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Summary

The Lanczos algorithm (Lanczos (1950)) is an efficient method for ob-

taining the eigenpairs of large hermitian matrices and/or self-adjoint

operators. This present work considers the latter case where the algo-

rithm uses a bounded operator and a suitably chosen start function to

construct and tri-diagonalize a matrix representation of the operator

in an iterative manner and find its absolutely convergent eigensolu-

tions (Parlett (1980)).

The relativistic Dirac Hamiltonian operator, which describes an elec-

tron in an external central field, has the added complication of two

sets of continua and a point spectrum; one set of continua for positive

energy solutions and the other for negative energies with the point

spectrum bounded above and below. It is this combination which

form a complete basis for the Dirac Hamiltonian. This has led to

the development of non-physical spurious solutions in many solution

methods(Andrew and Miller (2007)). The same problem occurs in the

Lanczos algorithm (Lanczos (1950)) when it is applied to operators

which possess bound state spectra as well as continua (Andrew and

Miller (2003)) such as the Dirac Problem.

It is proposed that exact eigenpairs can be identified in the following

manner (Andrew and Miller (2003)). After each iteration, for each

of the converging eigenpairs (elλ,|elλ〉), ∆lλ = |e2lλ− < elλ|Ĥ2|elλ > |
(where l is the iteration number) is calculated and a determination

is made as to whether ∆ is converging toward zero or not. In other

words, one could check to see whether the eigensolutions from the

diagonalisation of the projected operator (ĤP ) are also eigensolutions

of Ĥ2. For the exact bound states of Ĥ, ∆ must be precisely zero and

the other eigenstates states of ĤP should converge to some non-zero

positive value. This method has been successfully implemented to

identify spurious states in non-relativistic Quantum Mechanics (An-

drew and Miller (2003)).



These methods are applied to the Dirac problem in this thesis to solve

the ground state eigenpairs for the Coulomb and Yukawa potentials.
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Chapter 1

Introduction

The relativistic Dirac Hamiltonian operator, which describes an electron in an

external central coulomb-like field, has the added complication of two sets of con-

tinua and a point spectrum; one set of continua for positive energy solutions and

one set for negative energies with the point spectrums bounded above and below.

It is this combination which form a complete basis for the Dirac Hamiltonian.

Recently, much effort has focused on the extension of basis set methods (Drake

and Goldman (1981); Goldman and Drake (1982, 1988); Krauthauser and Hill

(2002)) applied with success in non-relativistic Quantum Mechanics. Such ma-

trix approximations of the Dirac equation are usually obtained from a variational

principle with the radial components of the spinor-wave function approximated

by a finite number of terms of a basis-set expansion. These methods often dis-

play pathological features such as the occurrence of unphysical spurious solutions

(Kutzelnigg (1984),Andrew and Miller (2007)) since the basis-sets do not form a

complete basis and fail to vary systematically with the basis-set size. Although

these problems can for the most part be avoided if a resolvent operator rather

than the Dirac Hamiltonian is used in the variational principle (Krauthauser and

Hill (2002)) or by construction in explicit finite basis-set calculations (Goldman

(1985)), the convergence of these methods depend on the size of the basis set.

Recently Ackad and Horbatsch (Ackad and Horbatsch (2005)) have presented

an elegant numerical method for the solution of the Dirac equation using the

Rayleigh-Ritz method (Krauthauser and Hill (2002)). Using a mapped Fourier

grid method, a matrix representation of the Dirac Hamiltonian is constructed
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in a Fourier-sine basis which, upon diagonalisation yields reasonably numerically

accurate eigenvalues for a mesh size which is not exceptionally large. Relativis-

tic sum rules (Goldman and Drake (1982)) provide a simple means of checking

whether or not the number of basis states is adequate. As with any attempt

to construct a matrix representation of an operator which contains continuum

states, spurious states can occur and must be eliminated. Ackad and Horbatsch

(Ackad and Horbatsch (2005)) have pointed out that in certain cases they can be

identified by looking at the numerical structure of the large and small components

of the corresponding eigenvector. They also point out that similar phenomena

occur in the Fourier grid representation of the non-relativistic Schrödinger prob-

lem (Willner et al. (2004)) in which non-physical roots are observed at random

locations.

