

REFERENCES.

- Barker, O.B., Barker and Associates. 1999. A Techno-Economic and Historical Review of the South African Coal Industry in the 19th and 20th Centuries. <u>In</u>: Pinheiro, R. (Ed.) 1999. <u>Bulletin 113</u>. Division: Coal and Mineral Services. SABS, Pretoria, p. 1-63.
- 2. Bartkowiak, G. 2001. Memo: <u>Dorstfontein reserves by thickness</u>. Internal report: TOTAL Exploration of South Africa (Pty) Ltd., 2 pp.
- Bell, K. and Spurr, M.R. 1986. The Klip Rivier Coalfield of Northern Natal. In: Anhaeusser, C.R.and Maske, S. (Eds.). 1986. <u>Mineral Deposits of Southern</u> <u>Africa, Vol. 2</u>. Geological Society of South Africa, Johannesburg, p. 2033-2046.
- Bell, K. and Spurr, M.R. 1986. The Vryheid Coalfield of Northern Natal. <u>In</u>: Anhaeusser, C.R. and Maske, S. (Eds.). 1986. <u>Mineral Deposits of Southern</u> <u>Africa, Vol. 2</u>. Geological Society of South Africa, Johannesburg, p. 2023-2032.
- Buddery, P.S. and Oldroyd, D.C. 1992. <u>Development of a roof and floor</u> <u>classification applicable to collieries</u>. Eurock '92. Telford, T., London, p. 197-202.
- Clarke, J., Caldon, J. H. and Curth, Ernest A. 1982. <u>Thin Seam Coal Mining</u> <u>Technology</u>. Noyes Data Corporation, New Jersey, U.S.A., 385 pp.
- De Jager, F.S.J. 1976. Steenkool. <u>In</u>: <u>Delfstowwe van die Republiek van</u> <u>Suid-Afrika</u>, Vyfde druk. Geologiese Opname, Dept. van Mynwese. Staatsdrukker, Pretoria, p. 383 – 390.
- Greenfields, H.D. 1986. Eastern Transvaal Coalfield. <u>In</u>: Anhaeusser, C.R. andMaske, S. (Eds.). 1986. <u>Mineral Deposits of Southern Africa, Vol. 2</u>. Geological Society of South Africa, Johannesburg, p. 1995-2010.
- Jacobs, R. 1989. <u>Die geologie van Ermelomyne en die invloed daarvan op</u> praktiese mynprobleme. Unpubl. M.Sc, Fakulteit Natuurwetenskappe, Universiteit van Pretoria, p.74 – 97.

-

1

- Jordaan, J. 1986. Highveld Coalfield. <u>In</u>: Anhaeusser, C.R. and Maske, S. (Eds.). 1986. <u>Mineral Deposits of Southern Africa, Vol. 2</u>. Geological Society of South Africa, Johannesburg, p. 1985-1994.
- 11. Joy Mining Machinery. 1978 revised 2001. Predict cutting and bit wear rates. In: Joy Service Bulletin, 00FG-0106. Unpub., 3pp.
- Karr, Clarence Jr. 1978. <u>Analytical Methods for Coal and Coal Products</u>. Academic Press, New York, p. 74 – 90.
- Meyers, R.A. 1981. <u>Coal Handbook</u>. Marcel Decker, Inc., New York, U.S.A.,
 p. 19 74.
- Pinheiro, H.J., Pretorius and C.C., Boshoff, H.P. 1999. Analyses of Coal and Product Samples of South African Collieries 1998-1999. <u>In</u>: Pinheiro, R. (Ed.) 1999. <u>Bulletin 113</u>. Division: Coal and Mineral Services. SABS, Pretoria, p. 64-97.
- 15. SACS (South African Committee for Stratigraphy). 1980. <u>Stratigraphy of</u> <u>South Africa</u>. Compiled by Kent, L. E. 1980. Part 1: Lithostratigraphy of the Republic of South Africa, S.W.A. / Namibia and the Republics of Bophuthatswana, Transkei and Venda, Handbook 8. Geological survey of South Africa, Pretoria, 690pp.
- 16. Smyth, W. W. 1886. <u>Coal and Coal Mining</u>. Sixth Ed, revised and enlarged. Crosby Lockwood and Co., London, 263pp.
- Snyman, C.P. 1998. Coal. <u>In:</u> Wilson, M.G.C. and Anhaeusser, C.R. (Eds.).
 1998. <u>The Mineral Resources of South Africa</u>, Sixth Ed. Council for Geoscience, Pretoria, p. 136-205.
- Spengler, M., 2002. Report: <u>Tests on borehole samples of the parting between</u> the 2 Lower and Upper seams. Internal Report: Dorstfontein Coal Mine, 3pp.
- Spurr, M.R., Gillard, T.D. and Bell, K. 1986. The Utrecht Coalfield of Northern Natal. <u>In</u>: Anhaeusser, C.R. and Maske, S. (Eds.). 1986. <u>Mineral Deposits of</u> <u>Southern Africa, Vol. 2</u>. Geological Society of South Africa, Johannesburg, p. 2011-2022.
- Stewardson, M.C. and Saunderson, R.D. 1999. <u>South Dorstfontein: The</u> <u>Geology, Reserves and Grade of the No. 2 Seam</u>. (Unpub.) Internal Report: AngloVaal Minerals, 76pp.

- Van der Merwe, J. N. and Madden, B.J. 2002. <u>Rock Engineering for</u> <u>Underground Coal Mining</u>. Published under the auspices of SIMRAC and SAIMM, p. 50 – 52 and 201.
- 22. Van Zyl. W., 2001. Memo: <u>Ventilation standards for continuous miner sections</u>. Internal report: Dorstfontein Coal Mine, pp. 2.
- Winter, M.F., Cairncross, B. and Cadle, A.B. 1987. <u>A genetic Stratigraphy for</u> the Vryheid Formation in the northern Highveld Coalfield, South Africa. South African Journal of Geology, Vol. 90 No. 4. Geol. Soc. of S.A, Johannesburg, p. 333 - 343.
- 24. Woodruff, S.D. 1966. <u>Methods of Working Coal and Metal Mines. Vol.3.</u> Pergamon Press, New York, p. 3 – 109, 224 – 254.
- 25. SAMREC. 2000. <u>South African Code for reporting of mineral resources and</u> <u>mineral reserves (The SAMREC Code)</u>. Prepared by The South African Mineral Resource Committee (SAMREC) under the auspices of the South African Institute of Mining and Metallurgy, pp. 41.
- The South African Coal Processing Society. 2002. <u>Coal Preparation in South</u> <u>Africa</u>. Compiled by: The South African Coal Processing Society, Johannesburg, p. 38 – 43.

- Annexure 1. Thin seam coal deposits of major producing countries.
- Annexure 2. U.S.A. Tax.
- Annexure 3. Wirth brochure.
- Annexure 4. Stamler BH10 brochure.
- Annexure 5. Development of a floor and roof classification applicable to collieries.
- Annexure 6. Geotechnical analysis.
- Annexure 7. Cash flow sheet.
- Annexure 8. Capital expenditure.
- Annexure 9. Operational costs.
- Annexure 10. Escalations.

• •

West Virginia State Tax Department Publication TSD-398

(Rev. August, 1999)

REDUCED SEVERANCE TAX RATE FOR THIN SEAM COAL PRODUCED FROM NEW MINES

Information contained herein is of a general nature and should be used only as a reference and not a substitute for tax laws or tax regulations.

Coal severance activities are subject to both a State tax, equal to the greater of 4.65 percent of gross receipts (less credits) or 75 cents per ton minimum tax on coal, and a local tax equal to 0.35 percent of gross receipts.

For tax years beginning after April 11, 1997, coal severance activities associated with new underground mines or underground mines not in production between October 14, 1996 and April 11, 1997 are subject to a reduced severance tax rate if the seam thickness of such mines is forty-five inches or less. The determination of actual seam thickness would be based upon a report by a professional engineer who uses an isopach mapping technique.

For qualified mines with a seam thickness of less than thirty-seven inches, the State tax equals the greater of 0.65 percent of gross receipts (less credits) or 75 cents per ton. The local tax remains at 0.35 percent of gross receipts.

For qualified mines with a seam thickness between thirty-seven inches and forty-five inches, the State tax equals the greater of 1.65 percent of gross receipts (less credits) or 75 cents per ton. The local tax remains at 0.35 percent of gross receipts.

If a coal processor purchases coal from a qualified thin seam mine then additional processing activities associated with such coal would be subject to the same reduced tax rate as applicable to the initial severance activity. However, processors must maintain a log with records of qualified tons and receipts subject to alternative tax rates.

