

# Longitudinal handling Characteristics of a tailless Gull-Wing Aircraft

Daniël Sarel Agenbag

July 28, 2008



### Longitudinal handling characteristics of a tailless gull-wing aircraft

 ${\rm by}$ 

Daniël Sarel Agenbag

A dissertation submitted in partial fulfilment of the requirements for the degree

#### Master of Engineering

(Mechanical Engineering)

in the

Faculty of Engineering, Built Environment and Information Technology

University of Pretoria

**July 2008** 



### Synopsis

# Longitudinal handling characteristics of a tailless gull-wing aircraft

| Author         | : | Daniël Sarel Agenbag                      |
|----------------|---|-------------------------------------------|
| Student number | : | 9701128-3                                 |
| Study leader   | : | Prof. N.J. Theron                         |
| Co-leader      | : | Mr. R.J. Huyssen                          |
| Degree         | : | Master of Engineering (Mechanical)        |
| Department     | : | Department of Mechanical and Aeronautical |
|                |   | Engineering                               |

A handling quality investigation was performed on the swept gull-wing configuration. The swept gull-wing configuration is tailless and has a wing with a transition in the sweep and dihedral angle. An example of this type of aircraft is the Exulans. This aircraft is currently under development at the University of Pretoria. The handling quality study was focussed on pitch axis dynamics. The Exulans is a research testbed that will be used to investigate the swept gull-wing configuration and its special controls by means of full-scale flight testing. Variable wing sweep, twisting elevons and winglets will be investigated as means of control. These control devices are configured in such a way as to have minimum impact on the performance of the aircraft. The handling qualities of the swept gull-wing configuration have to be acceptable while using these different control strategies.

The study was launched to investigate whether a gull-wing configuration aircraft will have satisfactory handling qualities at CG positions associated with the most favourable aerodynamic performance. There is an aerodynamic performance gain in designing an aircraft so that the CG falls on the so-called 'E-point'. The E-point is the centre of pressure for an elliptical circulation distribution. An ellip-



tical circulation distribution is associated with the highest Oswald efficiency for an aircraft.

Time domain simulation techniques and frequency domain analysis techniques were used to analyse the handling qualities of the gull-wing configuration. The C-star criterion was used to analyse handling qualities with time domain simulation data as input. Comparative time domain simulations were performed between the Exulans and other aircraft to compare handling qualities. Eigenvalue analysis was used together with the thumbprint criterion to investigate inherent gull-wing airframe dynamics. The Shomber-Gertsen and Military Specification 8785 criteria were also used for the same purpose. The Neal-Smith method was used to investigate the effect of control authority on handling qualities and the effect of a pilot. The Mönnich and Dalldorff criterion was used to evaluate gust handling qualities. An analysis chart by Fremaux and Vairo was used to evaluate the tumbling susceptibility of the gull-wing configuration.

The pitch handling quality investigation shows sufficient promise that the swept gull-wing configuration will have acceptable handling qualities with the CG placed at positions associated with optimised aerodynamic performance. Analysis showed that the swept gull-wing configuration is potentially prone to tumbling. With low static margins, the configuration should exhibit improved handling qualities in gusty conditions when compared to existing tailless aircraft.

It is recommended that a lateral handling quality study be performed before full scale flight testing commences on the Exulans. In addition, the possibility of wingtip stall must be investigated for the case of the swept gull-wing configuration.

**KEYWORDS:** Tailless aircraft; Handling qualities; Gust handling qualities; E-point; O-point; Flight simulation; Swept gull-wing configuration; Mönnich and Dalldorff criterion; C-star criterion; Thumbprint criterion; Shomber-Gertsen analysis; Neal-Smith analysis; Pilot induced oscillation; Pecking; Tumbling; Exulans; Variable static margin; Variable sweep wing; Pilot mathematical model; Oswald efficiency.



### Opsomming

#### Longitudinale hanteringseienskappe van 'n stertlose meeuvlerkvliegtuig

| Skrywer          | : | Daniël Sarel Agenbag                     |
|------------------|---|------------------------------------------|
| Studentenommer   | : | 9701128-3                                |
| Studieleier      | : | Prof. N.J. Theron                        |
| Mede-studieleier | : | Mnr. R.J. Huyssen                        |
| Graadbenaming    | : | Magister in Ingenieurswese (Meganies)    |
| Departement      | : | Departement Meganiese en Lugvaartkundige |
|                  |   | Ingenieurswese                           |

'n Ondersoek is geloods aangaande die vlughanteringseienskappe van die meeuvlerkuitleg. Hierdie uitleg is 'n stertlose ontwerp waarvan die vlerk 'n oorgang in veeg en diëderhoek het. Die Exulans sweeftuig, tans onder ontwikkeling by die Universiteit van Pretoria, is 'n voorbeeld van hierdie uitleg. Die studie het gefokus op heivlak dinamika. Die Exulans is 'n navorsingsplatform wat gebruik sal word om die spesiale vlugbeheerstelsel van die meeuvlerkuitleg te ondersoek deur volskaalse vlugtoetse. Veranderbare vlerkveeg, asook wringbare hoogterolroere en rigtingroere op entvlerke word gebruik om die Exulans te stuur. Die beheeroppervlaktes is ontwerp om die impak op die werksverrigting van die vliegtuig te minimeer. Die hanteringseienskappe van die meeuvlerkuitleg moet aanvaarbaar wees met die gebruik van hierdie stuurmeganismes.

Die ondersoek moes bepaal of die meeuvlerkuitleg gunstige hanteringseienskappe sal vertoon terwyl die vliegtuig se swaartepunt geplaas is op 'n posisie wat assosieer word met die mees gunstige aerodinamiese werksverrigting. Daar is 'n voordeel met betrekking tot aerodinamiese werksverrigting wanneer 'n vliegtuig ontwerp word sodat die swaartepunt ooreenstem met die sogenaamde 'E-punt'.



Die E-punt is die sentroïede van die drukverdeling van 'n elliptiese sirkulasieverspreiding. 'n Elliptiese sirkulasieverspreiding word assosieer met die mees gunstige Oswald rendement van 'n vliegtuig.

Tyddomein simulasietegnieke en frekwensiedomein analises is gebruik om die hanteringseienskappe van die meeuvlerkuitleg te ondersoek. Die C-ster kriterium is gebruik om hanteringseienskappe te ondersoek met behulp van tyddomein simulasie resultate. Tyddomein simulasies was gebruik om die Exulans en ander vliegtuie te vergelyk met betrekking tot hanteringseienskappe. Eiewaarde analise is gebruik tesame met die 'vingerafdruk' kriterium om die inherente lugraamhanteringseienskappe van die meeuvlerk te ondersoek. Die Shomber-Gertsen en Militêre Standaard 8785 kriteria is ook vir dieselfde doel gebruik. Die Neal-Smith metode is gebruik om die effek van beheeroutoriteit op hanteringseienskappe en die invloed van 'n vlieënier te ondersoek. Die Mönnich-Dalldorff kriterium is gebruik om die effek van rukwindtoestande op hanteringseienskappe te ondersoek. 'n Analisekaart deur Fremaux en Vairo is gebruik om die vatbaarheid van die meeuvlerkuitleg vir tuimeling te ondersoek.

Die heivlak hanteringseienskapstudie het getoon dat die meeuvlerkuitleg genoegsame belofte van gunstige hanteringseienskappe toon wanneer die swaartepunt geplaas word op posisies wat assosieer word met hoë aerodinamiese werksverrigting. Analise het ook onthul dat die meevlerkuitleg vatbaar is vir tuimeling. Die studie het verder ook aangetoon dat die uitleg meer gunstige hanteringseienskappe het as bestaande stertlose ontwerpe tydens turbulente omstandighede, mits dit met 'n lae stabiliteitsgrens ontwerp word.

Dit word aanbeveel dat 'n laterale hanteringseienskapstudie van stapel gestuur word voor enige volskaalse vlugtoetse met die Exulans onderneem word. Die moontlikheid van staking by die vlerkpunte moet ook ondersoek word vir die meeuvlerkuitleg.

**SLEUTELWOORDE:** Stertlose vliegtuig; Hanteringseienskappe; E-punt; Opunt; Vlugsimulasie; Teruggeveegde meeuvlerkkonfigurasie; Mönnich en Dalldorff kriterium; C-ster kriterium; Vingerafdruk kriterium; Shomber-Gertsen analise; Neal-Smith analise; Vlieënierinsetossilasies; Knikossilasies; Tuimelvlug; Exulans; Veranderbare stabiliteitsgrens; Veranderbare vlerkveeghoek; Oswald rendement.



### Credits

The author of this document would like to thank the following persons who have played a part in the successful completion of this study:

- S. Ackerman
- M. Agenbag
- Mev. Annamarie Bezuidenhout
- A.V. Bergh
- C.P. Crosby
- E. Güther
- M. Heyns
- R.J. Huyssen
- W.E. Misselhorn
- C. Sandrock
- R. Sogno
- J. Sutherland
- N.J. Theron
- C.G. van Deventer



Artificial flight may be defined as that form of aviation in which a man flies at will **in any direction**, by means of an apparatus attached to his body, the use of which requires **dexterity** of the user.

