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Summary: 

Atmospheric aerosols are suspensions of solid and/or liquid particles in the air from 

natural and anthropogenic sources. Aerosols are ubiquitous in the air and are often observable 

as dust, smoke and haze. Dust is considered to be one of the major components of 

tropospheric aerosols over the globe. Natural and human processes contribute to aerosol 

emissions. Each year, several billion tons of soil-dust is entrained into the atmosphere playing 

a vital role in solar irradiance attenuation, and affects marine environments, atmospheric 

dynamics and weather. Air pollution has recently become a serious environmental problem. 

Over recent years in the public health domain particulate matter (PM) concentration has 

become a topic of considerable importance, since epidemiological studies have shown that 

exposure to particulates with aerodynamic diameters of < 10 µm (PM10) and especially < 2.5 

µm (PM2.5) induces an increase of lung cancer, morbidity and cardiopulmonary mortality. 

Mineral dust plays an important role in the optical, physical and chemical processes in 

the atmosphere, while dust deposition adds exogenous mineral and organic material to 

terrestrial surfaces, having a significant impact on the Earth’s ecosystems and 

biogeochemical cycles. 

 The role of dust aerosols in atmospheric processes, i.e. Earth’s radiation balance, cloud 

microphysics, etc, strongly depends on a variety of physico-chemical parameters, size 

distribution, dust sources, atmospheric lifetime and mixing processes in the atmosphere.  
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Analysis of the physical properties and chemical composition of dust aerosols is important to 

determine aerosol sources, mixing processes, transport pathways and their effects on human 

health.   

Atmospheric aerosols affect the global climatic system in many ways, i.e. by attenuating 

the solar radiation reaching the ground, modifying the solar spectrum, re-distributing the 

earth-atmosphere energy budget and influencing cloud microphysics and the hydrological 

cycle. Satellite remote for sensing provides an important observational means for monitoring 

dust production and for improving the understanding of the effects of regional-scale 

atmospheric processes on dust emission and transport. 

The Sistan region is located in southeastern Iran, close to the Iranian borders with 

Pakistan and Afghanistan. The climate is arid, with low annual average precipitation of ~55 

mm occurring mainly in the winter (December to February) and evaporation exceeding 

~4000 mm.year
-1

. During summer (June – September), the area is under the influence of a 

low pressure system attributed to the Indian thermal low that extends further to the west as a 

consequence of the south Asian monsoon system. These low pressure conditions are the 

trigger for the development of the Levar northerly wind, commonly known as the “120-day 

wind”, causing frequent dust and sand storms and contributing to the deterioration of air 

quality. Therefore, one of the main factors affecting the weather conditions over the region is 

the strong winds rendering Sistan as one of the windiest deserts in the world. Severe droughts 

during the past decades, especially after 1999, have caused desiccation of the Hamoun lakes 

which is located in the northern part of Sistan, leaving a fine layer of sediment that is easily 

lifted by the wind, thus modifying the basin to one of the most active sources of dust in 

southwest Asia. The strong winds blow fine sand off the exposed Hamoun lake beds and 

deposit it to form huge dunes that may cover a hundred or more villages along the former 

lakeshore. Hamoun dry lake beds are mainly composed of quaternary lacustrine silt and clay 

material as well as Holocene fluvial sand, silt and clay. These materials have been carried to 

the basin by the rivers, while along their courses neogene fluvial sand, eolian sand, silt and 

clay are the main constituents.  

This thesis analyses the aerosol characteristics, dust loading and air quality over the 

Sistan region based on first time measurements conducted. The dust loading was measured 

using dust traps near the Hamoun basin during the period August 2009 to July 2010.  Dust 

loading from the Hamoun basin appears to have a significant contributing influence on the 
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development of extreme dust storms, especially during the summer days. This influence 

firstly seems to depend on the intensity and duration of dust storms, and secondarily, on the 

distance from the source region, the wind speed and altitude. The grain-size distribution of 

the dust loading is strongly influenced by the distance from the dust source. Furthermore, the 

particle size distribution exhibited a shift towards lower values as the altitude increases, with 

this feature found to be more obvious amongst larger sized particles, while the frequency of 

particles below 2.5 μm seemed not to be affected by altitude. In general, the analysis revealed 

significant spatio-temporal variability of regional dust loading and characteristics. This 

finding necessitates more systematic observations at as many locations as possible around the 

Hamoun basin in order to improve the understanding of force dynamics, transport 

mechanisms as well as to quantify the dust amounts emitted from the Hamoun basin.      

