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Synopsis

Longitudinal handling characteristics of a
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Engineering

A handling quality investigation was performed on the swept gull-wing con-
figuration. The swept gull-wing configuration is tailless and has a wing with a
transition in the sweep and dihedral angle. An example of this type of aircraft
is the Exulans. This aircraft is currently under development at the University of
Pretoria. The handling quality study was focussed on pitch axis dynamics. The
Exulans is a research testbed that will be used to investigate the swept gull-wing
configuration and its special controls by means of full-scale flight testing. Variable
wing sweep, twisting elevons and winglets will be investigated as means of control.
These control devices are configured in such a way as to have minimum impact
on the performance of the aircraft. The handling qualities of the swept gull-wing
configuration have to be acceptable while using these different control strategies.

The study was launched to investigate whether a gull-wing configuration air-
craft will have satisfactory handling qualities at CG positions associated with the
most favourable aerodynamic performance. There is an aerodynamic performance
gain in designing an aircraft so that the C'G falls on the so-called ‘E-point’. The

E-point is the centre of pressure for an elliptical circulation distribution. An ellip-
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tical circulation distribution is associated with the highest Oswald efficiency for
an aircraft.

Time domain simulation techniques and frequency domain analysis techniques
were used to analyse the handling qualities of the gull-wing configuration. The
C-star criterion was used to analyse handling qualities with time domain simula-
tion data as input. Comparative time domain simulations were performed between
the Exulans and other aircraft to compare handling qualities. Eigenvalue analysis
was used together with the thumbprint criterion to investigate inherent gull-wing
airframe dynamics. The Shomber-Gertsen and Military Specification 8785 crite-
ria were also used for the same purpose. The Neal-Smith method was used to
investigate the effect of control authority on handling qualities and the effect of a
pilot. The Moénnich and Dalldorff criterion was used to evaluate gust handling qua-
lities. An analysis chart by Fremaux and Vairo was used to evaluate the tumbling
susceptibility of the gull-wing configuration.

The pitch handling quality investigation shows sufficient promise that the swept
gull-wing configuration will have acceptable handling qualities with the C'G placed
at positions associated with optimised aerodynamic performance. Analysis showed
that the swept gull-wing configuration is potentially prone to tumbling. With low
static margins, the configuration should exhibit improved handling qualities in
gusty conditions when compared to existing tailless aircraft.

It is recommended that a lateral handling quality study be performed before
full scale flight testing commences on the Exulans. In addition, the possibility of

wingtip stall must be investigated for the case of the swept gull-wing configuration.

KEYWORDS: Tailless aircraft; Handling qualities; Gust handling qualities;
E-point; O-point; Flight simulation; Swept gull-wing configuration; Moénnich and
Dalldorff criterion; C-star criterion; Thumbprint criterion; Shomber-Gertsen ana-
lysis; Neal-Smith analysis; Pilot induced oscillation; Pecking; Tumbling; Exulans;
Variable static margin; Variable sweep wing; Pilot mathematical model; Oswald

efficiency.
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Opsomming

Longitudinale hanteringseienskappe van
'n stertlose meeuvlerkvliegtuig

Skrywer : Daniél Sarel Agenbag

Studentenommer : 9701128-3

Studieleier : Prof. N.J. Theron

Mede-studieleier : Mnr. R.J. Huyssen

Graadbenaming : Magister in Ingenieurswese (Meganies)

Departement . Departement Meganiese en Lugvaartkundige
Ingenieurswese

'n Ondersoek is geloods aangaande die vlughanteringseienskappe van die meeu-
vlerkuitleg. Hierdie uitleg is 'n stertlose ontwerp waarvan die vlerk 'n oorgang in
veeg en diéderhoek het. Die Exulans sweeftuig, tans onder ontwikkeling by die
Universiteit van Pretoria, is 'n voorbeeld van hierdie uitleg. Die studie het gefo-
kus op heivlak dinamika. Die Exulans is 'n navorsingsplatform wat gebruik sal
word om die spesiale vlugbeheerstelsel van die meeuvlerkuitleg te ondersoek deur
volskaalse vlugtoetse. Veranderbare vlerkveeg, asook wringbare hoogterolroere en
rigtingroere op entvlerke word gebruik om die Exulans te stuur. Die beheerop-
pervlaktes is ontwerp om die impak op die werksverrigting van die vliegtuig te
minimeer. Die hanteringseienskappe van die meeuvlerkuitleg moet aanvaarbaar
wees met die gebruik van hierdie stuurmeganismes.

Die ondersoek moes bepaal of die meeuvlerkuitleg gunstige hanteringseien-
skappe sal vertoon terwyl die vliegtuig se swaartepunt geplaas is op 'n posisie wat
assosieer word met die mees gunstige aerodinamiese werksverrigting. Daar is 'n
voordeel met betrekking tot aerodinamiese werksverrigting wanneer 'n vliegtuig

ontwerp word sodat die swaartepunt ooreenstem met die sogenaamde ‘E-punt’.

il
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Die E-punt is die sentroiede van die drukverdeling van ’n elliptiese sirkulasiever-
spreiding. 'n Elliptiese sirkulasieverspreiding word assosieer met die mees gunstige
Oswald rendement van 'n vliegtuig.

