Climate Change Scenario Simulations over Eritrea by Using a Fine Resolution Limited Area Climate Model: Temperature and Moisture Sensitivity

by

Asmerom Fissehatsion Beraki

Submitted in partial fulfillment of the requirements for the degree of

MASTER IN SCIENCE

in the

Faculty of Natural and Agricultural Sciences
University of Pretoria

July 2005
Climate Change Scenario Simulations over Eritrea by Using a Fine Resolution Limited Area Climate Model: Temperature and Moisture Sensitivity

Asmerom Fissehatision Beraki

Summary

The climate of the eastern section of the Sahelian latitude, especially over the Eritrean subdomain, is often associated with long drought episodes from which the atmospheric mechanisms are poorly understood. In an effort to improve our knowledge of weather and climate systems over this region, the PRECIS Regional Climate Model (RCM) from the United Kingdom (UK) was obtained and implemented. Such a climate model that is based upon the physical laws of nature has the ability to simulate regional-scale atmospheric patterns, and therefore, may significantly contribute to our understanding of local atmospheric processes. In this dissertation the assessment of past regional climate trends from both observations and model simulations, and the simulation of scenarios for possible future climate change were regarded as important. To investigate this, the PRECIS RCM was first nested over the Eritrean domain into the “atmosphere only” HadAM3H global General Circulation Model (GCM) and forced at its lateral boundaries by a 30-year present-day (1961-1990) integration of the same global model. Secondly, the PRECIS RCM was constrained at its lateral boundary by the “fully coupled” HadCM3 GCM (for Sea Surface Temperatures (SSTs) and sea-ice) and its improved atmospheric component (HadAM3H GCM). The latter simulations provided boundary conditions for the A2 and B2 future emission scenarios (Special Report on Emission Scenarios (SRES)) to simulate a 20-year (2070-2090) projection of future climate. These experiments allowed for verification of both spatial and temporal present-day climate simulations, as well as possible future climate trends as simulated by the PRECIS RCM over the Eritrean domain, with specific emphasis on temperature and moisture related variables.

The study indicates that PRECIS RCM climate simulations are mostly in harmony with observed spatial patterns. This skill may be attributed to the full representation of the climatic system (land surface, sea, ice, atmosphere and atmospheric chemistry such as sulphur and greenhouse gasses) in the model configuration. However, when comparing PRECIS RCM results with the much coarser resolution (2.5°x2.5°) National Centre for Environmental Prediction (NCEP) reanalysis data, obvious differences do occur. These differences are not necessarily the result of poor model performance, but may be attributed to more detailed simulations over the finer RCM grid (0.44° x 0.44°).

Future climate scenario simulation with the PRECIS RCM over Eritrea produce increased surface temperature in both the A2 and B2 SRES scenario integrations, relative to the present climatology. This temperature increase also appears in the driving GCM (HadCM3) as well as in other GCM results from the Intergovernmental Panel for Climate Change (IPCC) initiative. There are, however, mixed signals in rainfall projections. According to PRECIS RCM results, rainfall is expected to increase in most of the Eritrean region.
ACKNOWLEDGEMENTS

The author is gratified to express his appreciation to the following persons and institutions for their assistance and contribution to make this work possible:

- The *British Met Office (Hadley Centre for Climate Prediction and Research, UK)* and in particular Dr. Richard Jones, Ruth Taylor and David Hein for supplying the PRECIS RCM and its driving boundary conditions.
- Prof. C.J. de W. Rautenbach for his advice and for creating a suitable working environment at the University of Pretoria.
- Francois Engelbrecht and Human Buirski, for their technical assistance during the course of this work.
- Dr. Nebo Jovanovic Benade and Prof. Julia Maxster for their support during the proposal development phase of this dissertation.
- Karin Marais from the South African Weather Service (SAWS) library for her genuine help in compiling most of the references used in this work.
- Tekle Yemane for supplying the available national (Eritrean) database and his technical assistance in GIS.
- NOAA National Centre for Environmental Prediction (NCEP) for making their reanalysis data freely available, which have been intensively utilized in my research.
- Dr Fourie Joubert for proving additional computing facilities which reduced the time of model simulations significantly.
- Last but not least, my gratitude goes to my family and friends for their persistent encouragements and almighty God for giving me the strength to challenge this complicated and unexpected but interesting profession.
TABLE OF CONTENTS

CHAPTER 1 Introduction

1.1 Background
1.2 Driving forces of the climate and atmospheric modelling
1.3 The need for research over Eritrea
1.4 Objectives of the research
1.5 Organization of the report

