

QOS-BASED POWER MANAGEMENT TECHNIQUES FOR UPLINK W-CDMA CELLULAR SYSTEMS

By

Ting-Chen Song

Studyleader: Professor L.P. Linde & Professor X. Xia

Submitted in partial fulfillment of the requirements for the degree

Master of Engineering (Electronics)

in the

Department of Electrical, Electronic & Computer Engineering, Built Environment & Information Technology

in the

School of Engineering

in the

Faculty of Engineering, Built Environment & Information Technology

UNIVERSITY OF PRETORIA

December 2002

Sec. 14

SUMMARY

QOS-BASED POWER MANAGEMENT TECHNIQUES FOR UPLINK W-CDMA CELLULAR Systems

by

Ting-Chen Song Studyleader: Professor L.P. Linde & Professor X. Xia Department of Electrical, Electronic & Computer Engineering Master of Engineering (Electronics)

In the past, the design of PC algorithms for CDMA systems has remained at the physical layer to compensate for slow and fast channel impairments (known as fast PC and slow PC). The TDMA/FDMA manages inter-cell interference at the beginning of the radio planning process. In SS technology, real time adaptive PC and power management algorithms would need to work coherently to ensure reliable multi-media services, and the need for this real-time hybrid structure of PC and power management has only been shown recently. The emphasis in this dissertation is therefore on the design of a QoS-based PC structure in W-CDMA applications, the ultimate goal being to evaluate the new QoS-based PC structure by means of a Monte Carlo computer simulation; a multi-user, multimedia W-CDMA simulation package. Before the design of the QoS-based PC structure, this dissertation examines and proposes a new power-sensitive model that addresses factors affecting the W-CDMA system capacity. Consequently, PC problems are put into a framework for various optimization criteria. Finally the design of a QoS-based PC structure by means of Monte Carlo computer simulation.

The first problem is closely related to the fact that W-CDMA is a design of a power management network architecture. The power management can co-exist in every layer of operation with different specific time scale and optimization objectives. The solution to this problem is therefore to introduce a general and mathematically tractable *power-sensitive* ... *model* to identify factors that influence the capacity of W-CDMA cellular systems and then

articulate the general power sensitive model to form a PC framework aimed at finding a common systematic treatment for different schools of thought on PC algorithms. This dissertation proves the benefits of layered PC operation for guaranteed QoS transmission and also shows that this research coincides with and extend the literature on PC management by categorizing PC algorithms according to various optimization objectives and time scales.

The second problem is to evaluate the new QoS-based PC structure in a channel coded and RAKE combining uplink UMTS/UTRA cellular environment using the Monte Carlo simulation package. The UMTS radio channel models are described in terms of frequency-selective Rayleigh fading: *Indoor-Office, Outdoor and Pedestrian* and *Vehicular* environments. The package is simulated in Matlab. The influence of the number of multipath components, of Doppler Spread, the number of received antenna, the coding scheme and multi-access interference are discussed in the dissertation. The performance evaluation criteria for utility-based PC structures are Bit-Error-Rate (BER) performance (robustness), outage performance (tracking ability) and rate of convergence. The first test shows that the new proposed unbalanced step-size closed-loop FPC schemes can provide better SINR tracking ability and better BER performance than conventional balanced step-size PC schemes. The unbalanced FPCs have better PC error distribution in all scenarios. The second test shows that the proposed BER-prediction distributed OPC schemes can provide better BER *tracking ability*. This scheme converges iteratively to an optimal SINR level under current network settings with no excessive interference to other active users.

Keywords:

multi-media, W-CDMA, UMTS/IMT-2000, soft capacity, resource allocation, interference management, Signal to Interference and Noise Ratio (SINR), Quality of Service (QoS), Bit-Error-Rate (BER), power-sensitive model, intra-cell interference, inter-cell interference, Fast PC (FPC), Outer-loop PC (OPC), Network PC (NPC), Doppler spread, Multi-Access Interference (MAI), tracking ability, iterative processing.

