Development, phonotaxis and management of Gryllotalpa africana Palisot de Beauvois (Orthoptera: Gryllotalpidae) on turfgrass

by

Johan de Graaf

Submitted in fulfilment of the requirements for the degree Magister Scientiae (Entomology), in the Faculty of Natural & Agricultural Science
University of Pretoria
Pretoria

July 2003
TABLE OF CONTENTS

Summary i
Samevatting iii
List of tables v
List of figures vii

Chapter 1: Introduction
1.1 Aims 2
1.2 Hypothesis 2
1.3 Statistical analysis 3
1.4 Classification 3
1.5 Morphology and biology 7
1.6 Stridulation (phonotactic signal) 10
1.7 Flight patterns (phonotactic response) 14
1.8 Sampling methods 17
1.8.1 Field populations 17
1.8.2 Flying individuals 21
1.9 Gryllotalpidae as pests 23
1.10 Economic thresholds 29
1.11 Chemical control 30
1.12 Biological control 34
1.13 Cultural control 40
1.14 References 43

Chapter 2: Seasonal development of *Gryllotalpa africana*
- Abstract and keywords 58
2.1 Introduction 59
2.2 Material and methods 60
2.3 Results 60
2.4 Discussion 67
2.5 Acknowledgements 70
2.6 References 72
Chapter 3: Stridulation of *Gryllotalpa africana*
- Abstract and keywords 76
3.1 Introduction 77
3.2 Material and methods 80
3.3 Results 82
3.4 Discussion 87
3.5 Acknowledgements 89
3.6 References 90

Chapter 4: Flight patterns of *Gryllotalpa africana*
- Abstract and keywords 94
4.1 Introduction 95
4.2 Material and methods 96
4.3 Results 98
4.4 Discussion 102
4.5 Acknowledgements 104
4.6 References 105

Chapter 5: Development of an Electronic Acoustic Caller for Mole Crickets in South Africa
- Abstract and keywords 109
5.1 Introduction 110
5.2 Material and methods 112
5.3 Results and discussion 114
5.4 References 117

Chapter 6: Management of *Gryllotalpa africana*
- Abstract and keywords 121
6.1 Introduction 122
6.2 Material and methods 123
6.3 Results 126
6.4 Discussion 129
6.5 Acknowledgements 131
6.6 References 132
SUMMARY

Gryllotalpa africana Palisot de Beauvois only occurs in Africa and is the only mole cricket turfgrass pest known in South Africa. Life stage occurrence was ascertained over one year by using an irritating drench. Male stridulation was investigated by recordings made during autumn and spring and by measuring sound pressure levels. The phonotactic response over 12 months was quantified by broadcasting a male *G. africana* song recording at 93.7 dB. A synthetic caller was set to the carrier frequency; syllable repetition rate and duty cycle of male *G. africana* song and tested for attracting *G. africana* from November to February. Fipronil (Regent), fipronil (Termidor), thiamethoxam (Actara) and furfural (Crop Guard) were evaluated in two independent field trials, for controlling an early instar nymph population and a late instar nymph/adult population of *G. africana* over 28 days, respectively. The studies were conducted in Pretoria, Gauteng, South Africa.

