TOWARDS THE DEVELOPMENT OF TRANSITION PROBABILITY MATRICES IN THE MARKOVIAN MODEL FOR THE PREDICTED SERVICE LIFE OF BUILDINGS

JOHANNES JACOBUS Mc DULING

Thesis submitted in partial fulfilment of the requirements for the degree

PHILOSOPHIAE DOCTOR (CIVIL ENGINEERING)

in the

FACULTY OF ENGINEERING, BUILT ENVIRONMENT AND INFORMATION TECHNOLOGY

UNIVERSITY OF PRETORIA

PRETORIA

August 2006
THESIS SUMMARY

TOWARDS THE DEVELOPMENT OF TRANSITION PROBABILITY MATRICES IN THE MARKOVIAN MODEL FOR THE PREDICTED SERVICE LIFE OF BUILDINGS

J.J. Mc DULING

Supervisor: Professor Doctor E Horak
Co-Supervisor: Professor Doctor CE Cloete
Department: Civil and Biosystems Engineering
Faculty: Engineering, Built Environment and Information Technology
University: University of Pretoria
Degree: Philosophiae Doctor (Civil Engineering)

The global importance of and need for sustainable development demand an informed decision-making process from the built environment to ensure optimum service life, which depends on the ability to quantify changes in condition of building materials over time. The objective of this thesis is to develop a model, which translates expert knowledge and reasoning into probability values through the application of Fuzzy Logic Artificial Intelligence to supplement limited historical performance data on degradation of building materials for the development of Markov Chain transitional probability matrices to predict service life, condition changes over time, and consequences of maintenance levels on service life of buildings. The Markov Chain methodology, a stochastic approach used for simulating the transition from one condition to another over time, has been identified as the preferred method for service life prediction by a number of studies. Limited availability of historic performance data on degradation and durability of building materials, required to populate the Markovian transition probability matrices, however restricts the application of the Markov Chain methodology.

The durability and degradation factors, defined as design and maintenance levels, material and workmanship quality, external and internal climate, and operational environment, similar to the factors identified in the state-of-the-art ‘Factor Method’ for service life prediction, and current
condition are rated on a uniform colour-coded five-point rating system and used to develop “IF-THEN” rules based on expert knowledge and reasoning. Fuzzy logic artificial intelligence is then used to translate these rules into crisp probability values to populate the Markovian transitional probability matrices.

Historic performance data from previous condition assessments of six academic hospitals are used to calibrate and test the model. There is good correlation between the transitional probability matrices developed for the proposed model and other Markov applications in concrete bridge deck deterioration and roof maintenance models, based on historic performance data collected over extended periods, which makes the correlation more significant.

Proof is presented that the Markov Chain can be used to calculate the estimated service life of a building or component, quantify changes in condition over time and determine the effect of maintenance levels on service life. It is also illustrated that the limited availability of historic performance data on degradation of building materials can be supplemented with expert knowledge, translated into probability values through the application of Fuzzy Logic Artificial Intelligence, to develop transition probability matrices for the Markov Chain. The proposed model can also be used to determine the estimated loss of or gain in service life of a building or component for various levels of maintenance.

Key words: building maintenance, condition changes, fuzzy logic, Markov Chain, service life prediction, transitional probability matrices.
ABSTRACT

Title: Towards the Development of Transition Probability Matrices in the Markovian Model for the Predicted Service Life of Buildings

Author: J.J. Mc Duling

Supervisor: Professor Doctor E Horak

Co-Supervisor: Professor Doctor CE Cloete

Department: Civil and Biosystems Engineering

Faculty: Engineering, Built Environment and Information Technology

University: University of Pretoria

Degree: Philosophiae Doctor (Civil Engineering)

The objective of this thesis is to develop a model, which translates expert knowledge and reasoning into probability values through the application of Fuzzy Logic Artificial Intelligence to supplement limited historical performance data on degradation of building materials for the development of Markov Chain transitional probability matrices to predict service life, condition changes over time, and consequences of maintenance levels on service life of buildings.

The durability and degradation factors, defined as design and maintenance levels, material and workmanship quality, external and internal climate, and operational environment, similar to the factors identified in the state-of-the-art ‘Factor Method’ for service life prediction, and current condition are rated on a uniform colour-coded five-point rating system and used to develop “IF-THEN” rules based on expert knowledge and reasoning. Fuzzy logic artificial intelligence is then used to translate these rules into crisp probability values to populate the Markovian transitional probability matrices.

