Ontogeny of the ovarian follicular reserve of the

African elephant (*Loxodonta africana*)

By

FIONA JANE STANSFIELD

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in the Department of Production Animal Studies

in the Faculty of Veterinary Science,

University of Pretoria

Date submitted: May 2012

© University of Pretoria
Acknowledgements

Working on this PhD thesis for over six years in Zimbabwe has been a long and, at times, isolated period of study and I am greatly indebted to the people in Zimbabwe, South Africa and England who have advised, supported and encouraged me throughout the process. My sincere thanks go out to all involved.

At the outset I express my thanks to my supervisors, Professor Johan Nöthling and Professor John Soley, for both sourcing financial support and for their meticulous statistical analyses and the care they took in arranging the content of this thesis and associated manuscripts. I am most grateful. I also acknowledge the role of the National Research Foundation of South Africa and the University of Pretoria in supporting my research.

I am most grateful to Professor Helen Picton of Leeds University for allowing me to deviate from human embryology to elephant folliculogenesis for my MSc thesis in Clinical Embryology in 2005. This started me on my path towards elephant research.

Dr Chris Foggin and the Wildlife Veterinary Unit listened kindly to initial thoughts on the study and they assisted greatly with obtaining the necessary permits to move specimens from Zimbabwe to England and South Africa for histology purposes.

But for Professor Twink Allen’s, kind gesture to allow me the use of Dr Richard Laws collection of elephant ovaries, this study would not have proceeded past the protocol stage as new samples were, at the time, proving so difficult to obtain. His support in word and deed has been immeasurable and his kindness truly appreciated.

To Buzz Charlton and Myles McCallum of Charlton McCallum Safaris who have, faithfully over the years, collected so many of the ovary specimens during their hunting safaris. I thank them sincerely for the uniqueness of the specimens and the great trouble they went to collect and preserve them.

I am indebted to the members and owners of Savé Valley Conservancy for allowing me to collect particularly the young specimens involved in the study and for their constant support and generous hospitality. Without this the thesis would not have been possible.
Dr Sebastien le Bel of CIRAD tolerated my dogged determination to collect specimens from Savé Valley and generously allowed me to work alongside him and take part in his studies involving human wildlife conflict and sustainable usage of wildlife.

I am enourmously grateful to Dr Tahera Ansari and Professor Paul Sibbons of Northwick Park Medical Research Centre, England for their amazing stereological knowledge and kind input. Also to Joey Breedt and Marie Smit at Onderstepoort Veterinary School, and to Sue Gower at the Paul Mellon Laboratory in Newmarket England, for cutting and staining hundreds of 25 µm thick histological sections!

Many friends and family in England have carried me through the highs and lows of the exercise. Lorraine Prothero, Debby Hart, Adie and Ian Wilsher, Dave and Tess McFarlane and Michael and Emma Suddens. They all gave constant and loyal support and, Sandra Wilsher provided humour and thesis preparation survival techniques!

Finally, I offer love and appreciation to my precious son Tristan, throughout most of whose life to date this study has been taking place. For his amazing understanding that “Mum needs to work” and for all the joy he has brought to my life. When prompted by his nursery school teacher as to his mother’s occupation, his reply of “My Mummy collects elephant eggs” has brightened many low moments.
Table of contents

Chapter 1. General Introduction .. 1
 1.1. Classification of elephants ... 1

 1.2. A brief overview of studies related to reproductive processes in the elephant.... 3

 1.3. The gross and microscopic anatomy and physiological functions of the elephant ovary and its follicles .. 5
 1.3.1. Research pertaining to fetal, neonatal and prepubertal ovaries 5
 1.3.2. Ovarian structures during different phases of the reproductive cycle of adult elephants ... 7

 1.4. Further anatomy and physiology of the elephant ... 15
 1.4.1. Anatomy of the female reproductive system ... 15
 1.4.2. Puberty ... 19
 1.4.3. Fertility ... 19
 1.4.4. Fetal size .. 22
 1.4.5. Placentation .. 23
 1.4.6. Lactation .. 25
 1.4.7. Ovarian ageing in elephants ... 25
 1.4.8. Elephant age classification ... 25

