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Synopsis

A novel operational policy, the Process Intermediate Storage (PIS) operational policy, is

introduced and used to synthesize, schedule and design multipurpose batch plants. The

model is based on the State Sequence Network (SSN) and non-uniform discretization

of the time horizon of interest model developed by Majozi & Zhu (2001). Two cases

are studied to determine the effectiveness of the operational policy. A plant without

dedicated intermediate storage is considered in the first case. In this case the throughput

is maximized with and without the use of the PIS operational policy. The use of the PIS

operational policy results in a 50% improvement in the throughout. The second case is

used to determine the minimum amount of intermediate storage while maintaining the

throughput achieved with infinite intermediate storage. This resulted in a 33% reduction

in the amount of dedicated intermediate storage. The models developed for both cases

are MILP models. A design model is then developed to exploit the attributes of the

PIS operational policy. The design model is a MINLP due to the capital cost objective

function. This model is applied to a literature example and an industrial case study and

in both cases results in improved flowsheets and reduced capital cost.
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CHAPTER 1

Introduction

1.1 Background

Batch plants are used for the production of low volume high value-added products such as

fine chemicals, agrochemicals and pharmaceuticals. These plants are inherently flexible

because, in most cases, the same unit can be utilized to manufacture many different

products. This inherent flexibility is used to react to steep changes in market demand,

thus gaining a competitive advantage in an ever-changing industry. As such these facilities

are becoming more and more popular as opposed to continuous plants.

Batch processes differ from continuous processes in many ways, the main of which is

that time is intrinsic in batch processes. In batch operations every task has a specific

duration, with attendant starting and finishing times, whereas in continuous processes

time is important during non-steady state operation. As a result of this, the scheduling

of batch processes is vital to the operation of any batch facility. Although it is possible

to do this by hand, in large complex facilities, the time and effort required is tremendous.

There are mathematical methods to aid in the development of feasible schedules, however,

to gain a truly competitive advantage the optimization of these schedules is imperative.

1

 
 
 



CHAPTER 1. INTRODUCTION 2

A large amount of research has gone into the development of optimization techniques for

the scheduling of batch plants. This research has focused on reducing the time required

to achieve the optimal solution through the development of mathematical models based

on improved frameworks, such as the State Task Network (STN) (Kondili et al., 1993),

Resource Task Network (RTN) (Schilling & Pantelides, 1996) and the State Sequence

Network (Majozi & Zhu, 2001). Furthermore, through improvements in the discretiza-

tion of the time horizon and hybridization of methods such as the CP/MILP hybrids

(Huang & Chen, 2005; Maravelias & Grossmann, 2004; Roe et al., 2005; Harjunkoski &

Grossmann, 2002; Jain & Grossmann, 2001). All of the abovementioned methods are

based on mathematical programming, however, there is another class of methods, the

graphical techniques.

Graphical techniques approach the problem in a different manner to their mathematical

counterparts, by using graph theory to generate feasible schedules based on the recipe

and then finding the optimal solution through searching algorithms, such as the S-graph

approach (Sanmart́ı et al., 1998). The approach in mathematical techniques is a so called

’black box’ approach, where the user has no interaction in the solution of the model, while

in graphical techniques the recipe is directly exploited as part of the solution algorithm.

Both mathematical and graphical methods have one thing in common, the final result is

a schedule, whether it is simply feasible or optimal. In a typical batch operation units are

idle and empty for large portions of the time horizon of interest, which provides a unique

opportunity of using these units as storage, instead of, or in conjunction with dedicated

intermediate storage. This would result in increased capital utilization of the equipment,

and in the case of a design problem, this could result in a reduction in the size and capital

cost of the facility. Mathematical and graphical techniques rely on operational policies to

simulate operational conditions. In the context of batch plants there are six operational

policies, i.e., Zero Wait (ZW), No Intermediate Storage (NIS), Finite Intermediate Storage

(FIS), Unlimited Intermediate Storage (UIS), Mixed Intermediate Storage (MIS) and

Central Intermediate Storage(CIS). Each operational policy corresponds to a particular

operational philosophy. For example the ZW operational policy is used when intermediate

 
 
 



CHAPTER 1. INTRODUCTION 3

products are unstable. The NIS policy is used when there is no intermediate storage

available. While the FIS and UIS operational policies are used when there is finite and

infinite intermediate storage, respectively. In the case where intermediates are compatible

the CIS operational policy is often used. The MIS operational policy is used when a

combination of all the above mentioned operational are used. However, none of these

policies takes into account the use of latent storage. To take the use of latent storage

into account a novel operational policy, Process Intermediate Storage (PIS) operational

policy, is introduced.

1.2 Aim

The aim of the project was to develop a mathematical model to take the inherent latent

storage capacity into account when scheduling and designing a batch plant, in order

to increase the capital utilization of a batch plant and to reduce the capital cost of

constructing a new facility.

1.3 Approach

The techniques developed in this work are based on a mathematical programming and

optimization approach. The work was approached in two steps. Firstly, the scheduling

capabilities of the proposed model were explored, followed by the exploration of the design

capabilities.

The project entailed three stages, i.e., the literature review, methodology development

and the industrial application of the method. A more detailed description of each of these

stages follows.