Thin seam coal produced from qualified mines remains subject to the 75 cents minimum tax. The minimum tax provides some degree of tax equity among all West Virginia coal producers. Absent such an equalizer, qualified mines subject to preferential tax rates would enjoy a significant competitive advantage over other West Virginia mines. The minimum tax provisions should mitigate potential losses of employment, production and tax receipts at those mines not subject to preferential tax rate treatment.

Taxpayers must separately account coal receipts subject to the three alternative State tax rates of 4.65 percent, 0.65 percent and 1.65 percent. The following may provide some guidance:

Example 1:

KL Mining Company begins operations at a new low seam mine. First year coal sales total 200,000 tons at \$30.00 per ton. The seam thickness as determined by isopach mapping techniques is less than 37 inches. The following tax calculations apply:

§ 11-12B Tax		
State Minimum Tax: 200,000 tons x \$0.75/ton	=	\$ 150,000
§ 11-13A Tax		
Gross Receipts: 200,000 tons x \$30.00/ton	=	\$ 6,000,000
Tax Rate on Receipts: 0.65% + 0.35%	=	x 1.0%
Gross Tax: State Local		\$ 60,000
Annual Exemption Credit:		- 500
Net Tax:	-	\$ 59,500
State Share: (0.65/1.00) x \$59,500 = \$38,675		
Net Minimum Tax: (\$150,000 - \$38,675)	=	+ 111,325
Total Tax (including local share):	=	\$ 170,825
		-

Example 2:

MSM Mining Company begins operations at two new low seam mines. First year coal sales total 300,000 tons at \$30.00 per ton. The seam thickness as determined by isopach mapping techniques is less than 37 inches at Mine A (production = 100,000 tons) and between 37 and 45 inches at Mine B (production = 200,000 tons). The following tax calculations apply:

§ 11-12B Tax	
State Minimum Tax: 300,000 tons x \$0.75/ton	= \$ 225,000
§ 11-13A Tax	
Gross Receipts: 300,000 tons x \$30.00/ton	= \$ 9,000,000
Tax Rate of Receipts:	
(100,000 tons x \$30.00/ton)/\$9,000,000 x 0.65%	
(200,000 tons x \$30.00/ton)/\$9,000,000 x 1.65%	
1.3167% + 0.35%	= x 1.6667%
Gross Tax: State Local	\$ 150,000
Annual Exemption Credit:	- 500
Net Tax:	= \$ 149,500
State Share: (1.3167/1.6667) x \$149,500 = \$118,105	
Net Minimum Tax: (\$225,000 - \$118,105)	= + 106,895
Total Tax:	= \$ 256,395
	a second s

Example 3:

JM Mining Company Produces 1,000,000 tons from various mines that have been in operation for several years. Coal from these mines is sold under contract for \$30.00 per ton. JM reopens Low Profit Mine, a low seam (i.e., less than 37 inches) not in operation since 1989. JM sells 150,000 tons of coal from Low Profit Mine at an average price of \$25.00 per ton. JM also opens New Mine and sells 100,000 tons of coal from this mine at an average of \$24.00 per ton. The seam thickness as determined by isopach mapping techniques is less than 37 inches at Low Profit (production = 150,000) and between 37 inches and 45 inches at New Mine (production - 100,000 tons). JM also has a Coal Loading Facility Credit equal to \$30,000. The following tax calculations apply:

§ 11-12B Tax State Minimum Tax: 1,250,000 tons x \$0.75/ton (1.000.000 + 150.000 + 100.000)		\$ 937,500
§ 11-13A Tax		Charles of the second states and
Gross Receipts: 1,000,000 tons x \$30.00/ton		방법은 영화 가운데 문화가 많이
+ 150,000 tons x \$25.00/ton		or management of the first of
+ 100,000 tons x \$24.00/ton		\$36,150,000
Tax Rate of Receipts:		e non chail a La Bannin a Leve an Ch
(1,000,000 tons x \$30.00/ton)/\$36,150,000 x 4.65%		State and a constraint manager
(150,000 tons x \$25.00/ton)/\$36,150,000 x 0.65%		
(100,000 tons x \$24.00/ton)/\$36,150,000 x 1.65%		
4.036% + 0.35%		x 4.386%
Gross Tax: State Local		\$ 1,585,500
Credits (Coal Loading & Exemption):		- 30,500
Net Tax:	=	\$ 1,555,000
State Share: (4.036/4.386) x \$1,555,000 = \$1,430,909		
Net Minimum Tax: (\$937,500 - \$1,430,909)		+ 0
Total Tax:		\$ 1,555,000

If you have further questions regarding reduced severance tax for thin seam coal, please contact the Sales Tax Unit, Internal Auditing Division. A question in writing should be submitted to:

West Virginia State Tax Department Internal Auditing Division - Sales Tax Unit Post Office Box 425 Charleston, West Virginia 25322-0425

You may also telephone (304) 558-3333 or toll-free at: 1-800-982-8297

	Former USSR	USA	Spain	United Kingdom	Czechoslovakia	Poland	Colombia
Geological Parameters	1.0		4	0.01	1.0	1.0	
Definition of thin seams	1.2 m	~	-	0.91 m	11.0 m	1.0 m	-
	(48 inches)			(36 inches)	(39 inches)	(39 inches)	
Seam dip	Gentle to very	Mainly flat	0-90	0-45	0-16 51%	0-10 39%	Flat to steep
	steep			Mostly 0-6	16-36 34%	1 0-45 54%	
					+36 15%	+45 7%	
Seam depth	300- 1,1 00 m	Reserves calculated	500 m	1,100 m	400-600 m	0-800 m	-
	(984-3,609 ft)	to a depth of	(1,640 ft)	(3,609 ft)	(1,312-1,968 ft)	(0-2,625 ft)	
		1,000 ft			Some at 1,000 m		
					(3,281 ft)		
Coal strength	Variable	Variable	-	Hard	Hard	-	•
Roof	6.4% sandstone	Generally good and	Strong, variable	Shale	-	Sandstone, silts	Variable
	8.0% limestone	strong. Frequent				and conglomerates	
	Rest shale	draw slate					
Floor	Mostly clay shales	Medium	Strong, variable	Mostly clays	•	Sandstone, silts	*
Extent of Seams	Donetz and Lvov-	Wide areas but	Fragmented	Northumberland,	Ostrava Karvina	-	
	Volynsky	thickness in		Durham, York-	and Eastern		
		seams varies		shire and Derby-	Bohemia		
		over area		shire			
Water	Mostly dry, but	Fairly dry when	Variable	Mostly dry		-	-
	some very wet	worked above					
		drainage table					
Faults	Normally undisturbed	Normally undisturbed	Highly disturbed	Mainly undisturbed	Highly disturbed	-	Disturbed
					except Wales and		
					Scotland		
Cleat	Mostly well defined	Not generally well	-	Mostly well defined	-	Mostly well defined	Variable
		defined		·			
Spontaneous combustion	Variable risk	Variable risk	-	Low risk in thin seams	**	-	Low risk
Methane	Variable emission	Generally low emission	Low emission	Mainly gassy	All gassy	Mainly gassy	Mainly non-gassy
Quality	Coking coal	Often coking and	•	Often coking	High quality coking		-
		low sulphur			coal		

.

Geological Parameters	France	Belgium	Germany	China	Bulgaria	Romania
Definition of thin seams	1.0 m	0.6 m	0.7 m	-	1.3 m	
	(39 inches)	(24 inches)	(28 inches)		(51 inches)	
Seam dip	0-20 47%	0-45	0-10 63%	Flat or slight 69 7%	10-90	5-70
	20-45 46%	mostly 0-30	10-20 9.5%	10-25 22.4%	mostly -45	
	+45 7%		+20 27.5%	+25 7,9%		
Seam depth	-	275-1,160m	Maximum	Mostly <200 m	150-300 m	-
		(902-3,806 ft)	1,200 m	(656 ft)	(492-984 ft)	
			(3,937 ft)			
Coal strength	-	Variable	Soft but hard in the		-	-
			Saar			
Roof	-	Competent shale and	Shale, sandy	-	Hard sandy shales	-
		sandstone	shale in thin seams			
Floor	•	Good shale and sandstone	Shales sandy	_		•
			shales			
Extent of Seams	Nord, Pas de	Charieroi-Namur,	Aachen and	Widely distributed	Svoge Basin and	Valea-Jiului and
	Calais, Cevennes	Liege	lower Saxony		Balkan field	Anina
			-			
Water	-	-	Mostly dry	-	-	Dry
			•			
Faults	-	Undisturbed	Mainly undisturbed	Undisturbed	Highly disturbed	Highly disturbed
Cleat	Mostly well defined	Variable	Mostly well			Not generally well
citat	widship wen denned	Variable	defined	-	-	defined
Spontaneous combustion	-	-	Variable risk	-	Low risk	-
Methane	Mainly gassy	-	Low emission	Some gassy	Some gassy	Mainly gassy
Quality	-	Anthracite	Coking coal	-	Anthracite	Coking coal

Annexure 1 cont. Thin seam coal deposits of major producing countries (Clark et al., 1982)

,

Low Seam Coal Header

H4.30

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA VUNIBESITHI YA PRETORIA

Low Seam Coal Header WIRTH PAURAT H4.30

 The H4.30 Low Seam Coal Header combines the strength, robustness and versatility of WIRTH PAURAT's heavy-duty roadheader range with the ability to cut and load minerals, such as coal, potash, salt, etc. at a very high production rate.

