Blind Multi-user Cancellation using the Constant Modulus Algorithm

A dissertation submitted in partial fulfilment of the requirements for the degree

Master of Engineering (Electronic Engineering)

in the Department of Electrical, Electronic and Computer Engineering

in the

School of Engineering

at the

UNIVERSITY OF PRETORIA

Advisors: Professor L.P. Linde

Johan Pieter de Villiers

July 24, 2003
Summary

Constant Modulus Detectors for Blind Multiuser Detection

by

J.P. de Villiers

Advisor: Professor L.P. Linde

Department of Electrical, Electronic and Computer Engineering

Master of Engineering (Electronic)

Keywords:
Blind Multiuser Detection, Linearly Constrained Constant Modulus Algorithm, Linearly Constrained Differential Constant Modulus Algorithm, Blind Equalization, DS-CDMA

Multiuser detection in direct sequence code division multiple access (DS-CDMA) systems has received much attention in recent years. This activity can be attributed to the fact that DS-CDMA systems are to be used in third generation (3G) cellular networks. Cellular operators have already paid billions of dollars for 3G licences, and are serious about ensuring effective use of available channel resources. It is for this reason that methods for increasing channel capacity are being vigorously researched. Multiuser detection can increase effective channel usage significantly, and so save the operators large amounts of money. The multiuser detection problem is discussed in the following paragraph.

In a DS-CDMA channel, each user is separated from the other users by his/her unique signature waveform. These signature waveforms are in practice quasi-orthogonal, i.e. exhibiting small amounts of cross correlation between the signature waveforms of different users. This has an adverse effect on performance, and introduces what is termed as multiuser interference when demodulated with a conventional matched filter detector. The effect of multiuser interference is especially visible in a channel consisting of unequal power users. Multiuser detection techniques concern themselves with the minimization of multiuser interference. Many techniques have been considered, of which the linear adaptive detectors offer good performance while employing relatively simple structures. A well known linear adaptive detector is the adaptive minimum mean square error (MMSE) detector.
This detector offers a significant improvement when compared with the conventional matched filter detector. Furthermore, it is adaptive, and is able to follow slow variations in the channel. The adaptive MMSE detector has the disadvantage that training sequences need to be transmitted to allow the detector to initially converge. In addition, if large channel fluctuations occur, the detector has to be retrained. These training sequences sacrifice valuable bandwidth, and are undesirable. This poses the need for blind detectors, that are able to adaptively tune out multiuser interference without the need for training sequences. The application of the widely used blind equalization constant modulus algorithm (CMA) to blind multiuser detection is attempted in this dissertation.

Direct application of the constant modulus algorithm to blind multiuser detection poses two distinct problems. The first is the fact that detecting any other user rather than the desired user may yield a constant modulus signal. This means that the standard constant modulus detector may lock onto any of the active users in the channel. The second problem is that some of the desired user’s signal may be cancelled, even if the receiver locks onto the desired user component. Both of these problems may be solved by implementing a linear constraint which restricts the constant modulus detector to operate only on the subspace orthogonal to the desired user component. This detector is called the linearly constrained constant modulus (LCCM) detector. This detector exhibits performance equaling that of the MMSE detector subject to the fact that the desired user component is greater than a fixed value. This limitation may be a problem, especially in the case where the different users may have greatly varying amplitudes, such as in a mobile fading channel. The linearly constrained differential constant modulus (LCDCM) detector is the solution to this problem. The LCDCM detector penalizes any deviation in signal modulus from one sample to the next, whereas the LCCM detector penalizes any deviation in signal modulus from a constant value. The LCDCM detector has no limitation on minimum desired user amplitude, and convergence of the adaptation algorithm is assured.

In this dissertation, the two constant modulus multiuser detectors are analyzed, evaluated and compared with the MMSE detector. Existing signal and channel models are expanded to encompass the complex valued multipath DS-CDMA channels. For the first time, a global convexity condition is derived for the LCCM detector cost function. Simulation results for different channel types are generated and discussed. These channel types range from the additive white Gaussian noise (AWGN) channel to multipath fading channels.
OPSOMMING

Konstante Modulus Detektors vir Blinde Multigebruiker Deteksie
deur
J.P. de Villiers

Studieleier: Professor L.P. Linde
Departement Elektriese, Elektroniese en Rekenaar Ingenieurswese
Meester in Ingenieurswese (Elektronies)

Sleutelwoorde: Blinde Multigebruikerdeteksie, Lineêr Beperkte Konstante Modulus Algoritme,
Lineêr Beperkte Differensieële Konstante Modulus Algoritme, Blinde Vereffening, DS-CDMA

Multigebruiker-deteksie in direkte sekwensie kodeverdeling multi-toegang (DS-KVMT) stelsels het baie aandag in die laaste paar jare ontvang. Hierdie aktiwiteit kan toegeskryf word aan die feit dat DS-KVMT stelsels in derde generasie (3G) selluliere netwerke gebruik gaan word. Sellulière ope-
rateurs het reeds biljoene dollar betaal vir 3G lisensies. Dit is om hierdie rede dat metodes om kanaalkapasiteit te vermeerder met so baie toewyding nagevors word. Multigebruiker-deteksie kan kanaalverbui merkwaardig vermeerder, en kan dus die operateurs groot hoeveelhede geld bespaar. Die multigebruiker-deteksie-probleem word in die volgende paragraaf bespreek.