 1.5. Follicle development in mammals ... 26
 1.5.1. Origin of the ovarian reserve ... 26
 1.5.2. The ovarian reserve and follicle activation ... 35
 1.5.3. Continued follicle growth to pre-ovulatory size 42
 1.5.4. Follicle classification .. 43
1.5.5. Small follicles in elephant ovaries ... 46

1.6. Background to the over-abundance of elephants in Zimbabwe 47

1.6.1. Elephant numbers in Zimbabwe ... 47

1.6.2. Attempts to counteract over-abundance .. 51

1.7. Objectives of the study .. 56

Chapter 2. Materials and methods ... 57

2.1. Source of specimens .. 57

2.2. Collection of specimens .. 57

2.2.1. Ovary and lower jaw collection ... 57

2.2.2. Body measurements ... 58

2.2.3. Further data collection .. 59

2.3. Estimating the age of elephants ... 60

2.4. Histology and stereology .. 63

2.4.1. Establishment of the protocol ... 63

2.4.2. Histology ... 64

2.4.3. Stereological examination ... 68

2.4.4. Sampling and bias ... 69

Chapter 3. Follicle morphology in the ovary of the African elephant and the composition of the ovarian reserve ... 78

3.1. Introduction ... 78

3.2. Materials and methods ... 79

3.2.1. Statistical Analysis ... 83

3.3. Results ... 83
Chapter 4. The distribution of small preantral follicles within the ovaries of prepubertal African elephants (Loxodonta africana)...95

4.1. Introduction.. 95

4.2. Materials and methods ... 96

4.2.1. Specimens and stereology..96

4.2.2. Statistical analyses ... 97

4.3. Results.. 99

4.4. Discussion.. 105

Chapter 5. Development of the germinal ridge and ovary in the African elephant (Loxodonta africana)...108

5.1. Introduction.. 108

5.2. Materials and methods... 110

5.3. Results.. 111

5.3.1. Milestones in embryonic development.. 111

5.3.2. Milestones in fetal development.. 116

5.3.3. Germ cell counts .. 122

5.4. Discussion.. 125

5.4.1. Developmental stage and age of the embryos 125

5.4.2. Morphology of the gonadal ridge and developing ovary................. 126

5.4.3. Germ cell counts .. 129
Chapter 6. Growth and development of the ovary and small follicle pool from mid fetal life to pre-puberty in the African elephant (*Loxodonta africana*)

6.1. Introduction .. 132

6.2. Materials and methods ... 133

6.2.1. Tissue recovery .. 133

6.2.2. Tissue preparation .. 133

6.2.3. Immunohistochemical staining .. 133

6.2.4. Histological and stereological examinations ... 134

6.2.5. Classification of prepubertal calves into 3 physiological groups 134

6.3. Results .. 135

6.3.1. Fetal ovarian morphology (11–20 months of gestation) 135

6.3.2. Prepubertal calf ovarian morphology .. 142

6.3.3. Immunohistochemical staining of interstitial cells 143

6.3.4. Ovarian weight ... 146

6.3.5. Follicle number .. 146

6.4. Discussion .. 149

6.4.1. Late fetal and prepubertal ovarian morphology 149

6.4.2. Interstitial cells ... 151

6.4.3. Follicle numbers .. 153

6.5. Conclusion ... 157

Chapter 7. The progression of small follicle reserves in wild African elephants (*Loxodonta Africana*) from puberty to reproductive senescence