OPSOMMING

QOS-BASED POWER MANAGEMENT TECHNIQUES FOR UPLINK W-CDMA CELLULAR SYSTEMS

deur

Ting-Chen Song

Studieleier: Professor L.P. Linde & Professor X. Xia Departement Elektriese-,Elektroniese- & Rekenaar Ingenieurswese Meester in Ingenieurswese (Elektronies)

In die verlede het die ontwerp van drywingsbeheeralgoritmes vir kodedivisie-multitoegang (CDMA) stelsels by die fisiese vlak gebly om te kompenseer vir stadige en vinnige kanaal tekortkomings (bekend as vinnige drywingsbeheer (DB) en stadige DB). TDMA/FDMA beheer interselsteuring in die begin van die radiobeplanningsproses. In SS tegnologie, moet intydse aanpasbare DB en DB-bestuuralgoritmes saamwerk om betroubare multimedia dienste te verseker. Die behoefte vir hierdie intydse saamgestelde struktuur van DB en drywingsbestuur is eers onlangs bewys. Die klem van hierdie verhandeling is daarom die ontwerp van 'n Kwaliteit-van-Diens (QoS)-gebaseerde DB struktuur met toepassing in W-CDMA. Die doel is om die nuwe QoS-gebaseerde DB struktuur te evalueer deur van Monte Carlo rekenaarsimulasies gebruik te maak; 'n multi-gebruiker, multimedia W-CDMA simulasiepakket. Voor die ontwerp van 'n QoS-gebaseerde DB struktuur gedoen word, word 'n nuwe drywingsensitiewe model bestudeer en voorgestel. Hierdie model addresseer faktore wat W-CDMA stelselkapasiteit affekteer. Gevolglik word die DB probleem in 'n raamwerk van verskeie optimeringskriteria geplaas. Laastens word die ontwerp van 'n QoS-gebaseerde DB struktuur, met behulp van Monte Carlo rekenaarsimulasie, beskryf en geëvalueer.

Die eerste probleem hou nou verband met die feit dat W-CDMA die ontwerp van 'n drywingsbeheerde netwerkargitektuur is. Die drywingsbeheer kan op elke vlak van operasie saamwerk, elk met verskillende tydskale en optimeringskriteria. Die oplos van die probleem

behels die opstel van 'n algemene, wiskundig-aanvaarbare *drywingsensitiewe model* om die faktore wat die kapasiteit van W-CDMA sellulêre stelsels beïnvloed, te identifiseer en dan die algemene drywingsensitiewe model te artikuleer, sodanig dat 'n DB raamwerk, gemik op 'n algemene sistematiese ondersoek van verskeie DB algoritmes, gevind kan word. Hierdie verhandeling bewys die voordele van vlakgebaseerde DB operasie, sodanig dat QoS transmissie verseker word. Daar word ook getoon dat hierdie navorsing saamval met en bestaande literatuur oor DB bestuur uitbrei, deur die DB algoritmes volgens verskeie optimeringsdoelwitte en tydskale te kategoriseer.

Die tweede probleem is om die nuwe QoS-gebaseerde DB struktuur in 'n kanaalgekodeerde en RAKE gekombineerde opwaartse UMTS/UTRA sellulêre omgewing te evalueer, deur van die Monte Carlo simulasieprogram gebruik te maak. UMTS radiokanaalmodelle word in terme van frekwensieselektiewe Rayleigh deining (Binnenshuis-kantoor, buite en voetganger en bewegende omgewings beskryf. Die pakket word gesimuleer in Matlab. Die invloed van die aantal multipadkomponente, Doppler-spreiding, die getal ontvangsantennas, die koderingsskema en multi-gebruikerruis word in die verhandeling bespreek. Die werkverrigting-evalueringskriteria vir toepassingsgebaseerde DB strukture is: Bisfouttempo (BER) verrigting (robuustheid), onderbrekings-werkverrigting (volginsvermoë) en konvergeringsvermoë. Die eerste toets dui aan dat die nuwe voorgestelde, gebalanseerde stapgrootte, geslote lus FPC struktuur beter SINR volgvermoë, asook beter BER verrigting as konvensionele gebalanseerde stapgrootte DB skemas verseker. Die ongebalanseerde FPCs het beter DB foutverspreiding vir alle gevalle. Die tweede toets dui aan dat die voorgestelde BER-voorspelde verspreide OPC skemas beter BER volgvermoë kan verseker. Hierdie skema konvergeer iteratief na 'n optimale SINR vlak onder die huidige netwerkopstelling met geen buitensporige steuring vir ander aktiewe gebruikers nie..