WIRTH

The Coal Header with a weight of approx. 50 t is designed to withstand the toughest of under ground conditions during long periods of use. It can deal with rock inclusions, washouts and undulations in the seam.

- The H4.30 is capable of cutting and loading a cross-section up to 3.5 m wide and up to 2.80 m high from a single central position.
 With an overall height of only 1,000 mm the machine can operate in cross-sections only 1.1 m high on plain floor conditions.
- The machine is equipped with a WIRTH PAURAT "Helix" cutting drum powered by two watercooled and water-tight electric motors via epicyclic gearboxes. The cutting drum is divided into three sections – a centre drum and two outer drums.

In operation the drum not only cuts but also crushes and conveys the material onto the loading apron. Cutting is carried out by tungsten carbide tipped point attack picks arranged in a double spiral around the drum. Wear resistant steel scrolls convey the cut material to the loading apron, and also protect the pick boxes and limit pick penetration. The loading apron behind the drum conveys the material by the two loading stars on the chain conveyor. 4. The main frame of the machine is constructed from solid cast steel components to give it the necessary mass to react the cutting forces within the compact overall dimensions. The individual components are bolted together for ease of assembly and transport as well as service inside the production area.

WIRTH

......

The crawler tracks are integrated into the main frame, each track being independently driven by an electric, AC, motor, with variable speed by inverter control.

The crawlers are fitted with 500 mm wide track plates. The crawlers have sufficient power to enable the machine to operate on tramming gradients up to +/- 18 degrees.

 The machine is equipped with a high capacity roller chain conveyor powered by the two loading star

drives. The conveyor transports the cut and crushed material from the loading apron to the rear of the machine. The tail of the conveyor can be raised, lowered and slewed from side to side hydraulically enabling it to load almost any muck haulage system.

6. All drives, i.e. crawlers, conveyor, cutting drum and loading stars are electrically driven. All other functions of the machine are operated hydraulically. The power pack comprising tank, pumps with water electric motor, filters, coolers etc. is located on the right hand side of the machine. Preset level and temperature switches protect the system which is suitable for use with both normal mineral oil and HF-C fire resistant fluids, resp.

The main valves are operated by a radio remote control system.

 As standard the machine is designed for use with an electrical power supply rated 1000 V / 50 Hz. The electrical system can also be modified for use with other voltages and 60 Hz frequency. The switchgear for all the motors on the machine and the main circuit breaker for the power supply, are all contained in one contactor case located on the right hand side of the machine. All motors are protected against both thermal and current overload as well as against earth leakage.

The machine can also be supplied for use in gassy mines in full compliance with the regulations of the relevant governing authorities. Start and stop buttons for all motors as well as ampmeters and fault indication lamps are located at the control panel. Emergency stop buttons are provided at several points around the machine.

 On the left hand side of the machine is the wet dust collection system installed, which in combination with the unique water spray system offers excellent dust absorbtion for good visibility at low consumption of water to reduce mud spillage at the floor.

Low Seam Coal Header WIRTH PAURAT H4.30

Technical Data:

List of technical data for WIRTH PAURAT H4.30

Ma	ichine Overall	
	Weight	
	Lenght	
	Height	
	Cutting heigth	1100
	Cutting width	

50 t 12100 mm 1000 mm 100-2800 mm 3500 mm

Crawler Tracks Speed Drive

0-30 m/min AC-motors

2 x 200 kW

Cutting Drum Installed power Diameter

Hydraulics Installed power

45 kW

Cpetally

1000 mm

Electrics (standard) Voltage 1000 V Frequency 50 Hz

WIRTH

Maschinen- und Bohrgeräte Fabrik GmbH P.O. Box 16 60 41806 Erkelenz Germany

Telephone: +49 24 31 83-0 Telefax: +49 24 31 83-267 e-mail: info@wirth-drilling.com www.wirth-drilling.com

Stamler BH10 Battery Hauler

Features

The Stamler BH10 Battery Hauler provides increased payload and low operating cost per ton. Compared to shuttle cars, the Stamler BH10 Battery Hauler offers a superior capacity, quiet and comfortable operation, and eliminates trailing cable problems.

High Performance Operation

- Substantial payload capacity in a variety of operating heights down to 890mm improves mine efficiency.
- Vertical articulation and patent pending "on demand" four wheel drive system allow efficient operation in difficult bottom conditions.
- Extended service life components are located in maintainance-friendly locations for easy access, even in low heights.
- Patented "Lift-from-grade" battery change system provides maximum uptime.
- Vertical articulation improves utility by allowing transport of components.
- Efficient, field-proven IGBT motor control system provides maximum shift battery life with the most efficient use of power.
- Ergonomically designed cabin offers good operator visibility.
- Quiet operation provides high operator comfort.

Low Profile Low profile allows operation in seams as low as 890mm.

Efficient Hydraulic System Reliable, high output system provides power for improved haulage cycle time.

Patented "Lift From Grade" Battery Change System Allows fast and easy battery change for maximum uptime.

Vertical Articulation

Total vertical articulation of 25° (15° up, 10° down) allows efficient operation in difficult bottom conditions and enables loading and unloading of material or components.

Development of a roof and floor classification applicable to collieries

Le développement d'une classification pour le toit et le mur en charbonnages

Die Entwicklung einer Klassifikation von Dach und Sohle, anwendbar für Kohlengruben

P. S. BUDDERY and D. C. OLDROYD, Genmin, Witbank, South Africa

1

Les terrains de charbon et l'exploitation de charbon peuvent être considérés comme des cas particuliers de mécanique de roches. Le terrain est souvent stratifié, normalement faible et variable en propriété et épaisseur sur des distances limitées. L'exploitation de charbon est bien mécanisée, ce qui a comme conséquence l'expansion geographique rapide et l'exposition de terrains -dans lesquels le toit, le mur et les parois. Une classification du toit et du mur, appliquée par un charbonnage important, doit être basée sur des tests d'un grand nombre d'échantillons, y inclus des échantillons de roches faibles, d'une telle façon que les problèmes classiques de comportement de terrains en charbonnages sont abordés.

Das Kohlengebirge und der Abbau von Kohle können als Spezialfälle in der Gebirgsmechanik betrachtet werden. Die Schichten sind häufig laminiert, allgeimen wenig fest und über relativ kurze Entfernungen veränderlich in Gepräge und Mächtigkeit. Die mechanisierte Gewinnung von Kohle ergibt einen schnellen Abbaufortschritt mit grossen Flächen von freigelegtem Dach, Stoss und Sohle. Das System einer Dach-und Sohlenklassifikation für den Gebrauch in einer Kohlenindustrie-Gruppe muss auf Versuchen beruhen, die es ermöglichen eine grosse Anzahl von Proben zu nehmen, einschliesslich solchen von geringster Festigkeit, und das auf die alltäglichen Probleme der Gebirgsbeherrschung Zugen ist.

INTRODUCTION

The economic coal measures of South Africa occur predominantly in the Middle Ecca stage, and to a much lesser extent in the Upper Ecca and Molteno stages, of the Karoo system. The Karoo system is of Permian age thus making the South African coal measures somewhat younger than their European counterparts.

The coal bearing strata consist chiefly of sandstones with subordinate shales, carbonaceous shales, siltstones and mudstones.

Many of the coal measures strata are inherently weak while others are highly susceptible to weathering. Significant variation in the properties and thicknesses of a particular stratum over short horizontal distances is also a notable feature of many of the coalfields, as is the occurrence of dolerite intrusions in the form of both dykes and sills.

