adaptive reuse of the agrivaal building

by

Neda Samimi
adaptive reuse of the agrivaal building
SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF ARCHITECTURE (PROFESSIONAL) DEPARTMENT OF ARCHITECTURE FACULTY OF ENGINEERING, BUILT ENVIRONMENT AND INFORMATION TECHNOLOGY UNIVERSITY OF PRETORIA

Study leader: Karel Bakker (Prof.)
Course coordinator: Jacques Laubscher (Dr)

PRETORIA
2011
Full dissertation title: Adaptive Reuse of the Agrivaal Building
Submitted by: Neda Samimi (Miss)
Student number: 24115704

Study leader: Karel Bakker (Prof.)
Course coordinator: Jacques Laubscher (Dr)

Degree: Master of Architecture (Professional)

Department: Department of Architecture
Faculty: Faculty of Engineering, Built Environment and Information Technology
University: University of Pretoria

Project summary

Programme: New Headquarters for the Delegation of the European Commission in South Africa
Site description: Adaptive reuse of an existing dilapidated building
Users: Staff of the European Commission, Government and non-governmental organisations, general public

Site Location: Erf 1087, Arcadia, Pretoria
Address: c/o Hamilton Street and Edmond Street, Arcadia, Pretoria, South Africa
GPS Coordinates: 25°44′26.00″ S, 28°12′18.32″ E

Architectural Theoretical Premise: The investigation of the principles of environmental sustainability and heritage
Architectural Approach: The adaptive reuse of an existing building using principles of cultural significance and environmental sustainability
Research filed: Environmental potential
In accordance with Regulation 4(e) of the General Regulations (G.57) for dissertations and theses, I declare that this thesis, which I hereby submit for the degree Master of Architecture (Professional) at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

I further state that no part of my thesis has already been, or is currently being, submitted for any such degree, diploma or other qualification.

I further declare that this thesis is substantially my own work. Where reference is made to the works of others, the extent to which that work has been used is indicated and fully acknowledged in the text and list of references.

The dissertation is 16 324 words long (excluding the scanned items).

signature
Neda Samimi
thank you to:

Nouri, Lily and Erfan Samimi for the constant support, love and advice.

Dr Laubscher, Prof. Bakker and Prof. Vosloo

my Bokunde friends
abstract

This project stemmed from the idea of abandoned buildings prevalent in the City of Pretoria. It also responds to the increasing effect of environmental damage becoming evident worldwide.

As part of the solution, this dissertation explores the adaptive reuse of the existing Agrivaal Building in Pretoria, South Africa. The early Modern, Art Deco influenced Agrivaal Building has been left dormant for a number of years, with the intention of being renovated and brought to life. However political and sensitive debate has hindered the progress of the abandoned building. This project envisions the revival of the building, through an intervention that is mindful of pertinent environmental issues, as well as respecting existing cultural heritage.

The investigation includes principles of heritage and environmental sustainability, as main design informants of the proposed new headquarters of The European Commission in South Africa. This will entail research on the existing building and ways it can be appropriated to mitigate issues of environmental damage. The proposed intervention will also respond to the identity of the European Commission in a South African context.
01_ Introduction..1
 1.1_The Changing Environment...3
 1.2_Changes in the built environment...4
 1.3_Pretoria’s Potential...4
 1.4_Dormant buildings in Pretoria..5
 1.5_Defining the Problem..6

02_ Design Planning_review and reasoning...9
 2.1_Problem Statement...10
 2.2_Hypothesis...10
 2.3_Main Research Question..10
 2.4_Sub Research Questions..10
 2.5_Vision...10
 2.6_Introducing the Client...11

03_ Theoretical Discourse ...17
 3.1_Introduction...18
 3.2_Sustainability..19
07_Design Development ..88

08_ Technical Investigation ...115
8.1_Structure ..116
8.2_Material Strategy ..119
8.3_Systems - Ventilation, Heating and Cooling...122
8.4_Façade Treatment ..132

 References...148
List of Figures:

Fig.1: Map indicating buildings that should be reused, retained or left neutral according to the Heritage Congress Mapping Workshop, [Source: Heritage Congress, 2009] 5
Fig.2: Adaptive reuse of dormant buildings [Source: author 2011] 6
Fig.3: European Union and South Africa Development Partners Logo [Source: European Union and South Africa, 2010] 11
Fig.4: President Zuma and EU Development and Humanitarian Aid Commissioner Karel de Gucht (representing European Commission President Jose Manuel Barroso) at the 2nd SA-EU Summit in Kleinmond, South Africa, in September 2009 [Source: European Union and South Africa, 2010] 11
Fig.5: Location of the Agrivaal Building, corner of Edmond Street and Hamilton Street [Source: Municipality of City of Tshwane, edited by author 2011] 12
Fig.6: 3D interpretation of the site [Source: author 2011] 12
Fig.7: Eastgate Shopping Centre, designed influenced by the workings of a termite hill. [Source: www.treehugger.com/files/2006/08/biomimetic_buil_1.php, accessed 2 October 2011] 21
Fig.8: Eastgate Centre elevation, with chimney vents allowing air to escape the building. [Source: www.nubianarchitects.wordpress.com/2010/08/16/termites-and-temperature-control-from-zimbabwe/, accessed 2 October 2011] 21
Fig.9: Ventilation [Source: www.treehugger.com/files/2006/08/biomimetic_buil_1.php, accessed 2 October 2011, edited by author 2011] 21
Fig.10: Process from the Burra Charter that assists in understanding the significance of the building. This process has been done for the Agrivaal Building under chapter 4, building analysis 23
Fig.11: Pie chart showing the percentage of average total embodied energy [Source: www.hergi.org/docs/Energy_Waste_EN.pdf, accessed: March 2011] 24
Fig.12: Bar chart showing the recurring embodied energy of an office building [Source: www.hergi.org/docs/Energy_Waste_EN.pdf, accessed: March 2011] 24
Fig.13: Interpretation of Fred Scott's theory on altering architecture [Source: author 2011] 25
Fig.14: A image portraying the architect as a major cause in changes in the environment. [Source: WELLS, p 272] 27
Fig.15: The world 30
Fig.16: Tshwane framework intentions [Source: City of Tshwane Municipality, edited by author 2011] 31
Fig.17: Gauteng [Source: City of Tshwane Municipality, edited by author 2011] 31
Fig.18: South Africa [Source: City of Tshwane Municipality, edited by author 2011] 31
Fig.19: Wind driven ventilation system in Sutton, England. Wind cowls use the wind to draw warm stale air up from inside, and direct fresh air downwards over passive heat exchanger [Source: www.flickr.com/photos/8586443@N03/2377282168/in/photostream/] 32
Fig.20: Solar water heaters utilizing solar energy to provide warm water [Source: www.solardev.com/FSEC-solar-heating.php, edited by author 2011] 32
Fig.21: Concept sketch of recycled water system from green roof [Source: Author] 32
Fig.22: Large roof space where areas will be for PV panels [Source: Author] 33
Fig.23: Concept of proposed ventilation in the Agrivaal Building [Source: Author] 33
Fig.24: Position of the Agrivaal Building [Source: City of Tshwane Municipality, edited by author 2011] 34
Fig.25: The Agrivaal Building, located on the corner of Hamilton Street and Edmond Street. [author:2011] 35
Fig.26: Agrivaal Building 37
Fig.27: Focus area for framework 40
Fig.28: Transport route [Source: author 2011] 42
Fig.29: View [Source: author 2011] 42
Fig.30: Facades of the Agrivaal Building [Source: author 2011] 46