Otto Lilienthal, 1895

Kunstflug bedeutet willkürliches Fliegen eines Menschen mittels eines an seinem Körper befestigten Flugapparates, dessen Gebrauch persönliche geschicklichkeit voraussetzt.



## Contents

|               | Syn                                                               | opsis                                                                                                                                                                                                                                                                                                                                                                                                                               | i                                                                                                                      |
|---------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|               | Key                                                               | words                                                                                                                                                                                                                                                                                                                                                                                                                               | ii                                                                                                                     |
|               | Ops                                                               | omming                                                                                                                                                                                                                                                                                                                                                                                                                              | iii                                                                                                                    |
|               | Sleu                                                              | telwoorde                                                                                                                                                                                                                                                                                                                                                                                                                           | iv                                                                                                                     |
|               | Cree                                                              | lits                                                                                                                                                                                                                                                                                                                                                                                                                                | v                                                                                                                      |
| 1             | Inti                                                              | roduction                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                      |
|               | 1.1                                                               | The Swept Gull-Wing Configuration                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                      |
|               | 1.2                                                               | The Exulans Project                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                      |
|               | 1.3                                                               | The Goal                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                      |
|               | 1.4                                                               | Methodology and Limitations                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                      |
| ე             | ΑF                                                                | listory of Tailless Aircraft                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                      |
| 2             | <b>77 T</b>                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ũ                                                                                                                      |
| $\frac{2}{3}$ | Hai                                                               | ndling Quality Criteria 2                                                                                                                                                                                                                                                                                                                                                                                                           | 22                                                                                                                     |
| 3             | Hai<br>3.1                                                        | adling Quality Criteria       2         Cooper Harper Flying Qualities Rating Scale                                                                                                                                                                                                                                                                                                                                                 | 22<br>22                                                                                                               |
| 3             | Han<br>3.1<br>3.2                                                 | adling Quality Criteria       2         Cooper Harper Flying Qualities Rating Scale                                                                                                                                                                                                                                                                                                                                                 | 22<br>22<br>23                                                                                                         |
| 3             | Han<br>3.1<br>3.2<br>3.3                                          | ndling Quality Criteria       2         Cooper Harper Flying Qualities Rating Scale                                                                                                                                                                                                                                                                                                                                                 | 22<br>22<br>23<br>23                                                                                                   |
| 3             | Hai<br>3.1<br>3.2<br>3.3<br>3.4                                   | ndling Quality Criteria       2         Cooper Harper Flying Qualities Rating Scale                                                                                                                                                                                                                                                                                                                                                 | 22<br>22<br>23<br>23<br>23<br>26                                                                                       |
| 3             | Han<br>3.1<br>3.2<br>3.3<br>3.4<br>3.5                            | adling Quality Criteria       2         Cooper Harper Flying Qualities Rating Scale                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>22</li> <li>22</li> <li>23</li> <li>23</li> <li>26</li> <li>28</li> </ul>                                     |
| 3             | Hai<br>3.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.6                     | adling Quality Criteria       2         Cooper Harper Flying Qualities Rating Scale       2         The Zacher Protocol       2         Thumbprint Criterion Analysis       2         Military Flying Qualities Specifications       2         The C-star Flying Qualities Criterion       2         The Shomber-Gertsen criterion       3                                                                                          | <ul> <li>22</li> <li>22</li> <li>23</li> <li>23</li> <li>26</li> <li>28</li> <li>31</li> </ul>                         |
| 3             | Hai<br>3.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.6<br>3.7              | adling Quality Criteria       2         Cooper Harper Flying Qualities Rating Scale       2         The Zacher Protocol       2         Thumbprint Criterion Analysis       2         Military Flying Qualities Specifications       2         The C-star Flying Qualities Criterion       2         The Shomber-Gertsen criterion       3         The Neal-Smith Criterion       3                                                 | <ul> <li>22</li> <li>22</li> <li>23</li> <li>23</li> <li>26</li> <li>28</li> <li>31</li> <li>33</li> </ul>             |
| 3             | Han<br>3.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.6<br>3.7<br>3.8       | adling Quality Criteria       2         Cooper Harper Flying Qualities Rating Scale       2         The Zacher Protocol       2         Thumbprint Criterion Analysis       2         Military Flying Qualities Specifications       2         The C-star Flying Qualities Criterion       2         The Shomber-Gertsen criterion       3         The Neal-Smith Criterion       4         A Turbulence Handling Criterion       4 | <ul> <li>22</li> <li>22</li> <li>23</li> <li>23</li> <li>26</li> <li>28</li> <li>31</li> <li>33</li> <li>41</li> </ul> |
| 3             | Hai<br>3.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.6<br>3.7<br>3.8<br>Ma | adling Quality Criteria       2         Cooper Harper Flying Qualities Rating Scale       2         The Zacher Protocol       2         Thumbprint Criterion Analysis       2         Military Flying Qualities Specifications       2         The C-star Flying Qualities Criterion       2         The Shomber-Gertsen criterion       3         The Neal-Smith Criterion       4         thematical Model       4                | <b>22</b> 22 23 23 23 26 28 31 33 41 <b>12</b>                                                                         |



|          | 4.2                                                   | Aircraft Model Characterisation                                                                                                                                                                                                                                                                                                                               | 43                                                                                                                     |
|----------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|          | 4.3                                                   | Stability Derivatives                                                                                                                                                                                                                                                                                                                                         | 46                                                                                                                     |
|          | 4.4                                                   | Equations of Motion                                                                                                                                                                                                                                                                                                                                           | 48                                                                                                                     |
|          | 4.5                                                   | Analytical Approximations for Short Period and Phugoid Modes                                                                                                                                                                                                                                                                                                  | 49                                                                                                                     |
|          |                                                       | 4.5.1 The Short Period Approximation                                                                                                                                                                                                                                                                                                                          | 49                                                                                                                     |
|          |                                                       | 4.5.2 The Phugoid Approximation                                                                                                                                                                                                                                                                                                                               | 50                                                                                                                     |
|          |                                                       | 4.5.3 Tailed aircraft Sensitivity Analysis                                                                                                                                                                                                                                                                                                                    | 51                                                                                                                     |
|          | 4.6                                                   | Aircraft Mathematical Models                                                                                                                                                                                                                                                                                                                                  | 55                                                                                                                     |
|          | 4.7                                                   | Gull-Wing Configuration Model                                                                                                                                                                                                                                                                                                                                 | 56                                                                                                                     |
|          |                                                       | 4.7.1 Inertial Parameters                                                                                                                                                                                                                                                                                                                                     | 57                                                                                                                     |
|          |                                                       | 4.7.2 Aerodynamic Parameters                                                                                                                                                                                                                                                                                                                                  | 61                                                                                                                     |
|          |                                                       | 4.7.3 E-point, O-Point and C-point of the Gull-Wing Confi-                                                                                                                                                                                                                                                                                                    |                                                                                                                        |
|          |                                                       | guration $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$                                                                                                                                                                                                                                                                                       | 70                                                                                                                     |
|          | 4.8                                                   | Disturbance models                                                                                                                                                                                                                                                                                                                                            | 75                                                                                                                     |
|          |                                                       | 4.8.1 Gust Disturbance                                                                                                                                                                                                                                                                                                                                        | 75                                                                                                                     |
|          |                                                       | 4.8.2 Elevon Step Input                                                                                                                                                                                                                                                                                                                                       | 77                                                                                                                     |
| <b>5</b> | Gul                                                   | ll-Wing Sensitivity Analysis                                                                                                                                                                                                                                                                                                                                  | 78                                                                                                                     |
|          | 5.1                                                   | Baseline and method                                                                                                                                                                                                                                                                                                                                           | 79                                                                                                                     |
|          | 5.2                                                   | Pitch Axis Inertia                                                                                                                                                                                                                                                                                                                                            | 81                                                                                                                     |
|          | 5.3                                                   | Pitch Damping Coefficient                                                                                                                                                                                                                                                                                                                                     | 85                                                                                                                     |
|          | 5.4                                                   | Elevon Control Authority                                                                                                                                                                                                                                                                                                                                      | 88                                                                                                                     |
|          | 5.5                                                   | Conclusion of Sensitivity Analysis                                                                                                                                                                                                                                                                                                                            | 01                                                                                                                     |
|          |                                                       |                                                                                                                                                                                                                                                                                                                                                               | 51                                                                                                                     |
| 6        | Tin                                                   | ne Domain Analysis                                                                                                                                                                                                                                                                                                                                            | 92                                                                                                                     |
| 6        | <b>Tin</b><br>6.1                                     | ne Domain Analysis C-star Criterion Analysis                                                                                                                                                                                                                                                                                                                  | 92<br>92                                                                                                               |
| 6        | <b>Tin</b><br>6.1<br>6.2                              | ne Domain Analysis       9         C-star Criterion Analysis       9         Comparative Simulations       9                                                                                                                                                                                                                                                  | 92<br>92<br>95                                                                                                         |
| 6<br>7   | <b>Tim</b><br>6.1<br>6.2<br><b>Free</b>               | ne Domain Analysis       9         C-star Criterion Analysis       9         Comparative Simulations       9         quency Domain Analysis       10                                                                                                                                                                                                          | <ul> <li>92</li> <li>92</li> <li>95</li> <li>02</li> </ul>                                                             |
| 6<br>7   | Tim<br>6.1<br>6.2<br>Free<br>7.1                      | ne Domain Analysis       9         C-star Criterion Analysis       9         Comparative Simulations       10         quency Domain Analysis       10         Thumbprint Criterion Analysis       1                                                                                                                                                           | <ul> <li>92</li> <li>92</li> <li>95</li> <li>02</li> <li>02</li> </ul>                                                 |
| 6<br>7   | Tim<br>6.1<br>6.2<br>Free<br>7.1<br>7.2               | ne Domain Analysis       9         C-star Criterion Analysis       9         Comparative Simulations       10         quency Domain Analysis       10         Thumbprint Criterion Analysis       1         Military Flying Qualities Specifications       1                                                                                                  | <ul> <li>91</li> <li>92</li> <li>92</li> <li>95</li> <li>02</li> <li>02</li> <li>04</li> </ul>                         |
| 6<br>7   | Tim<br>6.1<br>6.2<br>Free<br>7.1<br>7.2<br>7.3        | ne Domain Analysis       9         C-star Criterion Analysis       9         Comparative Simulations       9         quency Domain Analysis       10         Thumbprint Criterion Analysis       1         Military Flying Qualities Specifications       1         Shomber-Gertsen Analysis       1                                                          | <ul> <li>91</li> <li>92</li> <li>92</li> <li>95</li> <li>02</li> <li>02</li> <li>04</li> <li>06</li> </ul>             |
| 6        | Tim<br>6.1<br>6.2<br>Free<br>7.1<br>7.2<br>7.3<br>7.4 | ne Domain Analysis       9         C-star Criterion Analysis       9         Comparative Simulations       10         quency Domain Analysis       10         Thumbprint Criterion Analysis       11         Military Flying Qualities Specifications       1         Shomber-Gertsen Analysis       1         Neal-Smith Handling Qualities Analysis       1 | <ul> <li>91</li> <li>92</li> <li>92</li> <li>95</li> <li>02</li> <li>02</li> <li>04</li> <li>06</li> <li>10</li> </ul> |