In 'n DS-KVMT kanaal word elke gebruiker van 'n ander een geskei d.m.v. sy/haar unieke identifi-
kasiegolfvorm. Hierdie identifikasiegolfvorms is in die praktyk kwasi-ortogonaal, m.a.w. klein hoe-
veelhede kruiskorrelasie bestaan tussen die identifikasie golfvorms van die verskillende gebruikers. Hierdie eienskap het 'n nadelige effek op werkverrigting, en stel die kanaal bloot aan multigebruiker-
oorvleueling wanneer dit d.m.v. 'n aangepaste filter gedemoduleer word. Die effek van multigebruik-
er oorvleueling is veral sigbaar in 'n kanaal wat uit gebruikers met ongelyke drywing bestaan. Mul-
tigebruiker deteksie tegnieke poog om die hoeveelheid multigebruiker oorvleueling binne 'n kanaal te minimeer. Baie tegnieke is al oorweeg, waarvan die lineêr aanpasbare detektors goeie werkverrigting lever terwyl dit van 'n eenvoudige struktuur gebruik maak. 'n Bekende lineêr aanpasbare detektor is die minimum gemiddelde kwadrat fout (MGKF) detektor. Hierdie detektor bied 'n merkwaardige
verbetering wanneer vergelyk word met die konvensionele aangepaste filter detektor. Verder, is dit ook aanpasbaar, en het die vermoë om stadige kanaalveranderings te volg. Die aanpasbare MGKF detektor het die nadeel dat opleidingsekwensies nodig is om die detektor aanvanklik toe te laat om te konverger. Daarbenewens, as groot kanaalvariasies plaasvind, moet die detektor weer geleer word. Hierdie opleidingsekwensies offer duursame bandwydte op, en is dus ongewens. Dit stel die behoefte aan blinde detektors daar, wat aan kan pas om multigebruiker oorvleueling te minimeer sonder ’n behoefte aan opleidingsekwensies. Die toepassing van die algemeen gebruikte blinde vereffening konstante omhulling algoritme op blinde multigebruiker detekse word in hierdie verhandeling aangespreek.

Die direkte toepassing van die konstante omhulling algoritme op blinde multiverbruiker detekse bring twee spesifieke probleme mee. Die eerste is detekse van enige ander ge bruiker buite die gewensde ge bruiker sal ook ’n konstante omhulling lewer. Dit beteken dat die gewone konstante omhulling detektor kan sluit op enige van die aktiewe gebruikers in die kanaal. Die tweede probleem is dat ’n gedeelte van die gewensde ge bruiker se uitgekanselleer kan word, selfs al sluit die ontvanger op die gewensde ge bruiker komponent. Beide hierdie probleme kan opgelos word deur gebruik te maak van ’n lineêre beperking, wat die werking van die konstante omhulling detektor beperk tot die subruimte ortogonaal tot die gewensde ge bruiker komponent. Hierdie detektor word die lineêr beperkte konstante omhulling (LBKO) detektor genoem. Hierdie detektor lewer dieselfde werkverrigting as die MGKF detektor, onderhewig aan die beperking dat die gewensde ge bruiker komponent groter as ’n spesifieke waarde is. Hierdie beperking mag ’n probleem wees, veral in gevalle waar die verskillende gebruikers grootskaalse varieërende amplitudes mag hê, soos in ’n mobiele deinende kanaal. Die lineêr beperkte differensiele konstante omhulling (LBDKO) detektor is die oplossing tot hierdie probleem. Die LBDKO detektor penaliseer enige afwyking in seinomhulling vanaf een monster tot die volgende, terwyl die LBKO detektor enige afwyking in omhulling vanaf ’n konstante waarde penaliseer. Dit het die gevolg dat die LBDKO detektor geen minimum beperking op gewensde geruiker amplitude het nie, en dat konversie van die aapassingsalgoritme verserke is.