Data from previous condition assessments of six academic hospitals are used to calibrate and test the model. There is good correlation between the transitional probability matrices developed for the proposed model and other Markov applications in concrete bridge deck deterioration and roof...
maintenance models, based on historic performance data collected over extended periods, which makes the correlation more significant.

Proof is presented that the Markov Chain can be used to calculate the estimated service life of a building or component, quantify changes in condition over time and determine the effect of maintenance levels on service life. It is also illustrated that the limited availability of historic performance data on degradation of building materials can be supplemented with expert knowledge, translated into probability values through the application of Fuzzy Logic Artificial Intelligence, to develop transition probability matrices for the Markov Chain.
ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to the following persons who made this thesis possible:

- My project supervisors, Professor Emile Horak and Professor Chris Cloete for their guidance, support and motivation.
- Professor Christo van As, who introduced me to the Markov Chain.
- Professor Chris Cloete, who introduced me to Artificial Intelligence.
- The research for this thesis was done while working as a fulltime consultant and the following persons are gratefully acknowledged for their assistance and support:
 - All my clients, who supported me with opportunities to develop new technology,
 - Geoff Abbott, architect, of the CSIR, close colleague and friend, for his friendship and cooperation on many exciting projects through the years,
 - Chris Schoeman, quantity surveyor, for his inspiration, friendship and support as ‘sound board’,
 - My business associates, Kobus Burger, Chris Schoeman and Johan Schoeman, for their support and affording me the opportunity to complete my thesis,
 - Mariëtte Gouws, my research assistant, for all the searches, assistance and patience.
- My parents for their love and the hardship they endured to provide me with the best education available.
- My wife, Erika, and sons, CP and André, for their love, encouragement, support, patience and understanding during all the endless nights and weekends that went into the research.
- And most of all, my Lord and Saviour, Jesus Christ, for His amazing grace and love that made this dream possible.

This thesis is dedicated in love to my wonderful wife, Erika, and sons, CP and André, my pride and joy. I love you very much.
TABLE OF CONTENTS

THESIS SUMMARY
ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>i</td>
</tr>
<tr>
<td>List of Tables</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vi</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1. Background</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2. Problem Statement</td>
<td>1-4</td>
</tr>
<tr>
<td>1.3. Hypotheses</td>
<td>1-6</td>
</tr>
<tr>
<td>1.4. Objective of the Thesis</td>
<td>1-6</td>
</tr>
<tr>
<td>1.5. Scope of the Thesis</td>
<td>1-7</td>
</tr>
<tr>
<td>1.6. Methodology</td>
<td>1-7</td>
</tr>
<tr>
<td>1.7. Terminology and Abbreviations</td>
<td>1-11</td>
</tr>
<tr>
<td>1.7.1. Terminology</td>
<td>1-11</td>
</tr>
<tr>
<td>1.7.2. Abbreviations</td>
<td>1-12</td>
</tr>
<tr>
<td>1.8. Organisation of the Thesis</td>
<td>1-13</td>
</tr>
<tr>
<td>2. LITERATURE REVIEW</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1. Introduction</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2. Sustainable Development</td>
<td>2-1</td>
</tr>
<tr>
<td>2.3. Service Life and Durability of Building Materials and Components</td>
<td>2-5</td>
</tr>
<tr>
<td>2.4. Degradation</td>
<td>2-9</td>
</tr>
<tr>
<td>2.4.1. Degradation Agents</td>
<td>2-9</td>
</tr>
<tr>
<td>2.4.2. Climate</td>
<td>2-10</td>
</tr>
<tr>
<td>2.4.3. Evaluation of degradation</td>
<td>2-18</td>
</tr>
<tr>
<td>2.5. The Factor Method</td>
<td>2-21</td>
</tr>
<tr>
<td>2.6. The Markov Chain</td>
<td>2-24</td>
</tr>
<tr>
<td>2.6.1. Transitional Probability</td>
<td>2-25</td>
</tr>
<tr>
<td>2.6.2. Application of the Markov model</td>
<td>2-26</td>
</tr>
<tr>
<td>2.7. Artificial Intelligence Applications</td>
<td>2-37</td>
</tr>
<tr>
<td>2.7.1. Introduction</td>
<td>2-37</td>
</tr>
<tr>
<td>2.7.2. Fuzzy Logic</td>
<td>2-38</td>
</tr>
</tbody>
</table>
2.7.3. Artificial Neural Networks (ANN) .. 2-44
2.7.4. Neuro-Fuzzy Systems .. 2-47
2.7.5. Examples of relevant Artificial Intelligence Applications 2-50