 
 
 



CHAPTER 1. INTRODUCTION 4

1.3.1 Literature review

Before the model was developed a thorough literature review was conducted. This review

was done to ensure a comprehensive understanding of the current advances in the field of

batch scheduling and also to identify possible opportunities to improve the current level

of development in the field. The literature survey covered these advances from the early

developments in 1975 to current research taking place in the field.

1.3.2 Methodology development

The approach used for the development of the methodology was to divide the problem into

two subsections. Firstly, the scheduling effect on the use of latent storage was determined,

wherein, the model was solved using an algorithmic approach to determine the minimum

amount of intermediate storage required to achieve an optimal throughput. Secondly, the

design opportunities were explored, where a model was developed to design storageless

batch plants using the latent storage. Both models are presented in full detail in Chapter

3.

1.3.3 Application

To prove applicability of the developed models they were then applied to an industrial

case study. The case study involved the design of a petrochemicals facility.

1.4 Thesis structure

Chapter 1 of the thesis introduces the nature of the problem at hand. Chapter 2 is the

literature review, followed by the methodology developed in Chapter 3. Chapter 4 is the

industrial application. The findings and further development of the work are discussed

in Chapters 5 and 6.

 
 
 



CHAPTER 2

Literature Survey

2.1 The development of batch scheduling

The production of low-volume high-value-added products such as pharmaceuticals and

agrochemicals is the premise of batch plants. This is mainly due to their inherent ability

to adjust to steep changes in production and product type demands. Based on this

inherent flexibility, batch plants can be divided into two classes, i.e., multiproduct and

multipurpose batch plants. In multiproduct plants all products use essentially the same

equipment and follow the same path through the plant. Whereas in multipurpose plants,

there is no common path through the plant and in some cases successive batches of the

same product can follow completely different paths and finish simultaneously. Therefore,

multipurpose plants are not only more complex than multiproduct plants, but are also

the superset of multiproduct plants. Accompanying the flexibility of batch plants, is

inherent complexity that derives from the nature of the products.

There are six operational policies currently used in literature and in practice:

• Zero Wait (ZW),

5
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• No Intermediate Storage (NIS),

• Finite Intermediate Storage (FIS),

• Unlimited Intermediate Storage (UIS),

• Mixed Intermediate Storage (MIS) (Weide Jr. & Reklaitis, 1987) and,

• Central Intermediate Storage(CIS) (Ku & Karimi, 1990).

In the ZW policy intermediate products cannot wait after they have been processed;

so as soon as a batch has been processed in a unit it must be moved to the next step

in its recipe. In general the resulting schedules have a stair-step appearance, as shown

in Figure 2.1. The ZW policy is generally used for unstable products, where delays

may have a detrimental effect on the product. The remaining operational policies are

related to the nature of the intermediate storage. The NIS policy is used when there

is no intermediate storage available, however, this does not imply that products cannot

be stored in the process unit before processing or before moving to the next available

processing unit. The FIS policy is more practical in nature, where there is an existing

storage vessel of known capacity. However, this operational policy often assumes that

there is a dedicated storage vessel for each intermediate product. The UIS policy is more

of a theoretical operational policy, because the plant would have to be of infinite size

to handle the unlimited capacity, however, this operational philosophy can be used at a

design phase because it offers the highest degree of freedom of the previously mentioned

policies. In practice it is more common to find these operational policies being used

together in sections of the plant. To this end Weide Jr. & Reklaitis (1987) defined the

MIS operational policy. In a situation where various intermediates are compatible, a CIS

operational policy is recommended. When using the CIS operational policy there is a

centralised intermediate storage unit which can be used by all products. The flowsheet

in Figure 2.2 illustrates the MIS and CIS policies, where sections of a plant have different

operational policies including the concept of shared storage.

Although these operational philosophies help with the operation of a batch plant, one
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Figure 2.1: Stair-step nature of schedules with the ZW operational policy

Figure 2.2: A serial process with the MIS and CIS operational policies
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must understand that there is a major difference between continuous and batch plants

which pertains to time. In continuous plants time is not a factor, however, in batch

plants time is one of the most important variables. Due to the discrete nature of batch

plants, scheduling of tasks is essential for their operation. The differences between batch

and continuous processing is clearly shown in Figure 2.3. The discrete nature of batch

processes can be clearly seen in Figure 2.3 a), where a task is processed in a unit and

then once completed is transfered to the next unit for processing. Whereas, in a similar

continuous process the discrete nature is only observed at startup and shutdown, as shown

in Figure 2.3 b).

Time (h)Time (h)

Units Units

a) b)

Time (h)Time (h)

Units Units

a) b)

Figure 2.3: Batch vs. continuous processing

In its general form, the general scheduling problem entails determination of the optimal

sequence of events using available resources. Formulation of this problem was initially

proposed by Sparrow et al. (1975). They developed a mixed integer non–linear program

(MINLP) formulation for multiproduct plants and introduced two solution strategies to

solve the scheduling problem. The first strategy introduced the heuristic solution method,

which is divided into three parts. Firstly, calculation of the exact equipment sizes, given

the number of units in parallel is performed. Secondly, the exact sizes are converted to

standard equipment sizes, and thirdly, the number of units which are in parallel at a

given stage are chosen. The second solution strategy involved a deterministic branch and

bound method.