CHAPTER 2 General profile of Eritrea

2.1 Geographical location
2.2 Historical background
2.3 Population
2.4 Climate
2.5 Landform and drainage system
2.6 Soils and geology
2.7 Land use and vegetation cover
2.8 Agro-ecological zones
2.9 Agricultural activities

CHAPTER 3 Climate modelling on regional spatial scales

3.1 Introduction
3.2 Global general Circulation models
3.3 The need for down-scaling
3.4 Down-Scaling approach
3.5 Nested climate models
3.5.1 Types of nesting
 3.5.1.1 One-way nesting
 3.5.1.2 Two-way nesting
 3.5.1.3 Multiple nesting
3.6 Numerical integration of climate Models
3.7 Physical parameterization in climate models
3.8 Model simulations on longer time-scales

LIST OF SYMBOLS

\[E \] : RMS difference
\[\hat{E} \] : Bias
\[E' \] : Pattern RMS difference
\[f_n \] : Model variable
\[N \] : Discrete points (in time and/or space)
\[R \] : Correlation coefficient
\[r_n \] : Observed variable
\[\alpha \] : Positive constant
\[\sigma \] : Vertical (sigma) coordinate
\[\sigma_f, \sigma_r \] : standard deviation (for model and observed fields)
LIST OF FIGURES

Figure 2.1: Geographical location of Eritrea in north-east Africa, with Sudan to the west and Ethiopia to the South (Adapted from: United Nations, 2000).

Figure 2.2: Mean annual rainfall totals over Eritrea (left) and rainfall regions of Eritrea (right) based upon rainfall systems and annual distribution as obtained from GIS database of WRD (1997).

Figure 2.3: Annual average temperature distribution over Eritrea as derived from Advanced High Resolution Radiometer data (from AVHRR channel 5) and correlated with station data (RMSE 1 °C - 3°C) (Source: http://www.punchdown.org/rvb/temps/mapindex.html, 2004/12/20)

Figure 2.4: Map of Eritrea’s surface water resource and drainage patterns as obtained from GIS database of WRD (1997)

Figure 2.5: A map that exhibits major soil types in Eritrea as obtained from GIS database of FAO (1994)

Figure 2.6: The map illustrates major land use zones of Eritrea. It was obtained and digitized from National Center for Earth Resources Observation and Science (EROS) (originally derived from thematic maps and other source material). http://edcintl.cr.usgs.gov/archives.shtml, 2003/09/10.

Figure 2.7: A typical vegetation map of Eritrea with 12 vegetation types. (Source: FAO/MOA, 1997)

Figure 2.9: A typical agro-ecological map of Eritrea indicating six agro-ecological zones as obtained from GIS database of WRD (1997)

Figure 2.10: Spatial distribution of production zones of the main crops in Eritrea. Major cultivated crops include barely, wheat, African finger millet, taff and maize (Source: FAO, 1997)

Figure 4.1: Observed seasonal Mean Sea Level Pressure (MSLP) in hPa and averaged near-surface winds (x10 ms⁻¹) over the period (1948-2003) as obtained from NCEP reanalysis data. The maps represent the four Boreal seasons namely, (a) September to November (SON), (b) March to May (MAM), (c) June to August (JJA) and (d) December to February (DJF).

Figure 4.2: Observed (a) precipitation rate in mm per day, (b) precipitable water in kg m⁻², (c) zonal moisture flux and (d) meridional moisture flux in kg m⁻¹s⁻¹ averaged over the months June to August (JJA) and period 1948-2003. The climatology was calculated from the NCEP reanalysis data set.

Figure 4.3: Observed mean monthly rainfall in mm for Filfil (1928-63) and Faghena (1947 to 1962) as obtained from the Department of Water Resources (DWR) of Eritrea. These two stations are found along the eastern escarpment of the Eritrea Highlands that is covered with remnants of the tropical rain forest and referred to as Green Belt.
Figure 4.4: The domain that will be considered in PRECIS nested climate model (NCM) simulations. Eritrea is indicated in gray. In the following sections NCEP reanalysis data are spatially averaged over the box A.

Figure 4.5: Annual rainfall anomalies (black line) and 5-years moving averages (gray line) over the period 1900-1990 for Asmara that is located on the central Highlands of Eritrea as obtained from the Department of Water Resources (DWR).

Figure 4.6: Weighted average time series (1950 to 2000) of near-surface temperature anomalies (°C) as calculated from NCEP reanalysis data for the seasons (a) JJA, (b) DJF, (c) MAM and (d) SON and the entire domain of figure 4.4. Gray lines denote five-year moving averages.