The genesis of these spurious states can easily be understood, and there is

a simple way to identify them. Consider an operator, Ĥ, which possess a con-

tinuum (or continua) as well as a point spectrum. The subspace spanned by

its bound state eigenfunctions, HB, is by itself incomplete. As the composition

of this space is generally not known beforehand, a set of basis states which is

complete and spans a space, F, is chosen to construct a matrix representation

of the operator, Ĥ, to be diagonalized. Mathematically, this corresponds to pro-

jecting the operator Ĥ onto the space F. Clearly the eigenpairs obtained from

diagonalizing the projected operator, ĤP , need not all be the same as those of

the operator Ĥ. However, because the set of basis states is complete, any state

contained in HB can be expanded in terms of this set of basis states. Hence HB

may also be regarded as a subspace of F and the complete diagonalization of ĤP

will yield not only the exact eigenstates of Ĥ but additional spurious eigensolu-

tions. Note that these spurious eigenfunctions are eigenfunctions of ĤP and not

of Ĥ. Furthermore, in this case the Rayleigh-Ritz bounds discussed in the paper

by Krauthauser and Hill (Krauthauser and Hill (2002)) apply to the eigenstates

of ĤP .

It is interesting to note that the same problem occurs in the Lanczos algo-

rithm (Lanczos (1950)) when it is applied to operators which possess a bound

state spectrum as well as a continuum (Andrew and Miller (2003)). This is not

surprising as the Lanczos algorithm can also be considered as an application
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of the Rayleigh-Ritz method (Parlett (1980)). In this case an orthonormalized

set of Krylov basis vectors is used to iteratively construct a matrix represention

of the operator which is then diagonalized. Again, spurious states can occur

for precisely the same reasons as stated previously. In this case it is proposed

to identify the exact bound states in the following manner (Andrew and Miller

(2003)). After each iteration, for each of the converging eigenpairs (elλ,|elλ〉),
∆lλ = |e2lλ− < elλ|Ĥ2|elλ > | (where l is the iteration number) is calculated and a

determination is made as to whether ∆ is converging toward zero or not. Alterna-

tively, one could check to see whether the eigensolutions from the diagonalization

of the projected operator (ĤP ) are also eigensolutions of Ĥ2. For the exact bound

states of Ĥ, ∆ must be precisely zero while the other eigenstates states of ĤP

should converge to some non-zero positive value. This method has been suc-

cessfully implemented to identify spurious states in non-relativistic (Andrew and

Miller (2003)) eigenvalue problems. A similar procedure can be implemented in

any Rayleigh-Ritz application.

In this dissertation, the Lanczos method will be applied to obtain approximate

eigensolutions of the Dirac operator for a relativistic electron in a central poten-

tial. The advantages of using the Lanczos method to solve the Dirac problem

are:

1. It can be applied to any self-adjoint operator which possesses at least one

bound and is an absolutely convergent method.

2. The lowest-lying eigenpairs usually converge the quickest (Parlett (1980)),

and one is able to obtain good approximations to the lowest-lying eigenpairs

in this manner (especially the ground state).

3. The identification and removal of any spurious state solutions can easily be

implemented (Andrew and Miller (2003), Andrew et al. (2007)).

This dissertation is structured as follows:

Chapter 2 describes the Lanczos algorithm as it applies to bounded hermitian

operators and describes a method for identifying spurious solutions. An applica-

tion of a 1-D Shrödinger equation problem is given as an example.
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Chapter 3 presents the Dirac problem for a relativistic electron in a central po-

tential.

Chapter 4 presents the numerical results for solving the Dirac problem for a

hydrogen like atom using the Coulomb and Yukawa potentials.

4



Chapter 2

Application of the Lanczos

Method to Self-Adjoint

Operators

2.1 Introduction

There is a growing interest in using numerical methods such as the Lanczos

Algorithm (Lanczos (1950) , Andrew and Miller (2003), Miller (1994)) to solve

Quantum Mechanical problems. Given a suitable start vector |T > and provided

the operator has either an upper or a lower bound, the Lanczos algorithm is

an absolutely convergent algorithm which yields approximate eigenvalues and

eigenvectors of Ĥ after a suitable number of iterations (Kreuzer et al. (1981a)).