It was concluded that the heuristic method was faster but might not lead to the optimal

solution, whereas the branch and bound technique finds an optimum solution and is more

flexible in that it allows constraints to be set, thus lowering computational time. As the
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problem was an MINLP and there were no solution procedures to guarantee the global

optimality, Grossmann & Sargent (1979), posed this problem as a geometric program and

proved that the solution is global using the Karush-Kuhn-Tucker conditions. They also

proved that the problem could be solved as a relaxed subprogram by disregarding the

discreteness of equipment sizes. Ravemark & Rippin (1998) applied the same formulation

as Sparrow et al. (1975) but used logarithmic transformations to ensure convexity of the

MINLP.

Heuristic methods proposed by Sparrow et al. (1975) were used by Suhami & Mah (1982)

to solve a multipurpose batch plant formulation. The drawback of heuristic methods is

that they cannot guarantee global optimality. This is due to the fact that they are based

on ”rules of thumb”, which are derived from experience.

The above formulations were all based on recipe networks. These networks are derived for

continuous plants (i.e. flowsheets), but in batch plants this can lead to ambiguity. This

led Kondili et al. (1993) to develop the State Task Network (STN) representation. The

STN has two types of nodes; namely, state nodes, which represent feeds, intermediate

and final products and task nodes, representing processing operations that transform

material from input states to output states. Rectangular blocks and circles represent

task and state nodes, respectively. Based on the STN a discrete time mixed integer linear

program (MILP) formulation was developed. The resulting time intervals coincided with

the beginning and end of a specific event, as shown in Figure 2.4. The problem with

this formulation, however, is that the discretization of time with the attendant accuracy

concerns, results in the creation of a large number of binary variables. In general the

more binary variables a problem has, the more the computational effort required to find a

solution. These computational issues were tackled in the second paper of the series (Shah

et al., 1993), where they developed methods to reduce the number of binary variables.

However, due to the inherent large number of binary variables required, suboptimal results

were still achieved. The large number of binary variables was in part due to the restriction

placed on the time horizon. In order to alleviate this restriction the continuous time

formulation was developed.
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Figure 2.4: Formulations based on the discrete time framework require uniform discretization
of the time horizon

Schilling & Pantelides (1996) developed a continuous time MINLP formulation where

time slots of unknown length were used. The beginning and end of time slots coincided

with the beginning and end of a task, as shown in Figure 2.5. The formulation was

derived from the Resource Task Network (RTN) representation. In this representation,

the plant is modelled as resources and tasks. Resources include raw materials, intermedi-

ates and products like the STN, but also include processing, storage, transportation and

manpower. A task is an operation that converts a set of resources to another set. The

tasks do not only include processing steps, but also include transportation and cleaning.

In RTN, resources are produced and consumed.

Figure 2.5: Time points and slots used by Schilling & Pantelides (1996)

Although continuous time formulations reduced the number of binary variables, prob-

lems still occurred in solving schedules for large-scale industrial plants. The assignment

of a single binary variable to units (i) and tasks (j ) at any time (n), is common to all

previously discussed formulations, and leads to i×j×n number of binary variables. This

observation led Ierapetritou & Floudas (1998) to develop an MILP continuous-time for-

mulation, based on the STN to address this problem. The main contribution of their

formulation is the decoupling of task events from unit events. This is done by the in-

troduction of binary variables for tasks wv(j,n) and units yv(i,n), which represent the

common binary variable y(i,j,n). As a result, instead of i×j×n binary variables, their

formulation leads to (i+j)×n binary variables. In this formulation a further reduction

in binary variables is possible if there exists a one-to-one correspondence between tasks
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and units. However, this reduction can become tedious in large-scale industrial plants.

Following this observation Majozi & Zhu (2001) developed a scheduling representation

and a continuous time formulation, which gives the least number of binary variables and

does not require simplification.

2.2 The State Sequence Network

Majozi & Zhu (2001) introduced the State Sequence Network (SSN) representation con-

sisting of states only. The SSN is a graphical representation of all the states that occur

on the particular batch plant and is derived from the recipe. A state changes when it

undergoes some process, such as mixing, separating or reacting. This is represented by

an arc connecting two consecutive nodes. The building blocks of the SSN are shown in

Figures 2.6, 2.7 and 2.8. From these building blocks its is easy to construct an SSN for

any situation. The difference between the SSN and the STN is that in the SSN only

states are considered while tasks are implicitly incorporated. The formulation makes use

of time points proposed by Schilling & Pantelides (1996) and also used by Ierapetritou

& Floudas (1998). The main difference between this model and the model proposed by

Ierapetritou & Floudas (1998) is that a binary variable is not assigned to the task, so

if a one-to-one correspondence between a state and a task does not exist, fewer binary

variables will result when using the SSN.

Figure 2.6: Simple unit operation

The defining of effective states is an integral part when using the SSN because this reduces

the number of binary variables. Effective states are a subset of all the input states so

only input states are considered. If a process requires multiple raw materials to make a

particular product, then it is a fact that if one of the raw materials is fed then all of the
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Figure 2.7: Unit operation where states mix

Figure 2.8: Unit operation where states split

other required feeds must also exist to make the product. By noting this, it is simple to

see that only one of the states need to be defined as an effective state to ensure that all

the states are fed to the particular process. For instance in the example in Figure 2.9, the

second reactor requires two feeds, S2 and S3. This leads to two choices of effective state,

either S2 or S3, the reason that only one of these states need contribute to the number of

binary variables is that if S2 is fed to the reactor then S3 must also be fed to the reactor

at the same time so there is no need for both to be effective states.