| 8            | Turbulence and Tumbling Criteria       Image: Criterion Image: Crite | <b>115</b><br>115<br>119               |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 9            | Handling Qualities and Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122                                    |
| 10           | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128                                    |
| 11           | Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 131                                    |
| Bi           | bliography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 134                                    |
| In           | dex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 141                                    |
| $\mathbf{A}$ | The Cooper-Harper Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 144                                    |
| в            | Eigenvalue Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 146                                    |
| $\mathbf{C}$ | Aircraft Planforms in this Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 149                                    |
| D            | Time Step Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 151                                    |
| $\mathbf{E}$ | $C_{M_q}$ Benchmark Investigation       I         E.1       Planforms under Investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>155</b><br>156<br>157               |
| F            | $C_{M_{\delta_e}}$ Benchmark InvestigationIF.1Planforms under InvestigationF.2Wind tunnel DataF.3The Sensitivity of $C_{M_{\delta_e}}$ with respect to Panel Size in $VLM$ 's.F.4Results and Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>L61</b><br>161<br>163<br>168<br>171 |
| G            | Neutral Point Benchmark Study       I         G.1 Wind tunnel results       I         G.2 Neutral Point Using VLM       I         G.3 Wind tunnel and VLM Comparison       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L74<br>174<br>176<br>177               |
|              | G.4 Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 179                                    |



#### H Aircraft Configurations

| 1 | 8 | 1 |
|---|---|---|
|   |   |   |

| Ι            | $\operatorname{Tin}$ | e Domain Simulations 1                                                       | 89  |
|--------------|----------------------|------------------------------------------------------------------------------|-----|
|              | I.1                  | Pitch Control Input Analysis                                                 | 189 |
|              | I.2                  | Pitch Control Input Simulations                                              | 196 |
|              |                      | I.2.1 Configurations 45, 54, 63, 72                                          | 196 |
|              |                      | I.2.2 Configurations 117, 126, 135, 144                                      | 199 |
|              |                      | I.2.3 Configurations 93, 96, 99                                              | 202 |
|              |                      | I.2.4 Configurations 57, 60, 63 $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ | 205 |
|              |                      | I.2.5 Configurations 97, 98, 99                                              | 208 |
|              | I.3                  | Gust Response Analysis                                                       | 211 |
|              | I.4                  | Gust Response Simulations                                                    | 216 |
|              |                      | I.4.1 Configurations 15, 18, 21, 24                                          | 216 |
|              |                      | I.4.2 Configurations 39, 42, 45, 48                                          | 219 |
|              |                      | I.4.3 Configurations 31, 32, 33                                              | 222 |
|              | I.5                  | C-star Analysis Results                                                      | 225 |
| J            | Free                 | quency Domain Analysis Results 2                                             | 228 |
|              | J.1                  | Thumbprint Criterion Analysis                                                | 228 |
|              | J.2                  | Military Flying Qualities Analysis                                           | 230 |
|              | J.3                  | Shomber-Gertsen Analysis                                                     | 232 |
| K            | Nea                  | ll-Smith Example 2                                                           | 237 |
| $\mathbf{L}$ | Lon                  | gitudinal Transfer Functions 2                                               | 245 |



## List of Figures

| 1.1  | The Göppingen Gö 3 or 'Minimoa' (Anonymous, 2006) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.2  | A computer generated image of the Exulans II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.3  | The variable outboard wing sweep as implemented on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | Exulans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.4  | Exulans I hanging from balloon prior to launch 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.1  | The tailless sailplane 'Weltensegler' (Nickel & Wohlfahrt, 1994:12). $8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.2  | Photo of the sailplanes Horten H II, H III, H IV. (Nickel &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | Wohlfahrt, 1994) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.3  | Different Horten wing planforms (Nickel & Wohlfahrt, 1994) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.4  | The Messerschmitt Me-163 Komet (Nickel & Wohlfahrt, 1994). 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.5  | Two Northrop tailless aircraft designs. (Anonymous, n.d. g) . 12 $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.6  | The Fauvel AV-36. (Anonymous, n.d. b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.7  | Polish tailless aircraft designs of the 50's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.8  | The G.A.L./56 tailless aircraft. (Nickel & Wohlfahrt, 1994:217-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | $222)  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.9  | A Jim Marske design. (Anonymous, n.d. d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.10 | Modern low taper ratio sailplanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.11 | The SWIFT foot launched glider. (Kroo et al., 1991) 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.12 | The Blended Wing Body Concept from Cambridge University                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | (Anonymous, 2005:12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.13 | Tailless experimental aircraft. (Wilson, 2003:23-24) 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.14 | The Boeing ScanEagle $UAV$ (Holly, 2005:37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.1  | Typical pilot opinion contours for the short period mode (O'Hara.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5.1  | 1967).       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       . |



| 3.2  | Category A control anticipation parameter and $\zeta_{sp}$ require-                |      |
|------|------------------------------------------------------------------------------------|------|
|      | ments (Chun & Chang, 2001)                                                         | 26   |
| 3.3  | The C-star time history envelopes from Tobie et al. (1966).                        | 29   |
| 3.4  | The longitudinal short-period criterion of Shomber & Gertsen                       |      |
|      | (1967) for $n_{\alpha} \leq 15$ g/rad                                              | 32   |
| 3.5  | The longitudinal short-period criterion of Shomber & Gertsen                       |      |
|      | (1967) for $n_{\alpha} \geq 15$ g/rad                                              | . 33 |
| 3.6  | The Neal-Smith criterion for fighter manoeuvring dynamics.                         | 34   |
| 3.7  | Mathematical model of pitch attitude tracking.                                     | 36   |
| 3.8  | Tracking performance standards used in the Neal-Smith ana-                         |      |
|      | lysis(Neal & Smith, 1970:44).                                                      | . 37 |
| 3.9  | Nichols chart with performance standards                                           | . 39 |
| 3.10 | Amplitude-phase curves for 'Optimum' pilot compensation.                           |      |
|      | (Neal & Smith, 1970:54)                                                            | 40   |
|      |                                                                                    |      |
| 4.1  | Aircraft axes system used in this document.                                        | 43   |
| 4.2  | Three views of the Exulans glider showing assumed $CG$ loca-                       |      |
|      | tions of different aircraft components. (Outboard wing sweep                       |      |
|      | angle $(\gamma)$ at 31°).                                                          | 60   |
| 4.3  | Four different $CG$ locations and the neutral point as a function                  |      |
|      | of sweep                                                                           | 61   |
| 4.4  | Aircraft static margin as a function of sweep angle for four                       |      |
|      | different $CG$ locations                                                           | 62   |
| 4.5  | Pitch inertia $(I_{yy})$ as function of sweep angle for four different             |      |
|      | static margin configurations.                                                      | 63   |
| 4.6  | $C_{L_{\alpha}}$ and $C_{M_{\alpha}}$ for different outboard wing sweep angles     | 65   |
| 4.7  | $C_{L_{\delta_e}}$ and $C_{M_{\delta_e}}$ for different outboard wing sweep angles | 68   |
| 4.8  | Pitch damping coefficient $(C_{Mq})$ for different outboard sweep                  |      |
|      | angles                                                                             | 69   |
| 4.9  | Calculation of O-Point by means of graphical method for a                          |      |
|      | wing with an outboard sweep angle of $30^{\circ}$ .                                | 72   |
| 4.10 | Calculation of C-Point by means of graphical method for a                          |      |
|      | wing with an outboard sweep angle of $30^{\circ}$ .                                | 73   |



