6.1 The Garden:

6.1.1 Ferns:
The growing of ferns can facilitate the collection of medical or food production research data.

Light requirements:
- Like all plants, ferns need a light ray spectrum of blue, red and violet to fuse carbon dioxide with water in order to produce sugar.
- Ferns prefer some level of shading to carry out the process of photosynthesis.
- Too strong light for a significant part of the day can drastically alter the appearance of a fern plant.
- Too little light exposure will inhibit photosynthesis.
- Older fern plants require more light exposure as opposed to the limited light exposure that young plants need.

Atmosphere:
- Ferns require a moist atmosphere of 60-80% relative humidity during the day.
- Low humidity inhibits new growth.

Air:
- Ferns must have fresh air.
- Oxygen is needed for respiration and this is a continual 24 hour process.

Ferns in glasshouses:
- Control of relative humidity and protection against frost can be achieved.
- The roof and exposed sides of the greenhouse must be shaded (dappled shading).
- It must be well ventilated. Top ventilation is preferable in order to get rid of warm air. Down draughts must be prevented.
- Optimal air quality is obtained by vents that open in the morning and close in the early afternoon.
- Stagnant, non-circulated air encourages frost damage and the growth of moulds or bacteria.

6.1.2 Succulents:
For a detailed investigation of the growth requirements of succulent plants, please refer to the Kirstenbosch succulent conservatory discussed in Chapter 5.1.

6.2 Building: Glasshouses and Plant containment facility

These types of facilities are used to safeguard plants and to grow them under quarantine and controlled conditions:

The objective of introducing containment facilities is to manage the risks associated with exotic plants and other foreign organisms. Quarantine and associated research services implement activities to reduce these risks to acceptable or tolerable levels (Kahn and Mathur, 1999:1).

According to Kahn and Mathur (1999:82-97), exotic plant species are quarantine significant if:
- They do not occur naturally in the given country.
- They can place domestic species under severe strain.
- They are subject to a national containment, suppression or eradication programme.
- They can cause economical damage.

Design:
In South Africa the importation of plant species is not regulated by the South African National Biodiversity Institute (SANBI), but rather by the National Department of Agriculture (NDA). Regulations such as the Agricultural Pests Act 36 of 1983 are issued by the National Plant Protection Organization of South Africa (NPPOSA).

The management of risks associated with pests and foreign organisms
Low risk containment: Open access
Minimized climate and access control.
6.1.3 Moderate climate: Herbs, Cycads and other subtropical plants

TABLE 6.1 Research value of most common herbal plants by author, adapted from Loewenfeld (1987:234-243)
Phase 1
Seed health testing laboratory

- Meeting room 36.6m²
- Directors office 18.3m²
- Scientist office 18.3m²

Phase 2
Plant propagation and Virus Indexing greenhouses

- Quarantine greenhouse 325m²
- Mycology laboratory 54.9m²
- Media preparations/dish-washing room 36.6m²
- Seed incubation 18.3m²
- Seed storage 18.3m²
- Machinery room 18.3m²
- Dark room 18.3m²

Phase 3
Growing-out greenhouses

- Growing-out greenhouse 300m²
 - trickle irrigation soil containers on wire grid benches
- Growing-out greenhouse 300m²
 - hydroponic soilless benches
 - 3 temperature zones: Warm, moderate & cool

FIG 6.3 Diagram illustrating the building plan and containment facility greenhouses. Image from Kahn (1988:79-92)
Used for areas in the greenhouse complex where plant specimens have been immobilized from posing viral or bacterial threats to other plant specimens. Administrative areas and growing-out greenhouses are considered facilities for low-risk containment.

Medium-risk containment: Single door entry

High-risk containment: Double door entry

Maximum climate, humidity, ventilation and access control.

A high-risk containment facility is required when a wide spectrum of species with diverse life cycles and characteristics need to be dealt with and hosted, and because the identities of the organisms needing to be hosted are unknown.

Containment greenhouses for research purposes: A three-phase process

PHASE 1

<table>
<thead>
<tr>
<th>Function</th>
<th>Risk</th>
<th>Design considerations</th>
</tr>
</thead>
</table>
| Offices | Low | • Inrequent use: Functions can be located in one area.
| Meeting rooms | | • Can be constructed to connect with laboratories and other facilities. |
| Mycology laboratory | Medium | • With supporting media preparation and dishwashing facility that supports the laboratory.
| & Media preparation | | • Modular furniture fittings.
| | | • Approx. 2.7m floor to ceiling height.
| | | • Direct sunlight shouldn't fall on laboratory equipment. |
| Dark room | High | • Can be in the basement level in order to reduce the heat load.
| Machinery room | | • Carefully regulated interior temperature and humidity for each room. |
| Seed incubation | | • Fan blades should either be white or reflective if it is not positioned in the basement to reduce heat absorption.
| Seed storage (Cold room) | | • Alternative greening, insulation on warmer side of the structure together with a vapor barrier to ward off condensation moisture. |
| | | • Module must be sealed off from other modules by double doors. Each room must be protected by a double door entry. |
| | | • Air conditioning equipment and power generators are housed in the insulated machinery room to reduce noise and vibrations. |

