Trace element analysis in precious metals using Time Resolved Emission Spectroscopy

by

Martha Maria Julsing

Submitted in partial fulfilment of the requirements for the degree

MAGISTER SCIENTIAE
Chemistry

In the Faculty of Natural and Agricultural Science

University of Pretoria

Pretoria

October 2002

© University of Pretoria
Trace element analysis in precious metals using Time Resolved Emission Spectroscopy

by

Martha Maria Julsing

Leader: Prof. Dr. C. A. Strydom

Department of Chemistry

University of Pretoria

Degree: Magister Scientiae Chemistry

SYNOPSIS

Determining the purity of precious metals has received considerable scientific attention, mainly because of the high intrinsic value of these precious metals. These metals are extremely useful as catalysts in the chemical and petroleum industry. They have been used as exhaust catalysts and as conductors in the electrical industry, in medical and dental applications as well as in the jewellery industry.

Two methods of analysis are used to determine the purity of metals; the direct and indirect method of analysis. During the direct method of analysis, the actual percentage of metal is directly determined. Techniques used are the Fire Assay, gravimetrical wet chemical techniques. However, these techniques are not suitable for characterising individual precious metals and impurities.

Indirect methods, based on spectroscopy, are well suited for the analysis of high purity metals. Using these techniques, the various impurities and their concentrations are determined and the purity of the metal is determined by difference. It is therefore
important that all impurities are determined with the highest degree of precision and
accuracy, as this influences the ultimate purity and quality of the product.

A method was developed to determine the impurities in Ruthenium. The limits of
detection obtained were in some instances improved up to a factor of ten times,
compared to the current techniques used for the determination of the impurities.
Elements such as Cd, Se, As and Cr which were previously reported as not detected,
due to the difficulty of detecting them at levels below 10–15 ppm, are now
measurable using the spark spectrometer. Making use of time resolved spectroscopy
has in general increased the sensitivity by a factor of five to ten times, even when
compared to normal spark analysis as used for Alloys.

The technique used in this study in the analysis of impurities in precious metals is
known as SAFT (Spark Analysis For Traces). SAFT involves the use of time resolved
spectroscopy, which is able to reduce background and thus improve signal to
background ratios of spectral lines. It makes use of the phenomenon of “atomic
afterglow”. By switching the photomultiplier detector to observe (measure) only the
afterglow, the background radiation can be separated from the atomic radiation.

The technique is very sensitive and analyses of purities at 99.995 % are possible.
However, the greatest drawback of the method when used for precious metals is the
lack of commercially available standard samples for low concentration of impurity.
Spoorelementanalise vir platinum metale met behulp van tydontledings
Emissiespektroskopie

deur

Martha Maria Julsing

Studieleier: Prof. Dr. C. A. Strydom

Departement Chemie

Universiteit Pretoria

Graad: Magister Scientiae
Chemie

SAMEVATTING

Suiwerheidbepaling van edelmetale geniet baie wetenskaplike aandag hoofsaaklik as gevolg van hulle hoë intrinsieke waarde. Hierdie metale is baie waardevol en word as katalisators in die chemise en petrochemiese industru bebruik, asook uitlaatsysteemkatalisatore en as geleiers in die elektriese industri, mediese- en tandheelkunde en juweliersindustrië.

Daar is twee tipes analyse vir die bepaling van suiwerheid van metale: 'n direkte en indirekte metode van analyse. Die direkte metode van analyse, bepaal die persentasie waarde van die metaal op 'n direkte wyse. Hierdie metodes sluit in, traditionele essaieering, gravimetriese en nat chemiese tegnieke. Hierdie tegnieke is nie geskik vir karakterisering van individuele edelmetale en onsuiwerhede nie.
Indirekte metodes is gebaseer op spektroskopie en is geskik vir die hoe suiwerheid analise van metale. Hierdie tegnieke bepaal die konsentrasie van die onsuwerhede. Die suiwerheid van die metal word bepaal deur die verskil. Om hierdie rede is dit baie belangrik dat al die onsuwerhede bepaal word met die hoogste graad van presisie en akkuraatheid, omdat dit 'n invloed sal hê op die uiteindelike suiwerheid en kwaliteit van die produk.

Die alternatiewe metode is ontwikkeld om die onsuwerhede in Ruthenium te bepaal. Die deteksie limiete in sommige gevalle het met 'n faktor tot tien verbeter, invergelyking met huidige tegnieke wat gebruik word vir die bepaling van onsuwerhede. Elemente soos Cd, Se, As en Cr was voorheen as onbepaald geraaporteer omdat deteksie limiete laer as 10-15 ppm nie moontlik was nie, maar nou wel moontlik is met vonkanaliese.

Die tegniek gebruik vir die analise van onsuwerhede in die edelmetale is bekend as SAFT “Spark Analysis For Traces” (Vonkanaliese vir spoorelemente). SAFT maak gebruik van tydontledingsspektroskopie, wat agtergrond kan verminder en daardie die sein tot agtergrond verhouding van spektrale lyne verbeter.

Dit maak gebruik van die atoombloei. Deur die fotovermenigvuldigerdetektor te skakel om slegs die atoombloei waar te neem kan die agtergronduitstralings geskei word van die atoom uitstralings. Die sensitwiteit is 'n faktor van vyf tot tien keer beter as met normale vonkanalise.