| 4.11 | The O-point, C-point, E-point and the neutral point of the gull-wing configuration for a range of outboard wing sweep                   |    |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|----|
|      | angles                                                                                                                                  | 74 |
| 4.12 | Wing velocity distribution due to pitching. (Etkin, 1972:270).<br>The 1 ges vertical gust dicturbance. (Mönnich & Dalldorff             | 76 |
| 4.10 | $1993) \dots \dots$               | 77 |
| 5.1  | Gust response of aircraft angle of attack $(\alpha)$ at different pitch axis inertias.                                                  | 83 |
| 5.2  | Magnified gust response of aircraft angle of attack $(\alpha)$ at dif-<br>ferent pitch axis inertias.                                   | 83 |
| 5.3  | Gust response of aircraft attitude $(\theta)$ at different pitch axis inertias.                                                         | 84 |
| 5.4  | Short period gust response of aircraft attitude $(\theta)$ at different pitch axis inertias.                                            | 84 |
| 5.5  | Gust response of aircraft angle of attack $(\alpha)$ at different dam-<br>ping coefficient values.                                      | 87 |
| 5.6  | Gust response of aircraft attitude $(\theta)$ at different damping coefficient values.                                                  | 87 |
| 5.7  | Control input step response of aircraft angle of attack ( $\alpha$ ) at different control authority aircraft configurations.            | 89 |
| 5.8  | Control input step response of aircraft attitude ( $\theta$ ) at different<br>control authority aircraft configurations.                | 90 |
| 6.1  | The C-star analysis for all control authority variations at 24°                                                                         | 00 |
|      | sweep with the baseline aerodynamic damping at a $10.7\%$ (at $30^{\circ}$ ) static margin configuration. (Configurations 57, 60, 63) . | 95 |
| 6.2  | The response in aircraft attitude ( $\theta$ ) to a 1 – cos gust, for the ASW-19, the SB-13, the 24° (15% static margin) and the 36°    |    |
|      | (5% static margin) sweep Exulans. $\ldots$ $\ldots$ $\ldots$ $\ldots$                                                                   | 97 |
| 6.3  | Aircraft attitude $(\theta)$ to a 1 – cos gust, during the period of the introduction of the gust, for the ASW-19, the SB-13 and        |    |
|      | Exulans                                                                                                                                 | 98 |



| 6.4 | The superimposed response in aircraft attitude ( $\theta$ ) to a 1 – cos gust, for the ASW-19, the SB-13, the 24° (15% static margin) |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|
| 6.5 | and the 30° (5% static margin) sweep Exulans                                                                                          |
|     | Exulans                                                                                                                               |
| 6.6 | Zoomed aircraft attitude ( $\theta$ ) to a 1-cos gust, for the ASW-19,                                                                |
|     | the SB-13 and Exulans                                                                                                                 |
| 6.7 | The superimposed response in aircraft attitude ( $\theta$ ) to a 1 –                                                                  |
|     | cos gust, for the ASW-19, the SB-13 and the $30^{\circ}$ (2% static                                                                   |
| 68  | margin) sweep Exulans                                                                                                                 |
| 0.0 | Piper Cherokee (gliding flight)                                                                                                       |
| 71  | Thumburint analysis for 24° outboard wing swoon, at various                                                                           |
| 1.1 | static margin cases with the baseline aerodynamic damping                                                                             |
|     | (Configuration nr. 18 is $24^{\circ}$ 5% d, Configuration nr. 21 is                                                                   |
|     | $24^{\circ}$ 10.7% d, Configuration nr. 24 is $24^{\circ}$ 15% d, as per Table H.2)104                                                |
| 7.2 | CAP for 24° outboard wing sweep, at various static margin                                                                             |
|     | cases, with the baseline aerodynamic damping. (Configuration                                                                          |
|     | nr. 18 is 24° 5% d, Configuration nr. 21 is 24° 10.7% d, Con-                                                                         |
|     | figuration nr. 24 is 24° 15% d, as per Table H.2) 105                                                                                 |
| 7.3 | Group one analysis results for $n_{\alpha} < 15$ g/rad 108                                                                            |
| 7.4 | Group one analysis results for $n_{\alpha} \ge 15$ g/rad                                                                              |
| 1.5 | wing configurations                                                                                                                   |
| 0.1 |                                                                                                                                       |
| 8.1 | Generic flying wing models used for tumbling research. (Fre-                                                                          |
| 82  | Static margin for tumbling as a function of aspect ratio for                                                                          |
| 0.2 | models with 'wing-heavy' (ie. $I_{rrr} > I_{rrr}$ ) loadings. (Fremaux                                                                |
|     | & Vairo, 1995)                                                                                                                        |
|     |                                                                                                                                       |



| 9.1 | Region of best Oswald efficiency for the Exulans. The y-axis                     |
|-----|----------------------------------------------------------------------------------|
|     | represents the distance behind the wing leading edge (at plane                   |
|     | of symmetry)                                                                     |
| 9.2 | Region of acceptable handling qualities $(PR \text{ is } 3.5 \text{ or better})$ |
|     | for the Exulans for different sweep angles and $CG$ positions.                   |
|     | The y-axis represents the distance behind the wing leading                       |
|     | edge (at plane of symmetry)                                                      |
| 9.3 | Superposition of regions of acceptable handling qualities and                    |
|     | best Oswald efficiency for the Exulans. The y-axis represents                    |
|     | the distance behind the wing leading edge (at plane of sym-                      |
|     | metry)                                                                           |
| 9.4 | Region with both acceptable handling qualities and best Os-                      |
|     | wald efficiency for the Exulans. The y-axis represents the dis-                  |
|     | tance behind the wing leading edge (at plane of symmetry). $$ . 127 $$           |
| C.1 | Planforms that formed part of the handling quality investigation. 150            |
|     |                                                                                  |
| D.1 | The effect of step size on angle of attack $(\alpha)$ response for four          |
|     | step sizes. $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $152$ |
| D.2 | The effect of step size on attitude $(\theta)$ response for four step            |
|     | sizes                                                                            |
| D.3 | The effect of step size on the short period attitude $(\theta)$ response         |
|     | for four step sizes (Zoomed-in portion of Figure D.2) 153                        |
| D.4 | The effect of step size on the pitch rate response for four step                 |
|     | sizes                                                                            |
| D.5 | The effect of step size on the normal acceleration response for                  |
|     | four step sizes                                                                  |
| D.6 | The effect of step size on the true airspeed response for four                   |
|     | step sizes                                                                       |
| E.1 | The four wing planform types used in the vortex lattice me-                      |
|     | thod benchmark study. (Toll & Queijo, 1948:47) 156                               |
| E.2 | Convergence of $C_{M_q}$ values as calculated with the Tornado                   |
|     | vortex lattice method                                                            |



