

Coal Purification

by

Pabalala Meshack Mthembi

Submitted in partial fulfilment of the requirements for the degree

MAGISTER SCIENTIAE

in the Faculty of Natural and Agricultural Sciences

University of Pretoria

Pretoria

May 2003

ACKNOWLEDGEMENTS

I wish to express my gratitude to the following people, without whom this thesis could not have been a success:

Prof. D L Morgan (promoter) for his assistance, supervision and informed guidance. Thank you also for giving me the MSc post.

Prof. W Focke, for his support and advice

Prof. R Hart of the Schonland Research Centre at the Witwatersrand University, for the analytical work he has done, was the cornerstone of the success of the project.

Eskom, Council for Scientific and Industrial Research (CSIR), Supra-Chem, The University of Pretoria and the National Research Foundation (NRF) for the financial assistance

All my students, for useful advice and encouragement

My wife and children for their wonderful love, understanding and encouragement

Pabalala Meshack Mthembi, May 2003

Coal Purification

by

Pabalala Meshack Mthembi

Supervisor

Dr D L Morgan

Submitted in partial fulfilment of the requirements for the degree

MAGISTER SCIENTIAE

in the Faculty of Natural and Agricultural Sciences

University of Pretoria

Abstract

Coal is available in relative abundance worldwide and therefore can be used as an inexpensive precursor for the production of high purity carbon. High-purity carbon is required for the manufacture of pure graphite used as a moderator for nuclear reactors. High-purity coal suitable for the production of high-purity carbon is produced by treating the coal to remove the bulk of the mineral matter content. Purifying the coal before usage has some cost advantage since it could eliminate the need for expensive high-temperature purification during graphitisation.

The aim of this study was to reduce the inorganic mineral content of coal. For this purpose, Tshikondeni coking coal floatation concentrate was used which had an ash content of 9.4% by mass and a sulphur content of 0.81%. This coal was subjected to step-wise purification. The concentration levels of Ba, Co, Cr, Cs, Eu, Fe, Hf, La, Sc, Sm, Ta, Tb, Th, and U were determined by instrumental neutron-activation analysis.

The bulk of the minerals was removed by extracting the organic part of the coal into a polar aprotic solvent. The resulting solution was then centrifuged to separate the inorganic mineral matter and the undissolved organic matter from the solution. The coal material was recovered as a gel by precipitation with water and was then washed thoroughly with water to remove water-soluble products. The resulting coal material had an ash value of 1.7% by mass. At this stage of the purification process, the concentration levels of the elements Ba, Co, Cr, Cs, Eu, Fe, Hf, La, Sc, Sm, Ta, Tb, Th, and U were still high in relation to nuclear carbon. The purification value of these elements was below 20. Most of these elements are unimportant with respect to nuclear-grade carbon, but the elements cobalt (Co), which becomes activated by neutron capture, the rare-earth elements (e.g. europium [Eu] and samarium [Sm]), which are neutron absorbers and sodium (Na), which is an oxidation catalyst, are undesirable.

An attempt was made to purify the coal extracts by either treating the coal solution with chelating resins and sulphonic acid resins, or treating the gel with anion exchange resins in a form of beads. In the latter case, the coal solution is filtered to separate the purified coal from the resin beads, followed by precipitation with water to recover the coal material. The purification values for all the elements determined are below 20 for sulphonic acid resins and chelating resins. Improved reduction in tantalum (Ta) concentration is observed with anion resins which suggests that tantalum exists as an anion in the coal materix whereas the rare-earth metals exist as cations.

Recovered coal gel was first treated with concentrated hydrochloric acid to remove the acid-soluble products. These include the ions that form insoluble fluorides, e.g. calcium ions. The resulting coal gel was then treated with concentrated hydrofluoric acid to remove the silicates. Finally, the acidtreated gel was treated with chelating resin beads and sulphonic acid resin beads, and then filtered

to separate the purified coal material from the resin beads.

Purification values above 20 for the elements Cs, Eu, Fe, La, Sc, Sm, and Tb were achieved when the coal gel was treated with acid. Treatment with chelating resins gave purification values of 20 and above for the elements Ba, Cs, Eu, Fe, Hf, La, Sc, Sm, Tb, Th and U, while treatment with sulphonic acid resins resulted in purification values of 20 and above for the elements Ba, Cs, Eu, Fe, Hf, La, Sc, Sm, Ta, Tb, Th and U.