Once again using the example in Figure 2.9, where the SSN and STN are constructed from

the given flowsheet, the attractiveness of the model proposed by Majozi & Zhu (2001) is

illustrated. Applying the formulation of Ierapetritou & Floudas (1998) to the example in

Figure 2.9, n×(3+3) binary variables (where n is the number of time points) would be

required, but using the one-to-one correspondence between tasks and units, this would

reduce to 3×n binary variables. However, using the SSN and defining the effective states

as S1, S3 and S4, 3×n binary variables would be required. Both formulations result in

the same number of binary variables but using the SSN no simplification was required.
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Figure 2.9: a) Flowsheet, b) The STN and c) SSN representation of (a)

2.3 S-Graph

Although mathematical methods are often encountered in this kind of research there

are graphical techniques to schedule the operation of batch plants. The schedule-graph

(S-graph) (Sanmart́ı et al., 1998) representation is such a technique. All of the above

scheduling formulations require the assignment of binary variables to either a state or

resource, task or both, and all formulations rely on the discretization of the time horizon

of interest, whether it be uniform or non-uniform discretization. The so-called continuous

time formulations are not in fact continuous as their name suggests. Any method where

there is discretization of the time horizon cannot be called continuous. The S-graph

does not suffer from the problem of binary variables which increase the computational

complexity of a problem. Furthermore, this method does not require the discretization

of the time horizon so can truly be called continuous. Although this method seems to be

the answer to all the problems associated with the mathematical models, the generation

of the S-graph is complex and is ill suited to the case where tasks such as storage are not

definite.
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In this representation, nodes represent the production tasks and the arcs represent the

precedence relationships between tasks. A node is also assigned to the final product. A

number is placed over the arc which represents the duration of that task as shown in

Figure 2.11. This figure is the representation of the master recipe as shown in Figure

2.10

PT: 9
Unit: 3

PT: 13
Unit: 2

PT: 7
Unit: 2

PT: 8
Unit: 1

PT: 4
Unit: 6

PT: 6
Unit: 1

PT: 10
Unit: 4
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PT: 8
Unit: 3

PT: 9
Unit: 3

PT: 2
Unit: 4

PT: 7
Unit: 5

PT: 15
Unit: 1

PT: 10
Unit: 5

PT: 3
Unit: 6

PT: 9
Unit: 3
PT: 9
Unit: 3

PT: 13
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PT: 13
Unit: 2
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Unit: 2
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Unit: 1
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Unit: 1

PT: 4
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PT: 7
Unit: 5

PT: 15
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PT: 15
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PT: 10
Unit: 5
PT: 10
Unit: 5

PT: 3
Unit: 6
PT: 3
Unit: 6

Figure 2.10: Master recipe for a batch production facility

After completion of the master recipe the precedence constraints are set for the units.

Depending on the operational philosophy (UIS or NIS) the precedence arcs are set. The

operational philosophy changes the start location of the arcs joining the same piece of

equipment, for UIS the arcs start at the node of the same unit and terminate at the same

unit completing the next task. However, for the NIS policy the arcs start at the following

node and terminate as before. These arcs have a task duration of 0, or some value which

gives one the time which is required for the transfer of mass from one unit to another.

Figure 2.12 gives an example of an S-graph. One should note that this is one example of

many possible S-graphs for this example.

The final goal of the formulation of Sanmart́ı et al. (1998) was the minimization of

makespan with a feasible schedule. This is done by simply finding the longest pathway

starting from the end node and terminating at the source. After the longest path has
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Figure 2.11: Graphical representation of recipes
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Figure 2.12: Schedule graph for the NIS sequence to minimise makespan
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been found the schedule can be constructed from the appropriate S-graph. The basic

assumption associated with this method is that of fixed batch size.

Further improvements on the method have been made, most significantly by Majozi &

Friedler (2006). Their formulation extends the current formulation, where instead of

minimising makespan they maximise throughput or profit over a given time horizon of

interest, furthermore they propose a novel node cutting algorithm which improves the

computational efficiency.

The way these cuts are performed is easily described using a two-dimensional example as

shown in Figure 2.13 where the nodes represent the number of batches of product A or B.

The search space is divided into two sections, namely, a region which can be excluded and

the region where the optimal point lies, by a constant revenue line. The constant revenue

line is derived firstly, by placing the product with the higher revenue contribution on the

x–axis, secondly, noticing that the highest revenue that can be achieved using a single

product is the point defined by (NB)U , and thirdly, the actual line can be constructed

by maintaining this revenue. Any point above this line will have a higher revenue than

simply producing product B. After this cut has been made further cuts can be made by

noticing, from the figure, that if you test node 4 and it is found to be infeasible then

it is not necessary to test node 1, because if one cannot produce 3 batches of B and 2

batches of A within the time horizon then one certainly cannot produce an extra batch

of A. Similarly for point 3, where there is an increase in the number of batches of B.

Furthermore, node 2 does not need to be checked for the same reasons. Using both these

cutting methodologies, the number of nodes that need to be checked reduces significantly,

although this is a two-dimensional example the method can be easily extended to more

dimensions.