| E.3 | $C_{M_q}$ values for different angles of attack from experimental data (Toll & Queijo, 1948:58) compared with calculated values |
|-----|---------------------------------------------------------------------------------------------------------------------------------|
|     | from vortex lattice methods                                                                                                     |
| F.1 | Planforms of the horizontal tail models of aspect ratio 6 used                                                                  |
|     | in the benchmark investigation. (Dods, 1948:13) $\ldots \ldots \ldots 162$                                                      |
| F.2 | Aerodynamic moment reference axis as used in Dods (1948:.) . 163                                                                |
| F.3 | Lift coefficients of an unswept tail. Aspect ratio, 6; $\mathrm{R}_e,3.0\times$                                                 |
|     | $10^6$ . (Dods, 1948:19)                                                                                                        |
| F.4 | Pitching moment coefficients of an unswept tail. Aspect ratio,                                                                  |
|     | 6; $R_e$ , $3.0 \times 10^6$ . The moments are measured around a lateral                                                        |
|     | axis through a point that is $25\%$ chordwise aft of the leading                                                                |
|     | edge on the mean aerodynamic chord. (Dods, 1948:21) $\ldots$ . 165                                                              |
| F.5 | Lift coefficients of a 35° swept-back tail. Aspect ratio, 6; $R_e$ ,                                                            |
|     | $3.0 \times 10^6$ . (Dods, 1948:29)                                                                                             |
| F.6 | Pitching moment coefficients of a $35^{\circ}$ swept-back tail. Aspect                                                          |
|     | ratio, 6; $R_e$ , $3.0 \times 10^6$ . The moments are measured around a                                                         |
|     | lateral axis through a point that is $25\%$ chordwise aft of the                                                                |
|     | leading edge on the mean aerodynamic chord. (Dods, $1948:31$ ) 167                                                              |
| F.7 | Sensitivity study with respect to the number of panel elements                                                                  |
|     | on the wing for the $C_{L_{\alpha}}, C_{M_{\alpha}}, C_{L_{\delta_e}}$ and $C_{M_{\delta_e}}$ parameters 170                    |
| F.8 | Comparison of calculated values of $C_{L_{\delta_e}}$ and $C_{M_{\delta_e}}$ with wind                                          |
|     | tunnel data                                                                                                                     |
| G.1 | Convergence of static margin with respect to number of $VLM$                                                                    |
|     | elements                                                                                                                        |
| I.1 | Response in aircraft angle of attack ( $\alpha$ ) to a unit step elevon                                                         |
|     | control input for $30^{\circ}$ outboard wing sweep at different static                                                          |
|     | marging with the baseline control authority and aerodynamic                                                                     |
|     | damping 103                                                                                                                     |
|     |                                                                                                                                 |



| I.2  | Response in aircraft attitude $(\theta)$ to a unit step elevon control<br>input to a unit step elevon control input for 30° outboard<br>wing sweep at different static margins with the baseline control |     |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | authority and aerodynamic damping                                                                                                                                                                        | 194 |
| I.3  | Response in aircraft pitch rate to a unit step elevon control                                                                                                                                            |     |
|      | input for $30^{\circ}$ outboard wing sweep at different static margins                                                                                                                                   |     |
|      | with the baseline control authority and aerodynamic damping.                                                                                                                                             | 194 |
| I.4  | Response in aircraft normal acceleration to a unit step elevon                                                                                                                                           |     |
|      | control input for $30^{\circ}$ outboard wing sweep at different static                                                                                                                                   |     |
|      | margins with the baseline control authority and aerodynamic                                                                                                                                              |     |
|      | damping                                                                                                                                                                                                  | 195 |
| I.5  | Response in aircraft airspeed to a unit step elevon control                                                                                                                                              |     |
|      | input for $30^{\circ}$ outboard wing sweep at different static margins                                                                                                                                   |     |
|      | with the baseline control authority and aerodynamic damping.                                                                                                                                             | 195 |
| I.6  | Response in aircraft angle of attack $(\alpha)$ to a unit step elevon                                                                                                                                    |     |
|      | control input for $24^{\circ}$ outboard wing sweep at different static                                                                                                                                   |     |
|      | margins with the baseline control authority and aerodynamic                                                                                                                                              |     |
|      | damping                                                                                                                                                                                                  | 196 |
| I.7  | Response in aircraft attitude $(\theta)$ to a unit step elevon control                                                                                                                                   |     |
|      | input for $24^{\circ}$ outboard wing sweep at different static margins                                                                                                                                   |     |
|      | with the baseline control authority and aerodynamic damping.                                                                                                                                             | 197 |
| I.8  | Response in aircraft pitch rate to a unit step elevon control                                                                                                                                            |     |
|      | input for $24^{\circ}$ outboard wing sweep at different static margins                                                                                                                                   |     |
|      | with the baseline control authority and aerodynamic damping.                                                                                                                                             | 197 |
| I.9  | Response in aircraft normal acceleration to a unit step elevon                                                                                                                                           |     |
|      | control input for $24^{\circ}$ outboard wing sweep at different static                                                                                                                                   |     |
|      | margins with the baseline control authority and aerodynamic                                                                                                                                              |     |
|      | damping                                                                                                                                                                                                  | 198 |
| I.10 | Response in aircraft airspeed to a unit step elevon control                                                                                                                                              |     |
|      | input for 24° outboard wing sweep at different static margins                                                                                                                                            |     |
|      | with the baseline control authority and aerodynamic damping.                                                                                                                                             | 198 |



| I.11 | Response in aircraft angle of attack $(\alpha)$ to a unit step elevon<br>control input for 36° outboard wing sweep at different static |
|------|----------------------------------------------------------------------------------------------------------------------------------------|
|      | hargins with the baseline control authority and aerodynamic                                                                            |
| T 19 | Camping                                                                                                                                |
| 1.12 | Response in an chart attitude $(b)$ to a unit step elevon control                                                                      |
|      | mput for 30 outboard wing sweep at different static margins                                                                            |
| T 19 | Begnenges in since of pitch rate to a unit stop slover control                                                                         |
| 1.15 | Response in aircraft pitch rate to a unit step elevon control                                                                          |
|      | input for 36° outboard wing sweep at different static margins                                                                          |
|      | with the baseline control authority and aerodynamic damping. 200                                                                       |
| I.14 | Response in aircraft normal acceleration to a unit step elevon                                                                         |
|      | control input for $36^{\circ}$ outboard wing sweep at different static                                                                 |
|      | margins with the baseline control authority and aerodynamic                                                                            |
|      | damping                                                                                                                                |
| I.15 | Response in aircraft airspeed to a unit step elevon control                                                                            |
|      | input for $36^{\circ}$ outboard wing sweep at different static margins                                                                 |
|      | with the baseline control authority and aerodynamic damping. $201$                                                                     |
| I.16 | Response in aircraft angle of attack $(\alpha)$ to a unit step elevon                                                                  |
|      | control input for 30° outboard wing sweep at a $10.7\%$ static                                                                         |
|      | margin (at $30^{\circ}$ ) with the baseline aerodynamic damping with                                                                   |
|      | variations in control authority                                                                                                        |
| I.17 | Response in aircraft attitude $(\theta)$ to a unit step elevon control                                                                 |
|      | input for $30^{\circ}$ outboard wing sweep at a $10.7\%$ static margin (at                                                             |
|      | $30^{\circ}$ ) with the baseline aerodynamic damping with variations                                                                   |
|      | in control authority                                                                                                                   |
| I.18 | Response in aircraft pitch rate to a unit step elevon control                                                                          |
|      | input for $30^{\circ}$ outboard wing sweep at a $10.7\%$ static margin (at                                                             |
|      | 30°) with the baseline aerodynamic damping with variations                                                                             |
|      | in control authority                                                                                                                   |
| I.19 | Response in aircraft normal acceleration to a unit step elevon                                                                         |
|      | control input for 30° outboard wing sweep at a 10.7% static                                                                            |
|      | margin (at 30°) with the baseline aerodynamic damping with                                                                             |
|      | variations in control authority. 204                                                                                                   |
|      |                                                                                                                                        |



| I.20 | Response in aircraft airspeed to a unit step elevon control                |
|------|----------------------------------------------------------------------------|
|      | input for $30^{\circ}$ outboard wing sweep at a $10.7\%$ static margin (at |
|      | $30^{\circ}$ ) with the baseline aerodynamic damping with variations       |
|      | in control authority                                                       |
| I.21 | Response in aircraft angle of attack $(\alpha)$ to a unit step elevon      |
|      | control input for $24^{\circ}$ outboard wing sweep at a $10.7\%$ static    |
|      | margin (at $30^{\circ}$ ) with the baseline aerodynamic damping with       |
|      | variations in control authority                                            |
| I.22 | Response in aircraft attitude $(\theta)$ to a unit step elevon control     |
|      | input for $24^{\circ}$ outboard wing sweep at a $10.7\%$ static margin (at |
|      | 30°) with the baseline aerodynamic damping with variations                 |
|      | in control authority                                                       |
| I.23 | Response in aircraft pitch rate to a unit step elevon control              |
|      | input for $24^{\circ}$ outboard wing sweep at a $10.7\%$ static margin (at |
|      | $30^{\circ}$ ) with the baseline aerodynamic damping with variations       |
|      | in control authority                                                       |
| I.24 | Response in aircraft normal acceleration to a unit step elevon             |
|      | control input for $24^{\circ}$ outboard wing sweep at a $10.7\%$ static    |
|      | margin (at $30^{\circ}$ ) with the baseline aerodynamic damping with       |
|      | variations in control authority                                            |
| I.25 | Response in aircraft airspeed to a unit step elevon control                |
|      | input for $24^{\circ}$ outboard wing sweep at a $10.7\%$ static margin (at |
|      | $30^{\circ}$ ) with the baseline aerodynamic damping with variations       |
|      | in control authority                                                       |
| I.26 | Response in aircraft angle of attack $(\alpha)$ to a unit step elevon      |
|      | control input for $30^{\circ}$ outboard wing sweep at a $10.7\%$ sta-      |
|      | tic margin (at $30^{\circ}$ ) with the baseline control authority with     |
|      | variations in aerodynamic damping                                          |
| I.27 | Response in aircraft attitude $(\theta)$ to a unit step elevon control     |
|      | input for 30° outboard wing sweep at a $10.7\%$ static margin              |
|      | (at $30^{\circ}$ ) with the baseline control authority with variations in  |
|      | aerodynamic damping                                                        |