In hierdie verhandeling word daar ’n analise en evaluasie van die twee konstante omhulling detektors gedoen, en word hulle met mekaar vergelyk, asook die MGKF detektor. Bestaande sein en kanaal modelle word uitgebrei om komplekse waarde multipad DS-KVMT kanaal te akkomodeer. Vir die eerste keer word ’n globale konveksiteitsvoorwaarde vir die LBKO detektor kostefunksie afgelei. Simulasie resultate vir verskillende kanaaltipes word gegenereer en bespreek. Hierdie kanaaltipes wissel van die sommeerbare wit Gaussiese ruis (SWGR) kanaal tot multipad deinende kanaal.
ACKNOWLEDGEMENTS

First and foremost, I would like to thank my Creator. I am in boundless debt to Him for my salvation, and all the wonderful talents I received.

I would like to thank my study leader Prof. Louis Linde who supportively guided me in the completion of my dissertation. Without his help and leadership, this project would not have been possible. Prof. Linde’s dedication and self discipline contribute much to the field of digital communications, in the form of research outputs and industry projects. These qualities, together with his ability to envision novel opportunities and possibilities, make him a valuable asset to the department.

Further thanks must go my parents, whom in their love, encouraged me to continuously educate myself. Without their financial and moral support, I would not have been able to succeed up to this level.

My wife, Helena provided with much support while I was working on this dissertation. For this I am very grateful.

For further financial support, through a fellowship, I would like to extend my thanks to Research Enterprises at the University of Pretoria.

Special thanks must go to Professors E.E. Rosinger and J.A. Snyman of the University of Pretoria mathematics and mechanical engineering departments, who patiently helped me with aspects of optimization theory. The following people also helped me in some other aspects of this dissertation. These, in no particular order, include: Whasuck Lee, Conrad Beyers, Jacques Cilliers, Jacques van Wyk, Francois Pienaar and Leon Staphorst.
TABLE OF CONTENTS

CHAPTER ONE - INTRODUCTION

1. Introduction ... 1
 1.1.1 General Problem Definition 3

1.2 An Overview of Code Division Multiple Access (CDMA) 4

1.3 The CDMA Data Detection Hierarchy 4
 1.3.1 Single User Detection 5
 1.3.2 Multiuser Detection 5
 1.3.2.1 Joint Detection (JD) 7

1.4 Applying the Constant Modulus Criterion to MUD 8

1.5 Contributions of this Dissertation 9

1.6 Outline of Dissertation Chapters 11

CHAPTER TWO - SYNCHRONOUS AND ASYNCHRONOUS CDMA MODELS

2.1 The CDMA Signal Model 13

2.2 Discrete-time Synchronous Models 15
 2.2.1 Matched Filter Outputs 15
 2.2.2 Whitened Matched Filter Model 17
 2.2.3 Orthonormal Projections 18

2.3 Discrete-time Asynchronous Models 19
 2.3.1 Intersymbol Interference 20
 2.3.2 Asynchronous Vector Matrix Model 21

2.4 The Fading Mobile Channel Model 24
 2.4.1 Rayleigh Fading due to Doppler Spread - Clarke's Model 25
 2.4.2 Multipath Time Dispersion Model 25
 2.4.2.1 Discrete Time Channel Impulse Response 26
 2.4.2.2 The CDMA Uplink and Downlink Channels 28

2.5 Summary .. 28
TABLE OF CONTENTS

CHAPTER THREE - THE MATCHED FILTER RECEIVER AND MULTIUSER DETECTION PERFORMANCE MEASURES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Optimal Decision Rules and Sufficient Statistic</td>
<td>29</td>
</tr>
<tr>
<td>3.1.1 Decision Rules and Decision Regions</td>
<td>29</td>
</tr>
<tr>
<td>3.1.2 Continuous-Time Gaussian Signals</td>
<td>31</td>
</tr>
<tr>
<td>3.1.3 Sufficient Statistic</td>
<td>32</td>
</tr>
<tr>
<td>3.2 The Optimal Receiver - Single User</td>
<td>33</td>
</tr>
<tr>
<td>3.2.1 Linear Detectors</td>
<td>33</td>
</tr>
<tr>
<td>3.2.2 Error Probability - Optimal Single User Linear Detector</td>
<td>34</td>
</tr>
<tr>
<td>3.2.3 Error Probability - Optimal Single User Non-Linear Detector</td>
<td>36</td>
</tr>
<tr>
<td>3.3 Matched Filter Error Probability - Synchronous Users</td>
<td>37</td>
</tr>
<tr>
<td>3.3.1 The Two User Case</td>
<td>38</td>
</tr>
<tr>
<td>3.3.1.1 BEP as performance measure - The two user case</td>
<td>41</td>
</tr>
<tr>
<td>3.3.1.2 The two user signal space representation</td>
<td>43</td>
</tr>
<tr>
<td>3.3.2 The K-user Case</td>
<td>46</td>
</tr>
<tr>
<td>3.3.3 The Gaussian Approximation for BEP</td>
<td>49</td>
</tr>
<tr>
<td>3.4 Matched Filter Error Probability - Asynchronous Users</td>
<td>53</td>
</tr>
<tr>
<td>3.5 Asymptotic Multiuser Efficiency and Related Measures</td>
<td>54</td>
</tr>
<tr>
<td>3.5.1 Asymptotic Multiuser Efficiency of the Two User Matched Filter</td>
<td>57</td>
</tr>
<tr>
<td>3.5.2 Asymptotic Multiuser Efficiency of the K User Matched Filter</td>
<td>58</td>
</tr>
<tr>
<td>3.6 Performance of the Coherent Single User Matched Filter Detector in Frequency Flat Fading</td>
<td>60</td>
</tr>
<tr>
<td>3.6.1 The Single User Case in the Presence of Fading</td>
<td>60</td>
</tr>
<tr>
<td>3.7 Summary</td>
<td>62</td>
</tr>
</tbody>
</table>

