QUANTIFICATION OF PHOSPHORUS IN EXTRACELLULAR POLYMERIC SUBSTANCES (EPS) ASSOCIATED WITH THE ACTIVATED SLUDGE FLOCS

by

MMATHEETJA PHINEAS THOSAGO

Submitted in partial fulfillment of the requirements for the degree

M Sc. MICROBIOLOGY

Department of Microbiology and Plant Pathology

in the

Faculty of Natural and Agricultural Sciences
University of Pretoria
Pretoria
South Africa

MAY 2003
I, the undersigned, hereby declare that the work contained in this thesis is my own original work and has not previously in its entirety or part has been submitted at any university for a degree.

Signature:

Date: 04/08/2003
Several mechanisms have been proposed to explain the enhanced uptake of phosphorus by microorganisms in waste water. It has been shown that for biological phosphorus removal to occur in waste water treatment plants, biomass first needs to pass through an oxygen and nitrogen free phase, before entering the phase where an electron acceptor is present. It has been indicated that not all phosphorus removed in activated sludge systems can be accounted for by polyphosphate accumulating bacteria (PAO), the extracellular polymeric substances (EPS) also play a role in phosphorus removal. EBPR in waste water treatment has been studied for about 20 years in many countries and there are many successful full scale applications in the treatment of municipal waste water. The aim of this study was to quantify the concentration of phosphorus in the EPS and determine the chemical composition of the EPS. Activated sludge samples were collected from five different municipal waste water treatment plants situated in South Africa (Gauteng province). The phosphorus concentration was determined using the scanning electron microscopy combined with energy dispersive spectrometry (SEM/EDS). The amount of
phosphorus in activated sludge flocs plus EPS was 50.5% of the total elemental analysis on average and the EPS alone contained 25% of phosphorus on average. The anaerobic activated sludge and EPS samples contained higher concentration of orthophosphate than in the aerobic activated sludge and the aerobic EPS samples. This was due to the fact that the orthophosphate in the aerobic zone was consumed. The method for quantifying mixed liquor suspended solids (MLSS) based on freeze drying was comparable to conventional method, but had an advantage of yielding high concentration of MLSS.

Four different extraction methods, i.e. formaldehyde-NaOH, regular centrifugation (RCF), formaldehyde and EDTA were employed to study their effectiveness in extracting the extracellular polymeric substances from aerobic and anaerobic activated sludge samples. The formaldehyde-NaOH extraction procedure yielded the highest concentration of EPS as compared to the other three methods. In general, all the methods extracted about 44% protein, 33% carbohydrates and 1-3% DNA. The EPS sample contained more proteins than carbohydrates, which might be due to the fact that more exo-enzymes are entrapped in the EPS matrix. The results indicated that possible mechanism of phosphorus removal by EPS is that, phosphorus binds to cations (Mg$^{2+}$, K$^+$ etc.) to make a insoluble compounds (Magnesium-phosphate compounds, Calcium phosphate compounds etc.) which precipitates out in the EPS associated with the activated sludge flocs. In conclusion it may be postulated that potassium, magnesium and calcium are important cations needed in phosphorus removal in terms of phosphate found in the EPS. In order to understand the mechanism of phosphorus removal by EPS further research is recommended.
QUANTIFICATION OF PHOSPHORUS IN EXTRACELLULAR POLYMERIC SUBSTANCES (EPS) ASSOCIATED WITH THE ACTIVATED SLUDGE FLOCS

by

MMATHEETJA PHINEAS THOSAGO

Promoter: Prof. T.E Cloete
Department: Microbiology and Plant Pathology
Degree: M.Sc. Microbiology

Opsomming

Verskeie meganismes is voorgestel om die vermeerderde opname van fosfor, deur mikroörganismes in afloopwater, te verklar. Daar is bewys dat biologiese fosfor verwydering, in afloopwater behandelingstans, slegs plaasvind wanneer die biomassa deur 'n suurstof/stikstof vrye fase beweeg, voordat dit die fase binnegaan waar 'n elektron akseptant teenwoordig is. Dit is duidelik dat die polifosfaat akkumuleer bakterieë (PAO), nie alleenlik verantwoordelik gehou kan word, vir die verwydering van fosfaat in geaktiveerde slyk stelsels nie. Die ekstrasellulêre polimeriese stowwe (EPS) speel ook 'n rol in fosfaat verwydering. EBPR in afloopwater behandeling, is vir die afgelope 20 jaar in baie lande gestudeer en daar bestaan baie suksesvolle, groot skaalse toepassings in die behandeling van munisipale afloopwater. Die doel van hiedie studie is om die konsentrasie van fosfor in die EPS te kwantifieer, asook om die chemiese samestelling van die EPS te bepaal. Geaktiveerde slyk monsters is versamel vanaf vyf verskillende munisipale afloopwater behandelings, geleë in Suid-Afrika (Gauteng provinsie). Die fosfor konsentrasie is bepaal deur gebruik te maak van die skandeer
Die hoeveelheid fosfor in geakteerde slyk vlokke, tesame met EPS was gemiddeld 50.5% van die totale elementale analise. Die EPS alleenlik bevat gemiddeld 25% fosfor. Die anaerobiese geakteerde slyk en EPS monsters bevat hoër konsentrasies orthofosfaat as die aerobiese monsters. Dit is as gevolg van die feit dat die orthofosfaat in die aerobiese zone verteer is. Die metode, gebaseer die vries droging, vir die kwantifisering van mixed liquor suspended solids (MLSS) was vergelykbaar met die konfessionele metode. Hierdie vries droog metode is meer voordelig, aangesien hoë konsentrasies van MLSS opgebeur word.