The majority of underground coal is extracted by means of mechanized bord and pillar methods from seams lying at shallow depths. Consequently, most mines experience a rapid rate

· •• • • • •

of geographical expansion resulting in vast expanses of exposed roof, sides and floor being created, many of which have to be maintained for long periods of time, particularly if pillar extraction is contemplated.

THE NEED FOR A COAL MEASURES CLASSIFICATION

A number of tests are available for the determination of rock strengths and other properties such as durability and the potential for swell. The carrying out of these tests is governed by guidelines laid down by the ISRM (ref.1). Similarly, well-established rock mass classification systems exist which have proven themselves in numerous practical applications. When dealing with the soft rocks of typical coal measures strata, however, there are certain drawbacks with regard to the use of these tests and classification systems. These include:

i) The tests or classification parameters may not relate directly to actual strata behaviour in coal mine roadways.

Eurock '92. Thomas Tellord, London, 1992

- iii) The tests are typically costly, time consuming and can only be conducted in specialist laboratories. This presents significant difficulties when very large numbers of tests are required such as during the feasibility stage of a major coal mining project.
- iv) Rock mass classification systems will frequently assign the same class to a wide range of coal mine roofs.

TRANS-NATAL'S ROOF AND FLOOR CLASSIFICATION

The Coal Division of Genmin's Rock Engineering Department has always desired and striven to become more pro-active in order to anticipate strata control problems rather than to deal with them only once they become apparent. In order to do so it was essential to develop a means of classifying coal measures strata. The size of the department, budget constraints and the scope of work involved meant that the following philosophy had to be applied in devising a suitable classification system:

- The tests should relate to the expected mode of failure of the strata.
- ii) It should be possible to test even the weakest material.
- Large numbers of tests should be able to
 be conducted simply, quickly, at low cost and in-house.

The achievement of these aims was considered worth losing a degree of accuracy for.

Roof Classification

Roof failure in South African coal mines is predominantly governed by the frequency of laminations or bedding planes and their propensity to open and separate, and by the bord width. This is in accordance with the formula for tensile stresses in a fixed beam which gives the maximum tensile stress, P, developed in a beam of unit width as:

D -	PgB'	(1)
r -	2t	

where: P = strata density

- g = gravitational acceleration
- B = bord width
- t = beam thickness

Tests designed to indicate the potential for roof failure must therefore indicate the frequency of bedding planes and laminations, and their potential to open. During 1982 the introduction of a Coal Rock Structure Rating (CRSR) system was considered. This was based on three parameters; RQD, the results of impact splitting tests and a parameter related to joint condition and groundwater.

In coal measures strata it is impractical to satisfactorily distinguish between drilling induced and natural fractures in the rock. Therefore, the RQD was discarded from the system although it is still determined for all strata that are of interest and used, where necessary, to assist in interpretation.

Fig.1. Impact splitting test

The third parameter proved difficult to determine. Furthermore, irrespective of the roof type, special support precautions are taken at all geological discontinuities exceeding 2m in length. Joints, therefore, unless they are exceptionally closely spaced have no influence on systematic roof support design. Consequently, in 1983 it was decided to confine the determination of roof ratings to the results of impact splitting tests.

Impact Splitting Tests

The impact splitting test involves imparting a constant impact to a length of core every 0,02m. The resulting fracture frequency is then used to determine a roof rating.

The instrument used is very simple (Fig. 1). It consists of an angle iron base which holds the core. Mounted on this is a tube containing a chisel with a mass of 1,5kg and a blade width of 25mm. The chisel is dropped onto the core from a constant height according to core size, 100mm for TNW (60mm dia.) and 64mm for NQ (48mm dia.).

The impact splitter causes weak or poorly cemented bedding planes and laminations to open under duress thus giving an indication of likely behaviour in situ when subjected to bending stresses, in some instances compounded by blasting.

When designing coal mine roof support, 2m of strata above the immediate roof are tested. If the roof horizon is in doubt then all strata from the lowest likely horizon to 2m above the highest likely horizon are tested so that all the potential horizons may be compared. For shaft boreholes the full length of strata is tested (ref. 2).

The strata is divided into geotechnical units which are very often shorter than the units described by the geologist. The RQD for each unit is determined and any geological discontinuities are noted. The units are then tested and a mean fracture spacing for each unit is obtained. Using either equation (2a) or (2b) an individual roof rating for each unit is determined.

For	fs	15	rating	=	415	(2a)
For	fs	25	rating	=	2fs + 10	(25)

198

there: fs = fracture spacing in cm

For example, a unit 1,2m long with 8 fractures will have a mean fracture spacing of 15cm and a unit rating of 40.

This value may be used to classify the individual strata units (Table 1) but for coal mine roofs the individual ratings are adjusted to obtain a roof rating for the first 2m of roof. The immediate roof unit will have a much greater influence on roof conditions than a unit 2m above the roof. Consequently, the unit ratings are weighted according to their position in the roof by using equation (3).

Weighted rating = rating x 2(2 - h)t (3)

where: h = mean unit height above the roof (m) t = thickness of unit (m)

The weighted ratings for all units are then totalled to give a final roof rating. For example, a coal mine roof has three units; 0-0.8m; 0.8-1.3m and 1.3-2.8m above the coal seam with ratings of 25, 32 and 8, respectively. For the purpose of determining a weighted rating the last unit is regarded as being from 1.3-2.0m above the coal seam. From equation 3

the weighted ratings at the mean heights of 0.4m, 1.05m and 1.65m are 64, 30.4 and 3.9, respectively. The final roof rating is therefore: 64+30.4+3.9 = 98.3.

After many years of experience and having collected data from numerous sites the classification given in Table 1 has been arrived at. Good agreement between expected and actual roof conditions has been found when using this rating system.

Table 1. Unit and coal roof classification system

Unit Rating	Rock Class	Roof Rating
<10	Very Poor	4 39
(- 17	Poor	40 - 69
18 - 27	Moderate	70 - 99
28 - 32	Good	100 - 129
> 32	Very Good	>130

Floor Classification

The floor classification system was developed in late 1988/early 1989 for the feasibility study to the T-project which was investigating the extraction of torbanite and its conversion to syncrude. Torbanite is found in the N°5 coal seam of the Highveld coalfield (Fig. 6) which is notorious for poor floor conditions. Floor strata are liable to swell and degrade due to water. The mechanical action of mining equipment is also a major contributory factor to the degradation of the floor. In the light of the above it was decided to base the floor classification system on unconfined swelling strain and slake durability tests. In order to adhere to the aforementioned testing philosophy it has been necessary to modify the suggested , methods as laid down by the ISRM. Only the

PAPER 35: BUDDERY AND OLUMOND

modifications will be discussed here, for full details of the test methods the reader should refer to the ISRM suggested methods (ref.1).

Duncan Swell Test

The Duncan swell test measures the unconfined swelling strain in one or more directions when a sample of rock is immersed in water. When testing borehole cores from coal measures strata it is only necessary to measure the swelling strain perpendicular to the laminations since, in rocks liable to swell, the swelling strain perpendicular to the laminations will greatly exceed that in other directions.

Samples are not prepared but are chosen with their ends approximately parallel. This reduces the costs and time involved and, above all, allows the testing of weak samples that would otherwise break up during machining.

The test procedure requires that swelling displacement should continue to be recorded until it reaches a constant level or passes a peak. This can be extremely time consuming and, for practical purposes, is not necessary. For the vast majority of specimens, 90% or more of their final swell will have taken place by the time 30 minutes have elapsed. For this reason a 30 minute swelling strain is determined. A sample undergoing testing is shown in Fig.2.

The swelling strain, $\mathbf{S}_{\mathbf{30}},$ is calculated as follows:

$$S_{30} = \frac{d_{30}}{L} \times 100\%$$
 (4)

where: d₃₀ = swelling displacement after 30 minutes L = initial length of the sample.

At the end of the test the sample is immediately removed from the water. It is then assigned a rating from 1-6 according to its condition. A rating of 1 being assigned to an undisturbed sample and a rating of 6 to a totally degraded one (Fig.3). The swell index of the sample is then determined by multiplying the swelling strain by the condition rating.

Fig.2. Duncan swell test

Fig.3. Samples after Duncan swell test. From _____left to right condition ratings are: 5; 3 and 1

Slake Durability Test

This test assesses the resistance offered by a rock sample to weakening and disintegration when subjected to two standard cycles of drying and wetting. The department had equipment manufactured - which conforms fully to the ISRM guidelines - with four drums thus allowing four samples to be tested at a time.

The slaking fluid used is in all instances water.

