Objectivity in stratification, sampling
and classification of vegetation

by

ROBERT HOWARD WESTFALL

Submitted in partial fulfilment of the requirements for
the degree

PHILOSOPIAS DOCTOR (BOTANY)

in the Faculty of Science
(Department of Botany)

University of Pretoria
Pretoria

October 1992

Promoter: Prof. Dr. G.K. Theron
Co-promoter: Dr. N. van Rooyen

© University of Pretoria
ABSTRACT

Objectivity in stratification, sampling and classification of vegetation

by

ROBERT HOWARD WESTFALL

Promoter: Prof. Dr G.K. Theron

Co-promoter: Dr N. van Rooyen

in the

Department of Botany

for the degree

PHILOSOPHIAE DOCTOR (BOTANY)

The aims of this study are to increase objectivity in stratification, sampling and classification of vegetation, thereby, improving repeatability, predictability and relevancy of vegetation classifications.

The aims are achieved by: relating stratification, sampling and classification to scale; improved small-scale vegetation mapping using, satellite imagery; improved plant cover estimations; and vegetation classification by minimum entropy. A comprehensive computer program package was developed to facilitate the aims of this study and reduce time spent on vegetation analyses. It is recommended that the vegetation resource be given the highest national priority because correct vegetation management can also ensure conservation of soil and soil water.
CONTENTS

<table>
<thead>
<tr>
<th>1. INTRODUCTION</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 AIMS</td>
<td>1</td>
</tr>
<tr>
<td>1.2 JUSTIFICATION</td>
<td>2</td>
</tr>
<tr>
<td>1.3 HYPOTHESES</td>
<td>6</td>
</tr>
<tr>
<td>1.4 THESIS ARRANGEMENT</td>
<td>6</td>
</tr>
<tr>
<td>1.5 REFERENCES</td>
<td>7</td>
</tr>
<tr>
<td>2. STUDY AREAS</td>
<td>11</td>
</tr>
<tr>
<td>2.1 PHYSIOGRAPHY</td>
<td>11</td>
</tr>
<tr>
<td>2.2 GEOLOGY</td>
<td>13</td>
</tr>
<tr>
<td>2.3 SOILS</td>
<td>13</td>
</tr>
<tr>
<td>2.4 CLIMATE</td>
<td>14</td>
</tr>
<tr>
<td>2.5 BIOTIC FACTORS</td>
<td>15</td>
</tr>
<tr>
<td>2.6 PREVIOUS RESEARCH</td>
<td>17</td>
</tr>
<tr>
<td>2.7 REFERENCES</td>
<td>19</td>
</tr>
<tr>
<td>3. METHODS</td>
<td>24</td>
</tr>
<tr>
<td>3.1 PREPARATORY WORK</td>
<td>25</td>
</tr>
<tr>
<td>3.1.1 Scale</td>
<td>25</td>
</tr>
<tr>
<td>3.1.1.1 Background</td>
<td>25</td>
</tr>
<tr>
<td>3.1.1.2 Methods applied</td>
<td>27</td>
</tr>
<tr>
<td>3.1.2 Stand area</td>
<td>28</td>
</tr>
<tr>
<td>3.1.2.1 Background</td>
<td>28</td>
</tr>
<tr>
<td>3.1.2.2 Methods applied</td>
<td>29</td>
</tr>
<tr>
<td>3.1.3 Reconnaissance</td>
<td>30</td>
</tr>
<tr>
<td>3.1.3.1 Background</td>
<td>30</td>
</tr>
<tr>
<td>3.1.3.2 Methods applied</td>
<td>31</td>
</tr>
</tbody>
</table>
3.1.4 Stratification

3.1.4.1 Background

3.1.4.2 A method for vegetation stratification using scale-related, vegetation-enhanced satellite imagery

3.1.5 Stand location

3.1.5.1 Background

3.1.5.2 Methods applied

3.1.5.3 PHYTOLOC - A random number generator and sample-set location program for stratified random vegetation sampling

3.1.6 Sampling unit area

3.1.6.1 Background

3.1.6.2 Predictive species-area relations and determination of subsample size for vegetation sampling in the Transvaal Waterberg

3.2 FIELD SAMPLING

3.2.1 Sampling unit location

3.2.1.1 Background

3.2.1.2 Methods applied

3.2.2 Plant identification and verification

3.2.2.1 Background

3.2.2.2 A new identification aid combining the features of a polyclave and an analytical key

3.2.2.1 Improvements

3.2.3 Species cover
3.2.3.1 Background

3.2.3.2 The plant number scale - an improved method of cover estimation using variable-sized belt transects

3.2.3.2.1 Improvements

3.2.4 Floristic data recording

3.2.4.1 Background

3.2.4.2 Methods applied

3.2.4.3 PHYTOCAP. A field-data capture program for the PHYTOTAB program package

3.2.4.3.1 Improvements

3.2.5 Habitat data

3.2.5.1 Background

3.2.5.2 Methods applied

3.2.5.2 A) Field data

 a) Stand data

 b) Sampling unit data

3.2.5.2 B) Derived data

 a) Input

 b) Output

3.3 CLASSIFICATION

3.3.1 Background

3.3.2 Methods applied

 3.3.2.1 Relevé sequencing

 3.3.2.1 A) Commonality sequence

 3.3.2.1 B) Similarity sequence

 3.3.2.1 C) Separation unit sequence

 3.3.2.2 Relevé grouping