Vier verskillende ekstraksie metodes nl. Formaldehyd-NaOH, gewone sentrifugasie (RCF), formaldehyd en EDTA. Hierdie metodes se effektiviteit, in die ekstraksie van EPS vanaf aerobiese en anaerobiese monsters, is gestudeer. In vergelyking met die ander drie metodes het formaldehyd-NaOH die hoogste konsentrasie EPS opgelever. Oor die algemeen het al vier metodes 44% proteïne, 33% koolhidaate en 1-3% DNA opgelever. Die EPS monster het meer proteïne as koolhidaate bevat, dit mag as gevolg van die feit wees dat meer ekso-ensieme vasgevang is in die EPS matriks. Die resultate dui op 'n moontlike mekanisme vir fosfor verwydering deur EPS. Die fosfor bind aan die katione (Mg²⁺, K⁺ ens.) om onoplosbare verbindinge (Magnesium-fosfaat verbindinge, Kalium-fosfaat verbindinge ens.) te vorm. Hierdie verbindinge presipiteer uit die EPS geassosieer met die geakteerde slyk vlokke.

Ten slotte kan die volgende stelling gemaak word. Kalium (K⁺), Magnesium (Mg²⁺) en Kalsium(Ca²⁺) is belangrike katione, nodig in die verwydering van fosfor in terme van die fosfaat gevind in die EPS. Verdere studie word aanbeveel, om die mekanisme van fosfor verwydering deur EPS, te verstaan.
ACKNOWLEDGEMENTS

I would like to thank the following persons and organizations without whose help this report would probably not have been possible:

- My Supervisor, Prof. T.E. Cloete, Head of Department, Department of Microbiology and Plant Pathology, for his support and patience as promoter during my studies;

- My Mother, brothers and my sister for their confidence in me, and their support during my years of study;

- The Water Research Commission of South Africa for funding this project;

- Miss Thantsha M.S., Mr Lekoana L.T. and all other members of Water biotechnology laboratory (Lab 9-5) for technical assistance;

- Mr Botha A. and Hall A. from the Unit for Microscopy and Microanalysis, University of Pretoria for SEM-EDS analyses and the courage they gave me;

- The creator of heaven and earth, the almighty GOD, Who gave me the wisdom and insight, without you nothing could have been possible.
TABLE OF CONTENTS

SUMMARY i
OPSOMMING iii
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
LIST OF TABLES xii
LIST OF FIGURES xv

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: LITERATURE REVIEW 3

1 Eutrophication 3

1.1 End results caused by eutrophication. 3

2. The use of activated sludge as a process of biological phosphate removal. 4

2.1 The Pherodox activated sludge system (5-Stage Bardenpho activated sludge system) 5

2.1.1 The primary anaerobic zone. 6

2.1.2 The primary anoxic zone 6

2.1.3 The primary aerobic zone 6

2.1.4 The secondary anoxic zone 7

2.1.5 The clarifier. 7

3. Factors affecting Phosphate removal in Biological phosphate removal. 7

3.1 pH of the mixed liquor 7
3.2 Temperature.
3.3 Leaching from waste sludge.
3.4 Maintaining the dissolved oxygen concentration
3.5 Substrate

4.1 Polyphosphate (poly-P)
4.2 Localization and structure of polyphosphate.
4.3 Bacterial metabolism of polyphosphate
4.3.1. Polyphosphate kinase
4.3.2. Polyphosphate glucokinase (and other sugar kinases)
4.3.3. Polyphosphate: AMP phosphotransferase
4.3.4. Polyphosphatase
4.3.5. Possible functions of poly-P in activated sludge
4.4. Polyphosphate Accumulating bacteria (PAB)

5. Microbial ecology of the activated sludge

5.1 Bacteria
5.2 Fungi
5.3 Protozoa

6. Advantages of the Activated Sludge System in Waste Water Treatment

7. Disadvantages of the Activated Sludge System in Waste Water Treatment
8 Extracellular polymeric substances (EPS)

8.1 What are extracellular polymeric substances.
8.1.1 Definition
8.1.2 Composition of the EPS

8.2 Role and Functions of the EPS.

8.3 Ecological functions of EPS

8.3.1 Adhesion and cohesion to the surface
8.3.2 Protective barrier
8.3.3 Water retention
8.3.4 EPS and metal removal in waste water treatment.
8.3.5 Sorption of exogenous organic compound and inorganic ions.
8.3.6 EPS and phosphorus removal in waste water treatment.
8.3.7 Biopolymer content and the effect on sludge properties