CHAPTER FOUR - LINEAR MULTIUSER DETECTORS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 The Linear Decorrelating detector</td>
<td>64</td>
</tr>
<tr>
<td>4.2 The Optimum Linear Detector</td>
<td>65</td>
</tr>
<tr>
<td>4.2.1 The Two User Optimum Linear Detector</td>
<td>66</td>
</tr>
<tr>
<td>4.3 The Linear MMSE Detector</td>
<td>68</td>
</tr>
<tr>
<td>4.3.1 The MMSE Optimization Problem</td>
<td>69</td>
</tr>
<tr>
<td>4.3.2 The MMSE Detector Vector Matrix Model</td>
<td>69</td>
</tr>
<tr>
<td>4.3.3 The Two User MMSE Detector</td>
<td>72</td>
</tr>
<tr>
<td>4.3.4 The Limiting Forms of the MMSE Detector</td>
<td>72</td>
</tr>
<tr>
<td>4.3.5 The Asynchronous MMSE Detector</td>
<td>73</td>
</tr>
<tr>
<td>4.3.6 The Wiener Filter Characterization of the MMSE Detector</td>
<td>73</td>
</tr>
<tr>
<td>4.4 The MMSE Detector Least Mean Square (LMS) Algorithm</td>
<td>75</td>
</tr>
<tr>
<td>4.5 Performance of the MMSE Detector</td>
<td>78</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

4.5.1 Signal-to-Interference Ratio of the MMSE Detector .. 78
4.5.2 Asymptotic Multiuser Efficiency and Near-Far Resistance of the MMSE Detector ... 79
4.5.3 BEP of the MMSE Detector .. 80
 4.5.3.1 Gaussian Approximation of the MMSE Detector BEP 82
 4.5.3.2 Infinite User Limit of the MMSE Detector BEP .. 83
4.5.4 Power Tradeoff Regions of the MMSE Detector .. 84
4.5.5 MMSE Detector Performance in Multipath Channels .. 84
 4.5.5.1 Signal-to-interference Ratio of the MMSE detector in a Multipath Channel 90
 4.5.5.2 BEP of the MMSE Detector in a Multipath Channel 91
4.6 Summary ... 91

CHAPTER FIVE - BLIND MULTIUSER DETECTION USING THE CONSTANT MODULUS CRITERION

5.1 Introduction .. 93
5.2 The Linearly Constrained Constant Modulus Criterion 95
 5.2.1 The Convexity of the LCCM Cost Function .. 96
 5.2.2 The Stationary Points of the LCCM Cost Function 98
 5.2.3 Linearly Constrained Constant Modulus Algorithm 102
5.3 The Linearly Constrained Differential Constant Modulus Criterion 106
 5.3.1 Global Minimum of the LCDCM Cost Function .. 108
 5.3.2 Linearly Constrained Differential Constant Modulus Algorithm 109
5.4 Performance of the LCCM and LCDCM Algorithms in Multipath Fading Channels 111
5.5 Summary .. 112

CHAPTER SIX - SIMULATION RESULTS OF THE CM DETECTOR

6.1 Simulation Setup ... 114
 6.1.1 Single Path AWGN Channel ... 116
 6.1.2 Static Multipath Channel .. 116
 6.1.3 Single- and Multipath Fading Channels ... 116
6.2 Performance in an AWGN Channel .. 117
6.3 Performance in a Static Multipath Channel ... 123
6.4 Performance in Rayleigh Fading Single- and Multipath Channels 126

CHAPTER SEVEN - FINAL SUMMARY AND CONCLUSIONS

7.1 Theoretical Summary and Conclusions ... 130
7.2 Simulation Summary and Conclusions .. 132

Center for Radio and Digital Communication (CRDC)
Department of Electrical, Electronic and Computer Engineering
University of Pretoria
TABLE OF CONTENTS