7.1. Introduction .. 158

7.2. Materials and methods ... 159
7.2.1. Animals .. 159

7.2.2. Collection and processing of specimens ... 160

7.2.3. Estimation of the age of corpora nigra (CN) ... 160

7.2.4. Statistical analysis... 161

7.3. Results ... 162

7.3.1. The relationship between the number of small follicles and age 162

7.3.2. The relationship between the type of small follicles and age 164

7.3.3. The relationship between reproductive status or tusklessness and the number of small follicles ... 166

7.3.4. Reproductive status of the old elephant.. 166

7.4. Discussion .. 168

7.4.1. The follicle reserve after puberty ... 168

7.4.2. The change in follicle numbers around puberty 169

7.4.3. A switch in type of small follicle constituting the reserve 170

7.4.4. The value of the current study with respect to understanding infertility of Zoo elephants ... 171

7.4.5. The relationship between tusklessness and the follicular reserve 173

7.4.6. Reproductive senescence .. 173

7.5. Conclusion .. 174

Chapter 8. General Discussion ... 176

8.1. Main findings on the ontogeny of the follicular reserve in the African elephants 176

8.2. Scope of inference from the salient findings ... 177
8.3. Follicle counting methods, stereology versus serial sectioning.....................178

8.4. The distribution of small follicles in the ovary of the African elephant...........180

8.5. Insights gained in the type of follicles constituting the follicle reserve in the
African elephant...180

8.6. Insights gained in the cessation of reproductive life.................................183

8.7. The value of the current study with respect to understanding and improving
strategies for contraception of African elephants..185

8.8. Does the longevity of reproductive life in the elephant offer insights into
reproductive senescence in humans, or *vice versa*?...187

8.9. Outstanding questions and possible future studies192

Chapter 9. References..194
List of tables

Table 1.1 Ovarian structures in an elephant shot immediately after mating during oestrus; data from Short (1966) 12

Table 1.2 Numbers of corpora lutea reported in the ovaries of pregnant elephants 14

Table 1.3 Weights of luteal tissue reported in the ovaries of pregnant elephants 14

Table 1.4 Range in luteal size reported in pregnant and cycling elephants 15

Table 1.5 Age of puberty in African elephants 19

Table 1.6 Published data on intercalving intervals in African elephants 20

Table 1.7 Studies reporting on fertility in old African elephants 21

Table 1.8 Reproductive status of elephants older than 50 years culled in Kruger National Park, South Africa during 1975–1995. Data from Freeman et al. (2008). 22

Table 1.9 Age classifications of African elephants based on Sykes (1971) and Laws (1969) 26

Table 1.10 Chronology of events during the differentiation of the mammalian gonad in various species (Days post conception) 28

Table 1.11 Numbers of primordial follicles in the ovary of mammals at varying ages (or number of oocytes during gestation) 32

Table 1.12 Small follicle classification in mammals 37

Table 1.13 Small follicle classification (SF) 39

Table 1.14 Diameter of follicles in the resting pool in various mammalian species 40

Table 1.15 Diameters of various parts of primary follicles (μm) 41

Table 1.16 Diameter of various parts of preantral follicles (μm) 45

Table 1.17 Estimated elephant numbers in Zimbabwe 48
Table 2.1 Hierarchy of experimental variability (Howard & Reed 2005) 70

Table 2.2 Types of probes used during stereological studies 71

Table 3.1 The number of small follicles in the ovaries of each of 16 African elephants aged 9–34 years, and with or without one or more large corpora lutea (CL) in their ovaries. 84

Table 3.2 Numbers of small follicles (SF) in the ovaries of 16 African elephants. 85

Table 3.3 Dimensions of the various types of small follicles (SF) in the ovaries of 14 African elephants and the numbers of granulosa cells surrounding them. 87

Table 3.4 Ratio between the mean diameters of follicles and oocytes and the two largest perpendicular diameters of oocytes and follicles for each small follicle (SF) class 88

Table 3.5 Dimensions of growing follicles (transitional to early antral) in the ovaries of 14 African elephants and the numbers of granulosa cells surrounding them. 89

Table 4.1 Mean (±sd) of selected ovarian variables, as well as their correlation with age and their agreement between the left (L) and right (R) ovary of 12 prepubertal African elephants (Loxodonta africana) calves aged 2 months to 4.5 years 101