| I.28 | Response in aircraft pitch rate to a unit step elevon control                                                                        |
|------|--------------------------------------------------------------------------------------------------------------------------------------|
|      | input for $30^{\circ}$ outboard wing sweep at a $10.7\%$ static margin                                                               |
|      | (at $30^{\circ}$ ) with the baseline control authority with variations in                                                            |
|      | aerodynamic damping                                                                                                                  |
| I.29 | Response in aircraft normal acceleration to a unit step elevon                                                                       |
|      | control input for $30^{\circ}$ outboard wing sweep at a $10.7\%$ sta-                                                                |
|      | tic margin (at $30^{\circ}$ ) with the baseline control authority with                                                               |
|      | variations in aerodynamic damping                                                                                                    |
| I.30 | Response in aircraft airspeed to a unit step elevon control                                                                          |
|      | input for $30^{\circ}$ outboard wing sweep at a $10.7\%$ static margin                                                               |
|      | (at $30^{\circ}$ ) with the baseline control authority with variations in                                                            |
|      | aerodynamic damping                                                                                                                  |
| I.31 | Gust response for aircraft angle of attack ( $\alpha$ ) for 30° outboard                                                             |
|      | wing sweep at different static margins with the baseline aero-                                                                       |
|      | dynamic damping                                                                                                                      |
| I.32 | Gust response for aircraft attitude ( $\theta$ ) for 30° outboard wing                                                               |
|      | sweep at different static margins with the baseline aerodyna-                                                                        |
|      | mic damping                                                                                                                          |
| I.33 | Gust response for aircraft pitch rate for $30^{\circ}$ outboard wing                                                                 |
|      | sweep at different static margins with the baseline aerodyna-                                                                        |
|      | mic damping                                                                                                                          |
| I.34 | Gust response for aircraft normal acceleration for $30^{\circ}$ outboard                                                             |
|      | wing sweep at different static margins with the baseline aero-                                                                       |
|      | dynamic damping. $\dots \dots \dots$ |
| I.35 | Gust response for aircraft airspeed for $30^\circ$ outboard wing sweep                                                               |
|      | at different static margins with the baseline aerodynamic dam-                                                                       |
|      | ping                                                                                                                                 |
| I.36 | Gust response for aircraft angle of attack ( $\alpha$ ) for 24° outboard                                                             |
|      | wing sweep at different static margins with the baseline aero-                                                                       |
|      | dynamic damping                                                                                                                      |
| I.37 | Gust response for aircraft attitude ( $\theta$ ) for 24° outboard wing                                                               |
|      | sweep at different static margins with the baseline aerodyna-                                                                        |
|      | mic damping                                                                                                                          |



| I.38 | Gust response for aircraft pitch rate for 24° outboard wing<br>sweep at different static margins with the baseline aerodyna- |     |
|------|------------------------------------------------------------------------------------------------------------------------------|-----|
|      | mic damping.                                                                                                                 | 217 |
| I.39 | Gust response for aircraft normal acceleration for 24° outboard                                                              |     |
|      | wing sweep at different static margins with the baseline aero-                                                               |     |
|      | dynamic damping.                                                                                                             | 218 |
| I.40 | Gust response for aircraft airspeed for $24^\circ$ outboard wing sweep                                                       |     |
|      | at different static margins with the baseline control authority                                                              |     |
|      | and aerodynamic damping                                                                                                      | 218 |
| I.41 | Gust response for aircraft angle of attack ( $\alpha$ ) for 36° outboard                                                     |     |
|      | wing sweep at different static margins with the baseline aero-                                                               |     |
|      | dynamic damping.                                                                                                             | 219 |
| I.42 | Gust response for aircraft attitude ( $\theta$ ) for 36° outboard wing                                                       |     |
|      | sweep at different static margins with the baseline aerodyna-                                                                |     |
|      | mic damping. $\ldots$                       | 220 |
| I.43 | Gust response for aircraft pitch rate for $36^{\circ}$ outboard wing                                                         |     |
|      | sweep at different static margins with the baseline aerodyna-                                                                |     |
|      | mic damping. $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$                                | 220 |
| I.44 | Gust response for aircraft normal acceleration for $36^\circ$ outboard                                                       |     |
|      | wing sweep at different static margins with the baseline aero-                                                               |     |
|      | dynamic damping.                                                                                                             | 221 |
| I.45 | Gust response for aircraft airspeed for $36^\circ$ outboard wing sweep                                                       |     |
|      | at different static margins with the baseline control authority                                                              |     |
|      | and aerodynamic damping                                                                                                      | 221 |
| I.46 | Gust response for aircraft angle of attack ( $\alpha$ ) for 30° outboard                                                     |     |
|      | wing sweep at a $10.7\%$ static margin (at $30^\circ$ sweep) with dif-                                                       |     |
|      | ferent configurations for aerodynamic damping                                                                                | 222 |
| I.47 | Gust response for aircraft attitude ( $\theta$ ) for 30° outboard wing                                                       |     |
|      | sweep at a 10.7% static margin (at 30° sweep) with different                                                                 |     |
|      | configurations for aerodynamic damping                                                                                       | 223 |
| I.48 | Gust response for aircraft pitch rate for $30^{\circ}$ outboard wing                                                         |     |
|      | sweep at a 10.7% static margin (at 30° sweep) with different                                                                 |     |
|      | configurations for aerodynamic damping                                                                                       | 223 |



| I.49       | Gust response for aircraft normal acceleration for $30^{\circ}$ outboard    |       |
|------------|-----------------------------------------------------------------------------|-------|
|            | wing sweep at a $10.7\%$ static margin (at $30^{\circ}$ sweep) with dif-    |       |
|            | ferent configurations for aerodynamic damping.                              | 224   |
| I.50       | Gust response for aircraft airspeed for 30° outboard wing sweep             |       |
|            | at a $10.7\%$ static margin (at $30^{\circ}$ sweep) with different confi-   |       |
|            | gurations for aerodynamic damping                                           | 224   |
| I.51       | The C-star analysis for all static margin variations at 30°                 |       |
|            | sweep having the baseline aerodynamic damping and control                   |       |
|            | authority. (Configurations 81, 90, 99, 108)                                 | 225   |
| I.52       | The C-star analysis for all static margin variations at 24°                 |       |
|            | sweep having the baseline aerodynamic damping and control                   |       |
|            | authority. (Configurations 63, 72)                                          | 226   |
| I.53       | The C-star analysis for all static margin variations at 36°                 |       |
|            | sweep having the baseline aerodynamic damping and control                   |       |
|            | authority. (Configurations 117, 126, 135, 144)                              | 226   |
| I.54       | The C-star analysis for all control authority variations at 30°             |       |
|            | sweep with the baseline aerodynamic damping at a $10.7\%$ (at               |       |
|            | $30^{\circ}$ ) static margin configuration. (Configurations 93, 96, 99) .   | 227   |
| I.55       | The C-star analysis for all damping variations at 30° sweep                 |       |
|            | with the baseline control authority at a $10.7\%$ (at $30^{\circ}$ ) static |       |
|            | margin configuration. (Configurations 97, 98, 99)                           | 227   |
| <b>-</b> . |                                                                             |       |
| J.1        | Thumbprint analysis for 20° outboard wing sweep, at various                 |       |
|            | static margin cases, with the baseline aerodynamic damping.                 | . 228 |
| J.2        | Thumbprint analysis for 30° outboard wing sweep, at various                 |       |
|            | static margin cases, with the baseline aerodynamic damping.                 | 229   |
| J.3        | Thumbprint analysis for $36^{\circ}$ outboard wing sweep, at various        |       |
|            | static margin cases, with the baseline aerodynamic damping.                 | 229   |
| J.4        | CAP for 20° outboard wing sweep, at various static margin                   |       |
|            | cases, with the baseline aerodynamic damping                                | 230   |
| J.5        | CAP for 30° outboard wing sweep, at various static margin                   |       |
|            | cases, with the baseline aerodynamic damping                                | 231   |



