Pricing options under stochastic volatility

by

Rudolf Gerrit Venter

Submitted in partial fulfillment of the requirements for the degree
Magister Scientiae in Mathematics of Finance
in the Faculty of Natural & Agricultural Sciences
University of Pretoria
Pretoria
January 2003
Summary

In this dissertation some of the real world deviations from the assumptions made in the Black-Scholes option pricing framework is investigated. Special attention is paid to volatility, the standard deviation of stock price returns. Unlike the assumption of constant volatility of increments in Brownian motion, volatility in the market is stochastic. Market models allowing for stochastic volatility are no longer complete as in the Black-Scholes framework. Options in incomplete markets are harder to price since investors demand higher returns for taking additional risk.

Duan (1995) proposed an option pricing measure for incomplete markets, due to stochastic volatility, called the Local RiskNeutral Valuation Relationship (LRNVR). Under the LRNVR, the local risk neutral measure (Q) is equivalent to the real world measure (P), the conditional expected return under the Q measure equals the risk-free rate and the conditional one period ahead variances under both measures are equal, P almost surely. The LRNVR holds for consumers with familiar utility functions.

Stock returns are assumed to follow a Generalized Autoregressive Conditional Heteroscedastic (GARCH) process. This process is a discrete time statistical time series that is calibrated over stock returns. In this dissertation the LRNVR and related option pricing methodology is comprehensively investigated.

Warrants traded on the JSE Securities Exchange violates the Black-Scholes assumptions in two additional ways, short selling is restricted and the market is somewhat illiquid. One of the results of these violations is that the standard deviation and the implied volatility, volatility implied by the market price of the option, are out of sync. The implied volatility tends to be higher than the volatility of stock market returns.

In this dissertation the GARCH option pricing process is applied to the implied volatility of the warrant instead of the stock price process, as done by Duan. This method compares well with the use of implied volatility to price warrants.
Acknowledgements

I would like to thank my supervisors, Professor Frik van Niekerk of the University of Pretoria and Johan Verwey of Gensec Bank for their support and guidance. My thanks to Professor Dawie de Jongh for advice and references to literature is also due. I am also grateful to my family for their motivation and support.
Contents

Glossary of notation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossary of notation</td>
<td>v</td>
</tr>
</tbody>
</table>

1 Introduction

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 The Problem of Stochastic Volatility</td>
<td>2</td>
</tr>
<tr>
<td>1.2 A Proposed Solution</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Description of South African Derivative Instruments and Experiment</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Outline of the Dissertation</td>
<td>4</td>
</tr>
</tbody>
</table>

I Background

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Some Probability Essentials</td>
<td>7</td>
</tr>
</tbody>
</table>

2.1 Introduction

<table>
<thead>
<tr>
<th>Subsubsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 Probability Space</td>
<td>7</td>
</tr>
</tbody>
</table>

2.2.1 Probability Space

<table>
<thead>
<tr>
<th>Subsubsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2 σ-algebra</td>
<td>7</td>
</tr>
<tr>
<td>2.2.3 Borel Sets in \mathbb{R}</td>
<td>8</td>
</tr>
<tr>
<td>2.2.4 Filtration</td>
<td>8</td>
</tr>
<tr>
<td>2.2.5 Measurability and Adaptedness</td>
<td>8</td>
</tr>
<tr>
<td>2.2.6 Almost everywhere</td>
<td>9</td>
</tr>
</tbody>
</table>

2.3 Moments and Stationarity

<table>
<thead>
<tr>
<th>Subsubsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1 Expected Value</td>
<td>9</td>
</tr>
<tr>
<td>2.3.2 Conditional Expectation</td>
<td>10</td>
</tr>
<tr>
<td>2.3.3 Variance, Conditional Variance and Standard Deviation</td>
<td>10</td>
</tr>
<tr>
<td>2.3.4 Covariance and Autocovariance</td>
<td>12</td>
</tr>
<tr>
<td>2.3.5 Correlation and Autocorrelation</td>
<td>13</td>
</tr>
<tr>
<td>2.3.6 Lag</td>
<td>13</td>
</tr>
<tr>
<td>2.3.7 Higher Moments</td>
<td>13</td>
</tr>
<tr>
<td>2.3.8 Stationarity</td>
<td>13</td>
</tr>
</tbody>
</table>

2.4 Cumulative Distribution Function and Probability Density Function

<table>
<thead>
<tr>
<th>Subsubsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1 Joint Continuous Distributions</td>
<td>15</td>
</tr>
</tbody>
</table>
CONTENTS