The problem for the Quantum Mechanical self-adjoint operator Ĥ (fully as

well as semi-bounded), is to find a suitable trial vector that also satisfies the

boundary conditions of the wave equation. If the bound states formed a complete

basis set, |T 〉 =
∑

n

an|En〉 where |En〉 are the exact bound states of Ĥ would be

the best choice since the algorithm would yield only for the bound states. Since

they do not form a complete set if Ĥ contains a continuous spectrum, |T 〉 is chosen

from a complete set of analytic L
2 functions which define a space F. When the

Lanczos algorithm is applied to |T 〉, the eigenpairs obtained will correspond to

those of the operator Ĥ projected onto F. A subset of these eigenpairs must
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2.2 The Lanczos Method

correspond to the exact eigenpairs of the unprojected Hamiltonian operator since

the exact eigenstates can be expanded in terms of the complete set of states

which span F. The remaining subset of eigenpairs contain spurious solutions of

the projected Hamiltonian. It only remains to identify the exact eigenpairs even

if they are not completely converged.

2.2 The Lanczos Method

Given the following eigenvalue problem

Ĥ|Eλ〉 = Eλ|Eλ〉 (2.1)

where Ĥ is a self-adjoint operator (not necessarily bounded) in a separable Hilbert

(or Sobolev) space which possesses a number of eigenvalues Eλ (not necessarily

bounded from above) which ascend from a minimal one E1. Furthermore let |1〉
be a normalised start vector having the properties that:

1. Ĥk|1〉 exists for all non-negative integers k and

2. 〈x|1〉 satisfies the boundary conditions.

The algorithm may then be stated as follows. Calculate successively the vec-

tors

|φ1〉 := |1〉 (2.2)

|φn+1〉 :=
1

|| . . . ||(Ĥ
n|1〉 −

n
∑

n′=1

|φn′〉〈φn′|Ĥn|1〉), n = 1, 2, 3, . . . (2.3)

where n is the iteration number. The Lanczos Method solves the eigenproblem

by diagonalizing successively the operators

Ĥn :=

n
∑

m,m′=1

|φm〉〈φm|Ĥ|φm′〉〈φm′ |. n = 1, 2, 3, . . . (2.4)

The orthonormalized Lanczos vectors |φn〉 fulfil the following recursion rela-

tions (Kreuzer et al. (1981a)):

|φn〉 = pn(Ĥ)|1〉 (2.5)
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2.3 Identifying spurious solutions

where the Lanczos polynomials pn(x) are defined in the following way:

p1(x) := 1 p2(x) := w−1
1 (x− v1), (2.6)

pn+1(x) := w−1
n [(x− vn)pn(x) − wn−1pn−1(x)] n = 2, 3, 4, . . . , (2.7)

with

vn := 〈φn|Ĥ|φn〉 (2.8)

wn := 〈φn+1|Ĥ|φn〉. (2.9)

Performing the diagonalizations in equation 2.4 reduces to finding the roots

of the following characteristic polynomial:

det(Ĥn − x · 1̂) := (−1)nw1 . . . wnpn+1(x) (2.10)

after each iteration step.

Eigenvectors are constructed from the Lanczos vectors using

|eλ n〉 =
1

|| . . . ||

n
∑

n′=1

pn′(eλ n)|φn′〉 (2.11)

after each iteration step.

The generated sequence of eigenpairs (eλ n , |eλ n〉) possess the following con-

vergence properties (Kreuzer et al. (1981a)):

eλ n
−→

n→ ∞ Eλ, λ = 1, 2, 3, . . . , (2.12)

|eλ n〉
−→

n→ ∞ |Eλ〉, λ = 1, 2, 3, . . . . (2.13)

For a self-adjoint operator the Lanczos algorithm can be implemented using

Mathematica (Wolfram (1991)).