Figure 4.7: As figure 4.6 but averaged over box-area A.

Figure 4.8: Weighted average time series (1950 to 2000) of Mean Sea Level Pressure (MSLP) anomalies (hPa) as calculated from NCEP reanalysis data for the seasons (a) JJA, (b) DJF, (c) MAM and (d) SON and the entire domain of figure 4.4. Gray lines denote five-year moving averages.

Figure 4.9: As figure 4.8 but averaged over box-area A.

Figure 5.1: Anthropogenic emission projections of CO₂ for the six SRES scenarios, A1B, A2, B1 and B2, A1FI and A1T plus the updated and replaced well known the IS92a scenario as obtained from the IPCC Special Report on Emissions Scenarios (SRES) dataset (appendix II).

Figure 5.2: July near-surface temperature (°C) projections for the 2080s relative to 1961-90 for the six IPCC GCMs (indicated in the right bottom of each plot) for the A2 SRES scenario. Eritrea is indicated in letter “A”.

Figure 5.3: As figure 5.2 but for B2 SRES scenario.

Figure 5.4: Spatially averaged near-surface temperature (°C) projections for July 2080s for the A2 and B2 SRES scenarios over the Eritrea domain. The graphs denote (a) spatial averages, (b) minimum, (c) maximum and (d) spatial coverage (%) of positive anomalies of near-surface temperatures.

Figure 5.5: July rainfall (mm.day⁻¹) projections for the 2080s relative to 1961-91 for the six IPCC GCMs (indicated in the right bottom of each plot) for A2 SRES scenario. Eritrea is indicated in letter “A”.

Figure 5.6: As figure 5.2 but for B2 SRES scenario.

Figure 5.7: Spatially averaged rainfall (mm day⁻¹) projections for July 2080s for the A2 and B2 SRES scenarios over the Eritrean domain. The graphs denote spatial (a) averages, (b) minimum, (c) maximum and (d) aerial coverage (%) of positive anomalies of rainfall.

Figure 5.8: January near-surface temperature (°C) projections for the 2080s relative to 1961-90 for the six IPCC GCMs (indicated in the right bottom of each plot) for the A2 SRES scenario. Eritrea is indicated in letter “A”.

Figure 5.9: As figure 5.2 but for B2 SRES scenario.
Figure 5.10: Spatially averaged near-surface temperature (°C) projections for January 2080s for the A2 and B2 SRES scenarios over the Eritrea domain. The graphs denote spatial (a) averages, (b) minimum, (c) maximum and (d) aerial coverage (%) of positive anomalies of near-surface temperatures.

Figure 5.11: January rainfall (mm.day⁻¹) projections for the 2080s relative to 1961-91 for the six IPCC GCMs (indicated in the right bottom of each plot) for A2 SRES scenario. Eritrea is indicated in letter “A”.

Figure 5.12: As figure 5.10 but for B2 SRES scenario.

Figure 5.13: Spatially averaged rainfall (mm day⁻¹) projections for January 2080s for the A2 and B2 SRES scenarios over the Eritrean domain. The graphs denote spatial (a) averages, (b) minimum, (c) maximum and (d) aerial coverage (%) of positive anomalies of rainfall.

Figure 6.1: The figures illustrate the PRECIS RSM system model topography (a) in meters and model domain (b) with the grid resolution of 0.44° x 0.44°.

Figure 6.2: Average of Mean Sea Level Pressure (MSLP) for July (1961-1990) as obtained from (a) the NCEP reanalysis data and (b) the baseline integration of the PRECIS RCM system. The contour interval is 1 hPa.

Figure 6.3: Average of Mean Sea Level Pressure (MSLP) for January (1961-1990) as obtained from (a) the NCEP reanalysis data and (b) the baseline integration of the PRECIS RCM system. The contour interval is 1 hPa.

Figure 6.4: Near-surface wind streamlines for July (1961-1990) as obtained from (a) the NCEP reanalysis data and (b) the baseline integration of the PRECIS RCM system.

Figure 6.5: Near-surface wind streamlines for January (1961-1990) as obtained from (a) the NCEP reanalysis data and (b) the baseline integration of the PRECIS RCM system.

Figure 6.6: Precipitation rate (mm/day) for July (1961-1990) as obtained from (a) the NCEP reanalysis data and (b) the baseline integration of the PRECIS RCM system.