| J.6  | CAP for 36° outboard wing sweep, at various static margin                                                                    |
|------|------------------------------------------------------------------------------------------------------------------------------|
|      | cases, with the baseline aerodynamic damping                                                                                 |
| J.7  | Group two analysis results for $n_{\alpha} < 15$ g/rad                                                                       |
| J.8  | Group three analysis results for $n_{\alpha} < 15$ g/rad                                                                     |
| J.9  | Group three analysis results for $n_{\alpha} \ge 15$ g/rad                                                                   |
| J.10 | Group four analysis results for $n_{\alpha} < 15$ g/rad                                                                      |
| J.11 | Group four analysis results for $n_{\alpha} \ge 15$ g/rad                                                                    |
| J.12 | Group five analysis results for $n_{\alpha} < 15$ g/rad                                                                      |
| J.13 | Group five analysis results for $n_{\alpha} \geq 15$ g/rad                                                                   |
| J.14 | Group six analysis results for $n_{\alpha} < 15$ g/rad                                                                       |
| J.15 | Group six analysis results for $n_{\alpha} \ge 15$ g/rad                                                                     |
| K.1  | Nichols chart for aircraft configuration 99 with only gain ad-<br>iustment in order to achieve the performance standards 238 |
| КЭ   | Nichols chart illustrating the difference between a system that                                                              |
| 11.2 | requires lead and lag compensation 239                                                                                       |
| K.3  | Nichols chart for aircraft configuration 99 with lead, lag and                                                               |
| 11.0 | gain adjustment in order to achieve the performance standards.241                                                            |
| K.4  | Bode plot of the pilot compensation network. The phase angle                                                                 |
|      | at 3.5 rad/s is indicated by an arrow                                                                                        |
| K.5  | Bode plots for aircraft configuration 99 showing the Bode                                                                    |
|      | characteristics of the airframe only, the open loop as well as                                                               |
|      | the closed loop pilot compensated aircraft transfer function 243                                                             |
| K.6  | Step response for the closed loop pilot compensated aircraft                                                                 |
|      | configuration 99                                                                                                             |



## List of Tables

| 3.1 | Level 1 requirements for MIL-F-8785C                                                                                          | 28 |
|-----|-------------------------------------------------------------------------------------------------------------------------------|----|
| 4.1 | Longitudinal dimensional and dimensionless derivatives (Stevens & Lewis, 1992:105).                                           | 47 |
| 4.2 | Results of the sensitivity analysis of the short period mode.<br>(The absolute values of the changes in magnitude of the pro- |    |
|     | perties are shown)                                                                                                            | 53 |
| 4.3 | Results of the sensitivity analysis of the phugoid mode. (The absolute values of the changes in magnitude of the properties   |    |
|     | are shown) $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$                                   | 54 |
| 4.4 | The aircraft mathematical model parameters used in this study.                                                                | 56 |
| 4.5 | Longitudinal mass and balance data of the Exulans (30° sweep,                                                                 |    |
|     | 10.7% @ 30° static margin layout)                                                                                             | 59 |
| 4.6 | Lift curve information from Crosby $(2000)$                                                                                   | 66 |
| 4.7 | Comparison of aerodynamic data from Crosby (2000) to JK-                                                                      |    |
|     | VLM results                                                                                                                   | 66 |
| 5.1 | Baseline parameter values used for the sensitivity study (30°                                                                 |    |
|     | sweep gull-wing configuration with a $10.7\%$ static margin at                                                                |    |
|     | $30^{\circ}$ sweep).                                                                                                          | 80 |
| 5.2 | Comparison of modal characteristics estimated by numerical                                                                    |    |
|     | methods and analytical approximations (30° sweep gull-wing                                                                    |    |
|     | configuration with a 10.7% static margin at 30° sweep)                                                                        | 81 |
| 5.3 | Sensitivity of circular natural frequency with respect to pitch                                                               |    |
|     | inertia                                                                                                                       | 82 |
| 5.4 | Sensitivity of damping ratio with respect to pitch inertia                                                                    | 82 |



| 5.5 | Sensitivity of natural frequency with respect to pitch damping                                                                    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|
| 5.6 | Sensitivity of damping ratio with respect to pitch damping                                                                        |
| 5.7 | coefficient                                                                                                                       |
| 8.1 | Trim conditions used for the Mönnich-Dalldorff analysis of the gull-wing configuration                                            |
| 8.2 | The evaluation of the Mönnich-Dalldorff criterion for different<br>outboard wing sweep angles of the gull-wing configuration air- |
| 8.3 | craft for a 2% static margin at 30° sweep case                                                                                    |
|     | outboard wing sweep angles of the gull-wing configuration air-<br>craft for a 5% static margin at $30^{\circ}$ sweep case         |
| 8.4 | The evaluation of the Mönnich-Dalldorff criterion for different                                                                   |
| 85  | craft for a 10.7% static margin at 30° sweep case                                                                                 |
| 0.0 | outboard wing sweep angles of the gull-wing configuration air-<br>craft for a 15% static margin at 30° sweep case                 |
| A.1 | Pilot opinion rating and flying qualities level. (The Cooper                                                                      |
|     | Harper scale) $\ldots \ldots 145$             |
| E.1 | Comparison of values of ${\cal C}_{M_q}$ calculated by different methods . 158                                                    |
| F.1 | $VLM$ model sizes used for the $C_{M_{\delta_e}}$ sensitivity analysis 168                                                        |
| F.2 | Comparison of the JKVLM elevator deflection coefficients with                                                                     |
| F.3 | Comparison of the calculated elevator deflection coefficients                                                                     |
|     | with wind tunnel results for the same coefficients. All coefficients have the units [/rad]                                        |
| G.1 | Wind tunnel results for the neutral point. The neutral point position is given in percentage of mean aerodynamic chord 175        |



| G.2  | VLM results for the neutral point. The neutral point position |
|------|---------------------------------------------------------------|
|      | is given in percentage of mean aerodynamic chord              |
| G.3  | Comparison of the wind tunnel and $VLM$ results for the neu-  |
|      | tral point and static margin                                  |
| H 1  | The aircraft configurations investigated in the pitch control |
| 11.1 | effectiveness analysis 183                                    |
| H 2  | The aircraft configurations investigated in the gust response |
| 11.2 | and eigenvalue analysis.                                      |
|      |                                                               |



### Nomenclature

#### Mathematical Symbols

- A Linearised state space matrix (see Equation B.6)
- A Wing area (Only Figure E.1) [m<sup>2</sup>]
- $a_0$  Section lift curve slope for a section normal to the quarter-chord line when placed in the direction of the free stream [/rad]
- b Wing span of aircraft [m]
- $\overline{c}$  Mean aerodynamic chord [m]
- c Damping term matrix of a multi-degree-of-freedom system
- $C^*$  C-star response []
- $C_D$  Aircraft drag coefficient
- $C_L$  Aircraft lift coefficient
- $C_M$  Aircraft moment coefficient
- $C_{D_0}$  Parasitic drag coefficient
- $C_{D_{\alpha}}$  Drag coefficient derivative w.r.t. angle of attack
- $C_{D_e}$  Equilibrium drag coefficient
- $C_{D_i}$  Coefficient of induced drag
- $C_{D_V}$  Drag coefficient derivative w.r.t. true airspeed

xxvii



- $C_{D_{\delta_e}}$  Drag coefficient derivative w.r.t. angle of elevator (or elevon) deflection
- $C_{L_0}$  y-intercept of lift coefficient curve
- $C_{L_q}$  Lift coefficient due to the pitch rate of the aircraft
- $C_{L_V}$  Lift coefficient derivative w.r.t. true airspeed
- $C_{L_{\alpha}}$  Lift coefficient curve slope [/rad]
- $C_{L_{\delta_s}}$  Lift coefficient due to the elevator (or elevon) deflection
- $C_{L_{\dot{\alpha}}}$  Lift coefficient derivative w.r.t. the rate of change of angle of attack
- $C_{M_0}$  y-intercept of moment curve
- $C_{M_q}$  Pitch moment coefficient of aircraft due to pitch rate, or pitch damping [/rad]
- $C_{M_V}$  Moment coefficient derivative w.r.t. true airspeed
- $C_{M_{\alpha}}$  Moment coefficient curve slope of the aircraft [/rad]
- $C_{M_{\dot{\alpha}}}$  Pitch moment coefficient of aircraft due to rate of change of angle of attack. This coefficient relates to aerodynamic damping due to the interaction between the forward lifting surface and aft lifting surface (the horizontal stabiliser for most aircraft). [/rad]
- $C_{M_{\delta_e}}$  Change of moment coefficient w.r.t. elevon deflection angle [/rad]
- d Time delay
- e Oswald's span efficiency factor
- $\overline{F}$  Excitation force vector of a multi-degree-of-freedom system
- $F_s$  Elevator (or elevon) stick force, positive for pull [N]
- g Gravitational acceleration  $[m/s^2]$