The International Standard calls for a representative sample comprising ten rock lumps, each weighing 40-60g. The size of core used by Trans-Natal means that 40-60g lumps can only be obtained from the more competent rock types. If only these rock are tested then the results would be biased towards good floor conditions. For this reason the lump requirement has been modified to 20-30g unprepared lumps (Fig.4).

The drying periods have been shortened from 2-6 hours to 1½-2 hours in order to speed up the procedure and because the lumps are smaller. Fig.5 shows the retained portions after the samples of Fig.4 had been tested.

The slake durability index (second cycle), I_{d2}, is calculated as follows:

$$I_{d2} = \frac{C}{A} \times 100\%$$
 (5)

where:

A = dry mass prior to testing (g)
C = dry mass after two slaking cycles
 (g)

Treatment of Results

The brief from the T-Project management team was that the results should be descriptive and unambiguous.

Conventionally a high swell index implies a poor rock, conversely a high slake durability index implies a good rock. To avoid confusion it was decided to present the slake durability index as $100 - I_{d2}$. Both floor indices therefore increase as expected floor conditions

therefore increase as expected floor conditions get worse.

The more than 250 Duncan swell and slake durability indices were carefully compared. The approach was to rate the various lithologies with regard to their potential to swell or weather based on all availabe information. Ranges of the two indices, with appropriate descriptions, were then chosen to fit the majority of data. The remaining anomalies were then dealt with by fine adjustments to the ranges. The final ranges arrived at are given in Table 2.

Table 2. Swelling and slake durability floor classification.

Rating	Description	Swell index	Slake durability index
A	Good	< 1	< 14
В	Moderate	. 1 - 3	14 - 26
С	Poor	3.1 - 15	26.1 - 36
D	Very Poor	> 15	> 36

There is not always complete correlation between the two indices. In these circumstances the index suggesting poorer floor conditions dictates the rating.

Each floor is then described to a depth of 0.6m according to the rating and thickness of each unit, e.g. Borehole

BN14:A(0.32)/C(0.25)/A. The last layer is usually not given a thickness because it goes beyond 0.6m. Finally the condition of the immediate floor is classified according to Table 3.

Fig.4. A weathering dolerite and shale prior to slake durability testing

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

PAPER 35: BUDDERY AND OLDROYD

the classifications assigned to those boreholes with known conditions. Furthermore, the classifications assigned to the exploration holes correlated to other available geological data and made sense when plotted on a plan of the reserves.

T-PROJECT

Sadly the T-Project never got off the ground. Had it done so it would have required massive capital investment. Consequently, the feasibility study had to be conducted to a high degree of confidence. Previous experience with the 5 seam floor and to a lesser extent the 5 seam roof meant that rock engineering considerations would play a major part in mine design, equipment selection and contamination.

Since the classification approach used by the Rock Engineering Department (RED) was novel and untried the project management decided to test the classification system against known conditions. Three holes were drilled at the nearby Matla Colliery. The location of these holes was not made known to the RED. Neither was a plan of the location of the exploration boreholes made available. When given the results for the individual boreholes the project management team expressed themselves happy with

Fig.6. Generalised stratigraphic section, N°5 coal seam, T-Project and legend for figures 7 and 8

Fig.7. Expected roof conditions, T-Project

Fig.8. Expected floor conditions, T-Project

The management team chose to reduce the number of classes to two for each of the roof and floor plans. Thus the roof was rated moderate or good and the floor poor or moderate (Figs. 7 and 8). This information was then applied in a number of ways. After considering all potential mining methods it was decided that longwall mining would be applied in areas where poor coal seam roof and floor conditions existed and the possibility of geological disturbances was minimal. Ribpillar mining would be applied in geologically complex areas where the coal seam roof and floor conditions were manageable. Mechanised bord and pillar mining would be applied in main and secondary entries, areas where surface structures needed to be protected and in mining panels not suited to longwall and ribpillar mining and where the coal seam roof and floor conditions were manageable.

Using the information it was possible to determine expected levels of contamination for the roof and floor. For example, no roof contamination was expected from the longwalls irrespective of the nature of the roof whereas for bord and pillar panels contamination was expected to be locm for good roofs and 20cm for moderate rools. Floor contamination was expected to vary from 5cm for a longwall with a moderate floor to 50cm for bord and pillar panels with a poor floor.

Longwall panels were expected to have a consistent in-panel extraction factor of 92%. For ribpillar panels this was 82% with a moderate floor dropping to 78% with a poor floor.

Although the T-Project was shelved the project management team consider that from a technical perspective the feasibility study was a complete success.

CONCLUSIONS

Y OF PRETORIA HI YA PRETORIA

> Since its successful contribution to the T-project the Trans-Natal roof and floor classification system has been applied to further major projects as well as on a much smaller scale. Trans-Natal's mine and project management both view it as an essential tool in the investigation of greenfield sites and mine extensions. It has proven particularly valuable in shaft design (ref.2). The manner of the presentation of the results means that mine and project management are able to envisage the expected conditions in terms of their own experience.

> The authors make no claims regarding their classification system other than that it successfully meets the needs of a rock engineering department which is endeavouring t provide a meaningful service to a major coal producer. It is not generally applicable to other minerals and strata types.

REFERENCES

- ISRM. Suggested methods for determining swelling and slake-durability index properties. Committee on Laboratory Tests document 2, part 2, final draft, Nov 1972.
- OLDROYD D.C. and BUDDERY P.S. The design and support of inclined shafts through cos measures strata, the use of rock classification.ibid.

,

ANNEXURE 6

.

.

TOTAL COAL HOLDINGS SOUTH AFRICA (PTY) LTD

DORSTFONTEIN COAL MINE

TESTS ON BOREHOLE SAMPLES OF THE PARTING BETWEEN THE 2 LOWER AND UPPER SEAMS

1. INTRODUCTION

Tests on the borehole samples of the parting between the 2 Lower and Upper seams are required to determine:

- (i) Whether the parting can be supported using conventional roofbolting methods to allow the safe mining of the lower seam only.
- (ii) The feasibility of mining the parting with a continuous miner if it cannot be safely supported.

The following tests were conducted:

- (i) Rock mechanics impact splitter compressive strength
- (ii) Mining "J" factor (cutting) "W" factor (wear)

2. ROCK MECHANICS

2.1 Impact Splitter Tests

This test was devised by rock engineering practitioners of the then Genmin group in 1982 and is used throughout the industry and particularly by the Ingwe Group. Roof failure in predominantly governed by the frequency of lamination or bedding planes, their propensity to open and the bord width. The impact splitter causes weak or poorly cemented bedding planes and laminations to open up under duress, thus giving an indication of likely in situ behaviour when subjected to bending stresses.

The rating system requires 2m of strata above the immediate roof to be tested. The borehole core is tested in geotechnical units preferably of about a half a metre in length. A mean fracture spacing for each unit is obtained and an equation used to determine the unit rating and the roof rating.

	DF 326		DF 327		DF 322		
UNIT POSITION (m)	RATING	CLASSIFICATION	RATING	CLASSIFICATION	RATING	CLASSIFICATION	
1.5 - 2.0 1.0 - 1.5 0.5 - 1.0 0 - 0.5	112.0 110.0 60.0 24.8	Very Good Very Good Very good Moderate	110.0 110.0 24.3 20.0	Very Good Very Good Moderate Moderate	110.0 110.0 21.1 22.5	Very Good Very Good Moderate Moderate	
2m Roof	227	Very Good	175	Very Good	175	Very Good	

These were in-house tests. The results of the 3 borehole cores that were tested are:

Despite the weighting of the individual units according to their position in the roof, the very competent upper units results in the overall classifications of the roof being "Very Good". The classification of the lower units that form the first 0,5 to 1,0m of the roof is of greater significance and this zone is classified as "Moderate".

2.2 Uniaxial Compressive Strength Tests

As the name uniaxial compressive strength (UCS) implies, in these tests a load is applied in one direction only with no lateral confinement. In this case the load was applied at right angles or near right angles to the laminae. The results of these tests therefore rather reflect the intrinsic strength of the material and not the strength of the roof when subjected to bending stresses that result in the de-lamination of the roof beam.

These tests were done at CSIR Mingtek. Three specimens from each of two borehole cores were tested. The results are tabulated below.