Oviposition of *G. africana* took place from early October (spring). Nymphs reached the adult stage from March (late summer) and the majority of individuals overwintered in this stage. Adult numbers peaked in early September (early spring), declining through the season. *Gryllotalpa africana* was therefore univoltine in the study area. The adult population was female biased in spring. On average, the smallest individuals were sampled in December (early summer), whilst the smallest nymphs occurred in November (late spring). Male *G. africana* stridulated from spring to autumn. The carrier frequency (2.161 – 2.477 kHz) and syllable duration (7.340 – 12.078 ms) of calls showed no significant relationship with soil temperature and no significant differences between autumn and spring (soil temperature constant). Syllable period (10.455 – 17.221 ms) and inter syllable interval (1.912 – 9.607 ms) were significantly negatively correlated with soil temperature, and significantly longer in spring than in autumn (with soil temperature constant). The syllable repetition rate (0.058 – 0.096 syllables / ms) and duty cycle (43.31 – 81.72 %) showed a significant positive relationship with soil temperature and significant decrease in values (soil temperature constant) in spring (relative to autumn). Sound pressure levels of *G. africana* varied from 77.6 to 89.8 dB. Adult *G. africana* flew to the song broadcast from spring to autumn, with
activity peaking mid spring and late summer/early autumn. Only spring flights were significantly gender biased (female bias). The sex ratio of flying individuals (monthly) and mole crickets in the field was similar. Flying females were reproductively mature in spring/early summer and contained eggs from late spring. Flight activity of conspecifics and genders were significantly positively related to air and soil temperature, but unrelated to moon phase. The synthetic caller attracted *G. africana*. Low numbers attracted were attributed to the low broadcast sound pressure level. Fipronil and thiamethoxam controlled early instar nymphs and will be optimally applied during eclosion in November. Only fipronil controlled the late instar nymph/adult population.
SAMEVATTING

Gryllotalpa africana Palisot de Beauvois kom slegs in Afrika voor en is die enigste molkriek plaag spesie van turfgras in Suid-Afrika. Lewensfase voorkoms (oor 'n jaar) was bepaal deur 'n irritaterende oplossing te gebruik. Manlike stridulasie was ondersoek deur opnames gedurende herfs en lente te maak en deur klank-drukvlakke te bepaal. Die phonotaktiese reaksie oor 12 maande was bespeur deur 'n manlike _G. africana_ sang opname teen 93.7 dB uit te saai. 'n Geluiduitsaaier was ingestel tot die draer frekwensie; puls-herhalings-tempo en werks-tempo van manlike _G. africana_ sang en getoets van November tot Februarie vir die vermoe om _G. africana_ te lok. Fipronil (Regent), fipronil (Termidor), thiamethoxam (Actara) and furfural (Crop Guard) was getoets in twee onafhanklike veldproewe, om 'n vroeë instar nimf bevolking en 'n laat instar nimf/volwassene bevolking van _G. africana_ oor 28 dae respektiewelik te beheer. Die studies was onderneem in Pretoria, Gauteng, Suid-Afrika.

Oviposisie van _G. africana_ het vanaf vroeg Oktober (lente) voorgekom. Nimfe het ontwikkel tot volwasses vanaf Maart (laat somer) en die meerderheid van individue het as volwassenes oor-winter. Volwassenes het 'n maksimum hoeveelheid tydens vroeg September (vroeë lente) bereik, waarna hoeveelhede deur die seisoen verminder het. Derhalwe was _G. africana_ univoltyn in die studie area. Die bevolking was vroulik-neigend tydens die lente. Die gemiddeld kleinste individue was in Desember (vroeë somer) gevind, terwyl die kleinste nimfe in November (laat lente) voorgekom het. Manlike _G. africana_ het vanaf die lente tot die herfs gestriduleer. Die draer frekwensie (2.161 - 2.477 kHz) en puls tydperk (7.340 - 12.078 ms) van die sang het nie 'n betekenisvolle verwantskap met grond temperatuur en ook geen wesenlike verskille tussen herfs en lente getoon nie (met grondtemperatuur konstant). Die puls tydperk (10.455 - 17.221 ms) en inter-pulsinterval (1.912 - 9.607 ms) was betekenisvol negatief gekorreleer met grond temperatuur, en met laasgenoemde konstant, betekenisvol langer in die lente as in die herfs. Die puls-herhalings-tempo (0.058 - 0.096 syllables / ms) en werks-tempo (43.31 - 81.72 %) het 'n wesenlike positiewe verhouding met grond temperatuur en betekenisvolle afname in waardes (grond temperatuur konstant) gedurende lente.
Volwasse *G. africana* het vanaf lente tot herfs na die sang uitsending gevlieg en 'n piek in aktiwiteit gedurende middel lente en laat somer/vroeg herfs bereik. Slegs die lente vlugte was wesenlik geslagsbevooroordeel (vroulik-neigend). Die geslagsverhouding (maandeliks) van vlieënde individue en molkrieke in die veld was soortgelyk. Vlieënde wyfies was reproduktief volwasse tydens lente/vroeg somer en het eiers vanaf laat lente gehad. Die konspesifieke - en geslags vlieg aktiwiteit was betekenisvol positief verwant aan grond en lug temperatuur, maar onverwant tot maanfase. Die geluiduitsaier het *G. africana* gelok. Die lae hoeveelhede wat aangelok is was hoofsaaklik toegeskryf aan die lae uitsending klank-druk-vlak. *Fipronil* en *Thiamethoxam* het vroeë instar nimfe beheer en sal optimaal toegedien word tydens eklosie in November. Slegs *Fipronil* het die laat instar nimf/volwassene bevolking beheer.
LIST OF TABLES