Although the graphical methods described above seem to have many significant advan-

tages over their mathematical counterparts, the S-graph requires definite knowledge of

the tasks required to produce a batch. In the case where storage becomes a task this

method becomes overly complex.
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Figure 2.13: Search space for a two product system
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2.4 Scheduling under uncertainty: Reactive schedul-

ing

Most scheduling models assume that problem data are known and fixed. However, in

practice this is not usually the case. Uncertainties in batch processing derive from two

main sources. Firstly, process model parameters, i.e., processing times (catalyst deactiva-

tion) and equipment availability (equipment failure). Secondly, economic issues, i.e., due

dates, product demand, cost of raw materials and price of product. Reactive scheduling

is reactive in nature, i.e., once a problem has been identified steps are taken to minimise

the effect of the problem, without resorting to rescheduling the entire plant operation.

These steps include the local reordering of batches, reassignment of certain batches to

other equipment items or simply shifting the starting times of the affected batches.

One approach to countering the variability of batch processes is to design intermedi-

ate storage between process units and to maintain a reserve of material for downstream

processes (Karimi & Reklaitis, 1985a,b). This procedure allows decoupling of two units

while allowing the original schedule to be used without modification. However, there are

a number of concerns with this solution. Firstly, it requires the production of sufficient

material which could be expensive, secondly, there need to be storage tanks for every

intermediate which is also expensive and in multipurpose plants is in some cases impos-

sible. Finally, if the products are unstable, and thus need to be used as soon as they are

produced, intermediate storage is not an option.

Following this Cott & Macchietto (1989) came up with a method for solving variability

problems. They stated that there are two ways in which a batch can be affected, firstly

the processing time could be longer than expected and secondly, if a task is finished

earlier than expected. Figure 2.14 shows the effects on a small two unit plant using

the ZW operational policy. The first of the series of pictures illustrates the schedule

under ideal operating conditions, i.e., when there are no disturbances. The second of

the series illustrates what would occur if the first batch was processed faster than the

schedule indicated, as one can see there is time wasted before processing the second
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batch. In the final figure of the series the first batch takes longer than expected, causing

the second batch to wait in unit 1. This results in a violation of the ZW operational

policy. To counter these problems Cott & Macchietto (1989) developed an algorithm to

dynamically modify the original schedule to improve the plant performance. This method

shifts the starting times of batches. For example, if we revisit the example in Figure 2.14

and apply their algorithm, the results are shown in Figure 2.15. In the case where the

processing time was shorter than expected the second batch is brought earlier to reduce

the idle time of the units, while in the case where the processing time was longer than

expected the starting time for the second batch is moved later so that the ZW operational

policy is obeyed.

Figure 2.14: The effects of batch variability on a two unit operation

The scope of Cott & Macchietto (1989) research into this field was only based on the

start time modification, which is an effective method. However, the approach does not

take into account customer priorities and possible changes in unit functionality. This

lead Kanakamedala et al. (1994) to develop a method which also takes into account unit

replacement as well as time shifting. Following this Sanmart́ı et al. (1997) developed

a scheduling model for multipurpose batch plants in the presence of equipment failure

uncertainty. They introduced a reliability index which represents the discrete probability
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Figure 2.15: Schedule with online schedule modification

that the corresponding unit will be available to perform the required task. The value

of this index depends on the failure history of the unit, its maintenance history and

its intended use. They further assumed that the reliability decreases linearly with the

number of times the unit is used. This method is based on ’rules of thumb’, so global

optimality cannot be assured.

Roslöf et al. (2001) developed an MILP based algorithm that can be used to improve sub-

optimal schedules or to reschedule jobs in case of changed operational parameters. They

adjusted the number of simultaneously released jobs, in order to reduce the computa-

tional complexity of the resulting MILP. Méndez and & Cerdá (2003) developed a similar

method to the method described by Roslöf et al. (2001), however, their approach allows

the the user to perform multiple rescheduling operations at the same time. Méndez and &

Cerdá (2004) further improved on their earlier work by including the renewable discrete

resources such as manpower, equipment and tools.
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2.5 Pipeless batch plants

Batch plants are inherently flexible, however, this flexibility is directly proportional to

the piping network that links the various pieces of equipment. Material can only be

transported to process units that are linked to each other. In a large multipurpose plant,

one can imagine that to completely exploit the flexibility, the piping network would be

large, complex and in some cases impossible to construct due to size considerations.

However if one was to completely remove this piping network and instead move the

process units, one could come closer to exploiting the true flexibility and could, therefore,

adapt to fast market changes (Niwa, 1993; Zanetti, 1992).

The main difference between these plants and conventional fixed pipe plants is that

material is transported from stage to stage in transferable vessels. Processing takes place

at processing stations and in general, material is processed in the same vessel as it is

transfered in (Realff et al., 1996). A simple blending operation, where component x is

mixed with component y, is shown in Figure 2.16.

Figure 2.16: Pipeless batch plant

A rather novel analogy was drawn by Niwa (1993), where a pipeless batch plant is com-

paired to a chemical laboratory. In a laboratory, a beaker or test tube is the transferable
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vessel and the laboratory equipment are the processing stations, such as scales, Bunsen

burners and vacuum filters. The product is synthesised by moving the beaker or test

tube to the required processing station to carry out the specific task.

The scheduling of these types of plants was done initially by Pantelides et al. (1995),

who developed a discrete–time formulation based on the STN. This model was then

extended to simultaneously design and schedule pipeless batch plants by Realff et al.