Sleutelwoorde:

multi-media, W-CDMA, UMTS/IMT-2000, sagte kapasiteit, hulpbrontoekenning, steuringsbeheer, Sein tot Steuring en Ruisverhouding (SINR), Kwaliteit-van-diens (QoS), Bisfouttempo (BER), drywingsensitiewe model, intra-sel steuring, inter-sel steuring, Vinnige DB (FPC), Buitelus DB (OPC), Netwerk DB (NPC), Doppler-spreidng, Multi-toegang steuring (MAI), volgvermoë, iteratiewe verwerking.

ACKNOWLEDGEMENT

The author would like to express his sincere appreciation to his advisors, Prof. L.P. Linde, Prof. X. Xia and Prof. P.G.W van Rooyen for their enthusiastic guidance and advice throughout this research. Appreciation and thanks are extended to my colleagues from Department of Electrical, Electronic and Computer Engineering, Built Environment & Information Technology: Mr. J.H. van Wyk, Mr. P. Roux, Mr. A. Pandey, Mr. L. Staphorst and Dr. M. Lötter for their understanding, patience and suggestions during this research.

The author would like to send a special thanks to Mrs. Lorna Chalmers, Department of English, for her kindness and patient. A deepest gratitude to his parents, two brothers, Jackson and Davy and Ming-Chen Tsai for their encouragement, patience and support throughout his study.

Also, to my creator and heavenly Father, my saviour Jesus Christ and my companion the Holy Spirit.

CONTENTS

Снарт	fer ON	E - INTRODUCTION	1
1.1	Cellu	lar Communication Systems	2
	1.1.1	Advantages Of W-CDMA Technology	2
	1.1.2	Disadvantages Of W-CDMA Technology	4
1.2	Powe	r Control Systems for 3G Networking	5
	1.2.1	Research Background on APC Algorithms	7
	1.2.2	Advantages of APC Structure	8
	1.2.3	A QoS-based APC Structure	11
1.3	Limit	ations of Current APC Algorithms	16
1.4	Ratio	nale And Aims Of The Dissertation	17
1.5	Contr	ibutions Of This Dissertation	19
1.6	Outlir	e Of This Dissertation	20
Снарт	er TW	O - POWER-SENSITIVE MODELS	22
2.1	A Sun	nmary of A Turbo-coded, Uplink W-CDMA System	22
	2.1.1	Synchronous CDMA Signal Representation	24
	2.1.2	Linear W-CDMA Receiver with Pilot Symbols	28
	2.1.3	A Description of Simulation Model	31
	2.1.4	Monte Carlo Simulation technique	32
2.2	A Gen	eral Power-sensitive Model	34
	2.2.1	System Requirements	34
	2.2.2	Cellular System Capacity	35
2.3	A New	PC Structure for Uplink PC in CDMA Radio Systems	47
	2.3.1	Adaptive PC	48
2.4	Summa	ary	49
Снарте	r THR	EE - OVERVIEW OF ADAPTIVE PC TECHNIQUES	50
3.1	Radio I	Resource Management	50