Table 1.1 The classification and general occurrence of mole crickets (Gryllotalpidae) (Townsend 1983).

Table 1.2 Mole cricket species reported as pests of turfgrass (Annecke & Moran 1982, Rentz 1996, Schoeman 1996, Brandenburg 1997, Frank et al. 1998 and Potter 1998). 1 Confused in the economic entomology literature with S. didactylus (Frank et al. 1998). 2 The North American population of this species was known (until 1992) as Scapteriscus acletus Rehn & Hebard (Frank et al. 1998). 3 Only a restricted distribution in Florida (due to inability of flight) (Frank & Parkman 1999). 4 Confused in the economic entomology literature with S. vicinus (Frank et al. 1998). 5 The level of turfgrass damage still need to be clearly distinguished from damage caused by S. didactylus (Frank et al. 1998). 6 Rarely occurs at pest densities (Brandenburg 1997 and Frank et al. 1998).

Table 2.1 Adult females containing immature and mature oocytes (eggs) (as a female population percentage (mean ± SD), respectively), eggs per adult female (mean ± SD) and the adult sex ratio (mean ± SD) (as the percentage males of the adult population) of G. africana at Pretoria Country Club from November 2001 to October 2002. (Immature oocytes < 2.5 mm and mature oocytes (eggs) > 2.5 mm).

Table 3.1 Relationship between male G. africana song characters and soil temperatures (at a vertical depth of 100 mm in the soil profile) of 23.2 ± 1.24 °C (mean ± SD) and 23.5 ± 1.16 °C (mean ± SD) for March/April 2002 (Recording 1) and October/November 2002 (Recording 2), respectively, at Pretoria Country Club. * p < 0.05, ** p < 0.001.

Table 3.2 Values of male G. africana song characteristics recorded at Pretoria Country Club, at soil temperatures (at a vertical depth of 100 mm in the soil) of 23.2 ± 1.24 °C (mean ± SD) and 23.5 ± 1.16 °C (mean ± SD) for March/April 2002 (Recording 1) and October/November 2002 (Recording 2), respectively. Significant
differences between recordings (with soil temperature constant) are shown. * p < 0.05, ** p < 0.001.

Table 4.1 Adult females containing immature and mature oocytes (eggs) (mean ± SD) (as a percentage of flying females, respectively), eggs per adult flying female (mean ± SD) and the adult sex ratio (mean ± SD) (as the percentage males of the flying population) of *G. africana* at Pretoria Country Club from November 2001 to October 2002. (Immature oocytes < 2.5 mm and mature oocytes (eggs) > 2.5 mm).

Table 4.2 Spearman correlation of the number of flying *G. africana* males, females and total individuals, with ambient temperature, soil temperature and moon phase, at Pretoria Country Club from November 2001 to October 2002.