3. RESEARCH METHODOLOGY ... 3-1
 3.1. Introduction .. 3-1
 3.2. The Degradation of Building Materials and Components 3-2
 3.2.1. Introduction .. 3-2
 3.2.2. The Degradation Process of Building Materials and Components 3-2
 3.2.3. Durability Factors .. 3-4
 3.2.4. Degradation Factors .. 3-10
 3.2.5. Condition .. 3-17
 3.2.6. Degradation Rate ... 3-18
 3.2.7. Condition ratings and assessment consistency .. 3-21
 3.3. The Application of Artificial Intelligence to Simulate the Degradation Process .. 3-24
 3.3.1. Introduction .. 3-24
 3.3.2. Selection of an appropriate Artificial Intelligence system 3-25
 3.3.3. Fuzzy Logic .. 3-25
 3.3.4. Fuzzy Sets .. 3-29
 3.3.5. Fuzzy Rules .. 3-41
 3.4. Development of Transition Probability Matrices for the Markovian Model ... 3-44
 3.4.1. Introduction .. 3-44
 3.4.2. Neuro-fuzzy model .. 3-44
 3.4.3. Transition from Artificial Intelligence to Markov Chain 3-47
 3.4.4. Calibration of the neuro-fuzzy model .. 3-52
 3.5. The Prediction of Service Life for Buildings and Components 3-58
 3.5.1. Introduction .. 3-58
 3.5.2. Service Life Prediction ... 3-58
 3.6. Other Applications .. 3-60
 3.7. Summary of Methodology .. 3-63

4. RESULTS AND DISCUSSION .. 4-1
 4.1. Introduction .. 4-1
 4.2. Results ... 4-1
 4.3. Discussion ... 4-3
 4.3.1. Hospitals .. 4-4
4.3.2. Maintenance level ... 4-6
4.3.3. Service life prediction .. 4-8
4.3.4. Current Regime vs Proposed Model 4-9

5. CONCLUSIONS AND RECOMMENDATIONS 5-1
5.1. Introduction ... 5-1
5.2. Conclusions.. 5-2
 5.2.1. Conclusion No. 1: ... 5-2
 5.2.2. Conclusion No. 2: ... 5-3
 5.2.3. Conclusion No. 3: ... 5-4
 5.2.4. Conclusion No. 4: ... 5-5
5.3. Contribution to Knowledge Base of Engineering Science and Practice 5-6
5.4. Recommendations .. 5-7

REFERENCES .. 1

APPENDICES:

 Appendix A: IF-THEN Fuzzy Rule Blocks....................................... A-1
 Appendix B: Condition Assessment Database B-1
 Appendix B-1: Hospital A Condition Profile B-2
 Appendix B-2: Extract from Hospital C Condition Matrix B-14
 Appendix B-3: Extracts from Hospital D Audit B-15
 Appendix C: Transition Probability Matrices for Proposed Markovian Model C-1
LIST OF TABLES