PHASE 2

<table>
<thead>
<tr>
<th>Function</th>
<th>Risk</th>
<th>Design considerations</th>
</tr>
</thead>
</table>
| Head house | Medium to | • Connects with a main corridor to all other greenhouses.
| High | | • Utility ducts and pipes can be routed through corridors.
| | | • Seed reception and inspection, double doors. Each room must be protected by a double door entry. |
| | | • Air conditioning equipment and power generators are housed in the insulated machinery room to reduce noise and vibrations. |
| | | • Cold room temperature 6-8°C. |
| Quarantine greenhouse | Medium to | • The individual greenhouses are divided up into compartments connected by a corridor leading to the main corridor.
| High | | • Double door entry at each compartment and a door at the connection between corridors. |

PHASE 3

<table>
<thead>
<tr>
<th>Function</th>
<th>Risk</th>
<th>Design considerations</th>
</tr>
</thead>
</table>
| Plant propagation | Medium | • To grow virus indicator plants.
| | | • Units must be protected against the egress and ingress of insects and mites. |
| | | • Growing occurs in containers on wire grid benches.
| | | • Double door entry
| | | • Evaporative cooling and shading techniques: 30°C daytime maximum; 15°C nighttime minimum. |
| Plant Quarantine | High | • Screened against egress and ingress of insects and mites. |
| | | • Double door entry
| | | • Floor drainage, shading and evaporative cooling. |
| | | • Growing occurs in containers on wire grid benches.
| | | • 30°C daytime maximum; 15°C nighttime minimum. |
| | | • Mechanically air-conditioned. Negative pressure relative to corridor by exhausting air from each chamber through HEPA filters which discharge in the corridor. |
| | | • One compartment with 40°C day/night temperatures for heat treatment of virus infected plants. |
| | | • One compartment with independently controlled logging and misting system. |
| | | • Specialized compartments can also be used for general purpose. |
| Virus indexing/ | Medium | • Floor drainage and double door entry. |
| Seed health testing | | • Growing occurs in containers on wire grid benches. |
| | | • 2 Movements internal shading areas, 30% and 50% respectively and 65% if used in tandem. This is to remove heat stress and to promote symptom expression in virus indexing. |
| | | • 25°C daytime maximum; 20°C nighttime minimum. |
| | | • Fog and shading systems should eliminate the need for mechanical refrigeration. |

Planting out greenhouses

- Specimens are planted in growing out greenhouses when seeds have been inspected and incubated for at least 7 days. Much of the risk was eliminated during this process and the main requirement for these greenhouses are to be insect proof.
- Glasshouse temperatures can be equal to the ambient temperature.
- Due to the high solar radiation in South Africa, all walls need to be screened as this also enhances natural convection.
- Evaporative or fog cooling is optional.
- Concrete floors or similar to avoid contamination of floor for both soil-borne container growing and hydroponic waterborne fertilization.

TABLE 6.2 Detailed summary of the 3-phases of containment and risk levels within the containment facility Adapted from Kahn (1999:79-82)
Primary building functions

- **glasshouse 1**: Admin & laboratories
 - Southern facade allows for less needed climate control in certain testing laboratories

- **glasshouse 2**: Direct access to main building from parking area
 - Secondary access path. To be mainly used by people who visit the garden and experiencing the different vegetation areas

Most appropriate positions for glasshouses with minimal impact to existing garden and maximum sun exposure
Influences

Fig 6.5 Kennet, William Morris, 1893 (Sachs, 2007:83)

Fig 6.6 Japanese garden in Clingendael (Gieskes 2006:4) Note the meandering pathways everywhere creating new vistas until you reach the pavilion with its very geometric plan contrasting the natural forms and lines of the garden.

Fig 6.7 Alguie, Ronan & Erwan Bouroullec (Sachs 2007:62)

6.2.1 Footprint:
The building footprint is mainly governed by the following factors:
- Growing-out glasshouses for plant propagation (largest footprint) need maximum exposure to sunlight.
- Laboratories require less sunlight and lower levels of heat gain.
- The botanical garden forms part of the research area and contains many rare species of plants. Optimal sensitivity to the existing vegetation should be maintained.
- Most users access the site from the adjacent parking area or the southern entrance to the garden.

