INTRACELLULAR CALCIUM AND TRANSMEMBRANE CALCIUM FLUXES IN CHRONIC RENAL FAILURE PATIENTS

ALIDA MARIA KOORTS

Submitted in fulfillment of the requirements for the degree MSc
Physiology in the Faculty of Medicine, University of Pretoria

June 2000
ACKNOWLEDGEMENTS

Prof M Viljoen for her assistance in technique evaluation, guidance and support

Prof MC Kruger for her assistance in technique evaluation and support

The staff of the Renal Unit of the Pretoria Academic Hospital in the assistance of obtaining of the patient's blood

Prof DH van Papendorp for the opportunity to complete the studies in the Department of Physiology

The staff of the Electron Microscopy Unit of the University of Pretoria, in particular Alan Hall, for the assistance with the final transmission electron microscopy preparations

Dr. P Becker for his advice on the statistical analysis
Dedicated to my parents
ABSTRACT

Candidate: AM Koorts
Title: Intracellular calcium and transmembrane calcium fluxes in chronic renal failure patients
Promoters: Prof M Viljoen / Prof MC Kruger
Degree: MSc Physiology

Intracellular calcium is a major determinant of a wide variety of cell functions and thus of organ function. In order to get a clear picture of the intracellular calcium status it is preferable to assess the content of the various intracellular calcium pools as well as the characteristics of the transmembrane calcium movements, i.e., the magnitude of the transmembrane Ca\(^{2+}\) flux upon stimulation and the rate of the subsequent return to baseline levels. The first aim of this study was to establish and evaluate the methods in the laboratory. The methods investigated include atomic absorption spectrometry, graphite furnace atomic absorption spectrometry and inductively coupled plasma mass spectrometry for the determination of the total cell calcium content, fluorescence spectrophotometry for the determinations of intracellular free Ca\(^{2+}\) and transmembrane Ca\(^{2+}\) movements and transmission electron microscopy for the localisation of intracellular calcium. The methods eventually identified as feasible included fluorescence spectrophotometry for the determination of intracellular free Ca\(^{2+}\) and transmembrane Ca\(^{2+}\) movements and transmission electron microscopy for the localisation of intracellular calcium. The newly developed fluorescent calcium indicator, fura-PE3, was presently shown to be the most reliable fluorescent indicator for the intracellular free Ca\(^{2+}\) determinations. The best method for the calcium localisation by transmission electron microscopy was an adaptation of the antimonate precipitation technique. The following objectives were set in order to contribute to the knowledge in chronic renal failure; examination of the intracellular free Ca\(^{2+}\) content in the neutrophils of end stage renal failure patients on maintenance haemodialysis treatment, as the result of renal failure, dialysis treatment and medication combined; examination of the characteristics of the transmembrane Ca\(^{2+}\) movements; investigation of the intracellular calcium distribution in the neutrophils; exploration of a possible link between the alterations in intracellular calcium status and factors known to influence the calcium status, including the lipid composition of the membrane, the oxidative status as reflected by anti-oxidant vitamin levels, as well as the levels of parathyroid hormone, and i onised serum calcium.

This study involved 14 chronic renal failure patients on maintenance haemodialysis. An increase in intracellular free Ca\(^{2+}\), the magnitude of the transmembrane Ca\(^{2+}\) flux upon IMLP stimulation and an increase in the rate of the subsequent decrease in intracellular free calcium were found. In separating the patients into those receiving rHuEPO and those not receiving rHuEPO, it was seen that the significance in the increase in intracellular free Ca\(^{2+}\) could be ascribed to the values obtained in those patients receiving rHuEPO – despite the fact that they were the only patients receiving calcium channel blockers. No overt indications of oxidative stress could be detected by anti-oxidant vitamin levels. Nevertheless, a decrease in the content of specific membrane fatty acids occurred, supporting the previous suggestions of the presence of a mild chronic inflammatory condition in the chronic renal failure patient on maintenance haemodialysis treatment. These results suggest that factors other than those associated with ureaemia, such as rHuEPO administration, might result in an increase in intracellular free Ca\(^{2+}\) in cells of CRF/MHT patients. The magnitude of the rHuEPO-induced increase in intracellular free Ca\(^{2+}\) and the effects of the various calcium channel blockers need urgent further investigation as ineffective counteraction of the rHuEPO effect, as indicated by the relative ineffectivity of Norvasc, may have serious side-effects.

