr>
<td>ArBB</td>
<td>Artemisia afra Pretoria National Botanical Garden sample</td>
<td></td>
</tr>
<tr>
<td>ArBG</td>
<td>Artemisia afra Pretoria National Botanical Garden sample</td>
<td></td>
</tr>
<tr>
<td>ARC</td>
<td>Agricultural Research Council</td>
<td></td>
</tr>
<tr>
<td>ArDg</td>
<td>Artemisia afra market sample</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Pretoria National Botanical Garden sample</td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>PNBG acetone extract</td>
<td></td>
</tr>
<tr>
<td>BAC</td>
<td>PNBG Acacia caffra</td>
<td></td>
</tr>
<tr>
<td>BAK</td>
<td>PNBG Acacia karoo</td>
<td></td>
</tr>
<tr>
<td>BAM</td>
<td>PNBG Acacia Montana</td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>PNBG ethanol extract</td>
<td></td>
</tr>
<tr>
<td>BEA</td>
<td>Benzene, ethanol and ammonium in ratio of 9:1:0.1 respectively</td>
<td></td>
</tr>
<tr>
<td>BH</td>
<td>PNBG hexane extract</td>
<td></td>
</tr>
<tr>
<td>BHAb</td>
<td>Boophane haemanthoides Agricultural Research Council sample</td>
<td></td>
</tr>
<tr>
<td>BHMb</td>
<td>Boophane haemanthoides market sample</td>
<td></td>
</tr>
<tr>
<td>BPA</td>
<td>PNBG Pelophorum africanum</td>
<td></td>
</tr>
<tr>
<td>CEF</td>
<td>Chloroform, ethyl acetate and formic acid in ratio of 5:4:1 respectively</td>
<td></td>
</tr>
<tr>
<td>CMM</td>
<td>Raw Chinese Medicinal Material</td>
<td></td>
</tr>
<tr>
<td>COX-1</td>
<td>Cyclo-oxygenase-1</td>
<td></td>
</tr>
<tr>
<td>CPM</td>
<td>Chinese Proprietary Medicine</td>
<td></td>
</tr>
<tr>
<td>CSBB</td>
<td>Croton sylvaticus Pretoria National Botanical Garden sample</td>
<td></td>
</tr>
</tbody>
</table>
CSMB: *Croton sylvaticus* market sample
CTM: Chinese Traditional Medicine
D: Fertilized soil sample
E. coli: *Escherichia coli*
EA: Ethanol-acetone extract
EE: Ethanol-ethanol extract
EMW: Ethyl acetate, methanol and water in ratio of 10:1.35:1 respectively
Enteroc: *Enterococcus faecalis*
EtOH: Ethanol
GC: Gas chromatography
H: Shade sample
HA: Hexane-acetone extract
Hex/Hax: Hexane
INT: 5-iodonitrotetralium violet
J: Pyrethrum-treated sample
L: Home garden sample
LC: Liquid chromatography
M: Maize land sample
MA: Market acetone extracts
MAC: Market *Acacia caffra*
ME: Market ethanol extract
mg/ml: Milligram per milliliter
MH: Market hexane extract
MIC: Minimum inhibitory concentration
MPA: Market *Peltophorum africanum*
N: Seed source sample
NP/PEG: 1% Diphenylboric acid -2 amino ethyl ester in methanol/ 5% Polyethylene glycol
PABB: *Peltophorum africanum* Pretoria National Botanical Garden sample
PAMB: *Peltophorum africanum* market sample
PNBG: Pretoria National Botanical Garden
Psuedo: *Psuedomonas aeruginosa*
RA: Reference acetone extract
RE: Reference ethanol extract
Rf value: A ratio of the distance from the origin to the center of the separated zone divided by the distance from the origin to the solvent front.
RH: Reference hexane extract
RP: Reverse phase
rpm: Revolutions per minute
S: SeSotho
SATM: South African Traditional Medicine
Staph: Staphylococcus aureus
T: Private garden sample
TLC: Thin layer chromatography
UV: Ultraviolet
V: Veldt sample
WSBE: Warburgia salutaris Pretoria National Botanical Garden sample
WSLE: Warburgia salutaris Pretoria National Botanical Garden leaf sample
WSMB: Warburgia salutaris market sample
Z: IsiZulu
Conference presentations