The design of the glasshouses and laboratory calls for a regulated and parametric approach to their layout. Most of the furniture units that will occupy these spaces are modular, with fairly rigid plan shapes that will allow for a more logical and effective use of the spaces.

FIG 6.12 Creating "pockets" within the form.

FIG 6.13 Visitor pathways are organic. It promotes changing vistas within the garden.

FIG 6.14 One continuing element will combine the building.
6.2.2 Form language exploration:

It is my opinion that a building form language that is developed intuitively can result in a more humanly responsive architecture. Intuitive thought should always be underpinned by a strong research foundation that will support the practicalities of the design. In the case of this design, there is a strong need for the final product to create an architectural experience and expand the genius loci of the park as well as act independently and successfully as a high order research facility.

Basic building program and requirements were informed by site/climatic constraint, the applicable programme required for such a facility and modular fittings for laboratories. This allowed the designer to intuitively respond with a form language that will combine the garden and the facility. This will allow regular users of the garden to move freely around and on top of the facility without intruding in on the higher order functions of the building.

Spatially plants form natural thresholds between human and different levels of solar energy. Plants consume form their immediate environment what they require and displaces that energy into the fabric that compiles it. Leaves act as giant reservoirs that soak up solar energy. Leaves also form natural gutters and its shade create new ecosystems for other species emerging below it. This can result in an architectural form language that imitate this natural archetype allowing the building envelope to filter solar energy, but also for spaces to ascertain attributes that can be reminiscent of a natural environment. In this regard, the building form language becomes more an extension of the surrounding natural biome instead of dominating it completely. Building envelope becomes the glue between nature and human activity rather than the barrier.

FIG 6.15 Leaves displace solar energy to form metaphysical spaces

FIG 6.16 Intuitive form exploration from natural archetypes founded on natural intelligence
6.2.3 Alternative form exploration for glasshouses: Fig. 6.14-20
Alternative approaches were undertaken in using a more pragmatic approach. These had the following problems:

- Larger “stacked” greenhouses require more mechanical parts that reflects light
- Reflected light changes frequency and are less successful then for propagating plants
- The building form became too abstract and the desire for the form language to integrate with the garden was lost

FIG 6.17 Elevation: Stacked greenhouse idea - June 2008

FIG 6.18 Section: Stacked greenhouse idea - June 2008

FIG 6.19 Spaceframe structure of stacked greenhouse idea - June 2008

FIG 6.20 View along laboratories: Stacked greenhouse idea - June 2008
6.24 Roof as a unifying element:

After investigating other more pragmatic solutions for the glasshouses and garden, it was decided to revert back to the idea of using one organic form language that will act as a unifying element over the entire site, connecting the research buildings with the garden.

The roof was considered to be complimentary to the footpaths and will allow for different controlled growing areas for plants.

FIG 6.21 Stepping greenhouses with laboratories as thermal mass - July 2008

FIG 6.22 Stepping greenhouses with laboratories as thermal mass - July 2008

FIG 6.23 Stepping greenhouses with laboratories as thermal mass - July 2008

FIG 6.24 Visitors can move through the garden and between the building where the structure of the roof forms a permeable boundary - August 2008

FIG 6.25 Glasshouse facade elevation - August 2008

FIG 6.26 Roof structure drapes over sections of the garden and research functions. Users can move up over the building via
FIG 6.27-30 Roof form exploration with polystyrene models. Sections of the model were then scanned and interpolated onto appropriate 3D software - August 2005
6.2.5 Tensile roof structure as a solution for creating large free areas and organic shapes

6.32 View from visitor's footpath towards glasshouse. Vegetation can be grown onto cables used as essential facade shading - August 2008
FIG 6.33 Exploring tensile structure possibilities - August 2008

FIG 6.34 Cable roof structure connects the two gashouses - August 2008

FIG 6.35 Deriving a structural logic for the roof shape - September 2008

FIG 6.36 Exploring facade and section details of tensile structure. Deriving a language for structural support to integrate with mechanical facade elements like ventilation panels etc. September 2008
FIG 6.37-38 Deriving a structural logic: Trapezium shapes for main supporting structure proved to be successful at creating the desired shape on plan between the two glasshouse facilities. September 2008.

FIG 6.39-40 Final concept model using rope to imitate tensile members. This was used to determine the structural integrity of the assembly and the cohesion of the form language created with the site. September 2008.
View from the Southern corner
Mn hilling - BoF structure
FIG 6.48
Mtn hiking - Ground floor and basement