i

CONTENTS

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

3.:	2 SIN	R and BER Estimation	. 52
3.:	3 Gene	eral Traffic Demand and Interference Constraints	. 55
3.4	4 Netv	vork PC	. 56
	3.4.1	Radio Resources Management	. 56
	3.4.2	PC and Admission Control	. 56
	3.4.3	PC and base-station Assignment (BSA)	. 58
3.5	5 Oute	r-loop PC	. 59
	3.5.1	OPC Framework	. 61
3.6	5 Fast	PC	. 63
	3.6.1	Framework for FPC	. 64
	3.6.2	Important And Common Properties	. 65
	3.6.3	Standard Interference	. 65
	3.6.4	Iterative Convergence to Optimal Power Vector	. 66
3.7	Sumr	nary	. 68
CILLER			
CHAPI	ER FOI	JR - CONTROL STRATEGIES USED IN THE SIMULATIONS	69
4.1	Introc		. 69
4.2	Defin	$\frac{1}{2}$. 69
4.3	Multi	-Target Adaptive PC (MT-PC) Algorithms	. 72
	4.3.1	A QoS-based FPC Algorithm	. 72
	4.3.2	A QoS-based Outer-loop PC (OPC)	80
	4.3.3	A QoS-based Network PC (NPC)	87
4.4	A Sun	nmary of the Multiple-Target (MT) QoS-based PC Algorithm	89
Снарт	er FIV	E - NUMERICAL PERFORMANCE EVALUATION OF A	~
ALC	GORITHN	MS	°C
5.1	Introdu	uction	90
5.2	Descri	Dtion of System Parameters	90
5.3	Simula	ation Results For Unbalanced Step size EDC Alassid	91
	5.3.1	Influence of Multinoth Components	94
	5.3.2	Influence of Doppler Sprood	94
	5.3.3	Influence of Coding Soberror	117
	5.3.4	Influence Of Number Of Descines A	118
	5.3.5	Influence Of Number Of Line	128
	536	Conclusion	130
<u> </u>			145

.

PAGE 11

Снарти	ER SIX - CONCLUSION	147
6.1	Goals of The Dissertation	147
6.2	Overview and Background	149
6.3	A General Power-Sensitive Model for W-CDMA Systems	149
6.4	Framework for Uplink Power Control Techniques	150
6.5	A Multiple-Target Utility-Based PC Strategy	151
6.6	Numerical Performance Evaluation of Adaptive FPC Algorithms	151
6.7	Conclusion	152
Refere	NCES	153
Append	DIX A - 3G UPLINK/DOWNLINK SIMULATION ENVIRONMENT	162
A.1	Link Level Simulation	162
	A.1.1 Simulation Cases	164
A.2	MATLAB Simulation Software	164
	A.2.1 Getting Started	164
	A.2.2 Main Simulation Window	166
	A.2.3 Simulation Environment Configuration	166
	A.2.4 Example	168
Append	IX B - SOURCE CODE OF THE ARUWA SIMULATION PACKAGE	173

LIST OF FIGURES

1.1	Overview of chapter 1	1
1.2	Technology convergence is breaking down barriers between historically	
	separate industry segments	3
1.3	Overview on research background in PC algorithms	6
1.4	Three-level optimization hierarchy: user, intracell and intercell levels	9
1.5	The potential system capacity is affected mainly by both the short-term and	
	the local-mean statistics of SINR	11
1.6	A QoS-based APC with centralized OPC and N output ports \ldots	12
1.7	Radio resource management procedure	13
1.8	Traditional closed-loop FPC configuration	14
1.9	Overview of the dissertation outline	20
2.1	The uplink of a typical multi-media cellular CDMA system	23
2.2	Frame structure for the uplink DPDCH/DPCCH channels	25
2.3	The uplink of a typical cellular CDMA system with FPC algorithm	26
2.4	Transmitter processing for single user	26
2.5	RAKE receiver structure on a single antenna	29
2.6	Adaptive receiver structure	30
2.7	Frame and slot processing for each user	32
2.8	Multi-access interference generator for multi-user W-CDMA systems	33
2.9	A typical wireless channel impairment	40
2.10	Power profile for various channel environments	42
2.11	A typical Rayleigh channel in wireless environment	44
2.12	Original channel effect vs. new lognormal channel	45
2.13	Channel effects after Rayleigh fast fading, lognormal shadowing and path	
-	loss, and slow fading	46
2.14	PC algorithms are the central mechanism for W-CDMA systems	48