(1996). Huang & Chung (2000) then extended the modeling to constraint satisfaction

techniques. However, these formulations did not take into account the possibility of vessel

collision, therefore Huang & Chung (2005) developed a model to integrate routing and

scheduling.

2.6 Constraint and hybrid MILP/CP based approaches

Constraint satisfaction techniques (CST) are methods of expressing and solving constraint

satisfaction problems (CSP’s). These problems are similar to MILP or MINLP problems

in that they are represented by constraints and constrained variables, where variables have

their specific domains. A solution to a CSP is an assignment of values to the variables

which satisfy all of the constraints simultaneously, giving only feasible solutions whereas a

solution to an MILP problem is the optimal solution. An optimal solution can be found

using these techniques by inserting a constraint that ensures that the next objective

function should be larger than the last feasible solution (in the case of a maximization

problem, and smaller in the case of a minimization problem) and repeating this until

an optimal solution is found. As one can imagine, in some problems this would take a

lengthly amount of time. This is the main disadvantage of the CP techniques.

The way the CST works, is by reducing the search space by using the constraints them-

selves. Furthermore, it uses existing constraints in a constructive way to deduce other

constraints and find inconsistencies among possible solutions, which is known as con-

straint propagation and consistency checking.

To illustrate this method a simple example can be used. If we have two variables h and
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w with domains {0, 1, 2, 3. . . , 14, 15} and {0, 1, 2, 3,. . . , 9, 10}, respectively, and

constraints h<10, w<6 and h+w=12. Using the first two constraints unsuitable values

can be removed. The domains of h and w now change to {0, 1, 2, 3. . . , 8, 9} and {0, 1, 2,

3, 4, 5}, respectively. These sets can be further reduced when the third constraint is set

to {7, 8, 9} and {3, 4, 5}. To search for a solution, a choice point (called a node) is set

by assigning either 7, 8 or 9 to h. If 7 is assigned to h, then constraint propagation will

remove 3 and 4 from the domain of w, and set w to 5. After this potential solution has

been found the program can backtrack and set h = 8 and then remove 3 from the domain

of w, leaving w = 4, and similarly for h = 9 and w = 3. From this example it is clear to

see that the search space has been greatly reduced, and that this method only provides

the user with a set of feasible solutions and not the optimal solution. Furthermore, it

should be noted that there isn’t an objective function, but only the satisfaction of the

constraints.

Using this approach Huang & Chen (2005) developed a batch scheduling model based on

the CST and solved complex problems, however, due to the nature of these techniques

optimality was not achieved in a reasonable amount of time. CST does have the advantage

of cutting the search space using constraint propagation but has the disadvantage of

not finding the optimal schedule. From the conclusions of Huang & Chen (2005), it is

clear that a hybrid CSP/MILP technique which could take the search space reduction

techniques of the CST and combine it with an MILP model, which can find optimal

solutions, would lead to faster solution times.

There is a large amount of research going into this area (Maravelias & Grossmann, 2004;

Roe et al., 2005; Harjunkoski & Grossmann, 2002; Jain & Grossmann, 2001) to try to

develop methods which use the complementary strengths of both methods. In general the

way these methods are hybridised is by relaxing the MILP and solving for optimality, then

using CP to check for feasibility. If the answer is feasible then it is optimal. However, if

it is infeasible, the causes of infeasibility are inferred and further cuts are generated. Roe

et al. (2005) followed a similar path, however, they decompose the problem differently.

Firstly, an aggregate planning problem is solved using an MILP model, and then the
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sequencing problem is solved using CP. These methods show large improvements when

compared to solving pure MILP and CP approaches.

2.7 Conclusions

From this literature survey it is clear that there are two main types of methods, graphical

and mathematical programming. Graphical methods exploit the structure of the recipe

to determine the optimal schedule and are effective when applied to plants running on

the NIS or UIS operational policies or where every task has a pre-specified duration.

Furthermore, these methods do not require pre-specification of a number of time points

prior to solution of the model, and are thus truly continuous. On the other hand, mathe-

matical models require the presupposition of the number of time points and therefore are

not continuous, regardless of whether the time horizon is discretized evenly or unevenly.

However, mathematical methods are able to handle tasks of varying duration and handle

all previously developed operational policies. One of the most advanced of the mathe-

matical programming techniques is that of Majozi & Zhu (2001), which utilises the SSN

and the non-uniform discretization of the time horizon approach. The model is also a

MILP model and thus results in globally optimal solutions.

The techniques discussed in the literature survey have been developed to take many

different operational policies into account. The reason for this is so that the practical

environment can be more easily modeled. However, none of these operational policies

exploit the latent storage found in most batch chemical facilities. As such the use of

this latent storage requires the introduction of a new operational policy, the Process

Intermediate Storage (PIS) operational policy.
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Methodology

The models developed to take the PIS operational policy into account are detailed

in this chapter. The models are based on the SSN and continuous time model

developed by Majozi & Zhu (2001), as such their model is presented in full.

Following this the additional constraints required to take the PIS operational policy

into account are presented, after which, the necessary changes to constraints

developed by Majozi & Zhu (2001) are presented. In order to test the scheduling

implications of the developed model, two solution algorithms are developed and

applied to an illustrative example. The final subsection of the chapter details

the use of the PIS operational policy as the basis of operation to design batch

facilities. This model is then applied to an illustrative example. All models were

solved on an Intel Core 2 CPU, T7200 2GHz processor with 1 GB of RAM, unless

specifically stated.