Treating the gel with concentrated acid followed by sulphonic acid resins was found to be the best method for reducing the concentration of alkali metals (represented by cesium [Cs]) and rare-earth elements (e.g. europium [Eu] and samarium [Sm]). Treating the gel with acid followed by chelating resins was the second best method. Solvent extraction alone did not yield satisfactory results and neither did ion-exchange treatment of the coal solution. No significant purification of cobalt could be achieved, suggesting that this element is held strongly in organometallic complexes in the coal matrix as a result of which the rate of exchange with the resins is slow.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS			ť	
ABSTRACT				ii
TABLE OF CONTENTS			V	
СНА	PTER	i i		
Gene	ral intr	oduction		1
1.1.	Introd	roduction		
1.2.	Aim of the study			5
1.3.	Conte	Contents of the study		
СНА	PTER 2	8		
Literature survey			6	
2.1.	Coal: theoretical background			6
	2.1.1.	Introductio	n	6
	2,1.2.	Coal struct	ure	7
	2.1.3. Petrographic groups			8
		2.1.3.1.	The vitrinite goup	8
		2.1.3.2.	The liptinite group	9
		2.1.3.3.	The inertinite group	10
	2.1.4	Mineral ma	atter	11
		2.1.4.1.	Distribution and occurrence of mineral matter	11
2.2.	Trace element analysis of coal			14
	2.2.1.	Introductio	n	14

	2.2.2.	Sample pre	eparation	15	
	2.2.3.	Coal standards		16	
	2.2.4.	Analytical methods		17	
		2.2.4.1.	Atomic absorption spectrometry	17	
		2.2.4.2.	Atomic emission spectrometry	18	
		2.2.4.3.	Inductively coupled plasma mass spectrometry	19	
		2.2.4.4.	X-ray fluorescence spectrometry	20	
		2.2.4.5.	Instrumental neutron activation analysis	21	
		2.2,4.6.	Comparison of analytical methods	22	
2.3.	Refine	ed coal		23	
	2.3.1.	Introductio	n	23	
	2.3.2.	Extraction	of mineral matter using sodium hydroxide	23	
	2.3.3.	Extraction	of mineral matter using hydrofluoric acid	24	
	2.3.4. High-temperature solvent extraction of coal		erature solvent extraction of coal	25	
	2.3.5. Low-temperature solvent extraction of coal			26	
		2.3.5.1.	Extraction of coal with mixed solvents	26	
		2.3.5.2.	Extraction of coal with N-methylpyrrolidone	27	
		2.3.5.3.	Extraction of coal with a polar aprotic solvent/alkaline	28	
			mixture		
2.4.	Graphite		31		
	2.4.1.	Introductio	n	31	
	2.4.2. The physical structure and purity of graphite		al structure and purity of graphite	32	
	2.4.3.	The manuf	acture of graphite	33	
	2.4.4.	Graphite m	anufacture from refined coal	34	

2.5.	General chemistry	36
	2.5.1. Ion-exchange	36
	2.5.2. Specific elements	39
	2.5.2.1. Iron	39
	2.5.2.2. Cobalt	40
СНА	PTER 3	
Expe	rimental procedures	42
3.1.	Materials used	42
3.2.	Coals studied	43
3.3.	Dissolutions of coal with dimethylformamide-sodium hydroxide mixture	
3.4.	Dissolutions of coal with dimethylformamide-sodium hydroxide-sodium	44
	sulphide mixture	
3.5.	Dissolutions of coal with dimethylformamide-sodium sulphide mixture	44
3,6.	Recovery of Refcoal	45
3.7.	Extraction of mineral matter from Refcoal gel with hydrochloric and	45
	hydrofluoric acid	
3.8.	Extraction of mineral matter from Refcoal with ammonia hydroxide solution	46
3.9.	Extraction of mineral matter from Refcoal with sodium nitrite solution	46
3.10.	Extraction of trace elements from Refcoal gel with chelating resins	47
3.11.	Extraction of trace elements from Refcoal gel with sulphonic acid resins	47
3.12.	Extraction of trace elements from Refcoal gel with anionic resins	47
3.13.	Extraction of trace elements from Refcoal solution with chelating resins	48
3.14.	Extraction of trace elements from Refcoal solution with sulphonic acid resins	48

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI VA PRETORIA

3.15. Colorimetric determination of cobalt

CHAPTER 4

Results and Discussion

	4.1.	Coal s	tudied		51
	4.2.	Dissol	utions of coa	l and Refcoal recovery	53
	4.3.	Trace element analysis		60	
		4.3.1.	Trace eleme	ent analysis of unpurified Refcoal	61
			4.3.1.1.	Conclusion	71
		4.3.2.	Extraction of	of trace elements with hydrochloric and hydrofluoric acid	72
			4.3.2.1.	Conclusion	82
		4.3.3.	Extraction of	of trace elements from Refcoal solution with chelating resins	84
			4.3.3.1.	Conclusion	92
		4.3.4.	Extraction of	of trace elements from Refcoal gel with chelating resins	94
			4.3.4.1.	Conclusion	101
		4.3.5.	Extraction of	of trace elements with sulphonic acid resins	103
		4.3.6.	Extraction of	of cobalt from Refcoal gel with ammonia hydroxide solution,	105
		sodium sulphide solution and anion exchange resins			
		4.3.7.	Colorimetri	c determination of cobalt	107

CHAPTER 5

General Conclusions

109

CHAPTER 6

References	111
APPENDICES	125
Appendix 1	125
Appendix 2	137
Appendix 3	140
Appendix 4	145
Appendix 5	149