Figure 6.7: Precipitation rate (mm/day) for January (1961-1990) as obtained from (a) the NCEP reanalysis data and (b) the baseline integration of the PRECIS RCM system.

Figure 6.8: Surface temperature (°C) for July (1961-1990) as obtained from (a) the NCEP reanalysis data and (b) the baseline integration of the PRECIS RCM system.

Figure 6.9: Surface temperature (°C) for January (1961-1990) as obtained from (a) the NCEP reanalysis data and (b) the baseline integration of the PRECIS RCM system.

Figure 6.10: Model evaluation diagram for all considered variables for July (+) and January (◊). The top panel (a) shows when the NCEP fields are interpolated to the PRECIS resolution while (b) shows the reverse. The Root Mean Square (RMS) difference values and standard deviations were normalized with observation to suite the analysis. The RMS difference is the proportional distance between NCEP
(reference) and PRECIS RCM fields. The radial distance is the standard deviation and the angular coordinate is the pattern correlation. See figure A.1 for the geometric relationship among these three measures of standard skill) (after Taylor, 2000)

Figure 6.11: Surface temperature (°C) climate change anomalies as generated by the PRECIS RCM system for July in the 2080s relative to the baseline climate of 1961 to 1990. Simulations are for the (a) A2 and (b) B2 SRES scenarios and the isotherm interval is 0.5 °C.

Figure 6.12: Surface temperature (°C) climate change anomalies as generated by the PRECIS RCM system for January in the 2080s relative to the baseline climate of 1961 to 1990. Simulations are for the (a) A2 and (b) B2 SRES scenarios and the isotherm interval is 0.5 °C.

Figure 6.13: Precipitation rate (mm.day⁻¹) climate change anomalies as generated by the PRECIS RCM system for July in the 2080s relative to the baseline climate of 1961 to 1990. Simulations are for the (a) A2 and (b) B2 SRES scenarios and contour intervals are 1.5mm.

Figure 6.14: Precipitation rate (mm.day⁻¹) climate change anomalies as generated by the PRECIS RCM system for January in the 2080s relative to the baseline climate of 1961 to 1990. Simulations are for the (a) A2 and (b) B2 SRES scenarios and contour intervals are 1.5mm.

Figure A.1: Geometric relationship between the correlation coefficient, R, the pattern RMS difference, E' and the standard deviations, σ_f and σ_r, of the test and reference fields, respectively.
LIST OF TABLES

Table 6.1: Model performance over all grid points (91x51) covering the PRECIS RCM system domain as compared to the corresponding NCEP reanalysis fields for January and July. Variables are surface temperature (°C), MSLP (hPa), precipitation rate (mm.day⁻¹) and the horizontal wind components (m.s⁻¹) on different temporal scales.

LIST OF ABBREVIATIONS

AGCM Atmospheric General Circulation model
AOGCM Atmosphere-Ocean General Circulation model
BMO United Kingdom Meteorological Office
CCSR/NIES99 Japanese Centre for climate system Research fully coupled GCM
CGCM1/CCCma Canadian Centre for Climate modelling and analysis
CSIRO Commonwealth Scientific and Industrial Research Organization (Australia).
CSIRO-Mk2b CSIRO fully coupled GCM
ECHAM4 German Climate Research Centre fully coupled GCM
ECMWF European Centre for Medium-Range Weather Forecasts
ENSO El Niño Southern Oscillation
EROS National Center for Earth Resources Observation and Science
GCM Global Climate Model
GFDL Geophysical Fluid Dynamics Laboratory
GFDL99-R30 GFDL fully coupled GCM
GISS Goddard Institute for Space Studies
HadAM3H The Hadley Centre Atmosphere only GCM
HadCM3 The Hadley Centre Fully Coupled GCM
HadISST Hadley Centre Observed Sea Surface Temperature
HadRM3 The Hadley Centre Regional Climate Model
IPCC Intergovernmental Panel for Climate Change
ITCZ Intertropical Convergence Zone
LAM Limited Area Atmospheric Model
MLWE Ministry of Land, Water and Environment
MM5 Regional Climate Model of Pennsylvania State University (PSU) – National Centre for Atmospheric Research (NCAR) version 5
NCEP National Centre for Environmental Prediction
NCM Nested Climate Model
NWP Numerical Weather Prediction
RCM Regional Climate Model
PRECIS Providing Regional Climates and Impacts Studies
SRES Special Report on Emission Scenarios
SST Sea Surface Temperature
UKMO UK Met Office
UNFCCC The United Nations Framework Convention on Climate Change.
WRD Water Resources Department