- *I* Identity matrix
- i The complex part of a complex number
- $I_{xx}$  X-X moment of inertia (aircraft body axis system) [kg·m<sup>2</sup>]
- $I_{yy}$  Y-Y moment of inertia (aircraft body axis system) [kg·m<sup>2</sup>]
- $I_{zz}$  Z-Z moment of inertia (aircraft body axis system) [kg·m<sup>2</sup>]
- k Stiffness matrix of a multi-degree-of-freedom system
- $K_1$  Normal acceleration scaling constant of the C<sup>\*</sup> analysis [].
- $K_2$  Pitch rate scaling constant of the C<sup>\*</sup> analysis [seconds].
- $K_3$  Pitch acceleration scaling constant of the C<sup>\*</sup> analysis [seconds<sup>2</sup>].
- $K_{\theta}$  The 'airframe only' gain
- $K_p$  Steady state pilot gain
- $K_q$  Steady state gain, elevator to pitch rate transfer function
- *l* Distance from aircraft centre of gravity to the head of the pilot. [m]
- $L_{\alpha} = \frac{\rho V_T^2 S C_{L_{\alpha}}}{2m V_T}$ , the dimensional derivative of the aerodynamic lift in the wind axis system w.r.t. angle of attack. In the case of an aircraft with negligible control surface lift this parameter is an approximation of the inverse of  $\tau_{\theta_2}$ . [1/second]
- $L_{\delta_e} = \frac{\rho V_T^2 S C_{L_{\delta_e}}}{2mV_T}$ , the dimensional derivative of the aerodynamic lift in the wind axis system w.r.t. elevon deflection [1/second]
- m Aircraft mass [kg]
- m Mass (inertia) matrix of a multi-degree-of-freedom system
- $M_{\alpha}$  Dimensional derivative of the aerodynamic pitch moment in the wind axis system w.r.t. angle of attack



- $M_q$  Dimensional derivative of the aerodynamic pitch moment in the wind axis system w.r.t. pitch rate of the aircraft
- $M_V$  Dimensional derivative of the aerodynamic pitch moment in the wind axis system w.r.t. true airspeed
- $M_{\delta_e}$  Dimensional derivative of the aerodynamic pitch moment in the wind axis system w.r.t. elevator (or elevon) deflection
- $M_{\dot{\alpha}}$  Dimensional derivative of the aerodynamic pitch moment in the wind axis system w.r.t. the rate of change of the angle of attack
- $M_{F_s} = M_{\delta_e} \left(\frac{\delta_e}{F_s}\right)_{SS}$ , the derivative of aerodynamic moment around the pitch axis with respect to elevator (or elevon) stick force at steady state conditions.
- *n* Aircraft load factor  $\frac{L}{mg}$ , or the normal acceleration of aircraft [g's]
- $n_{\alpha}$  Load factor gradient [g/rad]
- $\overline{q}$  Dynamic pressure or  $\frac{1}{2}\rho V_T^2$  [N/m<sup>2</sup>]
- q Pitch rate of aircraft [rad/s]
- $q_g$  Pitch rate due to gust velocity [rad/s]
- $q_{rel}$  Pitch rate of aircraft relative to surrounding air [rad/s]
- S Wing area  $[m^2]$
- s Laplace operator [1/rad]
- s Quarter chord sweep angle  $[^{\circ}]$
- $s_r$  Eigenvalue with index r, of a generic multi degree of freedom system
- $s_r^*$  The complex conjugate of  $s_r$
- $T_{2_p}$  Time to double, the time for the dynamic mode to double in amplitude [seconds]



- $V_e$  True airspeed at trim condition [m/s] or [km/h]
- $V_T$  True airspeed [m/s]
- $\dot{w}_g$  Partial derivative of vertical component of gust velocity with respect to time  $[m/s^2]$
- $W_g$  Maximum value of the vertical gust [m/s]
- $w_g$  Vertical component of gust velocity as function of time [m/s]
- $\ddot{\overline{x}}$  Acceleration vector of a multi-degree-of-freedom system
- $\dot{\overline{x}}$  Velocity vector of a multi-degree-of-freedom system
- $\dot{\mathbf{x}}$  State vector in state space representation
- $\overline{X}$  Longitudinal distance rearward from the aircraft CG to the wing aerodynamic centre
- $\overline{x}$  Displacement vector of a multi-degree-of-freedom system
- $X_{\alpha}$  Dimensional derivative of the aerodynamic force in the X-direction of the wind axis system w.r.t. angle of attack
- $X_V$  Dimensional derivative of the aerodynamic force in the X-direction of the wind axis system w.r.t. true airspeed
- $X_{\delta_e}$  Dimensional derivative of the aerodynamic force in the X-direction of the wind axis system w.r.t. elevator (or elevon) deflection
- $x_{cg}$  Distance between the leading edge of the wing on the symmetry axis of the aircraft and the CG [m]
- $\dot{\bar{y}}$  Acceleration vector of a multi-degree-of-freedom system (State space substitution)
- $\overline{y}$  Velocity vector of a multi-degree-of-freedom system (State space substitution)



- $\dot{z}$  State space substitution variable
- *z* Derivative of state space substitution variable
- $Z_{\alpha}$  Dimensional derivative of the aerodynamic force in the Z-direction of the wind axis system w.r.t. angle of attack
- $Z_q$  Dimensional derivative of the aerodynamic force in the Z-direction of the wind axis system w.r.t. pitch rate of the aircraft
- $Z_V$  Dimensional derivative of the aerodynamic force in the Z-direction of the wind axis system w.r.t. true airspeed
- $Z_{\delta_e}$  Dimensional derivative of the aerodynamic force in the Z-direction of the wind axis system w.r.t. elevator (or elevon) deflection
- $Z_{\dot{\alpha}}$  Dimensional derivative of the aerodynamic force in the Z-direction of the wind axis system w.r.t. the rate of change of the angle of attack
- $\alpha$  Angle of attack [rad or degrees]
- $\dot{\alpha}$  Rate of change of angle of attack [rad/s]
- $\gamma$  Outboard wing sweep angle (See Figure 4.2). [rad or degrees]
- $\delta_e$  Elevator (or elevon) deflection angle [rad]
- $\zeta$  Damping ratio []
- $\zeta_p$  Phugoid mode damping ratio []
- $\zeta_r$  The damping ratio of the  $r^{\text{th}}$  mode of a generic multi degree of freedom system []
- $\zeta_{sp}$  Short period mode damping ratio []
- $\ddot{\theta}$  Pitch acceleration of the aircraft. [rad/s<sup>2</sup>]
- $\dot{\theta}$  Pitch rate [rad/s]
- $\theta$  Pitch angle [rad or degrees]

xxxii



- $\theta_e$  Error between the commanded pitch attitude and the aircraft pitch attitude [rad]
- $\Lambda$  Angle of sweep of wing quarter-chord line [degrees]
- $\lambda$  Wavelength of the vertical gust disturbance [m]
- $\rho$  Density of air [kg/m<sup>3</sup>]
- $\tau_{\theta_2}$  Numerator time constant (airframe lead time constant) of pitch rate to elevator deflection transfer function [seconds]
- $\tau_{p_1}$  Time constant of control system lead element [seconds]
- $\tau_{p_2}$  Time constant of control system lag element [seconds]
- $\chi$  Aspect ratio,  $\frac{b^2}{S}$  []
- $\omega$  Circular frequency [rad/s]
- $\omega_d$  Damped natural frequency [rad/s]
- $\omega_r$  The natural frequency of the  $r^{\text{th}}$  mode of a generic multi degree of freedom system [rad/s]
- $\omega_{n_p}$  Phugoid mode natural frequency [rad/s]
- $\omega_{n_{sp}}$  Short period mode natural frequency [rad/s]
- $\angle$  Signifies Bode phase angle of a transfer function
- $\left(\frac{\theta}{\theta_e}\right)^* \frac{\theta}{\theta_e}$  transfer function with uncompensated pilot. This transfer function is considered as uncompensated when only a gain was used to achieve the Neal-Smith performance standards.
- $\left(\frac{\delta_e}{F_s}\right)_{SS}$  Steady state gearing between elevator (or elevon) deflection and elevator stick force [rad/N]
- $\frac{\theta}{\theta_c}$  The closed-loop transfer function of the aircraft plus control system plus pilot



- $\frac{\theta}{\theta_e}$  The open-loop transfer function of the aircraft plus control system plus pilot
- $\frac{\theta}{F_s}$  The open-loop transfer function of the aircraft plus control system

#### Abbreviations

- AR Aspect ratio of wing
- BW Bandwidth [rad/s]
- $BW_{MIN}$  Minimum bandwidth frequency
- BWB Blended Wing Body
- $CAP\ \ Control \ anticipation\ parameter$
- CFD Computational Fluid Dynamics
- CG Centre of Gravity
- dB Decided units for Bode amplitude, where amplitude in  $dB = 20 \log_{10}$  [amplitude]
- GPS Global Positioning System
- *IP* Initial point (for a bombing run)
- $J-UCAS\,$ Joint Unmanned Combat Air System
- PIO Pilot induced oscillation
- PR Pilot rating (of aircraft handling qualities)
- $U\!AV\,$  Unmanned Air Vehicle
- $VLM\,$  Vortex Lattice Method

#### Subscripts

- e Elevon, as used in  $\delta_e$
- e Equivalent, as used with  $V_e$

xxxiv



- g Gust
- r Index number, typically of an eigenvalue, circular natural frequency or damping ratio
- *rel* Relative
- SS Steady state