2.5 The Normal Distribution and its Moment Generating Function .. 16
 2.5.1 The Normal Distribution .. 16
 2.5.2 Moments of the Normal Distribution ... 17
 2.5.3 Chi-square Distribution .. 20
2.6 The Return Series and Lognormal Distribution ... 22
 2.6.1 Returns Series .. 22
 2.6.2 The Arithmetic Returns Series .. 24
 2.6.3 The Geometric Returns Series .. 24
 2.6.4 Lognormal Distribution ... 24
2.7 Hypothesis Testing .. 25
 2.7.1 Jarque-Bera Test for Normality .. 25
 2.7.2 Autocorrelation .. 26
 2.7.3 Volatility Clustering ... 27
 2.7.4 The Leverage Effect .. 27
3 An Introduction to Time Series Models .. 29
 3.1 Objectives .. 29
 3.2 Preliminaries ... 29
 3.2.1 White Noise .. 29
 3.2.2 Linear Time Series .. 29
 3.2.3 Lag Operators and Difference Operators 30
 3.3 Autoregressive Process (AR) .. 30
 3.4 Moving Averages Process (MA) ... 31
 3.5 Autoregressive Moving Averages (ARMA) ... 31
 3.6 Stationarity of ARMA Processes ... 32
 3.7 Estimation of ARMA Parameters .. 34
4 Univariate Volatility Processes ... 36
 4.1 Objectives .. 36
 4.2 Exponentially Weighted Moving Averages .. 36
 4.2.1 RiskMetrics ... 37
 4.3 Generalized Conditional Autoregressive Conditional Heteroscedasticity . 38
 4.4 GARCH(p,q) .. 38
 4.4.1 Stationarity .. 38
 4.4.2 Stylized Facts .. 40
 4.4.3 Estimation of GARCH Regression Model 41
 4.5 Integrated GARCH .. 43
 4.6 GARCH-in-Mean ... 44
 4.7 Asymmetric GARCH and the Leverage Effect .. 45
 4.7.1 Exponential GARCH ... 45
 4.7.2 Asymmetric GARCH ... 45
 4.7.3 Glosten, Jagannathan and Runkle GARCH 45
 4.8 Limitations of the GARCH Process ... 45
CONTENTS

II Risk-Neutral Valuation

5 Risk-Neutral Valuation

5.1 Objectives

5.2 Essentials of Continuous-time Stochastic Calculus

5.2.1 Brownian Motion

5.2.2 Martingales

5.2.3 Ito Process

5.2.4 Ito Formula (in 1-Dimension)

5.2.5 Absolute Continuous

5.2.6 Radon-Nikodym

5.2.7 Risk-neutral Probability Measure

5.2.8 Girsanov’s Theorem in One Dimension

5.3 Continuous-time Finance Essentials

5.3.1 Self-financing

5.3.2 Admissible Trading Strategy

5.3.3 Attainable Claim

5.3.4 Arbitrage Opportunity

5.3.5 Complete Market

5.4 Risk-Neutral Valuation under Constant Volatility

5.4.1 The Stock Price Process

5.4.2 The Discounted Stock Price Process

5.4.3 Girsanov’s Theorem Applied

5.4.4 Pricing Options under Constant Volatility

5.4.5 The Black-Scholes Formula and Implied Volatility

III Option pricing under the Local Risk-Neutral Valuation Relationship

6 Local Risk-Neutral Valuation

6.1 Introduction

6.2 The Stock Price Process in Discrete Time

6.3 The Stock Price Model under certain GARCH Volatility

6.4 Consumer Utility Essentials

6.4.1 Utility Functions

6.4.2 Risk Aversion

6.5 A General Consumption-Investment Strategy

6.6 The Local Risk-Neutral Valuation Relationship

6.7 The Local Risk-Neutral Probability Measure

6.8 The Stock Price Process under LRNVR
CONTENTS

7 GARCH Option Pricing and Hedging 82
 7.1 Introduction 82
 7.2 Option Pricing under the LRNVR 82
 7.3 Some Properties of the GARCH(1,1) Process under LRNVR 85

IV Implementation and Numerical Results 95

8 Implementation of GARCH Option Pricing 96
 8.1 Introduction 96
 8.2 Calibrating the GARCH Process to Empirical Data 96
 8.2.1 Historical Data 96
 8.2.2 Implied Volatility 97
 8.3 Monte Carlo Simulations 98
 8.3.1 European Option with Constant Volatility 99
 8.3.2 European Options with GARCH Volatility 99
 8.3.3 Notes 100
 8.3.4 Generating Other Distributions from the Uniform Distribution 101
 8.4 Variance Reduction Techniques 101
 8.4.1 The Antithetic Variable Technique 102
 8.4.2 Moment Matching 102

9 Study and Results 103
 9.1 Aim 103
 9.2 Methodology and Data 103
 9.3 Measures of Results 104
 9.4 Results 106
 9.4.1 The Results: 106
 9.4.2 Conclusion to Results 122
 9.4.3 Comments on Study and Results 122

10 Conclusion 123

11 Related Literature 124
Glossary of notation

Glossary of frequently used notation:

\((\Omega, \mathcal{F}, P), 7\)
a.e., 9
\(A(L), 38\)
\(B(L), 38\)
cdf, 14 (Cumulative distribution function)
cor \([X, Y], 13\)
cov \([X, Y], 12\)
\(E(e^{tX}), 17\)
\(E[X], 9\)
\(E[X | \Phi], 10\)
\(F(x), 14\) (Cumulative distribution function)
\(f(x), 14\) (Probability density function)
\(X^2(u), 20\)
\(L^1(\Omega, \mathcal{F}, P), 9\)
\(M_X(t), 17\)
\(N(\mu, \sigma^2), 16\)
pdf, 14 (Probability density function)
\(Std[X], 10\)
\(\sigma^2, 38\) (GARCH process)
\(u(x), 66\)
\(Var[X], 10\)
\(Var[X | H], 10\)