7.3 Proposals for Further Research ... 133

REFERENCES ... 134

APPENDIX A - SELECTED PROPERTIES OF THE Q-FUNCTION 140

APPENDIX B - SIMULATION OF MOBILE CHANNEL 142
 B.1 Doppler Spread Rayleigh Fading ... 142
 B.2 Frequency Selective Multipath Rayleigh Fading 143

APPENDIX C - DIFFERENTIATION WITH RESPECT TO A COMPLEX MATRIX 146
 C.1 Basic Definitions .. 146
 C.2 The Gradient Matrix in Terms of the Derivative with Respect to a Matrix 148
 C.3 Differentiating the Components of the MMSE Cost Function 149

APPENDIX D - EVALUATING THE EXPECTED VALUE IN THE LCCM AND LCDCM COST FUNCTIONS 152
 D.1 Expected Value in the LCCM Cost Function 152
 D.2 Expected Value in the LCDCM Cost Function 153
1.1 Data detection hierarchy structure for CDMA ... 6
1.2 Graphical representation of the structure and outline of the dissertation. 12
2.1 Schematic representation of the cross correlation between two synchronous users 14
2.2 Block diagram illustration of the complex matched filter receiver 16
2.3 Block diagram description of the orthonormal projection correlation receiver 18
2.4 Schematic representation of the symbol epochs for three users if $M = 1$ 20
2.5 Block diagram of the z domain vector matrix model of equations (2.36) and (2.42) 23
2.6 The mobile radio channel as a function of time and space. 25
2.7 The time varying discrete time impulse response model for a specific multipath radio channel. ... 27
3.1 Conditional distributions of Y given $b = -1$ and $b = +1$ 35
3.2 Block diagram depicting the bank of matched filters for multiple CDMA users 37
3.3 Block diagram depicting the special case of the two user CDMA matched filter receiver structure ... 38
3.4 Output of the matched filter with one interfering user and $A_2/A_1 > 1/|\rho|$ 40
3.5 BEP of the matched filter detector for different relative amplitudes and $\rho = 0.2$ 41
3.6 Regions of signal-to-noise ratios to attain a BEP of 3×10^{-5} for both users 42
3.7 Signal space diagram in the (y_1, y_2) space for equal amplitudes and $\rho = 0.2$ 44
3.8 Joint probability density function in the (y_1, y_2) space for equal amplitudes, $\rho = 0.2$ and $\sigma = 1$... 45
3.9 Overhead view of the joint probability density function in the (y_1, y_2) space for equal amplitudes, $\rho = 0.2$ and $\sigma = 1$ 46
3.10 Signal space diagram in the alternative orthogonal $(\tilde{y}_1, \tilde{y}_2)$ space for equal amplitudes $A_1 = A_2$ and $\rho = 0.2$... 47
3.11 Signal space diagram in the alternative orthogonal $(\tilde{y}_1, \tilde{y}_2)$ space for $A_2 = 6A_1$ and $\rho = 0.2$ 48
3.12 BEP as a function of SNR with $K = 10$ equal energy users and $\rho = 0.08$ (eye open) 50
3.13 BEP as a function of SNR with $K = 14$ equal energy users and $\rho = 0.08$ (eye closed) 51
3.14 Asymptotic multiuser efficiency for a matched filter detector with two equal energy users and $\rho = 0.2$... 59
LIST OF FIGURES

4.1 Block diagram depicting the structure of the K user linear receiver performing a linear operation M on the sampled matched filter outputs. .. 65

4.2 Block diagram depicting the structure of the two user linear decorrelating, optimum and MMSE receivers in the real domain. .. 67

4.3 Asymptotic Multiuser Efficiencies of the Matched Filter, Decorrelating and MMSE Detectors. ... 81

4.4 BEP graph comparing the exact and Gaussian approximated curves of the MF and MMSE detectors. ... 83

4.5 Regions of signal-to-noise ratios to attain a BEP of 3×10^{-3} for both users using a MMSE detector. ... 85

4.6 Depiction of the equivalent synchronous multipath model of a CDMA channel. ... 86

5.1 Complex LCCM cost function surface with $A_1^* A_1 > \alpha/4$. ... 102

5.2 Complex LCCM cost function surface with $A_1^* A_1 = \alpha/4$. ... 103

5.3 Complex LCCM cost function surface with $A_1^* A_1 < \alpha/4$. ... 104

5.4 Generalized Sidelobe Canceller with $x[i]$ governed by (5.53) in the case of the LCCM algorithm and (5.79) in the case of the LCDCM algorithm. In the case of the LCDCM algorithm, the previous values $Z_D[i], Z_{MF_D}[i]$ and $r_D[i]$ need to be remembered to compute $x[i]$. ... 105

