ACHIEVING BETTER EFFICIENCY IN THE TRANSPORT OF HOT MIX ASPHALT TO SITE FROM A FIXED PLANT IN GAUTENG

By

Rupert Pöhl

Treatise Submitted in fulfillment of a part of the requirements for the

MASTER OF SCIENCE (PROJECT MANAGEMENT)

At the Department of Construction Economics

University of Pretoria

Study Leader: Mr. J.G. de Beer

February 2003
ACKNOWLEDGEMENTS

I would like to thank Mr. J.G de Beer as well as all the staff from the Project Management program of the University of Pretoria for their guidance, professional opinion and support during the compilation of this work.

My further appreciation goes out to my family, friends and especially to my wife to be, Qumi for all the support and motivation.

A special word of thanks must also go out to the employees of Much Asphalt (Gauteng), without them this project would not have become a reality.

To God for giving me the ability to learn and work.
ABSTRACT

Title of Treatise: Achieving Better Efficiency in the Transportation of Hot mixed Asphalt to Site from a Fixed Plant in Gauteng

Name of Author: Rupert Pöhl

Name of Study Leader: Mr. J. G. de Beer

Institution: Department of Quantity Surveying and Construction Management
Faculty of Engineering and the Built Environment
University of Pretoria

Date: January 2003

The primary goal of this research is aimed at investigating the current situation relating to transportation of asphalt and the inter-action between the paving crew and the asphalt producing plant, with the purpose of deducting practical steps that will improve the delivery and production process as a whole.

A study is undertaken in the analysis of the delivery and round-trip cycle times of the cartage contractors transporting the asphalt from the fixed plant to the Old Barn Project. A daily summary is compiled for every day that asphalt is delivered to the project, and this data is sorted and analyzed to deduct trends and typical patterns for a specific type of work.
The factors by which the performance is judged will be a relation between the type of work carried out as well as the production figure achieved for the specific day. Furthermore a basic model is composed that could be used as a vehicle and round trip calculator to guide the supplier as to the resources that are required on future projects. A list of practical steps is also drawn up, in the form of recommendations to conclude some of the findings of the project.

The starting point of this research is to gain insight into the processes involved and to make recommendations on a very practical level. The role of good communication between the asphalt plant and the paving crew was also found to be of critical importance, as well as the establishment of an open honest relationship between the key role players.
TABLE OF CONTENTS

CHAPTER 1 – THE PROBLEM AND IT’S SETTING:

1.1 The Milieu of the Problem  1
1.2 The importance of the Study  2
1.3 The main problem statement  3
1.4 The sub problems  3
1.5 The hypotheses  4
1.6 The delimitations  5
1.7 The definition of the terms  5
1.8 The assumptions  6
1.9 The importance of the study  6

CHAPTER 2 – THE REVIEW OF RELATED LITERATURE

2.1 Relationship to theory  8
2.2 Literature study  8
2.3 Findings: Relationship to literature  14

CHAPTER 3 - THE DATA

3.1 Introduction  16
3.2 The data  16
3.3 Data analysis strategies  16
3.4 Presentation of the results  17
3.5 Methods of achieving trustworthiness  17
3.6 Summary  17
CHAPTER 4 – THE SCOPE OF THE WORKS

4.1 The project: N3 Old Barn 18
4.2 The project source data 20
4.3 The loading and ordering of material 20
4.4 The weighbridge ticket 21
4.5 The procedure for ordering asphalt 24
4.6 The daily log sheet 26
4.7 The daily data sheet 28

CHAPTER 5 – ANALYSIS OF TYPICAL DAILY TRENDS

5.1 Introduction 30
5.2 Examination of daily data sheet: 4 May 2002 30
5.3 Analysis of a day with a high production rate 32
5.4 Analysis when there is a paver breakdown 34
5.5 Analysis when working on an intersection 35
5.6 Analysis when a trial section is being done 37

CHAPTER 6 – TIME STUDY

6.1 Introduction 40
6.2 Time study done on 30 April 2002 40
6.3 Findings from time study 42

CHAPTER 7 – FORMULA FOR VEHICLES CALCULATION

7.1 Formula for the amount of vehicles required 44
CHAPTER 8 – CONCLUSION AND FINDINGS

8.1 Introduction 53
8.2 The results in relationship to the hypotheses 53
8.3 Summary and closing comments 56

CHAPTER 9 – POSSIBILITIES FOR FUTURE RESEARCH

9.1 Future research 59

BIBLIOGRAPHY 60