Table 4.2 Coefficient of variation and repeatability limit between repeat counts of the numbers of small follicles per unbiased counting frame (follicle density) in the ovaries of three prepubertal African elephants 102

Table 4.3 Coefficient of variation and repeatability limit of repeat counts of the numbers of small follicles in the ovaries of three prepubertal African elephants 103

Table 5.1 Mass, crown-rump length (CRL) and estimated ages of the 5 elephant embryos 112

Table 5.2 The size of germ cells in the elephant embryonic and fetal gonad, and the number of granulosa cells surrounding the oocyte of different types of small follicles 115
Table 5.3 Ovarian volumes (mm³) of elephant fetuses

Table 5.4 Numbers and distributions of oogonia and small and growing follicles in the ovaries of elephant fetuses

Table 5.5 Number of small follicles in the reserves of different mammalian species

Table 6.1 The median (95% confidence interval) combined number of small follicles in both ovarian cortices of African elephant fetuses and prepubertal calves

Table 7.1 The number of small follicles (SF) per elephant of different age groups

Table 7.2 The number of small follicles (SF) in the two ovaries combined, as well as other signs of current or recent ovarian activity in 7 old African elephants

Table 7.3 True primary follicles (TP) as a percentage of total small follicles (SF) in the ovaries of elephants of different age groups

Table 7.4 Comparative data of corpora nigra (CN) of known age in African elephants

Table 8.1 Approximation of the small follicle component of the ovarian reserve throughout life in the African elephant.

Table 8.2 Diameters and number of granulosa cells for small follicles (SF), early primary follicles (EP) and true primary follicles (TP) and their oocytes at various stages through life
List of figures

Figure 1.1 The African elephant 2

Figure 1.2 Hormonal changes in the peripheral blood of female elephants during the oestrous cycle and pregnancy (diagrammatic) 9

Figure 1.3 A schematic representation of the reproductive organs of the female African elephant 17

Figure 1.4 The uterus and ovaries of the African elephant 18

Figure 1.5 The placenta of the African elephant 24

Figure 1.6 Similar morphology of the ovarian cortex in the domestic cow and the African elephant 34

Figure 1.7 Damage to trees caused by elephants in Savé Valley Conservancy and Mana Pools National Park, Zimbabwe 50

Figure 2.1 The ageing of elephants is achieved by examining the progression of molar teeth through the mandible 61

Figure 2.2 Sources of variation and error, according to (Mounton 2002) 69

Figure 2.3 An acetate point grid randomly placed over a photograph of an ovarian section to determine the reference volume by means of Cavalieri’s principle 73

Figure 2.4 Stereology 75

Figure 3.1 The ovaries of elephants and dimensions of measurements of small follicles 80

Figure 3.2 Small follicles in elephant ovaries 82

Figure 3.3 Comparison of follicle diameter, nuclear diameter and numbers of granulosa cells of small ovarian follicles in the African elephant 86
Figure 4.1 Assessment of the effect of position along the interpolar axis and along the intermarginal dimension on the number of small follicles per unbiased counting frame in the ovary of the African elephant

Figure 5.1 African elephant embryos aged (from left to right) 76, 81, 82, 87, and 96 days post conception (scale bar = 10mm)

Figure 5.2 Development of the gonad of the African elephant embryo

Figure 5.3 Photographs and photomicrographs of the gonads of elephant fetuses at 4.8 to 5.9 months of gestation

Figure 5.4 Ovarian sections from a mid-term (11.2 month) African elephant fetus

Figure 5.5 Elephant fetuses of different ages

Figure 6.1 Combined weights and volumes of the ovaries of African elephant fetuses from mid-gestation onwards and of calves up to 9 years of age

Figure 6.2 Relative contributions of cortex, interstitial cells and follicular antra to the volumes of the ovaries of elephant fetuses from mid-gestation onwards and of calves up to 4.5 years of age

Figure 6.3 Sectioned ovary of an elephant fetus at 11 months of gestation

Figure 6.4 Sections of the ovaries of an elephant fetus at 13.5 months of gestation