5.5 One Dimensional Complex LCDCM cost function surface. ... 110

6.1 System block diagram of the simulation setup. ... 115

6.2 Signal to noise and interference ratios versus time of a CDMA system with 6 users and a spreading factor of 7 in an AWGN channel using the MMSE, LCCMA and LCDCMA detection techniques. ... 118

6.3 Signal to noise and interference ratios versus time of a CDMA system with 6 users and a spreading factor of 7 in an AWGN channel using the MMSE, LCCMA and LCDCMA detection techniques. In this case $A_1^* A_1 < \alpha/4$. ... 119

6.4 Signal to noise and interference ratios versus time of a CDMA system with 3 users, and a 34dB strong fourth user powering on at time $t = 4000$ symbols. ... 120

6.5 Signal to noise and interference ratios versus no. of users of a CDMA system with a spreading factor of 7 and $E_b/N_0 = 10$ dB in an AWGN channel. ... 121

6.6 Bit error rate versus no. of users of a CDMA system with a spreading factor of 7 and $E_b/N_0 = 10$ dB in an AWGN channel. ... 122

6.7 Signal to noise and interference ratios versus time of a CDMA system with $K = 6$ users and a SF = 7 in an AWGN channel. The plot shows the performance for a code mismatch with mismatch variance of 0.1. ... 123

6.8 BER of a CDMA system with 6 users and a spreading factor of 7 in an AWGN channel using the matched filter, MMSE, LCCMA and LCDCMA detection techniques. ... 124

Center for Radio and Digital Communication (CRDC)
Department of Electrical, Electronic and Computer Engineering
University of Pretoria
6.9 Z-plane plot of a minimum phase static 3-ray multipath channel. The multipath profile consists of 0.86 at zero delay, 0.43 at 1 chip delay and 0.26 at 2 chips delay. 125

6.10 Frequency response of the static three-ray multipath channel of which the z-plane representation is shown in Figure 6.9. 126

6.11 BER of a CDMA system with 6 users and a spreading factor of 7 in a static 3-ray multipath channel using the matched filter, MMSE, LCCMA and LCDCMA detection techniques. The multipath profile consists of 0.86 at zero delay, 0.43 at 1 chip delay and 0.26 at 2 chips delay. 127

6.12 BER of a CDMA system with 6 users and a spreading factor of 7 in a Rayleigh fading single-path channel using the matched filter, MMSE, LCCMA and LCDCMA detection techniques. 128

6.13 BER of a CDMA system with 6 users and a spreading factor of 7 in a 3-ray Rayleigh fading multipath channel using the matched filter, MMSE, LCCMA and LCDCMA detection techniques. 129

7.1 Knowledge needed for the different types of multiuser detection schemes. 131

B.2 Baseband complex Rayleigh fading coefficient simulator. 142

B.3 Frequency spectrum of 3rd order approximation of a Doppler filter with a Doppler frequency of 50Hz. 144

B.4 Model of a frequency selective (multipath) fading channel. 145
LIST OF ABBREVIATIONS AND ACRONYMS

<table>
<thead>
<tr>
<th>A</th>
<th>AWGN</th>
<th>- Additive White Gaussian Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>BEP</td>
<td>- Bit Error Probability</td>
</tr>
<tr>
<td></td>
<td>BER</td>
<td>- Bit Error Rate</td>
</tr>
<tr>
<td></td>
<td>BPSK</td>
<td>- Binary Phase Shift Keying</td>
</tr>
<tr>
<td>C</td>
<td>CDMA</td>
<td>- Code Division Multiple Access</td>
</tr>
<tr>
<td></td>
<td>CMA</td>
<td>- Constant Modulus Algorithm</td>
</tr>
<tr>
<td></td>
<td>CM</td>
<td>- Constant Modulus</td>
</tr>
<tr>
<td>D</td>
<td>DD</td>
<td>- Decision Directed</td>
</tr>
<tr>
<td></td>
<td>DF</td>
<td>- Decision Feedback</td>
</tr>
<tr>
<td></td>
<td>DFE</td>
<td>- Decision Feedback Equalizer</td>
</tr>
<tr>
<td></td>
<td>DS</td>
<td>- Direct Sequence</td>
</tr>
<tr>
<td></td>
<td>DSP</td>
<td>- Digital Signal Processor</td>
</tr>
<tr>
<td>E</td>
<td>EVD</td>
<td>- Eigenvalue Decomposition</td>
</tr>
<tr>
<td>F</td>
<td>FIR</td>
<td>- Finite Impulse Response</td>
</tr>
<tr>
<td></td>
<td>FPGA</td>
<td>- Field Programmable Gate Array</td>
</tr>
<tr>
<td>G</td>
<td>GCL</td>
<td>- General Chirp Like (sequences)</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS AND ACRONYMS