The models developed in this section take the PIS operational policy into account. This

operational policy is novel and thus requires further explanation. When a batch operation

is scheduled a Gantt chart is usually generated, such as in Figure 3.1. From this figure it is

25

 
 
 



CHAPTER 3. METHODOLOGY 26

simple to identify the latent storage potential of the units. For example, units 1, 3, 4 an 6

are idle and empty for most of the time horizon of interest. This provides the opportunity

of using these units as storage, instead of, or in conjunction with dedicated intermediate

storage. This leads to a number of benefits, such as increased capital utilization of the

equipment, possible reduction in the size required for the plant and a reduced capital

cost associated with the construction of new batch facilities. In order to illustrate the

idea even further, the following example was developed.
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4.5 4.5
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Figure 3.1: General schedule

Unit i1 Unit i2 Unit i3

Unit d2,3

Unit i1 Unit i2 Unit i3

Unit d2,3

Figure 3.2: Flowsheet for the simple example

Table 3.1: Data for simple illustrative example
Unit Capacity(ton) Processing time (h)
i1 100 2
i2 100 3
i3 50 2

d2,3 50 -

Figure 3.2 shows the flowsheet for the illustrative example. The data for the example
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is given in Table 3.1, where i1, i2, and i3 are consecutive processing units, while d2,3

is a dedicated intermediate storage vessel between processing units i2 and i3. The time

horizon of interest in this example is 9 hours.
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Figure 3.3: Schedule of the simple example without using PIS
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Figure 3.4: Schedule of the simple example without using PIS

When the PIS operational policy is not used, as in Figure 3.3, 50 tons of dedicated

intermediate storage unit, d2,3, was required. The reason for this is that the capacity of

the final unit is only 50t, due to this, the 100t batch produced from unit i2 must be split

in half. Half of the batch is stored in dedicated intermediate storage while the remaining

batch is processed, after which, the stored mass is then processed thus achieving the

optimal throughput of 100t. However, when compared to the schedule in Figure 3.4, the

100 ton storage vessel is not needed. The reason for this is that 50t of the intermediate

product produced from unit i2 is moved to i1 for storage, while the remaining 50t is
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processed in unit i3. This increases the capital utilization of unit i1, while reducing the

size required for the plant which achieves the same throughput. This also avails unit i2

for further processing. Furthermore, if this possibility had been identified at the design

phase, the cost of the 50t storage vessel could have been saved.

In order to illustrate the uses of this novel operational policy, i.e. PIS operational policy,

this chapter has been divided into two parts. Firstly, the applicability of the operational

policy will be proven and used to determine the minimum amount of intermediate storage

required while maintaining the throughput achievable with infinite intermediate storage.

Secondly, the PIS operational policy will be used to design storageless batch plants.

3.1 Scheduling implications

In order to test the applicability of the PIS operational policy the problem has to be

clearly defined.

3.1.1 Problem Statement

The problem can be formally stated as follows,

Given:

(i) the production recipe for each product, including processing times in each unit

operation,

(ii) the available units and their capacities,

(iii) the maximum storage capacity for each material, and

(iv) the time horizon of interest,

determine,

(i) the maximum throughput with zero intermediate storage with and without using

the PIS operational policy
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(ii) the minimum amount of intermediate storage, while maintaining the optimal through-

put

3.1.2 Mathematical model

A mathematical model based on the mdel developed by Majozi & Zhu (2001) was devel-

oped to solve the stated problem.

Sets

P = {p|p = time point}

J = {j|j = unit}

S = {s|s = any state}

Sin = {Sin|Sin = any input state}

Sout= {Sout|Sout = any output state}

Binary Variables

yin(s, j, p) decision variable describing the processing of state s in

unit j at time point p

ylt(s, j, p) decision variable describing the latent storage of state s

in unit j at time point p

e(j) decision variable based on whether unit j exists or not

Continuous Variables

min(s, j, p) amount of state s consumed for processing in unit j at

time point p

ms
in(s, j, p) amount of state s fed into storage from unit j at time

point p
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mlt
in(s, j, j ′, p) amount of state s fed into latent store j′ from unit j at

time point p

mout(s, j, p) amount of state s produced from unit j at time point

point p

ms
out(s, j, p) amount of state s fed from storage to unit j at time point

p

mlt
out(s, j

′, j, p) amount of state s from latent store in j′ fed to unit j at

time point p

c(j) capacity of unit j

tin(s, j, p) time at which state s is used in unit j at time point p

tltin(s, j, p) beginning of latent storage for state s in unit j at time

point p

tout(s, j, p) time at which state s is produced from unit j at time

point p

tltout(s, j, p) end of latent storage for state s in unit j at time point p

w(s, j, p) storage time for state s in unit j during latent store at

time point p

q(s, p) amount of state s stored at time point p

d(s, p) amount of state s delivered to customers at time point p

Z objective function to be evaluated

Parameters

V min
j Minimum capacity of unit j

V max
j Maximum capacity of unit j

Q0

s(s) Amount of state initially stored

τ(s) Processing time of state s

WU(s, j) Upper limit of the duration of the latent storage of state

s in unit j
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WL(s, j) Lower limit of the duration of the latent storage of state

s in unit j

H Time horizon of interest

A,B Unit specific capital cost terms

α Power function for capital cost objective function

Basic scheduling model

In the first section, the constraints developed by Majozi & Zhu (2001) are repeated for

completeness of the model.