LIST OF FIGURES

3.1	RRM algorithms in the base-station	51
3.2	SINR measurement	54
3.3	Radio resource management procedure	56
3.4	OPC procedure	60
4.1	(a) and (b) are the two classes of QoS functions with respect to the	
	bandwidth, (c) is the QoS function with respect to the error rate	70
4.2	Three levels of optimization hierarchy: user, intracell and intercell levels	72
4.3	Effect of FPC on overall BER performance	74
4.4	Traditional PC configuration	74
4.5	SINR outage probability result for an uncontrolled W-CDMA system with	
	an AWGN channel, matched-filter detector and $N = 1$. Initial transmitted	
	power level was setted to be 2W	78
4.6	SINR outage probability result for an uncontrolled W-CDMA system in an	
	AWGN channel, matched-filter detector and $N = 1$. Initial transmitted	
	power level was setted to be 0.5W	79
4.7	Effects of OPC on overall BER performance	80
4.8	A bunched wireless system	81
4.9	A multi-target APC with centralized OPC and N output ports	83
4.10	Relationship between FER[n] and BER[8]	84
4.11	The zone principle	85
4.12	A multi-target APC with N distributed OPC	86
4.13	Cell topology	88
51		00
5.1	EPC at the second secon	
	PPC algorithms in an uncoded W-CDMA system with an AWGN channel,	
50	RX=2, 1=1, RAKE fingers=3, N=32 and matched-filter detector.	96
5.Z	(a) Ideal and (b) practical FPC error-signal pdfs	97
5.5	SINR outage probability simulation results and error-signal pdf for different	
	FPC algorithms. The top figure shows the pdf of DM1 FPC with same	
	settings as BER performance simulation. The bottom figure shows the pdf	
	of DM3 FPC	98

5.4	SINR outage probability simulation results and error-signal pdf for different	
	FPC algorithms. The top figure shows the pdf of perfect FPC with same	
	settings as BER performance simulation. The bottom figure shows the pdf	
	of unDM FPC.	99
5.5	5 SINR outage probability simulation results and error-signal pdf for different	
	FPC algorithms. The top figure shows the pdf of DM2 FPC with same	
	settings as BER performance simulation. The bottom figure shows the pdf	
	of unPC7 FPC.	100
5.6	SINR outage probability simulation results and error-signal pdf for different	
	FPC algorithms. The figure shows the pdf of unPC4 FPC with same settings	
	as BER performance simulation.	101
5.7	SINR outage probability simulation results and error-signal pdf for different	
	FPC algorithms. The top figure shows the pdf of PCM5 FPC with same	
	settings as BER performance simulation. The bottom figure shows the pdf	
	of unPC5 FPC.	102
5.8	Mean variation, standard deviation and range comparisons for different FPC	
	pdf algorithms are depicted in this figure with an AWGN channel, Rx=2,	
	i=1, RAKE fingers=3, N=32 and matched-filtered W-CDMA system	103
5.9	Influence of multipath components. BER performance curves of different	
	FPC algorithms in an uncoded W-CDMA system with a vehicular channel,	
	Rx=2, i=1, RAKE fingers=3, N=32 and matched-filter detector.	104
5.10	Influence of received SINR values on the BER performance of a W-CDMA	
	cellular system. Blue line shows the average received SINR value for a	
	frame; red line shows the number of errors occurring within a frame. Burst	
	errors occur more frequently when received SINR is low.	106
5.11	Mean variation, standard deviation and range comparisons for different FPC	
	pdf algorithms with a vehicular channel, Rx=2, i=1, RAKE fingers=3, N=32	
	and matched-filtered W-CDMA system.	107
5.12	SINR outage probability simulation results and error-signal pdf for different	
	FPC algorithms. The top figure shows the pdf of DM1 FPC with same	
	settings as BER performance simulation. The bottom figure shows the pdf	
	of DM3 FPC	08