2.3 Identifying spurious solutions

For those operators which possess a continuum as well as a point spectrum, the

space spanned by the bound state eigenvectors is by itself certainly not complete
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2.4 Application to a Hamiltonian Operator

and a suitable start vector should be composed only of components in the sub-

space spanned by the bound state eigenvectors. The exact bound states can be

identified in the following manner (Andrew and Miller (2003)). Usually the start

vector is chosen from a complete set of analytic functions which define a space F.

This space is in most cases not necessarily of the same dimension as the subspace

spanned by the exact eigenvectors. On the other hand, if the Lanczos algorithm

is applied with this choice for the start vector, the eigenpairs obtained will cor-

respond to those of the operator projected onto F. A subset of these eigenstates

must correspond to the exact eigenpairs of the unprojected Hamiltonian opera-

tor since the exact eigenstates can be expanded in terms of the complete set of

states which span F. After each iteration, for each of the converging eigenpairs

(eλ n,|eλ n〉), ∆λ n = |e2λ n − 〈eλ n|Ĥ2|eλ n〉| (where n is the iteration number) is cal-

culated and a determination is made as to whether ∆ is converging toward zero or

not. For the exact bound states of Ĥ, ∆ must be precisely zero, while the other

eigenstates states of the projected operator should converge to some non-zero

positive value. Provided sufficient iterations are performed, it should be possible

to identify uniquely the approximate eigenpairs in this manner which ultimately

will converge to the exact bound states. Since in the the Lanczos algorithm the

lowest-lying eigenpairs (for an operator which possesses at most a lower bound)

usually converge the fastest (Parlett (1980)), one should be able to obtain good

approximations to the lowest-lying eigenpairs.

2.4 Application to a Hamiltonian Operator

To numerically verify this, the algorithm was applied to a one dimensional Ĥ with

an inverse Gaussian potential. The start wave function 〈x|T 〉 was a normalised

Gaussian (since it satisfied the boundary conditions). The choice of potential

only allowed for negative bound state energies and made their visual identification

easy. Initially, the potential was chosen so that Ĥ had only one even parity bound

state, then the potential was chosen such that Ĥ contained more than one even

parity bound state.
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2.4 Application to a Hamiltonian Operator

The Hamiltonian chosen had the form:

Ĥ = − ∂2

∂x2
− exp(−(

x

a
)2) (2.14)

The start wave function was chosen to satisfy the boundary conditions at ±∞
such that Φ(−∞) = Φ(∞) = 0. The Gaussian start function used was:

〈x|T 〉 = Φ1(b, x) = (
2b

π
)1/4 exp(−bx2) (2.15)

This choice of wave function (Φ(b, x) → Φ(b, |x|) for x < 0) restricted solutions to

even parity since parity is conserved. For this particular choice of start function:

∫ ∞

−∞

Φ∗(b, x)xn exp(mx2)Φ(b, x)dx =

√

1

2π
(1+(−1)n)(2−m)−(1+n)/2Γ((1+n)/2)

(2.16)

This simplified the calculations in the Lanczos algorithm and reduced the numer-

ical error (Miller (1994)).

Two cases were considered with differing well parameters: one with a =
√

2

which possesses one exact even parity bound state, and one with a = 6 which

possesses two exact even parity bound states. The parameter b was chosen to min-

imise 〈Φ1|Ĥ|Φ1〉 and was rounded up to the nearest integer in order to minimise

numerical errors. For both cases b = 1. This parameter caused the Lanczos algo-

rithm to start near zero for the first eigenvalue thus speeding up the convergence

for the negative bound state eigenvalues.

2.4.1 Results for a =
√

2

The approximate energy value for the ground state was found using the zero order

Sturmian approximation (Mostafazadeh (2001)). Its value was −0.467154. The

Lanczos algorithm gave values of eo = −0.47615849 and e1 = 0.50306464 after 15

iterations where eo is the bound state and e1 is the first spurious state.