Keywords: Intracellular calcium, fluorescent calcium indicator, transmission electron microscopy, haemodialysis patients, recombinant human erythropoietin
ABSTRAK

Kandidaat: AM Koorts
Promotors: Prof M Viljoen / Prof MC Kruger
Graad: MSc Fisiologie

Intrasellulière kalsium speel ’n hoofrol in die regulering van verskeie selffunksies en dus van orgaanfunksie. Om ’n duidelike beeld te bekom van die intrasellulière kalsium status is dit verkieslik nodig om die verskeie intrasellulière kalsiumstore te ondersoek asook die eienskappe van die beweging van kalsium oor die membraan, insluitend die grootte van die kalsium fluxes met stimulering van die sel en die tempo van die daaropvolgende verlaging na basaal vlakke. Die eerste doel van hierdie studie was die daargestelling en evaluerings van die metodes in die laboratorium. Die volgende metodes was ondersoek, atoom absorpsie spektrometrie, grafiet-oond tumoor absorpsie spektrometrie, induktiewekoppelde plasma massa spektrometrie vir die bepaling van die totale kalsium inhoud in die sel, fluoressente spektrofotometrie vir die bepaling van intrasellulière vry kalsium en kalsium fluxes en transmissie elektron mikroskopies vir die lokalisering van intrasellulière kalsium. Die metodes wat as voldoende geïdentifiseer was het die volgende ingesluit fluoressente specetrofotometrie vir die bepaling van intrasellulière vry kalsium en kalsium fluxes en transmissie elektron mikroskopies vir die lokalisering van intrasellulière kalsium. Die onlangs ontwikkelde fluoressente kalsium indikator fura-PE3 was as die mees betroubare fluoressente indikator vir kalsium aangewys, Die mees betroubare metode vir kalsium lokalisering was ’n adaptasie van die antimon-presipiterings tegniek. Die volgende was as mikpunte gestel vir die moontlike bydrae van nuwe inligting t.o.v. chroniese nierverskakings: die ondersoek van die intrasellulière vry Ca²⁺ inhoud in die neutrofiel van eindstadium nierverskakings pasiënte wat hemodialisie behandelings ontvang, soos bepaal deur die gesamentlike invloed van nierverskaking, dialise en medikasie; die ondersoek van die kalsium van die kalsium fluxe; die ondersoek van die intrasellulière kalsium distribusie in die neutrofiel; ondersoek na die moontlike verband tussen die verandering in die intrasellulière kalsiumstatus en faktore wat die kalsiumstatus kan beïnvloed insluitend die volgende, die lipied komposiete van die membraan, die oksidatiewe skade soos gereflekteer deur die anti-oksidatiewe vitamien vlakke, asook paratiroidhormoonvlakke en geioniseerde serum kalsium.

Veertien chroniese nierverskakingspasiënte wat hemodialisie behandelings ontvang was ingesluit in die studie. Die volgende verandering is aangetoon, ’n verhoging in die intrasellulière vry kalsiumvlakke, ’n verhoging in die grootte van die intrasellulière kalsium fluxes met FMLP stimulering en ’n verhoogde tempo van die daaropvolgende verlaging in intrasellulière vry kalsium. Met die verdeling van die pasiënte op grond van eritropoëtiën behandeling of nie kan die waargenome verhoging in intrasellulière vry kalsium toegeskryf word aan die pasiënte wat eritropoëtiën ontvang, t.s.v. die feit dat hierdie pasiënte kalsium kanaal blokkers ontvang. Die vitamienvlakke duie nie op ’n verhoging in oksidatiewe stres nie, alhoewel ’n verlaging in spesifieke vetsure in die membraan aangetoon word. Hierdie verlaging in spesifieke membraan vetsure ondersteun vorige aanduidings van ’n chroniese lae-graadse inflammatoriese toestand teenwoordig in chroniese nierverskakings pasiënte wat hemodialisie behandelings ontvang. Die resultate impliseer dat faktore anders as die wat met uremie geassosieer word, soos rekombinante eritropoëtiën toediening, moontlik ’n verhoging in intrasellulière vry kalsium in selle van chroniese nierverskakings pasiënte wat hemodialisie behandeling ontvang mag veroorsaak. Die omvang van die rekombinante eritropoëtiën geïnduseerde toename in intrasellulære vry kalsium en die effekte van verskeie kalsium kanaal blokkers benodig dringende verdere ondersoek omrede die oneffectiewe blokkering van die rekombinante eritropoëtiën effekte, soos tans aangedui vir Norvasc, mag lei tot ernstige newe-effekte.