5.1	3 SINR outage probability simulation results and error-signal pdf for different	
	FPC algorithms. The top figure shows the pdf of PCM5 FPC with same	
	settings as BER performance simulation. The bottom figure shows the pdf	
	of unDM FPC.	109
5.1	4 SINR outage probability simulation results and error-signal pdf for different	107
	FPC algorithms. The top figure shows the pdf of DM2 FPC with same	
	settings as BER performance simulation. The bottom figure shows the pdf	
	of unPC6 FPC.	110
5.1	5 SINR outage probability simulation results and error-signal pdf for different	110
	FPC algorithms. The top figure shows the pdf of perfect FPC with same	
	settings as BER performance simulation. The bottom figure shows the pdf	
	of unPC4 FPC.	111
5.10	6 Different FPC Algorithms vs. measured SINR in an AWGN channel. The	
	top figure shows the results without a coding scheme; the bottom figure	
	shows the results with a convolutional coding scheme.	112
5.17	7 Influence of multipath components. BER performance curves of different	
	FPC algorithms in an uncoded W-CDMA system with an outdoor channel.	
	Rx=2, i=1, RAKE fingers=3, N=32 and matched-filter detector.	113
5.18	Mean variation, standard deviation and range comparisons for different FPC	
	pdf algorithms with an outdoor channel, $Rx=2$, $i=1$, RAKE fingers=3, N=32	
	and matched-filtered W-CDMA system.	114
5.19	Comparison of performance for different FPC algorithms in three channel	
	conditions	116
5.20	Influence of Doppler spread. BER performance curves of different FPC	
	algorithms in a uncoded, three-vehicle speed, W-CDMA system with an	
	outdoor channel, Rx=2, i=1, RAKE fingers=3, N=32 and matched-filter	
	detector	117
5.21	BER performance for FPC algorithms in an AWGN channel with uncoded,	
	convolutional and Turbo coding. The top figure shows the improvement of	
	BER performance on DM1 FPC with different coding schemes. The bottom	
	figure shows the improvement of BER performance of unPC4 FPC with	
	different coding schemes.	20

5.2	22 BER performance for FPC algorithms in an AWGN channel with uncoded,	
	convolutional and Turbo coding. The topional and Turbo coding. The top	
	BER performance on unDM FPC with different coding schemes. The bottom	
	figure shows the improvement of BER performance of unPC6 FPC with	
	different coding schemes.	121
5.2	3 Influence of coding schemes. BER performance curves of different FPC	
	algorithms in a Turbo-coded W-CDMA system with an AWGN channel,	
	Rx=2, i=1, RAKE fingers=3, N=32 and matched-filter detector.	122
5.2	4 Influence of coding schemes. BER performance curves of different FPC	
	algorithms in a Turbo-coded, W-CDMA system with an outdoor channel,	
	Rx=2, i=1, RAKE fingers=3, N=32 and matched-filter detector.	125
5.2	5 Influence of coding schemes. BER performance curves of different FPC	
	algorithms in a convolutional-coded W-CDMA system with the outdoor	
	channel, Rx=2, i=1, RAKE fingers=3, N=32 and matched-filter detector	126
5.20	5 Influence of coding schemes. BER performance curves of different FPC	
	algorithms in a convolutional-coded W-CDMA system with a vehicular	
	channel, Rx=2, i=1, RAKE fingers=3, N=32 and matched-filter detector	127
5.27	⁷ Different FPC algorithms vs. BER performance. The top figure shows the	
	results with two receiver antennae. The bottom figure shows the results with	
	one receiver-antenna in a convolutional-coded system with a matched-filter	
	detector in an outdoor channel	129
5.28	Influence of number of users. The top figure shows the BER performance	
	results with a one-user, Turbo-coded W-CDMA system with an AWGN	
	channel, Rx=2, RAKE fingers=3, N=32 and matched-filter detector. The	
	bottom figure shows the BER performance results with a two-user,	
	Turbo-coded W-CDMA system and same settings	133
5.29	Influence of number of users. The top figure shows the BER performance	
	results with a four-user, Turbo-coded W-CDMA system with an AWGN	
	channel, Rx=2, RAKE fingers=3, N=32 and matched-filter detector.	134
5.30	Influence of number of users. BER performance curve of DM1 FPC	
	algorithm in a Turbo-coded, W-CDMA system with an AWGN channel	134
5.31	Influence of number of users. BER performance curve of unDM FPC	
	algorithm in a Turbo-coded, W-CDMA system with an AWGN channel	135