Figure 2.1 shows the convergence of the elλ and ∆lλ values. Note that the

∆’s converge in a similar manner to the eigenvalues and that the values for the

ground state converge the fastest.
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2.4 Application to a Hamiltonian Operator
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2.4 Application to a Hamiltonian Operator

-10 -5 0 5 10
x

0

0.1

0.2

0.3

0.4

0.5

0.6

Ψ
0(x

)

Figure 2.2: Ground State eigenvector for a =
√

2

The results show that for iterations > 4, the ground state ∆ converges quickly

to zero while the first non-bound state converges to a non-zero value. The eigen-

vector for the ground state is shown in Figure 2.2. It shows a symmetrical even

parity wave function with a central anti-node at the origin.

2.4.2 Results for a = 6

The energy value for the ground state using the Sturmian approximation (Mostafazadeh

(2001)) is eo = −0.843599, while the Lanczos algorithm gave a value of -0.83781631

after 15 iterations. The algorithm also found the next highest even bound state
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2.4 Application to a Hamiltonian Operator
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e1 which had a value of -0.09117731. The next spurious state had a value of

e2 = 1.12552398 using the Lanczos Algorithm.

Figure 2.3 shows the convergence of the elλ and ∆lλ values. It shows that

the ∆’s converge in a similar manner to the eigenvalues and that the values for

the ground state converge the fastest. ∆ for the bound states converges to zero

while the non-bound state converges to a positive value. The eigenvector for

the two bound states are shown in Figure 2.4. The ground state is similar to

the a =
√

2 case while the next even parity state has a central anti-node and

two symmetrical side anti-nodes. These three anti-nodes signify it is the second

bound state solution with even parity.
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2.4 Application to a Hamiltonian Operator
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2.4 Application to a Hamiltonian Operator

2.4.3 Discussion

The numerical results show that for the bound states, ∆ converges to values

approaching zero, while the non-bound states converge to positive constant val-

ues. The results also show that the ground state eigenvalue converges the fastest

(Parlett (1980),Miller and Berger (1979))which confirms that this method iden-

tifies the exact bound states of a given Hamiltonian. By applying the Lanczos

algorithm to a reasonable choice for the start function after a suitable number

of iterations, those eigenfunctions which have ∆ < ε (for example, ε = 1) can be

identified as the bound states.
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Chapter 3

Dirac Theory

3.1 Introduction

The Dirac problem with a Coulomb potential coupling constant which is less than
√

3
2

can be defined by a Hamiltonian that is self-adjoint in the first Sobolev space

(Thaller (1992).) For this reason solutions of the Dirac Equation can be obtained

in an absolutely convergent manner using the Lanczos Algorithm. Although

this method is generally known for its application to conventional matrix-algebra

eigenvalue problems (Lanczos (1950), it can be used to solve eigenvalue prob-

lems of a self-adjoint operator which is bounded from above or below (Kreuzer

et al. (1981b).) In the former application, the matrix to be diagonalized is itera-

tively transformed into a tri-diagonal matrix and diagonalized after each iteration

step to form a sequence of convergent eigenvalue solutions. In the operator ap-

plication, a tri-diagonal representation of the self-adjoint operator is constructed

iteratively and diagonalized after each iteration step to form a sequence of conver-

gent eigenvalue solutions. Any spurious solutions which arise from the presence of

continuum states can easily be identified by observing the iterative behaviour of

a calculated parameter ∆ (Andrew and Miller (2003).) Furthermore as pointed

out in the introduction, many of the aforementioned problems found in previ-

ous solution methods are avoided if the following iterative scheme proposed by

Lanczos is employed.

Dirac theory requires that any relativistic particle with non-zero spin must

satisfy the following requirements:

15



3.2 Solutions to the Dirac Equation in a Central Potential

• It must satisfy a first-order differential equation in all four relativestic co-

ordinates.

• The equation must be linear to satisfy the superposition principle.

• The equation must satisfy the Klein-Gordon equation and in the classical

limit, classical relativity.

Written in non-covariant form, the Dirac equation in an external electric field

which satisfies the above requirements is:

EΨ − V (r)Ψ = cα · ~

i
∇Ψ + βmc2Ψ (3.1)

where α and β are the 4× 4 hermitian Dirac matrices and Ψ is a four-component

wave function with components u1, u2, u3, u4.