Table 2-1: Degradation agents affecting the service life of building materials and components (Jernberg et al, 2004, p.1-5) ... 2-9
Table 2-2: Condition Assessment of Built-up Roofing Membranes (BELCAM Project) ... 2-19
Table 2-3: Condition Ratings (Abbott & Mc Duling, 2004) .. 2-20
Table 3-1: Comparison between Japanese Principle Guideline, Factor Method and Proposed Model .. 3-3
Table 3-2: Colour-coded Condition Ratings (Abbott & Mc Duling, 2004) ... 3-21
Table 3-3: Condition rating ... 3-22
Table 3-4: Input Variables .. 3-27
Table 3-5: Intermediate Variables ... 3-28
Table 3-6: Output Variable .. 3-28
Table 3-7: Definition Points of Fuzzy Sets for Current Condition .. 3-30
Table 3-8: Definition Points of Fuzzy Sets for Design Level .. 3-31
Table 3-9: Definition Points of Fuzzy Sets for Material Quality .. 3-32
Table 3-10: Definition Points of Fuzzy Sets for Workmanship Quality .. 3-33
Table 3-11: Definition Points of Fuzzy Sets for External Climate .. 3-34
Table 3-12: Definition Points of Fuzzy Sets for Internal Climate .. 3-36
Table 3-13: Definition Points of Fuzzy Sets for Operational Environment .. 3-38
Table 3-14: Definition Points of Fuzzy Sets for Maintenance Level .. 3-39
Table 3-15: Definition Points of Fuzzy Sets for Degradation Rate .. 3-40
Table 3-16: Ratings of variables for ‘base-line’ fuzzyTECH model .. 3-45
Table 3-17: Markov Transition Probability Matrix for ‘base-line’ Model .. 3-48
Table 3-18: Results of Markov Chain simulation for ‘base-line’ model ... 3-50
Table 3-19: General Information of the Pilot Site: Hospital A .. 3-52
Table 3-20: Markov Transition Probability Matrix for revised Model ... 3-54
Table 3-21: General Information on Pilot and Control Sites (Source: CSIR) ... 3-56
Table 3-22: Factor Ratings for Pilot and Control Sites .. 3-56
Table 3-23: Process Summary .. 3-65
Table 4-1: Predicted service life for hospitals .. 4-2
Table 4-2: Rough Guide of Annual Budget Allowances for Different Condition Ratings (Mc Duling, 2005) .. 4-7
Table 1-1: IF-THEN Rules for Rule Block 1 .. A-1
Table 1-2: IF – THEN Rules for Rule Block 2 ... A-9
Table 1-3: IF-THEN Rules for Rule Block 3 ... A-20
Table A-4: Fuzzy Rule Block 1 ... A-73
Table A-5: Fuzzy Rule Block 2 ... A-73
Table A-6: Fuzzy Rule Block 3 ... A-74
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Hypothetical curve illustrating relationship between average condition and maintenance cost over time</td>
<td>1-3</td>
</tr>
<tr>
<td>2-1</td>
<td>Hypothetical performance over time functions (Jernberg et al, 2004, p.1-1)</td>
<td>2-6</td>
</tr>
<tr>
<td>2-2</td>
<td>Typical performance over time curves for roads (CSIR, 1985, p.6)</td>
<td>2-7</td>
</tr>
<tr>
<td>2-3</td>
<td>Exposure environment on different geographical scales (Source: Jernberg et al, 2004, p.2-9)</td>
<td>2-11</td>
</tr>
<tr>
<td>2-4</td>
<td>Weinert’s Climatic N-values (Source: Brink, 1978, p.31)</td>
<td>2-13</td>
</tr>
<tr>
<td>2-5</td>
<td>Macroclimatic Regions of Southern Africa (Source: CSIR, 1985, p.27)</td>
<td>2-14</td>
</tr>
<tr>
<td>2-6</td>
<td>Mean Annual Precipitation for South Africa (source: University of Natal)</td>
<td>2-15</td>
</tr>
<tr>
<td>2-7</td>
<td>Mean Annual Potential Evaporation for South Africa (source: University of Natal)</td>
<td>2-15</td>
</tr>
<tr>
<td>2-8</td>
<td>Mean Annual Temperatures (Source: CSIR)</td>
<td>2-16</td>
</tr>
<tr>
<td>2-9</td>
<td>Atmospheric corrosion of zinc</td>
<td>2-17</td>
</tr>
<tr>
<td>2-10</td>
<td>Markov deterioration function (Lounis et al, 1998, p.5)</td>
<td>2-27</td>
</tr>
<tr>
<td>2-11</td>
<td>Expert Judgment Data and Model Prediction (Zhang et al, 2005, p.5)</td>
<td>2-31</td>
</tr>
<tr>
<td>2-12</td>
<td>Markov Chain Transition Probability Matrix (Zhang et al, 2005, p.5)</td>
<td>2-31</td>
</tr>
<tr>
<td>2-13</td>
<td>Transition probability matrices of concrete bridge decks with asphalt concrete overlay for the four environments (Morcous et al, 2004, p.355)</td>
<td>2-32</td>
</tr>
<tr>