5.3	2 Influence of number of users. BER performance curve of PCM5 FPC	
	algorithm in a Turbo-coded, W-CDMA system with an AWGN channel	135
5.3	3 Influence of number of users. BER performance curve of unPC4 FPC	
	algorithm in a Turbo-coded, W-CDMA system with an AWGN channel	136
5.3	4 Influence of number of users. BER performance curve of unPC6 FPC	
	algorithm in a Turbo-coded, W-CDMA system with an AWGN channel.	136
5.3	5 Influence of number of users. BER performance curve of different FPC	
	algorithms in a Turbo-coded, W-CDMA system with an AWGN channel,	
	Rx=2, i=2, RAKE fingers=3, N=32 and matched-filter detector.	137
5.3	6 Influence of number of users. BER performance curve of different FPC	
	algorithms in a uncoded, W-CDMA system with an outdoor channel, Rx=2,	
	i=1, RAKE fingers=3, N=32 and matched-filter detector.	138
5.37	7 Influence of number of users. BER performance curve of different FPC	
	algorithms in a Turbo-coded W-CDMA system with an outdoor channel,	
	Rx=2, i=2, RAKE fingers=3, N=32 and matched-filter detector.	140
5.38	Influence of number of users. BER performance curve of DM FPC algorithm	
	in a Turbo-coded, W-CDMA system with an outdoor channel.	141
5.39	Influence of number of users. BER performance curve of unDM FPC	
	algorithm in a Turbo-coded W-CDMA system with an outdoor channel	141
5.40	Influence of number of users. BER performance curve of DM2 FPC	
	algorithm in a Turbo-coded W-CDMA system with an outdoor channel	142
5.41	Influence of number of users. BER performance curve of DM3 FPC	
	algorithm in a Turbo-coded, W-CDMA system with an outdoor channel	142
5.42	Influence of number of users. BER performance curve of PCM5 FPC	
	algorithm in a Turbo-coded, W-CDMA system with an outdoor channel	143
5.43	Influence of number of users. BER performance curve of unPC4 FPC	
	algorithm in a Turbo-coded, W-CDMA system with an outdoor channel.	143
5.44	Influence of number of users. BER performance curve of unPC6 FPC	
	algorithm in a Turbo-coded, W-CDMA system with an outdoor channel	144
A.1	Overall block diagram of the uplink.	170
A.2	Overall block diagram of the downlink.	171
A.3	Main interactive simulation platform window.	172
A.4	Simulation platform configuration window.	172

LIST OF TABLES

2.1	FDD W-CDMA radio-link parameters for this dissertation	24
2.2	UMTS indoor channel tapped delay-line parameters.	42
2.3	UMTS outdoor channel tapped delay-line parameters.	43
2.4	UMTS vehicular channel tapped delay-line parameters.	43
3.1	The definition of notations used in this dissertation for single-media	
	W-CDMA systems.	53
3.2	The definition of notations used for linear-receiver SINR-balancing PC	62
3.3	The definition of various interference constraints.	64
5.1	FDD W-CDMA radio-link parameters.	92
5.2	BER performance of different FPC algorithms in an uncoded W-CDMA	
	system with the AWGN channel at 16 dB.	95
5.3	BER performance of different FPC algorithms in an uncoded W-CDMA	
	system with vehicular channel at 20 dB.	106
5.4	BER performance of different FPC algorithms in a convolutional-coded	
	W-CDMA system with an AWGN channel at 5 dB.	118
5.5	BER performance of different FPC algorithms in a Turbo-coded W-CDMA	
	system with an AWGN channel at 5 dB.	119
5.6	BER performance of different FPC algorithms in a W-CDMA system with	
	an outdoor channel and Turbo code at 3.5 dB.	125
5.7	BER performance of different FPC algorithms in a one-user, Turbo-coded,	
	W-CDMA system with an AWGN channel at 4 dB.	131
5.8	BER performance of different FPC algorithms in a two-users, Turbo-coded,	
	W-CDMA system with an AWGN channel at 4 dB.	131
5.9	BER performance of different FPC algorithms in a four-users, Turbo-coded,	
	W-CDMA system with an AWGN channel at 4 dB.	132

5.10	BER performance of different FPC algorithms in a one-user, Turbo-coded.	
	W-CDMA system with an outdoor channel at 4 dB.	138
5.11	BER performance of different FPC algorithms in a two-users, Turbo-coded.	200
	W-CDMA system with an outdoor channel at 4 dB	139
A.1	Simulation service classes.	164
A.2	Implemented single- and multiuser detection, transmit-diversity and channel	104
	coding techniques and corresponding labels.	165