To assess air quality characteristics in two cities of Zabol and Zahedan affected by the 

Sistan dust storms , systematic airborne PM concentrations were measured during  the period 

September 2010 to September 2011 and July 2008 to March 2010, respectively. The results 

showed that the PM10 concentrations were considerably higher than the corresponding 

European Union air quality annual standard and the mean PM2.5 concentration (32 gm
-3

) 

also overcame the Air Quality Index (AQI) annual PM2.5 standards. This poor air quality is 

affected by dust storms from the Sistan desert. The drainage of the Hamoun wetlands, in 

association with the intense Levar winds in summer, is the main factor responsible for the 

frequent and massive dust storms over the Sistan region. Hamoun, as an intense dust source 

region, caused a dramatic increase in PM10 concentrations and a deterioration of air quality 

(65% of the days were considered unhealthy for sensitive people and 34.9% as hazardous) in 

Zabol city. The maximum PM10 concentrations occurred between 8:00 to 11:00 Local 

Sidereal Time (LST) in Zabol and between 12:00 and 20:00 LST in Zahedan, indicating that 

Sistan dust storms reach Zahedan after six to nine hours. The strong correlation between daily 

PM2.5 and PM10 concentrations indicated that they have similar sources and an increase of 

PM10 significantly affects PM2.5. Considering the air pollution standards defined by the 

United state Environmental Protection Agency (USEPA), determining that only on one day 

per year may the AQI be higher than 100 μg.m
-3

, it was found that the values of AQI in 

Zahedan overcame this level for 86 days out of 399, expressing a fraction of 21.5%. It should 

be noted that on 25 days (6.3%) the atmospheric conditions were very unhealthy or hazardous 

for the whole population and this requires more attention by officials, managers and urban 

planners. 
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Windblown transport and deposition of dust is widely recognized as an important 

physical and chemical concern to climate, human health and ecosystems. To mitigate the 

impact of these phenomena, this thesis examines for the first time, the mineralogical and 

chemical properties of dust over Sistan by collecting aerosol and soil samples. These data 

were analyzed to investigate the chemical and mineralogical characteristics of dust, relevance 

of inferred sources and contributions to air pollution. Dust aerosol characterization included 

chemical analysis of major and trace elements by X-Ray Fluorescence (XRF) and mineral 

analysis by X-Ray Diffraction (XRD). The results showed that quartz, calcite, muscovite, 

plagioclase and chlorite are the main mineralogical components of the dust, in descending 

order, over Sistan, and were present in all the selected airborne dust samples. In contrast, 

significantly lower percentages for enstatite, halite, dolomite, microcline, gypsum, diopside, 

orthoclase and hornblende were found, since these elements occurred only in some of the 

samples. On the other hand, silicone dioxide (SiO2), Calcium oxide (CaO), Aluminum oxide 

(Al2O3), Sodium oxide (Na2O), Magnesium Oxide (MgO) and Iron (III) Oxide (Fe2O3) were 

the major elements characterising the dust, while large amounts of Fluorine (F), Chlorine (Cl) 

and Sulfur (S) were also found as trace elements. The mineralogy and chemical composition 

of airborne dust at both stations were nearly the same and quite similar to the soil samples 

collected at several locations downwind. This suggests that the dust over Sistan is locally 

emitted, i.e. from the Hamoun basin, and in a few cases can also be long-range transported to 

distant regions. On the other hand, individual dust storms showed significant differences 

between either evaporite-dominated aerosols or those characterized by deflation from alluvial 

silts. These possibly reflect either localized climatic cyclicity or desiccation cycles. However, 

in some cases the soil samples showed poor comparisons with aerosol compositions, 

suggesting that dynamic sorting, soil-forming processes and climatic influences, such as 

rainfall, altered the mineralogy and chemistry in these partially eolian deposits. Estimates of 

Enrichment Factors (EF) for all studied elements show that all of them have very low EF 

values, suggesting natural origin from local materials. The results suggest that a common dust 

source region can be inferred, which is the eroded sedimentary environment in the extensive 

Hamoun dry lakes. Scanning Electronic Microscope (SEM) analyses of the samples indicated 

that airborne dust has rounded irregular, prismatic and rhombic shapes, with only the finer 

particles and a few cases of the coarser dust being spherical.   