Fig.31: Pedestrian and vehicular movement surrounding the Agrivaal Building 47
Fig.32: Height of buildings surrounding the Agrivaal Building 47
Fig.33: Massing of the Agrivaal Building and the surrounding Buildings 47
Fig.34: Bollards on sidewalks, however ending just before the Agrivaal Building [Source: author 2011] 48
Fig.35: High volumes of traffic at peak hours on Hamilton Street, photo taken on roof of the Agrivaal Building. [Source: author 2011] 48
Fig.36: Hamilton Street has four lanes, not very pedestrian friendly [Source: author 2011] 48
Fig.37: Pine trees of heritage value on Edmond Street, Agrivaal Building located to the right of the photo. [Source: author 2011] 48
Fig.38: Narrow sidewalks [Source: author 2011] 48
Fig.39: Corner of Edmond and Hamilton Street, newspaper selling, proving high movement of customers. [Source: author 2011] 49
Fig.40: Hamilton Street, one way four lanes towards Sunnyside. [Source: author 2011] 49
Fig.41: Lack of parking on Hamilton Street, opposite the Agrivaal Building [Source: author 2011] 49
Fig.42: Commercial activity south of the Agrivaal Building, two blocks away. The Agrivaal Building has no commercial activity in its surrounding. [Source: author 2011] 49
Fig.43: Building progression of the Agrivaal Building from 1938 to 1963 [Source: author 2011] 52
Fig.44: Clear distinction of different phases of the Agrivaal building due to material use. [Source: author 2011] 52
Fig.45: Different phases of the Agrivaal Building [Source: author 2011] 53
Fig.46: Corner articulation of the Agrivaal Building [Source: author 2011] 54
Fig.47: Fig.49: Phase 1 of the Agrivaal Building [Source: author 2011] 55
Fig.48: Fig.47: Phase 2 addition of the Agrivaal Building, 1946. [Source: author 2011] 55
Fig.49: Fig.48: Phase 3 addition of the Agrivaal Building, 1953. [Source: author 2011] 55
Fig.50: Fig.50: Phase 4 addition to the Agrivaal Building, 1963 Council Chamber. [Source: author 2011] 56
Fig.51: Fig.51: Glass blocks used to accentuate the corner articulation of the Agrivaal Building. [Source: author 2011] 57
Fig.52: Fig.52: Main existing entrance, currently blocked by a brick wall. [Source: author 2011] 57
Fig.53: Fig.53: Lettering and the teak mask. [Source: author 2011] 58
Fig.54: Fig.54: Mural. [Source: author 2011] 58
Fig.55: Fig.55: Steel casement windows. [Source: author 2011] 58
Fig.56: Fig.56: Diamond Staircase - existing. [Source: author 2011] 59
Fig.57: Fig.56: Paving with Kirkness insignia. [Source: author 2011] 59
Fig.58: Fig.57: Pines trees from the landscaping plans of the Union Building. [Source: author 2011] 59
Fig.59: Fig.59: Phase 3, with exposed brick. [Source: author 2011] 60
Fig.60: Fig.60: and 66
Fig.61: Fig.61: CH2 Building [Source: www.melbourne.vic.gov.au/Environment/CH2/] 66
Fig.62: Fig.67: Timber shutters and glass louvres. [Source: www.melbourne.vic.gov.au/Environment/CH2/] 67
Fig.63: Fig.62: Vertical garden [Source: www.melbourne.vic.gov.au/Environment/CH2/] 67
Fig.64: Fig.66: Lighting and Shading [Source: www.melbourne.vic.gov.au/Environment/CH2/] 67
Fig.65: Fig.63: Vertical Garden and Balcony Condition. [Source: www.melbourne.vic.gov.au/Environment/CH2/] 67
Fig.66: Fig.64: and 67
Fig.67: Fig.65: Timber louveres [Source: www.melbourne.vic.gov.au/Environment/CH2/] 67
Fig.68: Fig.68: CH2 in Summer Mode [Source: www.melbourne.vic.gov.au/Environment/CH2/] 68
Fig.69: Fig.69: Heating and Cooling through the Ceiling [Source: www.melbourne.vic.gov.au/Environment/CH2/] 68