Die tegniek is baie sensitief en analise met suiwerhede van 99.995 % is moontlik, alhoewel die grootste nadeel van die metode vir edelmetale is die gebrek aan kommersiële beskikbare standarde met laë konsentrasie onsuwerhede in.
ACKNOWLEDGEMENTS

My thanks to;

Impala Platinum Refineries, for the opportunity to conduct the experiments and the use of their instrument. Also to the staff of the Precious Metals laboratory for their assistance.

Dr. Pat Butler, for allowing me the opportunity to continue with my studies, his mentorship and valuable discussions over the years.

Spectro Analytical Instruments for the financing of my studies.

Prof. Dr. C. A. Strydom, for her help, guidance and encouragement.

Prof. C.J. Rademeyer, for his help in the initial stages.

My husband, Dr. Herman Julsing and my daughters Claire and Andrea for their love and support.
CONTENTS

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Brief Overview</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>References</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Chemistry and Refining of the Platinum Group Metals</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Occurrence</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Uses</td>
<td>8</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Catalytic uses</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Electrical uses</td>
<td>13</td>
</tr>
<tr>
<td>2.3.3</td>
<td>High-temperature uses</td>
<td>13</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Medical and dental uses</td>
<td>14</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Jewellery</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Physical and chemical properties</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Effect of Platinum Group Metals on human health</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Toxicology – environment</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Refining of Platinum Group Metals</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>References</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Methods of analysis of Platinum Group Metals</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Globular Arc</td>
<td>27</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Disadvantages of Globular Arc analysis</td>
<td>28</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Matrix effects</td>
<td>28</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Poor limits of detection</td>
<td>28</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Poor precision</td>
<td>28</td>
</tr>
</tbody>
</table>
3.1.5 Low analytical throughput 29
3.1.6 Skilled labour 29
3.1.7 Cost 29
3.2 Glow Discharge technique 30
3.3 Inductively Coupled Plasma (ICP) 33
3.4 Inductively Coupled Plasma – Mass Spectrometry (ICP – MS) 37
3.5 Spark Ablation – Inductively Coupled Plasma 40
3.6 Laser Ablation Inductively Coupled Plasma – Mass Spectrometry 41
3.7 X-Ray Fluorescence 43
3.8 Neutron Activation 45
3.9 Spark Analysis 47
3.9.1 Advantages of Spark Analysis 47
3.9.2 Time Resolved Spectroscopy 48
3.9.2.1 Research arrangement 50
3.9.2.2 Advantages of the Time Resolved method 52
3.10 Standards 53
3.10.1 Standard specifications for refined Precious Metals 54
3.11 References 58

Chapter 4 Instrumentation 63
4.1 Introduction 63
4.2 Lifumat-Met-3.3/Vac-Gas Induction Furnace 63
4.3 Breitländer Semi-Automatic Milling Machine 65
4.4 Spectrometer 66
4.4.1 Source 66
4.4.2 Sample stand 68
4.4.3 Spectrometer optics

4.4.3.1 Optical fibres – light guides

4.4.3.2 Spectral dispersion

4.4.4 Instrument configuration

4.4.4.1 Polychromators

4.4.4.2 Detectors

4.4.4.3 Measurement of photoelectric current

4.5 Evaluation of the “burn spot”

4.6 Determination of mechanism of material removal

4.7 References

Chapter 5 Experimental

5.1 Introduction

5.2 Samples

5.3 Optimisation of parameters

5.3.1 High Energy Pre-spark (HEPS)

5.3.2 Intensity versus integration time

5.3.3 Effect of different gating parameters

5.3.4 Internal standardisation

5.3.5 Analytical gap 3 mm and 4 mm

5.3.6 Contamination from another base material

5.4 Creating calibration graphs

5.5 Comparisons of samples analysed

5.6 References

Chapter 6 Calibration

6.1 Introduction
Chapter 6
6.2 Background Equivalent Concentration (BEC) and Limit of Detection (LOD)

6.3 Spectral interference

6.4 Background correction

6.5 Measurement values for the analytical data
 6.5.1 Intensity ratio
 6.5.2 Corrected intensity ratio
 6.5.3 Recalibration
 6.5.4 Concentration calculation

6.6 References

Chapter 7 Results
7.1 Optimisation of parameters
 7.1.1 High Energy Pre-spark
 7.1.2 Effect of integration time
 7.1.3 Effect of different gating parameters
 7.1.4 Internal standardisation
 7.1.5 Analytical gap
 7.1.6 Contamination from other base material

7.2 Calibration

7.3 Comparison of samples analysed

Chapter 8 Discussion of results and conclusion
8.1 Optimisation of parameters
 8.1.1 High Energy Pre-spark
 8.1.2 Effect of integration time
 8.1.3 Effect of different gating parameters

Chapter 7 Results
7.1 Optimisation of parameters
 7.1.1 High Energy Pre-spark
 7.1.2 Effect of integration time
 7.1.3 Effect of different gating parameters
 7.1.4 Internal standardisation
 7.1.5 Analytical gap
 7.1.6 Contamination from other base material

7.2 Calibration

7.3 Comparison of samples analysed

Chapter 8 Discussion of results and conclusion
8.1 Optimisation of parameters
 8.1.1 High Energy Pre-spark
 8.1.2 Effect of integration time
 8.1.3 Effect of different gating parameters
8.1.4 Internal standardisation
8.1.5 Analytical gap
8.1.6 Contamination from other base material
8.2 Calibration graphs
8.3 Comparison of samples analysed
8.4 Conclusion