I
- IC: Interference Cancellation
- ISI: Inter Symbol Interference

J
- JD: Joint Detection

L
- LCCM: Linearly Constrained Constant Modulus
- LCCMA: Linearly Constrained Constant Modulus Algorithm
- LCDCM: Linearly Constrained Differential Constant Modulus
- LCDCMA: Linearly Constrained Differential Constant Modulus Algorithm
- LCMV: Linearly Constrained Minimum Variance
- LCMVA: Linearly Constrained Minimum Variance Algorithm
- LMS: Least Mean Square

M
- MAI: Multiple Access Interference
- MF: Matched Filter
- MIMO: Multiple Input Multiple Output
- MISO: Multiple Input Single Output
- ML: Maximum Likelihood
- MLSE: Maximum Likelihood Sequence Estimation
- MMSE: Minimum Mean Square Error
- MOE: Minimum Output Energy
- MSE: Mean Square Error
- MUD: Multi User Detection

N
- MAI: Narrow Band Interference

R
- RU: Root of Unity

S
- SD: Sequence Detection
- SNR: Signal to Noise Ratio
- SSD: Single Symbol Detection
- SISO: Single Input Single Output
LIST OF ABBREVIATIONS AND ACRONYMS

SIR - Signal to (Noise and) Interference Ratio
SUD - Single User Detection
SVD - Singular Value Decomposition
T - Time Division Multiple Access
VA - Viterbi Algorithm
ZF - Zero Forcing
LIST OF SYMBOLS

A - Matrix of which the diagonal contains all the users' amplitudes
A - The single user channel amplitude
$a_k(n)$ - Pseudo noise sequence of the signature waveform of user k
A_k - The received signal amplitude of user k
\tilde{A}_k - The complex valued amplitude of user k due to a phase θ_k
$A_{k,l}$ - The received signal amplitude of the lth multipath component of user k
\bar{A}^2 - The statistical average of the squared amplitudes of all interfering users
b - Vector of all K users' transmitted bits
b_k - The bit transmitted by the kth user
\hat{b} - The bit decision of a single user channel
\hat{b}_k - The bit decision of the kth user
$b_k[t]$ - The tth bit transmitted by the kth asynchronous user
c - An arbitrary K-vector $c = (c_1, \ldots, c_K)^T$
c_k - Complex waveform of duration T used for a linear transform
c_k^r - Subspace of c_k spanned by the signature waveforms s_1, \ldots, s_K
c_k^o - Subspace of c_k spanned orthogonal to the signature waveforms s_1, \ldots, s_K
C - Covariance matrix of the received signal vector r
f_{dk} - The Doppler frequency of user k
en_k(σ) - Effective energy of user k
E_b - Energy per bit
F^{-H} - Whitening filter
LIST OF SYMBOLS

\(G \) - The subset of interferers with the partially open eye condition satisfied

\(\bar{G} \) - The subset of interferers with the closed eye condition satisfied

\(h_k(t) \) - Linear time invariant channel impulse response of user \(k \)

\(h_k(t, \tau) \) - Linear channel impulse response of user \(k \)

\(H_i \) - The \(i \)th hypothesis out of a total of \(m \) hypotheses

\(\mathbf{H}(J) \) - The Hessian matrix of the cost function \(J \)

\(\mathbf{I} \) - Identity matrix

\(J \) - Joint cost function of all \(K \) users

\(J_k \) - Cost function of user \(k \)

\(J_{\text{min}} \) - Minimum mean square error of the Wiener filter

\(K \) - The number of simultaneous users

\(L \) - The number of dimensions or orthonormal signals in the orthonormal detector model

\(M \) - Asynchronous user packet length is equal to \((2M + 1) \)

\(\tilde{M} \) - Arbitrary linear transform on the received signal vector

\(\tilde{\mathbf{M}} \) - Optimum linear transformation in a minimum mean square error sense

\(\tilde{\mathbf{M}} \) - Scaled version of an optimum linear transformation in a MMSE sense

\(\tilde{\mathbf{M}}_a \) - Asynchronous channel optimum linear transformation in a MMSE sense

\(\bar{n} \) - Vector of \(K \) whitened (uncorrelated) noise components

\(\mathbf{n} \) - The vector which contains the noise components of all \(K \) matched filter outputs

\(n_k \) - The unnormalized inner product between \(n(t) \) and the signature waveform of user \(k \)

\(n_k[i] \) - The \(i \)th bit asynchronous noise contribution of user \(k \)

\(n(t) \) - White Gaussian noise with unit power spectral density

\(N \) - The length (or spreading gain) of the pseudo noise sequence for each signature waveform