8.4. Other functions of EPS.

9 Analysis of EPS

9.1 Destructive analysis of EPS.

10 Extraction of EPS.

10.1 Sampling and pretreatment.
10.2 Extraction methods.
10.3 Combination of physical and chemical methods of extraction.
10.4 Contamination of EPS during extraction
10.5 Extraction efficiency
10.6 Purification and analysis of EPS
CHAPTER 4: CHEMICAL AND ORTHOPHOSPHATE ANALYSIS IN EXTRACELLULAR POLYMERIC SUBSTANCES EXTRACTED FROM EBPR ACTIVATED SLUDGE

Abstract 81
1. Introduction 82
2. Materials and Methods 85
2.1. Sampling 85
2.2. Extraction of EPS 86
2.3. Chemical composition analysis of the EPS 86
3. Results and discussion 87
3.1. Extraction of the EPS 87
3.1.1. The quantity of extracted EPS from the activated sludge samples 87
3.1.2. The composition of EPS extracted from activated sludge samples 90
4. Conclusion 93
LIST OF TABLES

CHAPTER 2

Table 1. Composition of EPS and range of component concentration (Flemming and Wingender, 2001). 21

CHAPTER 3

Table 1a. MLSS of activated sludge samples from the anaerobic and the aerobic zone of three different wastewater treatment plants. 53
Table 1b. Concentration of the extracted EPS in the anaerobic and aerobic samples of three waste water treatment plants. 54
Table 2.1 Protein concentration in Daspoort aerobic and anaerobic wet EPS samples. 55
Table 2.2 Carbohydrate concentrations in Daspoort aerobic and anaerobic wet EPS 55
Table 3. Summary of EPS and activated sludge floc phosphorus content in the aerobic and anaerobic zones of five different waste water treatment systems. 61
Table 4.1 A typical data set of the elemental analysis of the cell clusters and EPS from the Daspoort anaerobic zone. 62
Table 4.2 A typical data set of the elemental analysis of the cell clusters and EPS from the Daspoort aerobic zone 62
Table 5.1 A typical data set of the elemental analysis of the cell clusters and EPS of the Baviaanspoort anaerobic zone
63

Table 5.2 A typical data set of the elemental analysis of the cell clusters and EPS of the Baviaanspoort aerobic zone
63

Table 6.1 A typical data set of the elemental analysis of the cell clusters and EPS of the Zeekoevlei aerobic zone
64

Table 6.2 A typical data set of the elemental analysis of the cell clusters and EPS of the Zeekoevlei anaerobic zone
64

Table 7.1 A typical data set of the elemental analysis of the cell clusters and EPS from the Waterval anaerobic zone
65

Table 7.2 A typical data set of the elemental analysis of the cell clusters and EPS from the Waterval aerobic zone
65

Table 8.1 A typical data set of the elemental analysis of the cell clusters and EPS from the Vlakplaats aerobic zone
66

Table 8.2 A typical data set of the elemental analysis of the cell clusters and EPS from the Vlakplaats anaerobic zone
66

CHAPTER 4

Table 1. The concentration of EPS extracted from both anaerobic and aerobic activated sludge samples by four different procedures
88
Table 2. Carbohydrate and protein concentrations in the anaerobic wet EPS samples 90

Table 3. Carbohydrate and protein concentrations in the aerobic wet EPS samples 91

CHAPTER 5

Table 1. MLSS of activated sludge samples from the anaerobic and the aerobic zone of three different wastewater treatment plants. 103
LIST OF FIGURES

CHAPTER 3

Fig. 1a. SEM of Daspoort Sludge floc. (1100X). 57
Fig 1b. SEM of Bavianaaspoort sludge floc (1500X). 58
Fig 1c. EPS structure of Bavianaaspoort (1000X). 58
Fig 1d. EPS structure of Bavianaaspoort (4500X). 59
Fig 2. A typical X-ray spectrum of Zeekogat anaerobic sludge cell clusters. 67
Fig 3. A typical X-ray spectrum of the Bavianaaspoort aerobic activated sludge EPS. 68
Fig 4. A typical X-ray spectrum of Daspoort anaerobic sludge cell clusters. 68
Figure 5. A typical X-ray spectrum of Waterval anaerobic EPS sample. 69
Fig 6. A typical X-ray spectrum of Vlakplaats aerobic sludge cell clusters. 71
Fig 7. The orthophosphate (PO$_4^{3-}$) of anaerobic activated sludge, Unfiltered EPS and filtered EPS. 73
Fig 8. The orthophosphate (PO_4^{3-}) of aerobic activated sludge, Unfiltered EPS and filtered EPS.

Fig 9. Comparison of the orthophosphate concentration of the anaerobic and aerobic sludge and EPS samples.

CHAPTER 4

Fig 1. Procedure for the EPS extraction