Figure 6.5 Photographs, taken above a light box, of 25 µm thick sections of fetal elephant ovaries recovered between 15 and 21 months of gestation (Scale bar = 10 mm)

Figure 6.6 The ovaries of two late-stage African elephant fetuses

Figure 6.7 Photographs of 25 µm thick sections of the ovaries of prepubertal elephant calves (Scale bar = 10 mm)

Figure 6.8 Sections of the ovaries of elephant fetuses and calves stained immunocytochemically with an anti-3β–HSD antibody
Figure 6.9 The number of small follicles in the ovaries of elephant fetuses and prepubertal calves in relation to age 147

Figure 6.10 Cortical volumes of fetal and prepubertal ovaries of African elephants 149

Figure 7.1 Ovaries from a pregnant and a non-pregnant African elephant cow 160

Figure 7.2 The total number of small ovarian follicles (SF) in elephant of different ages 163

Figure 7.3 The numbers of early primary (EP)- and true primary (TP) follicles in the ovaries of African elephants of different ages 165

Figure 7.4 Photomicrographs of 25 µm sections cut in a transverse plain, perpendicularly to a longitudinal bisection of the ovary, revealing the cyclical changes within the cortex of the elephant ovary 167

Figure 8.1 The numbers of SF in elephant ovaries counted by serial sectioning and stereology 179

Figure 8.2 Comparison of the numbers of small ovarian follicles per elephant found in the current study and the mean number of non-growing ovarian follicles per woman, as modelled by Wallace and Kelsey (2010), from approximately mid gestation to the cessation of reproductive life 189

Figure 8.3 The numbers of small ovarian follicles per elephant and the average estimated per woman from approximately mid gestation to 25 years of age (Human data from Wallace and Kelsey 2010) 191

Figure 8.4 The numbers of small follicles in elephant and the average number estimated per woman from approximately 20–70 years of age (Human data from Wallace and Kelsey 2010) 192
List of Abbreviations

2n2c Two chromosomes, 2 DNA strands, the genetic constitution of oogonia

2n4c Two chromosomes, 4 DNA strands, the genetic constitution of primary oocytes

3β-HSD 3β-hydroxysteroid dehydrogenase

5α-DHP 5α-dihydroprogesterone

AMH anti-mullerian hormone

Ap Area associated with a point

BCL B cell lymphoma/leukemia

BV Biological variation

CE Coefficient of error

CITES The Convention in International Trade in Endangered Species

CL One corpus luteum or more corpora lutea, as would be clear from the context

CN Corpora nigra

CRL Crown rump length

CV Coefficient of variation

D Dimension, eg. 0–D or 3–D

D1 Diameter 1

D2 Diameter 2

E For example, E80, embryonic day 80

elPL Elephant placental lactogen

EP Early primary follicle, early primary follicles, or the early primary stage of development of a follicle, as would be clear from the context