3.2 Solutions to the Dirac Equation in a Central

Potential

Bethe provides a perturbative solution to this problem by first considering the case

where the small components of Ψ (u3 and u4) are set to zero. u1 and u2 are set to

the Pauli functions with the radially dependent parts set to arbritrary functions

instead of the Scrödinger radial functions and making them eigenfunctions of the

angular momentum quantum number l (Bethe (1964)). For j = l + 1/2

u1 = g(r)

√

l +m + 1/2

2l + 1
Yl,m−1/2(Ω), (3.2)

u2 = −g(r)
√

l −m+ 1/2

2l + 1
Yl,m+1/2(Ω), (3.3)

where Yl,m(Ω) are spherical harmonic functions. Since the small components share

the same j value but must have a different l, u3 and u4 are chosen as follows using

suitable Clebch-Gordan coefficients:

u3 = −if(r)

√

l −m + 3/2

2l + 3
Yl+1,m−1/2(Ω), (3.4)
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3.3 The Dirac Eigen Equation

u4 = −if(r)

√

l +m+ 3/2

2l + 3
Yl+1,m+1/2(Ω). (3.5)

Placing Equations 3.2, 3.3, 3.4 and 3.5 into Equation 3.1 and integrating over

the solid angle Ω yields the following coupled differential equations for the radial

functions f(r) and g(r):

− ~c
df

dr
− (1 − κ)~c

r
f(r) = (E − V (r) −mc2)g(r), (3.6)

~c
dg

dr
+

(1 + κ)~c

r
g(r) = (E − V (r) +mc2)f(r), (3.7)

where κ is a quantum number analogous to the angular momentum quantum

number l in non-relativistic quantum mechanics.

Using F (r) = rf (r), G(r) = rg(r) and relativistic units ~ = m
e

= c = 1 the

equations become

− dF

dr
+
κ

r
F (r) = (E − V (r) − 1)G(r), (3.8)

dG

dr
+
κ

r
G(r) = (E − V (r) + 1)F (r). (3.9)

Using a power series expansion for G(r) and F (r), Bethe was able to show

that the bound state energies for a coulomb potential with charge z are given by:

eκ n = (1 +
(zα)2

(n+
√

κ2 − (zα)2)2
)
−1

2 (3.10)

for n = 0, 1, 2, 3, . . ..

3.3 The Dirac Eigen Equation

Equations (3.8) and (3.9) can be written in matrix notation

(

(V (r) + 1) −( d
dr

− κ
r
)

( d
dr

+ κ
r
) (V (r) − 1)

) (

G(r)
F (r)

)

= E

(

G(r)
F (r)

)

(3.11)

or simplify as

ĤD|ψ〉 = E|ψ〉 (3.12)
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3.3 The Dirac Eigen Equation

where

|ψ〉 =

(

G(r)
F (r)

)

(3.13)

Equation (3.12) defines the eigenvalue problem which will be solved iteratively

using the Lanczos algorithm.
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Chapter 4

Numerical Results

4.1 Dirac Equation for a Coulomb Potential

To demonstrate that the the Lanczos algorithm may be used to solve the Dirac

equation with a Coulomb potential:

V (r) =
zα

r
(4.1)

where α is the fine structure constant, a start function was chosen using a slightly

perturbed ground state solution derived by Bethe (Bethe (1964)) with κ = −1

and z = 1. The exact ground state eigenvalue should equal s =
√

1 − (zα)2.

The start function contained the following perturbed radial functions

G1(r) = (rs)γe−zαr (4.2)

F1(r) =
(s− 1)(rs)γe−zαr

zα
(4.3)

where 0 < γ < 1 where γ is the perturbation factor. Note that this choice for

the start function eliminates the possibility of obtaining negative energy eigenso-

lutions (Bethe (1964)).