Sleuteltermes: Intrasellulière kalsium, fluoressente kalsium indikator, transmissie elektron mikroskopies, hemodialisie pasiënte, menslike rekombinante eritropoëtiën
LIST OF CONTENTS

CHAPTER 1

Theoretical background and aim of the study

1) Intracellular calcium signal transduction
 page 2

2) Intracellular calcium dyshomeostasis
 page 3

3) Manifestations of intracellular calcium dyshomeostasis
 page 5

4) Intracellular calcium status in chronic renal failure
 page 16

4.1) Pathological factors associated with CRF possibly contributing to the derangements in intracellular calcium homeostasis
 page 16

4.1.1) Secondary hyperparathyroidism
 page 16

4.1.2) Oxidative stress
 page 20

4.1.3) Inhibition of the calcium pump
 page 23

4.1.4) Inhibition of the Na⁺-K⁺-ATPase
 page 23

4.2) Results of an elevation in basal intracellular free calcium in chronic renal failure
 page 24

4.2.1) Deranged membrane phospholipid metabolism
 page 24

4.2.2) Deranged membrane fatty acid synthesis
 page 24

4.2.3) Decreased ATP production
 page 25

5) Aim of this study
 page 25

References
 page 28
CHAPTER 2

Theoretical background and experimental evaluation of the techniques for
the determination of intracellular free calcium, transmembrane calcium flux
and intracellular distribution of calcium

1) Introduction
1.1) Basal intracellular free calcium and transmembrane calcium fluxes upon agonist stimulation
1.2) Total calcium content of the neutrophil
1.3) Localisation of intracellular calcium
1.4) Spatial and temporal measurements of intracellular free calcium changes using video-rate confocal microscopy

2) The measurement of basal intracellular free calcium and transmembrane calcium fluxes upon agonist stimulation by the employment of the fluorescent calcium indicators

2.1) Theoretical background
2.1.1) Biological fluorescence measurements
2.1.2) The fluorescence calcium indicators

i) The characteristics of the fluorescent calcium indicators
The structure of the fluorescent calcium indicators
The specificity of the fluorescent calcium indicators
Negligible interference of hydrogen ion binding with calcium binding at physiological pH
The fluorescence properties of the fluorescent calcium indicators

ii) The introduction of the fluorescent calcium indicators into the cytosol of the cell

page 38
page 38
page 39
page 40
page 40
page 41
page 41
page 43
page 43
page 43
page 44
page 44
page 45
page 45
Problems associated with the introduction of the fluorescent calcium indicator into the cytosol of the cell
Synthesis of a membrane-permeable form of the fluorescent calcium indicator
Loading efficiency of different cell types

iii) The fluorescent calcium indicators as intracellular calcium binding molecules

iv) The fluorescent calcium indicator-calcium chelation complex

v) A change in the fluorescence spectral properties of the indicator caused by the binding of calcium

vi) The ratio methodology for measuring intracellular free calcium concentrations using the fluorescent calcium indicators

vii) Calculation of intracellular free calcium concentrations
Calibration of the obtained fluorescence values
Autofluorescence

viii) Processes interfering with the accurate measurement of intracellular free calcium concentrations using the fluorescent calcium indicators

a) Incomplete hydrolysis of the acetoxy methyl ester bonds

b) Unwanted binding of the fluorescent calcium indicators to cellular constituents

c) Differences in the uptake and cellular processing of the indicators in various cell types

d) Sequestration of the indicator into intracellular organelles

viii
Crossing of intracellular organelle membranes by the lipophilic acetoxy methyl ester derivative

Endocytosis as the means of sequestering the fluorescent calcium indicator into intracellular organelles

Sequestration of the fluorescent calcium indicator into intracellular organelles by an anion transporter

e) Leakage of the penta-anion form of the fluorescent calcium indicator into the extracellular medium

f) Photobleaching of the fluorescent calcium indicators

g) Different fluorescence properties of the calcium indicator in the cytosolic milieu as compared to standard calibration solutions

ix) Available fluorescent calcium indicators / advantages and disadvantages

2.2) Experimental evaluation of the technique used in the present study

2.2.1) Materials and methods

a) Isolation of the neutrophils

b) Loading of the fluorescent calcium indicators

c) Fluorescence intensity determinations

2.2.2) Initial results according to the method

2.2.3) In search of the most suitable fluorescent calcium indicator for intracellular free calcium measurements in the neutrophil