FGF Fibroblast-like growth factor

Fig Factor in germline

FOV Fields of view

FOX Forkhead box
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH</td>
<td>Follicle stimulating hormone</td>
</tr>
<tr>
<td>GDF</td>
<td>Growth differentiation factor</td>
</tr>
<tr>
<td>GSC</td>
<td>Germline stem cells</td>
</tr>
<tr>
<td>H&E</td>
<td>Haematoxylin and Eosin</td>
</tr>
<tr>
<td>HEC</td>
<td>Human elephant conflict</td>
</tr>
<tr>
<td>IMS</td>
<td>Industrial methylated spirits</td>
</tr>
<tr>
<td>KIT</td>
<td>Tyrosine protein kinase</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinising hormone</td>
</tr>
<tr>
<td>LIF</td>
<td>Leucocyte inhibitory factor</td>
</tr>
<tr>
<td>M</td>
<td>Molar tooth eg MII or MVI</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>n</td>
<td>Number of a sample</td>
</tr>
<tr>
<td>NGF</td>
<td>Non-growing follicle</td>
</tr>
<tr>
<td>NP</td>
<td>National Park</td>
</tr>
<tr>
<td>Nv</td>
<td>Number in volume</td>
</tr>
<tr>
<td>Oct4</td>
<td>Octamer binding transcription factor 4</td>
</tr>
<tr>
<td>OSE</td>
<td>Ovarian surface epithelium</td>
</tr>
<tr>
<td>PAC</td>
<td>Problem animal control</td>
</tr>
<tr>
<td>pZP</td>
<td>Porcine zona pellucida</td>
</tr>
<tr>
<td>P</td>
<td>Value of statistical significance</td>
</tr>
<tr>
<td>P13k</td>
<td>Phosphotidylinositol 3 kinase</td>
</tr>
<tr>
<td>PGC</td>
<td>Primordial germ cell</td>
</tr>
<tr>
<td>sec</td>
<td>Seconds</td>
</tr>
<tr>
<td>SF</td>
<td>Small follicle or small follicles, as would be clear from the context</td>
</tr>
<tr>
<td>SVC</td>
<td>Savé Valley Conservancy</td>
</tr>
<tr>
<td>Σ</td>
<td>Sum of</td>
</tr>
<tr>
<td>t−</td>
<td>Segment thickness</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming growth factor</td>
</tr>
<tr>
<td>TP</td>
<td>True primary follicle, true primary follicles or a follicle that is at the true primary stage of development, as would be clear from the context</td>
</tr>
<tr>
<td>TPM</td>
<td>True primordial follicle, true primordial follicles, or a follicle that is at the true primordial stage of development, as would be clear from the context</td>
</tr>
<tr>
<td>UCF</td>
<td>Unbiased counting frame</td>
</tr>
<tr>
<td>Vol.dis</td>
<td>Volume of disector</td>
</tr>
<tr>
<td>Vref</td>
<td>Reference volume</td>
</tr>
</tbody>
</table>
SUMMARY

Ontogeny of the ovarian follicular reserve of the African elephant (*Loxodonta africana*)

By

FIONA JANE STANSFIELD

Promoter: Professor J O Nöthling

Co-promoter: Professor J Soley

Department: Production Animal Studies

Degree: PhD

The aim of this study was to define the ovarian follicular reserve of wild African elephants in terms of its type of small follicles (SF), its establishment and distribution throughout the ovaries, and the change in numbers of SF in the embryo and fetus as well as throughout prepubertal and adult life.

The large elephant population in Zimbabwe provided the opportunity to collect ovaries from elephants culled for management reasons and hunted professionally. In total, gross morphological and histological studies were done on the gonadal ridges from 5 embryos (76–96 days post conception) and ovaries from 11 fetuses (4.8–22.2 months), 29 prepubertal females (2 months–10 years), 24 adult females (11–55 years) and 7 aged females (56–70 years). Specimens were fixed in 4% buffered formalin before a series of 25 µm thick sections were cut and examined using stereological protocols to count SF numbers in each section and thereby calculate the follicle reserve of the whole ovary. Prior to counting SF numbers, their distribution throughout the ovary was studied and the repeatability of counts was validated.

Numbers of SF were highest in mid-term fetuses, lower in fetuses during the second half of gestation, even lower in calves younger than 4½ years, whereas the numbers in calves aged 4½–9 years were significantly higher than those in younger calves, and similar to
what they were in late-term fetuses. The numbers of SF were substantially and highly significantly lower in elephant 10–15 years in age compared to calves aged 4½9 years, suggesting a reduction around puberty. Thereafter the ovarian reserve fell steadily until depletion around the age of 70 years. During adult life the ovarian reserve was composed of early-primary (EP) and true-primary (TP) follicles. By 45 years of age only TP follicles remained although these enabled oestrous cyclical activity for many more years; of 7 sets of ovaries recovered from females aged 57–70 years, 6 showed evidence of cyclical activity or pregnancy within the preceding 6 years.

The study shows that EP and TP form the follicular reserve from before birth until 45 years, with TP forming the reserve thereafter, which depletes in some old elephants and persists to maximum life span in others.