\(N_0 \) - The one sided noise spectral density

\(\mathcal{N}(\mu, \sigma^2) \) - Notation for a Gaussian distribution with mean \(\mu \) and variance \(\sigma^2 \)

\(\mathbf{p} \) - The cross correlation vector between the vector \(r \) and the desired response \(b_1 \)
LIST OF SYMBOLS

\[p(t) \] - The chip waveform of duration \(T_c \)

\[P \] - Number of equally spaced discrete multipath components

\[\mathcal{P} \] - Maximum allowable bit error probability in power-tradeoff region

\[P_e \] - Single user error probability in a Gaussian channel

\[P_{e,R} \] - Error probability in a Rayleigh fading channel

\[P_{e}(\sigma, k) \] - Error probability in a Gaussian channel for user \(k \)

\[\tilde{P}_e(\sigma, k) \] - Gaussian approximation of error probability in a Gaussian channel for user \(k \)

\[P_{e}^F(\sigma, k) \] - Error probability in a Rayleigh fading channel for user \(k \)

\[P_{e,k}^{t_k} \] - Error probability of user \(k \) due to a linear transform \(t_k \)

\[Q(\cdot) \] - The \(Q \)-function as defined in Appendix A

\[R_p(\tau) \] - Autocorrelation function of an arbitrary rectangular chip signature waveform

\[r \] - The output vector of a correlation receiver

\[\mathbf{R} \] - Synchronous cross correlation matrix

\[\mathbf{R}_{[0]} \] - Asynchronous cross correlation matrix as defined in (2.38)

\[\mathbf{R}_{[1]} \] - Asynchronous cross correlation matrix as defined in (2.39)

\[\mathcal{R} \] - An arbitrary interval on the real line

\[R_i \] - The \(i \)th decision region out of a total of \(m \) regions

\[s(t) \] - Unit energy deterministic signature waveform in a single user channel

\[s_k(t) \] - Unit energy deterministic signature waveform of user \(k \)

\[\tilde{s}_k(t) \] - Linear time dispersive channel signature waveform response of user \(k \)

\[s_k \] - Signature vector of user \(k \)

\[\mathbf{S} \] - Signature matrix containing the signature vectors of \(K \) users

\[S(z) \] - \(z \)-transform transfer function of the asynchronous cross correlations

\[T \] - Symbol duration equals \(L \times T_c \)

\[T_c \] - Chip duration

\[\mathbf{v} \] - Arbitrary tap weight vector of a linear detector
LIST OF SYMBOLS

\bar{v} - MMSE optimum tap weight vector

$x_i(t)$ - An arbitrary deterministic energy function defined on an interval \mathcal{R} on the real line

y - Vector of K matched filter outputs

\tilde{y} - Vector of K whitened matched filter outputs

y_k - Matched filter output of user k

$y_k[i]$ - Matched filter output of the ith bit of asynchronous user k

$y(t)$ - Received signal embedded in AWGN

Y - Decision statistic of $y(t)$

$\nabla_{m_{ew}}$ - Element of the vth row and wth column of the complex gradient operator matrix ∇_M

$\nabla_M(J)$ - Complex gradient matrix of the cost function J

α - Arbitrary real scalar used as desired modulus in the constant modulus type detector

$\phi_{k,l}(t,\tau)$ - Phase shift of the lth multipath component due to fading and other channel effects

β - Ratio of number of users to spreading gain (K/N)

φ - A deterministic energy signal of duration T

γ - Signal-to-noise ratio (SNR)

γ_{ck} - Signal-to-interference ratio (SIR) of user k

η_k - Asymptotic multiuser efficiency of user k

$\bar{\eta}_k$ - Multiuser efficiency of user k

$\tilde{\eta}_k$ - Near-far resistance of user k

η_{ck}^F - Asymptotic multiuser efficiency of user k in a Rayleigh fading channel

μ_{max} - Maximum step size to ensure convergence of the LMS algorithm

$\theta_{k,l}$ - Combined phase term of the lth multipath component of user k

Θ - The parameter to be inferred in a statistical inference problem

ρ_{kj} - Synchronous cross correlation between the signature waveforms of user k and user j

$\rho_{kj}(\tau)$ - Asynchronous cross correlation between two signature waveforms as defined in (2.7)

$\rho_{jk}(\tau)$ - Asynchronous cross correlation between two signature waveforms as defined in (2.8)
LIST OF SYMBOLS

σ^2 - Additive white Gaussian noise variance

$\Delta \tau$ - The excess delay bin spacing

τ_l - The relative delay of the lth multipath bin of any user

τ_k - The time delay of asynchronous user k

ω - Worst asymptotic multiuser efficiency among all users

Ω - Covariance matrix of the interference

$\hat{\Omega}$ - Covariance matrix of the interference in the multipath case

ψ_l - The lth orthonormal signal out of a set of L