SPECIMEN P	PECIMEN PARTICULARS		SPECIMEN PARTICULARS SPECIMEN DIMENSIONS		TEST F	RESULTS
CSIR SPECIMEN No. 2339-	CLIENT No.	DIAMETER (mm)	DENSITY (kg/m ³)	UCS (MPa)	MODE OF FAILURE	
UCS – 01 UCS – 04 UCS – 05	DF 329 DF 329 DF 329 DF 329	60,7 60,6 60,6	2450 2380 2450	99,2 95,0 98,8	XA XA XA	
UCS - 02 UCS - 03 UCS - 06	DF 331 DF 331 DF 331	· 60,3 60,2 60,2	2450 2510 2470	97,3 110,3 111,7	XA XA XA	

XA: Partial cone development

3. MINING

3.1 "J" Factor Tests

This test is used extensively by Joy Mining Machinery to predict the cutting rate of a machine such as a continuous miner. The "J" factor is determined by the controlled drilling of a specimen of the material that is to be cut. The "J" factor is the average depth of 5 holes in millimetres multiplied by 10. Material with "J" factors above 500 can be cut and becomes easier to cut as the number gets larger.

These tests were doneat CSIR Miningtek. Four specimens from one borehole were tested. The results of the tests are tabulated below.

SPECIMEN P	ARTICULARS	"J" FACTOR									
CSIR No.	CLIENT No.	TEST 1	TEST 2	TEST 3	AVER. + STD.						
01 Top	DF328	220	210	204	211,1±8,0						
01 Bot.	DF328	282	245	257	261,1±19,2						
02 Top	DF328	176	194	188	186,1±9,3						
02 Bot.	DF328	186	237	215	212,3±25,6						

3.2 "W" Factor Tests

The "W" factor or wear factor is some indication of the pick wear that will result from both the abrasive material in the rock and the manner in which the material is found in the matrix. Bit wear takes place when drilling the holes to determine the "J" factor. This wear

expressed in thousands of an inch is the "W" factor. "W" factors range from 0,000 to 0,018, with long life having a "W" factor under 0,003.

These tests were done at CSIR Miningtek. The results of the tests are tabulated below.

SPECIMEN P	PARTICULARS	"W" FACTOR									
CSIR No.	CLIENT No.	TEST 1	TEST 2	TEST 3	AVER. + STD.						
01 Top	DF328	0,0034	0,0039	0,0046	0,0040±0,0006						
01 Bot.	DF328	0,0032	0,0034	0,0032	0,0033±0,0001						
02 Top	DF328	0,0025	0,0027	0,0027	0,0026±0,0001						
02 Bot.	DF328	0,0039	0,0032	0,0049	0,0040±0,0009						

4. CONCLUSIONS

4.1 Impact Splitter Tests

The classification of the lower units of the roof as "Moderate" indicates that the roof can be supported provided about 0,4m of the rockbolt can be anchored in the competent sandstone above the 2 Upper seam. This means that a 0,9m long bolt can only be used if the parting and the upper seam together are not more than 0,5m thick. Rows of 4 full column anchored rockbolts every 1,5 m will be required. A reduction in the density may be possible but that will depend on observations of favourable roof behaviour over a period of time.

4.2 Uniaxial Compressive Strength Tests

The UCS of the specimens tested varied between 95.0 and 111,7 MPa. As stated in section 2.1, this test does indicate the ability of the parting to withstand the de-laminating bending stresses that occur in the roof. What it does indicate is that this material can be transformed into a competent beam if de-lamination is prevented by clamping the layers together.

4.3 "J" Factor Tests

"J" factors of between 282 and 176 indicate that the parting will be difficult to cut. Rock with "J" factors below 500 can be cut if the rock is highly laminated or fractured and provided high operating costs can be tolerated.

4.4 "W" Factor Tests

The results show that pick life will be greatly reduced as the majority of the "W" factors are greater than 0,003.

M G SPENGLER

.

Sensitivity	
Operating Costs	0.00%
Seiling Price (Export)	0.00%
Selling Price (Domestic)	0.00%
Yield	0.00%
Production	0.00%
Capital Expenditure	0.00%

			Dorstfontein									
Period		Total	2,003	2,004	2,005	2,006	2,007	2,008	2,009	2,010	2,011	2,012
Production	T000's											
Run of mine		3,514	314	377	377	377	377	377	377	314	314	314
Yield		85.2%	85.2%	85.2%	85.2%	85.2%	85.2%	85.2%	85.2%	85.2%	85.2%	85.2%
Coal produced		2,993	267	321	321	321	321	321	321	267	267	267
Operating costs	R/ton											
Run of mine		104.37	82.08	82.91	87.89	93.16	98.75	104.68	110.96	123.41	130.82	138.67
Produced		122.54	96.36	97.35	103.19	109.38	115.94	122.90	130.27	144.90	153.59	162.81
Distribution costs	R/ton											
Railage costs		50.56	38.62	40.94	43.40	46.00	48.76	51.69	54.79	58.08	61.56	65.26
Port charges		9.33	7.13	7.56	8.01	8.49	9.00	9.54	10.11	10.72	11,36	12.05
Transport costs		20.71	15.82	16.77	17.78	18.85	19.98	21.18	22.45	23.79	25.22	26.74
Total sales	T000's	2,993	267	321	321	321	321	321	321	267	267	267
Export		1,773	158	190	190	190	190	190	190	158	158	158
Inland sales		1,220	109	131	131	131	131	131	131	109	109	109
Export selling price												
Export selling price	\$/ton	\$31.64	\$27,77	\$27.77	\$27.77	\$27.77	\$27.77	\$27.77	\$27.77	\$27.77	\$27.77	\$27.77
Exchange rate	\$/R	8.5000	8.5000	8.7500	9.0074	9.2723	9.5450	9.8257	10.1147	10.4122	10.7184	11.0337
Export selling price	R/ton	268.98	236.05	242.99	250.13	257.49	265.06	272.85	280.89	289.15	297.65	306.41
inland selling price	R/ton	216.01	165.03	174.93	185.43	196.55	208.35	220.85	234.10	248,15	263.03	278.82
Turnover	R000's	740,441	55,345	69,027	71,757	74,608	77,588	80,703	83,960	72,804	75,772	78,876
Export revenue		476,990	37,374	46,168	47,526	48,924	50,362	51,844	53,368	45,782	47,128	48,514
Inland revenue		263,450	17,971	22,859	24,231	25,685	27,226	28,859	30,591	27,022	28,643	30,362
Distribution costs		163,579	11,328	14,361	15,173	16,033	16,942	17,905	18,924	16,668	17,619	18,626
Railage costs		89,652	6,116	7,779	8,246	8,740	9,265	9,821	10,410	9,196	9,747	10,332
Port costs		16,549	1,129	1,438	1,522	1,613	1,710	1,813	1,922	1,697	1,799	1,907
Transport costs		36,732	2,506	3, 187	3,378	3,581	3,796	4,024	4,265	3,768	3,994	4,233
Marketing fee - Inland	1,5%	3,952	270	343	363	385	408	433	459	405	430	455
Marketing fee - Export	3.5%	16,695	1,308	1,616	1,663	1,712	1,763	1,815	1,868	1,602	1,649	1,698
FOR revenue		576,862	44,017	54,666	56,584	58,576	60,646	62,798	65,036	56,136	58,152	60,250
Operating costs		365,681	25,343	31,203	33,030	35,012	37,112	39,339	41,699	38,577	40,954	43,412
Operating costs		366,769	25,751	31,217	33,090	35,075	37,180	39,410	41,775	38,721	41,044	43,506
Stock Movement		-1,087	-408	-14	-59	-64	-67	-71	-76	-143	-90	-94
Operating profit		211,180	18,674	23,463	23,553	23,564	23,534	23,459	23,337	17,558	17,198	18,838
axation		28,983	139	4,534	5,084	2,190	4,682	5,146	4,091	0	0	3,138
Profit after taxation		182,197	18,535	18,930	18,469	21,374	18,872	18,313	19,246	17,558	17,198	13,700
Working capital incr/(decr)		4,627	3,382	623	135	140	146	151	157	-424	156	161
Capital expenditure		114,569	18,210	8,351	6,607	16,265	7,994	6,306	9,700	23,844	11,737	5,554
Nominal Cash flow		63,001	-3,057	9,956	11,728	4,969	10,732	11,856	9,388	-5,862	5,305	7,985
Real Cash Flow		46,302	-2,884	8,861	9,847	3,936	8,020	8,358	6,244	-3,678	3,140	4,459
			·····									
IRR:	305.2%		-2,884	8,881	9,847	3,936	8.020	8,358	6,244	-3,678	3,140	4,459
Discount rate		0.0%	2.5%	5.0%	7.5%	10.0%	12.5%	15.0%	17.5%	20.0%	22,5%	25.0%
Net Present Value		46,302	41,878	38,078	34,790	31,926	29,417	27,206	25,246	23,501	21,939	20,536