2.2.4) The following evaluations were performed

2.2.5) Experimental evaluations

i) Evaluation of the loading procedures – with and without BSA
ii) Evaluation of the loading procedures – with and without agitation

iii) The concentration of the acetoxymethyl ester form of the indicator in the loading medium and the incubation time and temperature for loading of fura-2/AM and fura-PE3/AM

iv) Comparison of determined intracellular free calcium concentrations in neutrophil populations with different quantities of the fluorescent calcium indicator in the cytosol
The obtainment of different cytosolic indicator quantities
The obtainment of similar intracellular free calcium concentrations

v) Determination of the extent of leakage via the nickel quench technique for the indicators fura-2 and fura-PE3

vi) Determination of the extent of the inaccurately measured intracellular free calcium concentration as a result of the leakage of the indicator into the extracellular medium

vii) Characterisation of the leakage process
The leakage process is temperature dependent
The leakage process is independent of magnetic bar stirring in the cuvette

Determination of the possible indicator leakage occurring during a 1000s period

viii) Investigation of the possible interference from heavy metals present in the cytosol with the determination of intracellular free calcium
ix) Evaluation of the calibration procedure page 84
Manipulation of intracellular free calcium page 86
congenital concentrations in order to calibrate the fluorescence
ratio values in situ – a suitable calcium ionophore
The calcium ionophore: A23187 page 86
The calcium ionophore: ionomycin page 87
x) Evaluation of the reproducibility of the technique page 91
for the determination of intracellular free calcium
and transmembrane calcium fluxes when performed
over a time period
xi) Evaluation of the sensitivity of the technique for the page 93
determination of a change in intracellular free
calcium
Determination of neutrophil intracellular free page 93
calcium in patients
2.2.6) Discussion page 96
2.2.7) Conclusions – Optimised protocol page 105
Isolation of the neutrophils page 105
Counting of the neutrophils page 106
Loading of the neutrophils with the fura-PE3/ page 106
acetoxy methyl ester
Measurement of the fluorescence intensities page 107
fMLP stimulation of the neutrophils page 107
Calibration of the fluorescence ratio data page 107
Calculation of the intracellular free calcium page 108
concentrations
3) Intracellular calcium localisation explored in the page 109
neutrophil via transmission electron microscopy
3.1) Experimental evaluation of different neutrophil preparation procedures for TEM suitable for
intracellular calcium localisation

3.1.1) Methods
 Isolation of the neutrophils
 Formation of the neutrophil pellet suitable for preparation for TEM
 TEM preparation procedure

3.1.2) Results
 1) General
 2) Characteristic features of the neutrophil as visualised with the transmission electron microscope

3.1.3) Discussion

3.2) Experimental evaluation of the calcium precipitation reaction: phosphate-pyroantimonate and oxalate-pyroantimonate reactions

3.2.1) Methods
 Neutrophil isolations
 Formation of the neutrophil pellet suitable for preparation for TEM
 TEM preparation procedure for the localisation of intracellular calcium
 Control reactions

3.2.2) Results
 1) General
 2) Calcium distribution patterns obtained with phosphate-pyroantimonate and oxalate-pyroantimonate calcium precipitation reactions
 3) Control reactions

3.2.3) Discussion

3.3) Conclusions – Optimised protocol
CHAPTER 3
Materials and Methods

A) The determination of intracellular free Ca\(^{2+}\) and transmembrane Ca\(^{2+}\) fluxes in the neutrophils
 Materials \hspace{1cm} page 137
 Method \hspace{1cm} page 138
 Isolation of the neutrophils \hspace{1cm} page 138
 Counting of the neutrophils \hspace{1cm} page 139

B) The localisation of intracellular calcium in the neutrophil
 Materials \hspace{1cm} page 140

C) Red blood cell preparation for membrane phospholipid and fatty acid determinations
 page 141

D) EDTA plasma preparation for vitamin A, E and C determinations
 page 141

E) PTH determinations \hspace{1cm} page 142
F) Albumin determinations \hspace{1cm} page 142
G) Total serum calcium \hspace{1cm} page 143
H) Ionised serum calcium \hspace{1cm} page 143