Table 5.1 Number of *Gryllotalpa africana* attracted to the electronically synthesized call from 20:00 to 21:30 (local time (GMT + 2 hours)) at Silver Lakes Country Club, Pretoria, South Africa, from November 1999 to February 2000.

Table 6.1 Chemical groups, trade names, formulations, active ingredients, gram active ingredient per 100 m² and recommended product dosages of four insecticides evaluated against *Gryllotalpa africana* at Silver Lakes Country Club (trial 1) and the University of Pretoria (trial 2).

Table 6.2 The mean number of mole crickets per m² on the insecticide treated blocks and control block over four weeks at Silver Lakes Country Club (trial 1). (Means in columns with letters in common are not significantly different (p > 0.05)). DAT = days after treatment.

Table 6.3 The mean number of mole crickets per m² on the insecticide treated blocks and control block over four weeks at the University of Pretoria (trial 2). (Means in columns with letters in common are not significantly different (p > 0.05)). DAT = days after treatment.
LIST OF FIGURES

Fig. 1.1 Adult *G. africana*.

Fig. 1.2 Lateral view of the right, front trochanter, femur, tibia and tarsus of *G. africana*, showing the four tibial dactyls.

Fig. 1.3 Damage of *G. africana* to kikuyu grass (*Pennisetum clandestinum*).

Fig. 2.1 The ontogenic stage population percentage of *G. africana* at Pretoria Country Club from November 2001 to October 2002. Winter period.

Fig. 2.2 The monthly mean length (± SD) (from the posterior of the abdomen (excluding cerci) to the distal end of the labrum) of the nymph and total (adult + immature) population of *G. africana* at Pretoria Country Club from November 2001 to October 2002. Total = red, nymphs = blue.

Fig. 2.3 The monthly mean length (± SD) (from the abdomen (posterior, excluding cerci) to the labrum (distal end)) of adult male (black bars) and female (yellow bars) *G. africana* at Pretoria Country Club from November 2001 to October 2002.

Fig. 2.4 Mature fertilized *G. africana* eggs.

Fig. 2.5 Late instar *G. africana* nymph with tegmina and hind wing development.

Fig. 3.1 Ventral view of right male tegmen, showing stridulatory area. A = Stridulatory area, B = File (*pars stridens*) and C = Scraper (*plectrum*).

Fig. 3.2 Ventral view of male tegmen, showing stridulatory teeth arrangement on the file or *pars stridens* of *G. africana*.

Fig. 3.3 The power spectrum of a field recorded *G. africana* call (up to 10 kHz), indicating a carrier frequency of approximately 2.3 kHz.
Fig. 3.4 Oscillogram of a field recorded *G. africana* trilling call over 510 ms. The thickened red lines indicate an approximate eight times shorter temporal scale with the different measurements made. SD = Syllable duration, ISI = Inter syllable interval and SP = Syllable period.

Fig. 3.5 The spectrogram presenting two complete syllables of a field recorded *G. africana* call (up to approximately 2.7 kHz).

Fig. 4.1 Flying *G. africana* individuals attracted to a conspecific male song recording just after sunset for 1.5 hours, from November 2001 to October 2002 at Pretoria Country Club.

Fig. 6.1 Schematic representation of the chemical control experiment at Silver Lakes Country Club. Blocks were treated with Actara (1), Termidor (2), Crop Guard (3), Regent (4) and untreated (C). The green areas represent fairway turfgrass (kikuyu grass), the brown and dark green areas the rough surface with trees, next to the fairway. The figure is not to scale.

Fig. 6.2 Schematic representation of the chemical control experiment at the University of Pretoria. Blocks were treated with Termidor (1), Regent (2), Actara (3), Crop Guard (4) and untreated (C). The green areas represent turfgrass (kikuyu grass), the brown areas shrub beds, the grey areas concrete pathways and the black area a road. The white parallel lines represent a pedestrian crossing. The figure is not to scale.