			Dorstfontein					T				
Period		Total	2,003	2,004	2,005	2,006	2,007	2,008	2,009	2,010	2,011	2,012
Tax Computation												
Tax loss		0	0	0	0	0	0	0	0	0	-6,285	-824
Operating profit		211,180	18,674	23,463	23,553	23,564	23,534	23,459	23,337	17,558	17,198	16,838
Capital expenditure		114,569	18,210	8,351	6,607	16,265	7,994	6,306	9,700	23,844	11,737	5,554
Taxable Profit		96,611	464	15,112	16,947	7,299	15,540	17,153	13,636	-6,285	-824	10,459
Tax payable	30%	28,983	139	4,534	5,084	2,190	4,662	5,146	4,091	0	0	3,138
Working Capital												
Stocks			987	1,000	1,060	1,124	1,191	1,262	1,338	1,482	1,571	1,666
Stores (4 weeks op costs)	2		990	1,201	1,273	1,349	1,430	1,516	1,607	1,489	1,579	1,673
Debtor (6 weeks)	4		4,257	5,310	5,520	5,739	5,968	6,208	6,458	5,600	5,829	6,067
Creditor (4 weeks all costs)	4		2,852	3,506	3,713	3,931	4,163	4,409	4,669	4,261	4,513	4,779
Net Current Asset/(Liabilities)			3,382	4,005	4,140	4,280	4,426	4,577	4,734	4,310	4,466	4,627
Opening Balance			0	3,382	4,005	4,140	4,280	4,426	4,577	4,734	4,310	4,466
Yearly Movement			3,382	623	135	140	146	151	157	-424	156	1 61

I

12-Aug-03		Dorstfontein thin se	am								
Year		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Period		1	2	3	4	6	6	7	8	9	10
Escalated capital expenditure											
Underground											
Wirth Machine		15,000,000	-	-	-	-	-	-	-		
Stamler Hauler	1	-	4,400,000	-		-		÷		-	-
Ventilation		15,000	16,500	18,150	19,965	21,962	48,315	53,147	58,462	64,308	70,738
Telemetrey	- 6.2	120,000	-	-		-	~	-	-	-	-
Concrete roads		240,000	-	-	-	-	-	-	-	-	-
Extraordinary support		100,000	110,000	121,000	133,100	146,410	161,051	177,156	194,872	214,359	235,795
Conveyor belt and structure		900,000	1,100,000	1,210,000	1,331,000	1,464,100	1,610,510	1,771,561	1,948,717	2,143,589	2,357,948
Pumps and accessories		78,000	85,800	94,380	103,818	114,200	125,620	138,182	152,000	167,200	183,920
Roof Brushing		250,000	275,000	302,500	332,750	366,025	402,628	442,890	487,179	535,897	589,487
Electrical distribution		105,000	115,500	127,050	139,7 55	153,731	169,104	186,014	204,615	225,077	247,585
CM Overhaul		-	-	-	10,648,000	-	-	-	15,589,737	-	~
Equipment overail		-	1,155,000	3,630,000	1,996,500	4,392,300	2,415,765	5,314,683	2,923,076	6,430,766	-
Sub total - underground		16,808,000	7,257,800	5,503,080	14,704,888	8,658,727	4,932,992	8,083,633	21,558,657	9,781,196	3,685,472
Surface											
Overland conveyor		90,000	99,000	108,900	119,790	131,769	144,946	159,440	175,385	192,923	212,215
Infrastructure		90,000	99,000	108,900	119,790	131,769	144,946	159,440	175,385	192,923	212,215
Environmental		60,000	66,000	72,600	79,860	87,846	96,631	106,294	116,923	128,615	141,477
Strategic spares		 90,000	99,000	108,900	119,790	131,769	144,946	159,440	175,385	192,923	212,215
Sub total - surface		 330,000	363,000	399,300	439,230	483,153	531,468	584,615	643,077	707,384	778,123
Processing		 									
Plant & Laboratory modification		 66,000	72,600	79,860	87,846	96,631	106,294	116,923	128,615	141,477	155,625
Discard dump		 111,000	122,100	134,310	147,741	162,515	178,767	196,643	216,308	237,936	261,732
Slurry pond		 45,000	49,500	54,450	59,895	65,885	72,473	79,720	87,692	96,461	106,108
Strategic spares		 150,000	165,000	181,500	199,650	219,615	241,577	265,734	292,308	321,538	353,692
Sub total - processing		 372,000	409,200	450,120	495,132	544,845	599,110	659,021	724,923	797,415	877,157
Sub total		17,510,000	8,030,000	6,352,500	15,639,250	7,686,525	6,063,570	9,327,269	22,926,657	11,286,995	5,340,752
Capex fees @ 4%		700,400	321,200	254,100	625,570	307,461	242,543	373,091	917,066	451,440	213,630
Total capital expenditure		18,210,400	8,351,200	6,606,600	16,264,820	7,993,986	6,306,113	9,700,359	23,843,723	11,737,435	5,654,382

12-Aug-03		 Dorstfontein thin se	âm								
Year		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Period		1	2	3	4	5	6	7	8	9	10
Capital Expenditure	R000's										
Unescalated capital expenditure											
Underground											
Wirth Machine		15,000,000			-	-	-	-	•	-	-
Stamler Hauler		-	4,000,000			-			-		<u> </u>
Ventilation		15,000	15,000	15,000	15,000	15,000	30,000	30,000	30,000	30,000	30,000
Telemetrey		 120,000			·			-			
Concrete roads		240,000	-								
Extraordinary support		 100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000
Conveyor belt and structure		900,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000
Pumps and accessories		 · 78,000	78,000	78,000	78,000	78,000	78,000	78,000	78,000	78,000	78,000
Roof Brushing		 250,000	250,000	250,000	250,000	250,000	250,000	250,000	250,000	250,000	250,000
Electrical distribution		105,000	105,000	105,000	105,000	105,000	105,000	105,000	105,000	105,000	105.000
CM Overhaul		-	-	-	8,000,000		-		8,000,000		
Equipment overall		 ~	1,050,000	3,000,000	1,500,000	3,000,000	1,500,000	3,000,000	1,500,000	3,000,000	
Sub total - underground		16,808,000	6,598,000	4,548,000	11,048,000	4,548,000	3,063,000	4,563,000	11,063,000	4,563,000	1,563,000
Surface		 									
Overland conveyor		 90,000	90,000	90,000	90,000	90,000	90,000	90,000	90,000	90,000	90,000
infrastructure		90,000	90,000	90,000	90,000	90,000	90,000	90,000	90,000	90,000	90,000
Environmental		 60,000	60,000	60,000	60,000	60,000	60,000	60,000	60,000	6 0,000	60,000
Strategic spares		 90,000	90,000	90,000	90,000	90,000	90,000	90,000	90,000	90,000	90,000
Sub total - surface		 330,000	330,000	330,000	330,000	330,000	330,000	330,000	330,000	330,000	330,000
Processing		 									
Plant & Laboratory modification		 66,000	66,000	66,000	66,000	66,000	66,000	66,000	66,000	66,000	66,000
Discard dump		 111,000	111,000	111,000	111,000	111,000	111,000	111,000	111,000	111,000	111,000
Sturry pond		45,000	45,000	45,000	45,000	45,000	45,000	45,000	45,000	45,000	45,000
Strategic spares		 150,000	150,000	150,000	150,000	150,000	150,000	150,000	150,000	150,000	150,000
Sub total - processing		372,000	372,000	372,000	372,000	372,000	372,000	372,000	372,000	372,000	372,000
Sub total		 17,510,000	7,300,000	5,250,000	11,750,000	5,250,000	3,766,000	5,265,000	11,765,000	5,265,000	2,265,000
Capex fees @ 4%		700,400	292,000	210,000	470,000	210,000	150,600	210,600	470,600	210,600	90,600
Total capital expenditure		18,210,400	7,592,000	5,460,000	12,220,000	5,460,000	3,915,600	5,475,600	12,235,600	5,475,600	2,355,600