Tis thesis analyses the aerosol patterns over the arid environment of Sistan region by 

means of multiple satellite platforms aiming to reveal the spatio-temporal and vertical 
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distribution of dust aerosols. The dataset used includes records of Aerosol Index (AI) from 

the Total Ozone Mapping Spectrometer (TOMS) on board the Nimbus-7 (1979–92) and the 

Earth Probe (mid-1996 to 2001) satellites and six-year AI records from OMI aboard Aura. 

Moreover, the Aerosol Optical Depth (AOD) is analyzed through 11-year records from 

Multi-angle Imaging SpectroRadiometer (MISR) aboard Terra (2000-2010) and from seven-

year Deep Blue records from MODIS aboard Aqua (2002-2011). The main focus is to 

determine similarities and differences in dust climatology provided by these sensors over the 

Sistan region and surroundings. The results showed a marked seasonal cycle with high 

aerosol loading during summer and lower in winter, while MISR, MODIS Deep Blue and 

OMI climatologies agree in both terms of monthly and seasonally mean spatial and temporal 

aerosol patterns revealing similar seasonal behavior over the region. After prolonged drought  

conditions in 1999 at Hamoun lakes (northern of Sistan) the dust-aerosol load over the area 

has increased. The higher aerosol concentrations during summer are interpreted as a result of 

the Levar northerly winds and the drying of Hamoun lakes. The satellite monitoring 

highlights Sistan and Hamoun basin as major dust source regions in south Asia, spreading 

dust aerosols over Afghanistan, Pakistan and Arabian Sea. 
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99 
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Figure 5.3: Average mineralogy components for airborne dust samples in stations A 

and B and for soil samples obtained at various locations in Hamoun Basin. 

The vertical bars express one standard deviation from the mean.  
 

100 

Figure 5.4. Mean altitude variation of dust mineralogy components in station B. 

[others: Plagioclase, Orthoclase, Microcline, Gypsum, Bloedite, 

Diopside, Hornblende Na-Ca]  
 

101 

Figure 5.5a: Major elements (oxides) for airborne dust samples obtained on different 

days at Station A by means of the XRF analysis.  
 104 

Figure 5.5b: Same as in Figure 5.5a, but for the station B.  
 104 

Figure 5.6: Average XRF results for major dust elements in stations A and B. Similar 

results obtained in Khuzestan Province, southwestern Iran are also shown 

for comparison reasons 
 107 

Figure 5.7: Microscope images (left column) and SEM images (right column) for 

airborne and soil dust samples over Sistan; there are no SEM images for 

soil samples (last row). The location and the height for the airborne dust 

samples are given, while the soil samples were collected in Sistan 

agriculture land and in Hamoun dry-lakes basin. The dust sample in Zabol 

was collected on roof of a building during a dust event on 9 January, 

2010. For each case, the mineralogy and major elements percentage 

contribution are given for the main dust components. The scale bar in 

each image defines the particle size.  
 112 

Figure 6.1: Terra-MODIS satellite true color and infrared (temperature) images 

captured on June 14, 2004 over Iran, Afghanistan and Pakistan 

 

123 

Figure 6.2: Data series of Aerosol Index (AI) values from Nimbus 7, Earth Probe and 

Ozone Monitoring Instrument (OMI), as well as aerosol optical depth 

(AOD) values from MISR and Terra/Aqua-MODIS over Sistan region.  

 125 

Figure 6.3: Annual average of Aerosol Index (AI) and aerosol optical depth (AOD) 

with annual average of precipitation at the Zabol meteorological station 

during 1979 to 2011.  
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Figure 6.4: Multi-year variation of the annual accumulated rainfall values at the Zabol 

meteorological station during 1979 to 2011.  
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Figure 6.5: Annual mean variation of AOD and AI for different satellite sensors and 

time periods over Sistan region  
 130 

Figure 6.6: Annual average of Aerosol Index (AI) and aerosol optical depth (AOD) 

with annual average of precipitation at the Zabol meteorological station 

during 1979 to 2011.  
 131 

Figure 6.7: Multi-year seasonal variation of Aerosol Index (AI) and Aerosol Optical 

depth (AOD) values from different sensors over the Sistan region 
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Figure 6.8: Seasonal maps of the spatial distribution of AI (Nimbus 7 and OMI) and 