Tyddomein simulasietegnieke en frekwensiedomein analises is gebruik om die
hanteringseienskappe van die meeuvlerkuitleg te ondersoek. Die C-ster kriterium
is gebruik om hanteringseienskappe te ondersoek met behulp van tyddomein si-
mulasie resultate. Tyddomein simulasies was gebruik om die Exulans en ander
vliegtuie te vergelyk met betrekking tot hanteringseienskappe. Eiewaarde analise
is gebruik tesame met die ‘vingerafdruk’ kriterium om die inherente lugraamhante-
ringseienskappe van die meeuvlerk te ondersoek. Die Shomber-Gertsen en Militére
Standaard 8785 kriteria is ook vir dieselfde doel gebruik. Die Neal-Smith metode
is gebruik om die effek van beheeroutoriteit op hanteringseienskappe en die invloed
van ‘n vlieénier te ondersoek. Die Ménnich-Dalldorff kriterium is gebruik om die
effek van rukwindtoestande op hanteringseienskappe te ondersoek. 'n Analisekaart
deur Fremaux en Vairo is gebruik om die vatbaarheid van die meeuvlerkuitleg vir
tuimeling te ondersoek.

Die heivlak hanteringseienskapstudie het getoon dat die meeuvlerkuitleg ge-
noegsame belofte van gunstige hanteringseienskappe toon wanneer die swaartepunt
geplaas word op posisies wat assosieer word met hoé aerodinamiese werksverrig-
ting. Analise het ook onthul dat die meevlerkuitleg vatbaar is vir tuimeling. Die
studie het verder ook aangetoon dat die uitleg meer gunstige hanteringseienskap-
pe het as bestaande stertlose ontwerpe tydens turbulente omstandighede, mits dit
met 'n lae stabiliteitsgrens ontwerp word.

Dit word aanbeveel dat ’'n laterale hanteringseienskapstudie van stapel ge-
stuur word voor enige volskaalse vlugtoetse met die Exulans onderneem word.
Die moontlikheid van staking by die vlerkpunte moet ook ondersoek word vir die

meeuvlerkuitleg.

SLEUTELWOORDE: Stertlose vliegtuig; Hanteringseienskappe; E-punt; O-
punt; Vlugsimulasie; Teruggeveegde meeuvlerkkonfigurasie; Moénnich en Dalldorff
kriterium; C-ster kriterium; Vingerafdruk kriterium; Shomber-Gertsen analise;
Neal-Smith analise; Vlieénierinsetossilasies; Knikossilasies; Tuimelvlug; Exulans;

Veranderbare stabiliteitsgrens; Veranderbare vlerkveeghoek; Oswald rendement.
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Artificial flight may be defined as that form of aviation in which a man flies
at will in any direction, by means of an apparatus attached to his body,

the use of which requires dexterity of the user.
Otto Lilienthal, 1895

Kunstflug bedeutet willkiirliches Fliegen eines Menschen mittels eines an
seinem Korper befestigten Flugapparates, dessen Gebrauch personliche

geschicklichkeit voraussetzt.

Typeset using BTEX 2¢
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Phugoid mode damping ratio ||

h

The damping ratio of the ™ mode of a generic multi degree of freedom

system ||

Short period mode damping ratio ||
Pitch acceleration of the aircraft. [rad/s?]
Pitch rate [rad/s]

Pitch angle [rad or degrees|
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0. Error between the commanded pitch attitude and the aircraft pitch
attitude [rad]
A Angle of sweep of wing quarter-chord line [degrees]

A Wavelength of the vertical gust disturbance [m]
) Density of air [kg/m?]

Ty, Numerator time constant (airframe lead time constant) of pitch rate

to elevator deflection transfer function [seconds]
7,,  Time constant of control system lead element [seconds]
7,,  Time constant of control system lag element [seconds|
X Aspect ratio, % I
w Circular frequency [rad/s]
wg  Damped natural frequency [rad/s]

h

Wy The natural frequency of the r™ mode of a generic multi degree of

freedom system [rad/s]

Phugoid mode natural frequency [rad/s|

Wn,, Short period mode natural frequency [rad/s]

a Signifies Bode phase angle of a transfer function

ei) gi transfer function with uncompensated pilot. This transfer function
is considered as uncompensated when only a gain was used to achieve

the Neal-Smith performance standards.

(2—3) s Steady state gearing between elevator (or elevon) deflection and ele-
vator stick force [rad/N]

ei The closed-loop transfer function of the aircraft plus control system

plus pilot
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ei The open-loop transfer function of the aircraft plus control system
plus pilot

Fi The open-loop transfer function of the aircraft plus control system

Abbreviations

AR  Aspect ratio of wing

BW  Bandwidth [rad/s]

BWyry Minimum bandwidth frequency

BW B Blended Wing Body

CAP Control anticipation parameter

CFD Computational Fluid Dynamics

CG  Centre of Gravity

dB  Decibel units for Bode amplitude, where amplitude in dB = 20log,, [amplitude]
GPS Global Positioning System

IP  Initial point (for a bombing run)

J —UCAS Joint Unmanned Combat Air System
PIO Pilot induced oscillation

PR  Pilot rating (of aircraft handling qualities)
UAV Unmanned Air Vehicle

VLM Vortex Lattice Method

Subscripts
e Elevon, as used in 9,
e Equivalent, as used with V,

XXX1V
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g Gust
r Index number, typically of an eigenvalue, circular natural frequency

or damping ratio
rel Relative

SS  Steady state
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