		the second s		and the second						and the second se	
		Dorstfor	ein thin sea	n							
Year		2	03 2	04 20	05 200	6 2007	2008	2009	2010	2011	2012
Period			1	2	3	4	5 (8 7	8	9	10
Operating Costs	R000's										
Cash costs - Unescalated		25,	53 29,4	51 29,4	51 29,45	1 29,451	29,451	29,451	25,753	25,753	25,753
Mining contractor costs	R/ton	50	00 50	00 50	50.0	0 50.00	50.00	50.00	50.00	50.00	50.00
Mining contractor costs	R000's	15,	88 18,8	25 18,8	25 18,82	5 18,825	18,825	18,825	15,688	15,688	15,688
Outbye costs	R000's		00 :	00 3	00 30	0 300	300	300	300	300	300
Repair and maintenance	R000's	2,	41 2,3	41 2,2	41 2,24	1 2,241	2.241	2,241	2,241	2,241	2,241
Other underground costs	R000's		70	70 5	70 57	0 570	570	570	570	570	570
Plant costs	R/ton	7	50 7	50 7.	50 7.5	0 7.50	7.50	7.50	7.50	7.50	7.50
Plant costs	R000's	2,	53 2,8	24 2,8	24 2,82	4 2,824	2,824	2,824	2,353	2,353	2,353
Laboratory & Weighbridge	R000's		36	36 4	36 43	6 436	436	436	436	436	436
ROM stockpile	R000's		89	89 1	39 18	9 189	189	189	189	189	189
Product stockpile	R000's		86	86 4	36 46	6 486	486	486	486	486	486
Service costs	R000's		09 6	09 6	9 60	9 609	609	609	609	609	609
Safety and training	R000's		59	59 1	59 15	9 159	159	159	159	159	159
Utility costs	R000's	1,	00 1,2	00 1,2	00 1,20	1,200	1,200	1,200	1,200	1,200	1,200
Other costs	R000's		93 8	93 8	93 89	3 893	893	893	893	893	893
Operating fee 2,5%	R000's		30 7	20 7	20 72	0 720	720	720	630	630	630
Cash costs - Escalated	R000's	25,	51 31,2	17 33,0	90 35,07	5 37,180	39,410	41,775	38,721	41,044	43,506
Mining cost		15,0	88 19,9	55 21,1	52 22,42	1 23,766	25,192	26,704	23,588	25,003	26,504
Outbye costs			00 3	18 3	37 35	7 379	401	426	451	478	507
Repair and maintenance		2,	41 2,3	75 2,5	18 2,66	2,829	2,999	3,179	3,370	3,572	3,786
Other underground costs			70 6	04 6	40 67	9 720	763	809	857	908	963
Plant costs		2,	53 2,9	93 3,1	3 3,36	3 3,565	3,779	4,006	3,538	3,751	3,976
Laboratory & Weighbridge			36 4	62 4	0 52	551	584	619	656	695	737
ROM stockpile			89 2	200	2 22	5 239	253	268	284	301	319
Product stockpile			86 5	15 5	6 57	614	650	689	731	775	821
Service costs			09 6	45 6	34 72	5 768	815	863	915	970	1,028
Safety and training			59 1	69 1	79 18	201	213	226	239	253	269
Utility costs		1,:	00 1,2	72 1,3	1,42	1,515	1,606	1,702	1,804	1,913	2,027
Other costs			93 93	46 1,0	3 1,06	3 1,127	1,195	1,266	1,342	1,423	1,508
Operating fee 2,5%		(28 7	61 8	07 85	5 907	961	1,019	944	1,001	1,061

	Dorstfontein	thin seam								
Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Period	1	2	3	4	5	6	7	8	9	10
Cash costs - R/ton ROM	82.08	82.91	87.89	93.16	98,75	104.68	110.96	123.41	130.82	138.67
Mining cost	50.00	53.00	56.18	59.55	63.12	86.91	70.93	75.18	79.69	84.47
Outbye costs	0.96	0.84	0.90	0.95	1.01	1.07	1.13	1.44	1.52	1.62
Repair and maintenance	7.14	6.31	6.69	7.09	7.51	7.97	8.44	10.74	11.38	12.07
Other underground costs	1.82	1.60	1.70	1.80	1.91	2.03	2.15	2.73	2.90	3.07
Plant costs	7.50	7.95	8.43	8.93	9.47	10.04	10.64	11.28	11.95	12.67
Laboratory & Weighbridge	1.39	1.23	1.30	1.38	1.46	1.55	1.64	2.09	2.22	2.35
ROM stockpile	0,60	0.53	0.56	0.60	0.63	0.67	0.71	0.91	0.96	1.02
Product stockpile	1.55	1.37	1.45	1.54	1.63	1.73	1.83	2.33	2.47	2.62
Service costs	1.94	1.71	1,82	1.93	2.04	2.16	2.29	2.92	3.09	3.28
Safety and training	0.51	0.45	0.47	0.50	0.53	0.57	0.60	0.76	0.81	0.86
Utility costs	3.82	3.38	3.58	3.80	4.02	4.27	4.52	5.75	6.10	6.46
Other costs	2.85	2.51	2.66	2.82	2.99	3.17	3.36	4.28	4.54	4.81
Operating fee 2,5%	2.00	2.02	2.14	2.27	2.41	2.55	2.71	3.01	3.19	3,38
Cash costs - R/ton produced	96.36	97.35	103.19	109.38	115.94	122.90	130.27	144.90	153.59	162.81
Mining cost	58.70	62.23	65,96	69.92	74.11	78.56	83.27	88.27	93.57	99.18
Outbye costs	1.12	0,99	1.05	1.11	1.18	1.25	1.33	1.69	1.79	1.90
Repair and maintenance	8.39	7.41	7.85	8,32	8.82	9.35	9.91	12.61	13.37	14.17
Other underground costs	2.13	1.88	2.00	2.12	2.24	2.38	2.52	3.21	3.40	3.60
Plant costs	8.81	9.33	9,89	10.49	11.12	11.78	12.49	13.24	14.03	14.88
Laboratory & Weighbridge	1.63	1.44	1.53	1.62	1.72	1.82	1.93	2.45	2.60	2.76
ROM stockpile	0.71	0.62	0.66	0.70	0.74	0.79	0.84	1.06	1.13	1.19
Product stockpile	1.82	1.61	1.70	1.81	1,91	2.03	2.15	2.73	2.90	3.07
Service costs	2.28	2.01	2.13	2.26	2.40	2.54	2.69	3.42	3.63	3.85
Safety and training	0.59	0.53	0.56	0.59	0.63	0.66	0.70	0.89	0.95	1.01
Utility costs	4.49	3.97	4,20	4.46	4.72	5.01	5.31	6.75	7.16	7.59
Other costs	3.34	2.95	3,13	3.32	3.51	3.73	3.95	5.02	5,32	5.64
Operating fee 2,5%	2.35	2.37	2.52	2.67	2.83	3,00	3.18	3.53	3.75	3.97

a tangan a

.

		Dorstfor	Dorstfontein thin seam								
Year		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Period		1	2	3	4	5	6	7	8	9	10
Escalation Rates											
Deflator		6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%
Deflator factor		1.060	1.124	1,191	1.262	1.338	1.419	1.504	1.594	1.689	1.791
S.A. PPI	%	0.00%	5.00%	5.00%	5.00%	5.00%	5.00%	5.00%	5.00%	5.00%	5. 00%
S.A. PPI Growth Factor		1.000	1.050	1.103	1.158	1.216	1.276	1.340	1.407	1.477	1.551
US CPI	%	0.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%
US CPI Growth Factor		1.000	1.020	1.040	1.061	1.082	1.104	1.126	1,149	1.172	1.195
Dollar Selling price	%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0,00%	0.00%	0.00%
Dollar Selling price Growth Factor		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Inland Selling price	%	0.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%
Inland Selling price Growth Factor		1.000	1.060	1.124	1.191	1.262	1.338	1.419	1.504	1.594	1.689
ESKOM	%	0.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%
ESKOM		1.000	1.060	1.124	1.191	1.262	1.338	1.419	1,504	1.594	1.689
Operating Costs	%	0.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%
Operating Costs Growth Factor		1.000	1.060	1.124	1,191	1.262	1.338	1.419	1.504	1.594	1,689
Railage Costs	%	0.00%	6,00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%
Railage Costs Growth Factor		1.000	1.060	1.124	1,191	1.262	1.338	1.419	1.504	1.594	1.689
Port charges	%	0.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6,00%
Port charges Growth Factor		1.000	1.060	1.124	1.191	1.262	1.338	1.419	1.504	1.594	1.689
Transport costs	%	0.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%	6.00%
Transport costs Growth Factor		1.000	1.060	1.124	1.191	1.262	1.338	1.419	1.504	1.594	1.689
Capital Expenditure	%	0.00%	10.00%	10.00%	10.00%	10.00%	10.00%	10.00%	10.00%	10.00%	10.00%
Capex Growth Factor		1.000	1.100	1.210	1.331	1.464	1.611	1.772	1.949	2.144	2.358