ABBREVIATIONS

3GPP	3 rd Generation Partnership Project (produces W-CDMA standard)
ACTS	Advanced Communication Technologies and Systems
	EU Research Projects Framework
APC	Adaptive Power Control
PSTN	Fixed Public Telephone Network
ARIB	Association of Radio Industries and Businesses (Japan)
AWGN	Asymmetric Digital Subscriber Loop
BER	Bit Error Rate
BPSK	Binary Phase Shift Keying
BS	Base Station
BSA	Base Station Assignment
cdf	Cumulative Distribution Function
CDMA	Code Division Multiple Access
CIR	Carrier to Interference Ratio
CRC	Cyclic Redundancy Check
DCH	Dedicated Channel
DM	Delta Modulation
DS	Digital Signal
DPA	Diversity Power Assignment
DPCCH	Dedicated Physical Control Channel
DPDCH	Dedicated Physical Data Channel
ETSI	European Telecommunications Standards Institute
FA	Fixed Assignment
FDD	Frequency Division Duplex
FDMA	Frequency Division Multiple Access
FER	Frame Error Rate
FPC	Fast Power Control

iid	Independent, Identically Distributed
IPC	Inner-loop Power Control
IMT-2000	International Mobile Telecommunications by the year 2000
ITU	International Telecommunications Union
LOS	Line of Sight
MA	Multi-Access
MAC	Medium Access Control
MAI	Multi-Access Interference
MIP	Multipath Intensity Profile
MPA	Minimal Power Assignment
MRC	Maximum Ratio Combining
MROPA	Multi-rate Outer Power Assignment
MS	Mobile Station
MT-PC	Multi-Target Adaptive Power Control
MUD	Multiuser Detection
MUPC	Multi-target Utility-based Power Control
N-CDMA	Narrowband Code Division Multiple Access
NPC	Network Power Control
OPC	Outer-loop Power Control
OVSF	Orthogonal Variable Spreading Factor
PC	Power Control
PCM	Pulse Coded Modulation
PDA	Power Distributed Algorithm
pdf	Probability Density Function
QoS	Quality of Service
QPSK	Quadrature Phase Shift Keying
RE	Resource Estimator
RNC	Radio Network Controller
RRM	Radio Resource Management
Rx	Received Signal
SIR	Signal to Interference Ratio
SINR	Signal to Interference and Noise Ratio
SNR	Signal to Noise Ratio
SS	Spread Spectrum

ABBREVIATIONS

STOPA Space-Time Processing and Outer Power Assignment

TDMA Time Division Multiple Access

TPC Transmitted Power Control

Tx Transmission Signal

ULA Uniform Linear Array

UMTS Universal Mobile Telecommunications Service

UTRA UMTS Terrestrial Radio Access (ETSI)

W-CDMA Wideband Code Division Multiple Access

LIST OF SYMBOLS

K	Number of base stations
k	Assigned base station
Ν	Number of active users within base station k
i	Reference user
W	total bandwidth
$\mathbf{P} = [P_1, P_2, \dots P_N]$	transmitted power vector for user i
$P_i \leq P_i^{\max}$	maximum power level
$\mathbf{R} = [R_1, R_2, \dots R_N]$	Vector of rates
E_b/N_o	SINR
γ	BER/FER requirement
R	The vector of rates
$b_i(l)$	Information symbol stream
$d_i(au)$	The sequence output at encoder and interleaver.
l	Number of user data
k/n	A rate k/n coding scheme
L	Symbol Interval
$1/T_b$	Data rate at symbols per seconds (sps).
$1/T_d = n/kT_b$	Coded data rate at symbols per seconds (sps).
$1/T_c = C/T_d = nC/kT_b$	Chips per second (cps)
au	Symbol interval index.
C	Spreading Gain.
$G = \frac{1/T_c}{1/T_b} = \frac{nCT_b}{kT_b} = \frac{nC}{k}$	Processing Gain.
$s_i(au)$	Spreading sequence.
$x_i(\tau) = d_i(\tau) * (\mathbf{u}_1 \otimes \mathbf{s}_i(\tau)) * \mathbf{p}$	Transmitted signal for user i .
$\mathbf{r} = \sum_{\tau=0}^{L-1} \sum_{i=1}^{N} \mathbf{x}_i(\tau) + \mathbf{n}$	The received signal after A/D conversion.
n	A iid complex Gaussian random variables of