References \hspace{1cm} page 144
CHAPTER 4

Results

A) Clinical and biochemical background of the maintenance haemodialysis patients included in the study page 146
B) Intracellular free Ca2+ and transmembrane Ca2+ fluxes in the neutrophils of maintenance haemodialysis patients and control subjects page 149
C) Erythrocyte membrane fatty acid and phospholipid composition of the patients and control subjects page 162
D) Other biochemical parameters which may influence the calcium status of neutrophils page 191
E) Correlations between variables page 198
F) Calcium distribution in the neutrophil page 201
References page 205

CHAPTER 5

Discussion and Conclusions

Discussion page 206
Conclusions page 233
Suggestions for future research page 234
References page 235
LIST OF TABLES

CHAPTER 1

Table 1. Intracellular free Ca2+ in various cell types in humans and rats with CRF page 17

CHAPTER 4

Table 1. Clinical information of the maintenance haemodialysis patients (MHT) page 148
Table 2. Biochemical values of the maintenance haemodialysis patients (MHT) page 150
Table 3. Circulatory characteristics of the maintenance haemodialysis patients (MHT) page 151
Table 4. Intracellular free calcium and transmembrane calcium fluxes of the patients and control subjects page 156
Table 5. Statistical comparison between the MHTtotal patients and control subjects page 157
Table 6. Statistical comparison between the MHTnon-epo patients, MHTepo patients and control subjects page 158
Table 7. Erythrocyte membrane fatty acid and phospholipid composition of patients and control subjects page 164
Table 8. Statistical comparison between the MHTtotal patients and control subjects page 169
Table 9. Statistical comparison between the MHTnon-epo patients, MHTepo patients and control subjects page 174
Table 10. Other biochemical parameters which may influence the calcium status of neutrophils

Table 11. Statistical comparison between the MHTtotal patients and control subjects

Table 12. Statistical comparison between the MHTnon-epo patients, MHTepo patients and control subjects

Table 13. Correlations between variables for MHTtotal patients
LIST OF FIGURES

CHAPTER 2

Figure 1. Different fluorescence intensities obtained as a result of loading with and without BSA page 68

Figure 2. Different fluorescence intensities obtained as a result of continuous agitation or no agitation during the loading period page 69

Figure 3. Determination of intracellular free calcium by employing fura-2 page 71

Figure 4. Too high fluorescence intensities obtained for instrument detection page 72

Figure 5. Determination of intracellular free calcium by employing fura-PE3 page 72

Figure 6. Different fluorescence calcium indicator quantities obtained as a result of different acetoxy methyl ester derivative concentrations in the loading medium page 74

Figure 7. Similar intracellular free calcium concentrations obtained page 75

Figure 8. Decrease in the ratio value upon nickel quenching of fura-2 molecules in the extracellular medium page 77

Figure 9. Decrease in the ratio value upon nickel quenching of fura-2 molecules in the extracellular medium page 77

Figure 10. Decrease in the ratio value upon nickel quenching of fura-PE3 molecules in the extracellular medium page 78

Figure 11. Decrease in the ratio value upon nickel quenching of fura-PE3 molecules in the extracellular medium page 79
quenching of fura-PE3 molecules in the extracellular medium

Figure 12. The extent of the inaccurately determined intracellular free calcium concentrations as a result of fluorescent calcium indicator leakage

Figure 13. An increase in the rate of indicator leakage due to the rise in temperature

Figure 14. Comparison of the rates of the leakage process for the fluorescent calcium indicator as a result of magnetic bar stirring

Figure 15. Constant ratio values during a similar time period as for intracellular free calcium determinations in the patients and control subjects

Figure 16. An end of the experiment calibration procedure, the calcium indicator is released into the extracellular medium where the calcium concentration is subsequently manipulated

Figure 17. The addition of the calcium ionophore A23187 in order to equilibrate the intracellular free calcium with extracellular medium calcium

Figure 18. The addition of the calcium ionophore A23187 in order to equilibrate intracellular free calcium with extracellular medium calcium

Figure 19. The addition of ionomycin in order to equilibrate intracellular calcium with extracellular medium calcium

Figure 20. An increase in the ratio value upon the
addition of TritonX-100 after the addition of ionomycin

Figure 21. An insignificant increase in the 340 nm wavelength intensity and a larger decrease in the 380 nm wavelength intensity incompatible with a rise in intracellular free calcium

Figure 22. Addition of a EGTA/Tris solution in order to attain minimum calcium concentrations