Fig.70: Fig.71: Vertical Garden and Balcony Condition. [Source: www.melbourne.vic.gov.au/Environment/CH2/] 69
Fig.71: Fig.70: CH2 in Winter Mode [Source: www.melbourne.vic.gov.au/Environment/CH2/] 69
Fig.72: Fig.72: and 70
Fig.73: Fig.73: Harmonia 57 Office Building 70
Fig.74: Fig.76: Pipes that form part of the water recycling system in Harmonia 57 [Source: http://www.architonic.com/aisht/harmonia-57-triptyque-architecture/5100477] 71
Fig.75: Fig.74: Water recycling system of Harmonica 57. [Source: http://www.architonic.com/aisht/harmonia-57-triptyque-architecture/5100477] 71
Fig.76: Fig.77: Accessible roof [Source: http://www.architonic.com/aisht/harmonia-57-triptyque-architecture/5100477] 71
Fig.77: Fig.75: Proposed recycle system for the Agrivaal Building, using the Harmonica and Central Saint Giles building. [Source: http://www.architonic.com/aisht/harmonia-57-triptyque-architecture/5100477, edited by author 2011] 71
Fig.78: Fig.78: 3D renderings envisioned by architects [Source: http://www.architonic.com/aisht/harmonia-57-triptyque-architecture/5100477] 71
Fig.79: Fig.79: VIP drop off point [Source: www.bdp.com/Projects/By-Name/P-Z/Umoja-House/] 72
Fig.80: Fig.80: Night view [Source: www.bdp.com/Projects/By-Name/P-Z/Umoja-House/] 72
Fig.81: Fig.81: Main entrance of Umoja House 72
Fig.82: Fig.83: Access points at the Umoja House [Source: www.bdp.com/Projects/By-Name/P-Z/Umoja-House/] 73
Fig.83: Fig.82: Louvres, fencing, roof [Source: www.bdp.com/Projects/By-Name/P-Z/Umoja-House/] 73
Fig.84: Fig.84: Turbine Hall [Source: www.conference-venues.co.za/gjb_forumturbine.htm] 74
Fig.85: Fig.85: Existing steel bunker. [Source: author] 75
Fig.86: Fig.89: New glass partitioning with aluminium frames. [Source: author] 75
Fig.87: Fig.87: Gass box inside concrete shell [Source: author] 75
Fig.88: Fig.86: New ballustrade connected to existing column. [Source: author] 75
Fig.89: Fig.88: Plaque: information of the heritage of the building. [Source: author] 75
Fig.90: Fig.90: Detail of ceramic solar shading structure. [Source: http://www.architectmagazine.com/exteriors]brandhorst-museum.aspx 76
Fig.91: Fig.91: Section showing position of shading system [Source: http://www.archspace.com/architects/pianoNYT/] 76
Fig.92: Fig.92: Entrance of the New York Times Building [Source: www.archspace.com/architects/piano/NYT/] 77
Fig.93: Fig.93: Lobby Entrance [Source: www.newyorktimesbuilding.com/ Photograph by Kenzo Hsieh (HSUEH-HSIEN HSIEH), 2007.] 77
Fig.94: Fig.94: Lobby Entrance [Source: www.newyorktimesbuilding.com/ Photograph by Kenzo Hsieh (HSUEH-HSIEN HSIEH), 2007.] 77
Fig.95: Fig.95: and 77
Fig.96: Fig.96: [Source: www.archspace.com/architects/piano/NYT/] 77
Fig.97: Fig.97: European Union flags outside the European Commission headquarters building in Brussels, Belgium. [Source: www.royalgazette.com/article/20110623/BUSINESS04/706239907&source=RSS] 80
Fig.98: Fig.98: Diagram indicating the function of the EC in South Africa [Source: www.eusa.org.za/] 81
Fig.99: Fig.99: Diagram showing a proposed view on how the EC want to be perceived in South Africa [Source: author] 82
Fig.100: Fig.100: Simplified diagram on the needs of the new building [Source: author] 82
Fig.101: Fig.101: Diagram showing the users of the uilding [Source: author] 83
Fig.102: Fig.102: Diagram of proposed ways the people will enter the building [Source: author] 84
Fig.103: Fig.103: Diagram of concept, Sustainable Heritage [Source: author] 89
Fig.104: Fig.104: Diagram showing the needs of the user 90
Fig.105: Fig.105: open plan office 92