4.1.1 Results: Coulomb Potential

Figure 4.1 shows the convergence for the ground state eigenvalue eo n and a spu-

rious solution e1 n using γ = 1.01. After 14 iterations, eo n quickly converged to
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4.1 Dirac Equation for a Coulomb Potential
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Figure 4.1: Plot of eλ n convergence for Coulomb bound state and spurious solu-

tion for γ = 1.01
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4.1 Dirac Equation for a Coulomb Potential
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Figure 4.2: Plot of ∆λ,n convergence for Coulomb bound state and spurious

solution for γ = 1.01
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4.2 Dirac Equation for a Yukawa Potential

the exact ground state value of Eo ' 0.999973374 to 9 significant figures. The

unphysical spurious solution converged to a value of −3.25419373.

Figure 4.2 shows the convergence of ∆λ,n for the ground state solution, and

the spurious solution for γ = 1.01. ∆λ,n iteratively converges to zero for the

bound state solution and converges to a non-zero value for the spurious solution.

4.2 Dirac Equation for a Yukawa Potential

In this case the potential was set to:

V (r) = −zαexp(−λr)
r

(4.4)

The same slightly perturbed ground state solution derived by Bethe (Bethe

(1964)) was used with (κ = −1), zα = 0.1 and λ = 0.01.

4.2.1 Results: Yukawa Potential

Figure 4.3 shows the convergence for the ground state eigenvalue eo n and a spu-

rious solution e1 n using γ = 1.01. After 10 iterations, eo n quickly converged to

the exact ground state value of Eo ' 0.995917. This is to 6 decimal places of

the value obtained by Krauthauser and Hill. The unphysical spurious solution

converged to a value of -2.72280444.

Figure 4.4 shows the convergence of ∆λ,n for the ground state solution and

the spurious solution for γ = 1.001. ∆λ,n iteratively converges to zero for the

generated bound state solution and converges to a non-zero value for the spurious

solution.
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4.2 Dirac Equation for a Yukawa Potential
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Figure 4.3: Plot of eλ n convergence for Yukawa bound state and spurious solution

for γ = 1.001
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4.2 Dirac Equation for a Yukawa Potential
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Figure 4.4: Plot of ∆λ,n convergence for Yukawa bound state and spurious solution

for γ = 1.001
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Chapter 5

Conclusions

The main advantages of the Lanczos method over other methods to solve the

Dirac problem are:

1. It can be applied to any self-adjoint operator which possesses at least one

bound and is an absolutely convergent method.

2. The lowest-lying eigenpairs usually converge the quickest (Parlett (1980)),

and one is able to obtain good approximations to the lowest-lying eigenpairs

in this manner (especially the ground state).

3. The identification of the bound state solutions can easily be implemented.

In this dissertation, the Lanczos Algorithm has been used to obtain the ground

state eigensolutions for the Coulomb and Yukawa potential Dirac Hamiltonians.

In both cases, spurious solutions were successfully identified.

Since the Dirac problem contains point as well as continuous spectra, the

bound states do not form a complete basis. Usually the start vector for the

Lanczos algorithm is chosen from a complete set of analytic functions which define

a space F. This space is in most cases not necessarily of the same dimension

as the subspace spanned by the exact eigenvectors. On the other hand, if the

Lanczos algorithm is applied with this choice for the start vector, the eigenpairs

obtained will correspond to those of the operator projected onto F. A subset

of these eigenstates must correspond to the exact eigenpairs of the unprojected

Hamiltonian operator since the exact eigenstates can be expanded in terms of
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the complete set of states which span F. After each iteration, for each of the

converging eigenpairs (eλ n,|eλ n〉), ∆λ n = |e2λ n − 〈eλ n|Ĥ2|eλn〉| (where n is the

iteration number) is calculated and a determination is made as to whether ∆

is converging toward zero or not. For the exact bound states of Ĥ, ∆ must

be precisely zero, while the other eigenstates states of the projected operator

should converge to some non-zero positive value. Provided sufficient iterations

are performed, it is possible, in this manner to identify uniquely the approximate

eigenpairs which ultimately will converge to the exact bound states. Since the

genesis of these spurious states often occur in other solution methods for the

Dirac problem based on the Rayleigh-Ritz method (such as the Finite basis-set

and Fourier Grid methods), this method of bound state identification can also be

applied.
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