Figure 23. The attainment of reproducible results in the same subject on different occasions

Figure 24. The attainment of reproducible results for different subjects on different occasions

Figure 25. A decrease in intracellular free calcium and transmembrane calcium flux upon partial recovery of a septic patient

Figure 26. The determination of extremely high basal intracellular free calcium and transmembrane calcium flux in a septic patient

Figure 27. A decrease in basal intracellular free calcium and an increase in the transmembrane calcium flux of a septic patient with the deterioration of the patient’s condition

Figure 28. A decrease in basal intracellular free calcium and a decrease in the transmembrane calcium flux in a septic patient, the patient’s condition improved

Figure 29. Protocols for the neutrophil transmission electron microscopy preparation procedures

Figure 30. Electron microscopy photographs indicating suitable TEM neutrophil preparations for
intracellular calcium localisation studies

Figure 31. Protocols for the intracellular calcium localisation procedures page 122

Figure 32. Electron microscopy photographs indicating calcium-pyroantimonate precipitate formation in neutrophils page 124

Figure 33. Electron microscopy photographs indicating the complete disintegration of the calcium-pyroantimonate precipitates and the subsequent formation of voids upon EDTA addition in neutrophils page 126

CHAPTER 4

Figure 1. Real-time intracellular free Ca$^{2+}$ determinations for the patients and control subjects page 152

Figure 2. Box and whisker plot – intracellular free calcium (nM) page 159

Figure 3. Box and whisker plot – transmembrane calcium flux (nM) page 160

Figure 4. Box and whisker plot – rate of intracellular free calcium decrease (nM/s) page 160

Figure 5. Box and whisker plot – intracellular free calcium (nM) page 161

Figure 6. Scatter plot – intracellular free calcium (nM) page 162

Figure 7. Box and whisker plot – total phospholipids (µg/ml packed cells) page 182

Figure 8. Box and whisker plot – SM (µg/ml packed cells) page 183

Figure 9. Box and whisker plot – PEA (µg/ml packed cells) page 183

xx
Figure 10. Box and whisker plot – PC-P page 184
Figure 11. Box and whisker plot – 22:0 (weight %) page 184
Figure 12. Box and whisker plot – MUFA’s (weight %) page 185
Figure 13. Box and whisker plot – 18:1 (weight %) page 186
Figure 14. Box and whisker plot – n-9 20:1 (weight %) page 186
Figure 15. Box and whisker plot – n-9 22:1 (weight %) page 187
Figure 16. Box and whisker plot – PUFA’s (weight %) page 187
Figure 17. Box and whisker plot – n-6 fatty acids (weight %) page 188
Figure 18. Box and whisker plot – n-6 18:2 (weight %) page 189
Figure 19. Box and whisker plot – n-6 20:3 (weight %) page 189
Figure 20. Box and whisker plot – n-6 20:4 (weight %) page 190
Figure 21. Box and whisker plot – n-3 20:5 (weight %) page 190
Figure 22. Box and whisker plot – PUFA’s/SFA’s (weight %) page 191
Figure 23. Box and whisker plot – PTH (ng/l) page 195
Figure 24. Scatter plot – vitamin C (μmol/l) page 196
Figure 25. Box and whisker plot – vitamin A (μmol/l) page 196
Figure 26. Box and whisker plot – ionised serum calcium (mmol/l) page 197
Figure 27. Box and whisker plot – vitamin C (μmol/l) page 198
Figure 28. Electron microscopy photographs indicating the localisation of intracellular calcium in the cytosol, in the nucleus and in the space between the inner and outer nuclear membranes in the neutrophils of the control subjects page 201
Figure 29. Electron microscopy photographs indicating the localisation of intracellular calcium in both the nucleus and cytosol in the neutro-
phils of some of the patients

Figure 30. Electron microscopy photographs indicating the prominent localisation of intracellular calcium in the space between the inner and outer nuclear membranes in the neutrophils of some of the patients

CHAPTER 5

Figure 1. Schematic presentation of possible factors responsible for the perturbation in intracellular free Ca^{2+} in the chronic renal failure patient

Figure 2. Schematic presentation of the possible oxidant-anti-oxidant disequilibrium in chronic renal failure patients receiving maintenance haemodialysis treatment

Figure 3. Schematic presentation of factors associated with chronic renal failure possibly causing a decrease in Ca^{2+}-ATPase activity