<td>2-14</td>
<td>Genetic algorithm-generated deterioration curves for the four environmental categories (Morcous et al, 2004, p.359)</td>
<td>2-33</td>
</tr>
<tr>
<td>2-15</td>
<td>Examples of crisp and fuzzy sets (after Negnevisky, 2002)</td>
<td>2-39</td>
</tr>
<tr>
<td>2-16</td>
<td>The centroid method of defuzzification (Negnevisky, 2002, p.111)</td>
<td>2-43</td>
</tr>
<tr>
<td>2-17</td>
<td>Diagram of Neuron (Negnevisky, 2002, p.166)</td>
<td>2-45</td>
</tr>
<tr>
<td>2-18</td>
<td>Basic structure of an artificial neural network (Von Altrock, 1995, p.64)</td>
<td>2-45</td>
</tr>
<tr>
<td>2-19</td>
<td>Simple mathematical model of a neuron (Von Altrock, 1995, p.66)</td>
<td>2-46</td>
</tr>
<tr>
<td>2-20</td>
<td>Mamdani fuzzy inference system (Negnevisky, 2002, p.268)</td>
<td>2-48</td>
</tr>
<tr>
<td>2-21</td>
<td>Neuro-fuzzy equivalent system (Negnevisky, 2002, p. 269)</td>
<td>2-49</td>
</tr>
<tr>
<td>3-1</td>
<td>Degradation Process</td>
<td>3-3</td>
</tr>
<tr>
<td>3-2</td>
<td>Proposed Macroclimate Zone Classification for Chemical and Biological Degradation Agents (Base map: University of Natal)</td>
<td>3-12</td>
</tr>
<tr>
<td>3-3</td>
<td>Proposed Macroclimate Zone Classification for Mechanical, Electro-magnetic and Thermal Degradation Agents (Base map: University of Natal)</td>
<td>3-13</td>
</tr>
<tr>
<td>3-4</td>
<td>Diagram illustration the factors influencing degradation rate</td>
<td>3-18</td>
</tr>
<tr>
<td>3-5</td>
<td>Building Life Cycle (Abbott, 2005)</td>
<td>3-19</td>
</tr>
</tbody>
</table>
Figure 3-6: Change in condition over time (hypothetical) ... 3-20
Figure 3-7: Typical Condition Profile .. 3-22
Figure 3-8: Structure of the Fuzzy Logic System ... 3-26
Figure 3-9: Fuzzy Sets for Current Condition ... 3-30
Figure 3-10: Fuzzy Sets for Design Level .. 3-31
Figure 3-11: Fuzzy Sets for Material Quality ... 3-32
Figure 3-12: Fuzzy Sets for Workmanship Quality ... 3-33
Figure 3-13: Fuzzy Sets for External Climate ... 3-35
Figure 3-14: Fuzzy Sets for Internal Climate .. 3-37
Figure 3-15: Fuzzy Sets for Operational Environment ... 3-38
Figure 3-16: Fuzzy Sets for Maintenance Level ... 3-39
Figure 3-17: Fuzzy Sets for Degradation Rate .. 3-40
Figure 3-18: Cube Fuzzy Associative Memory (FAM) for Rule Block 1 .. 3-41
Figure 3-19: Cube Fuzzy Associative Memory (FAM) for Rule Block 2 ... 3-42
Figure 3-20: Screendump of ‘base-line’ fuzzyTECH model .. 3-44
Figure 3-21: Degradation Rate window in ‘base-line’ fuzzyTECH model .. 3-45
Figure 3-22: A 3-D Plot of the ‘base-line’ fuzzyTECH Model ... 3-46
Figure 3-23: Performance over time curves for different levels of maintenance – ‘base-line’
model ... 3-51
Figure 3-24: Screendump of revised fuzzyTECH model ... 3-53
Figure 3-25: A 3-D Plot of the revised fuzzyTECH Model .. 3-54
Figure 3-26: Performance over Time curves for different levels of maintenance – Revised
Model (RM) vs ‘Base-Line’ Model (BLM) .. 3-55
Figure 3-27: Performance over Time Curves for ‘Slightly Aggressive’ External Climate 3-57
Figure 3-28: Performance over Time Curves for ‘Less Favourable’ External Climate 3-57
Figure 3-29: Service Life Prediction Graph for Academic Hospitals in South Africa in a
‘Slightly Aggressive’ External Climate ... 3-59
Figure 3-30: Service Life Prediction Graph for Academic Hospitals in South Africa in a ‘Less
Favourable’ External Climate .. 3-59
Figure 3-31: Anticipated change in condition profile and average condition over time 3-60
Figure 3-32: Maintenance types vs condition assessment ratings .. 3-61
Figure 3-33: Preservation programme diagram .. 3-62
Figure 4-1: Service Life Prediction Graph for Hospitals A and F .. 4-1
Figure 4-2: Service Life Prediction Graph for Hospitals B, C, D and E .. 4-2
Figure 4-3: Performance of Pilot and Control Hospitals over Time (Calendar Years) 4-3
Figure 4-4: Performance of Pilot and Control Hospitals over Time (Age) ... 4-4
Figure 4-5: Anticipated condition profiles at end of service life (average condition 3) 4-9