AOD (MISR and MODIS) values over southwest Asia. The period of 

measurements are: for Nimbus 7 (1979 to 1992), for OMI (2005 to 2011), 

for MISR (2000 to 2010) and for Aqua-MODIS (2002 to 2011). 
 136 

Figure 6.9: Monthly mean spatial distribution of Ozone Monitoring Instruments (OMI) 

satellite observations over southwest Asia during the period 2005 to 2011 
 138 

Figure 6.10: Monthly mean spatial distribution of MISR Aerosol Index (AOD) over 

southwest Asia during the period 2000 to 2010.   
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Figure 6.11: Monthly mean spatial distribution of Aqua MODIS satellite observations 

over southwest Asia during 2000 to 2010. 
 141 

Figure 6.12: Spatial distribution of the Aerosol Optical Depth (AOD) % variation 

obtained from MISR sensor during the period 2000 to 2010 over 

southwest Asia.   
 144 

Figure 6.13: Spatial distribution of the Aerosol Optical depth (AOD) % variation 

obtained from Aqua-MODIS sensor (deep blue algorithm) during the 

period 2000 to 2010 over southwest Asia 145 
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LIST OF ABBREVIATIONS 

 

AERONET Aerosol Robotic Network  

AI Aerosol Index  

AIRS Atmospheric Infrared Sounder  

Al Aluminum  

Al2O3 Aluminum oxide  

AOD Aerosol Optical Depth  

AQI Air Quality Index  

ARF Aerosol Radiative Forcing  

As Arsenic  

Ba Barium  

BSNE Big Spring Number Eight  

CALIPSO Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observation  

CaO Calcium oxide  

CCN Cloud Condensation Nuclei  

Cl Chlorine  

Co Cobalt  

COPD Chronic Obstructive Pulmonary Diseases  

Cr Chrome  

Cr2O3 Dichromium trioxide  

Cs Cesium 

Cu Copper  

dp Particle Size  

d0.5 Median grain size  

d0.9 90% of the grain size of particles is below this value  

EARLINET European Aerosol Research Lidar Network  

EFs Enrichment Factors  

ENSO El Niño-Southern Oscillation  

EPA Environmental Protection Agency  

EPMSP Enhanced Particulate Matter Surveillance Program  

EU European Union  

F Fluorine  

Fe Iron  

Fe2O3 Iron III Oxide  

g Asymmetry parameter  

GDP Gross domestic product  

HAVA Helmand-Arghandab Valley Authority  

HIRDLS High Resolution Dynamic Limb Sounder  

HNLC High-Nutrient, Low-Chlorophyll  

ICZ Intertropical Convergence Zone  

IDDI Infrared Difference Dust Index  

K2O Potassium oxide  

LST Local Sidereal Time 

LULC Land Use Land Cover  

MgO Magnesium Oxide  

MISR Multi-angle Imaging Spectro-Radiometer  

MnO Manganese oxide  
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MODIS Moderate Resolution Imaging Spectroradiometer  

MWAC Modified Wilson and Cooke  

N7T Nimbus 7  

Na2O Sodium oxide  

Na3PO412H2O Tri-sodium orthophosphate 

NaOH sodium hydroxide  

NASA National Aeronautics and Space Administration  

Ni Nickel  

NiO Nickel Oxide  

OMI Ozone Monitoring Instrument  

P2O5 Phosphorus pentoxide  

Pb lead  

PM Particulate matter  

PM10 Particulates with aerodynamic diameters of < 10 µm  

ppm Parts per million  

r Correlation coefficient  

R
2
 Determine coefficient  

RH Relative Humidity, 

S Sulfur  

SEM Scanning Electron Microscopy  

Si silicon  

SiO2 silicone dioxide  

SSA Single scattering albedo  

SSDS Siphon Sand and Dust Sampler  

 SUSTRA SUspended Sediment TRAp  

Tg Million tons (Teragram) 

TiO2 Titanium dioxide  

TOA Top-Of-Atmosphere 

TOMS Total Ozone Mapping Spectrometer  

U.S United state  

USEPA United state Environmental Protection Agency  

UV UltraViolet  

V2O5 vanadium pentoxide  

WDFG Wedge Dust Flux Gauge  

WMO World Meteorological Organization 

XRD X-Ray Diffraction  

XRF X-Ray Fluorescence  

Zn Zinc  

ZrO2 Zirconium oxide  
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