Capacity constraints

V min
j y(sin, j, p) ≤

∑

s∈Sin

min(s, j, p) ≤ V max
j y(sin, j, p) ∀ s ∈ Sin, j ∈ J, p ∈ P (3.1)

Constraint (3.1) states that the mass entering a unit for processing must be between

the minimum and maximum capacities of the unit. Furthermore, it ensures that if mass

enters a unit, that unit becomes active.

Material Balances

∑

s∈Sin

min(s, j, p − 1) =
∑

s∈Sout

mout(s, j, p) ∀ j ∈ J, p ∈ P, p > 1 (3.2)

q(s, p) = q(s, p − 1) +
∑

j∈J

mout(s, j, p) −
∑

j∈J

min(s, j, p)

∀ s ∈ S, S = intermediate, p ∈ P, p > 1 (3.3)
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q(s, p) = q(s, p − 1) −
∑

j∈J

min(s, j, p) ∀ s ∈ S, S = feed, j ∈ J, p ∈ P, p > 1 (3.4)

q(s, p) = q(s, p − 1) +
∑

j∈J

mout(s, j, p) − d(s, p)

∀ s ∈ S, S = product, j ∈ J, p ∈ P, p > 1 (3.5)

q(s, p1) = Q0

s(s) −
∑

j∈J

min(s, j, p1) ∀ s ∈ S, j ∈ J, p1 ∈ P (3.6)

The material balances are shown by constraints (3.2), (3.3), (3.4), (3.5) and (3.6). Con-

straint (3.2) is a mass balance over a processing unit. It simply states that the mass that

enters unit j at time point p − 1 must exit that unit at the next time point. Constraint

(3.3), is a balance over a dedicated intermediate storage unit and only applies to inter-

mediate products. This constraint states that the amount of state s that is stored in

the dedicated intermediate storage unit is the difference between that which enters and

exits for processing and the amount of state s that was already present at the previous

time point. Constraint (3.4) applies where mass is only used, such as with feed states.

The amount of state delivered to the customer is determined by constraint (3.5), where a

state is only produced not used. Constraint (3.6) is similar to constraint (3.3), however,

it applies at the beginning of the time horizon of interest. This constraint takes care of

the possibility that there is state stored in a unit prior to the start of scheduling, such as

feeds or in the case where rescheduling is required.
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Duration Constraint

tout(sout, j, p) = tin(sin, j, p − 1) + τ(s)y(sin, j, p − 1)

∀ j ∈ J, p ∈ P, p > 1, sout ∈ Sout, sin ∈ Sin (3.7)

The model is based on a fixed duration of tasks as shown in constraint (3.7). This

constraint states that the time at which the output state from unit j exits, is the time

at which the input state entered the unit at the previous time point plus the duration of

the task. The binary variable ensures that the constraint holds whenever the unit is used

at the precise time, i.e. p − 1.

Sequence Constraints

tin(sin, j, p) ≥
∑

sin∈Sin

∑

sout∈Sout

∑

j∈J

∑

p′≤p

(

tout(sout, j, p
′) − tin(sin, j, p

′ − 1)
)

∀ j ∈ J, p ∈ P, p > 1 (3.8)

tin(sin, j, p) ≥ tout(sout, j, p) ∀ j ∈ J, p ∈ P, sout ∈ Sout, sin ∈ Sin (3.9)

tin(sin, j, p) ≥ tout(sout, j
′, p) ∀j, j′ ∈ J, p ∈ P, sout = sin, sout ∈ Sout, sin ∈ Sin (3.10)

Constraint (3.8) reduces the search space by ensuring that the time at which a state s

can be processed in unit j at time point p is at least after the sum of the durations of

all previous tasks that have taken place in the unit. Constraint (3.9) ensures that the
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processing of state sin into unit j can only take place after the previous batch has been

processed. Constraint (3.10) stipulates that state sin can only be processed in unit j

after it has been produced from unit j′, where units j and j′ are consecutive stages in

the recipe.

Feasibility Constraints

∑

s∈Sin

y(s, j, p) ≤ 1 ∀ j ∈ J, p ∈ P (3.11)

This constraint ensures that only one task can take place in a unit at a particular time

point.

Time Horizon Constraints

tin(s, j, p) ≤ H ∀ j ∈ J, p ∈ P, s ∈ Sin,j (3.12)

tout(s, j, p) ≤ H ∀ j ∈ J, p ∈ P, s ∈ Sout,j (3.13)

Constraints (3.12) and (3.13) ensure that all the tasks take place within the time horizon

of interest.

Storage Constraints

q(s, p) ≤ Qmax
s ∀ s ∈ S, p ∈ P (3.14)

This constraint ensures that the maximum capacity of the intermediate storage units is

not exceeded.
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3.1.3 Extension to PIS policy

The model in the above form does not take into account the possibility of using latent

storage, i.e. PIS operational policy. There are a number of additional constraints needed

to fully capture this operational policy.

Capacity Constraints

V min
j ylt(s, j, p) ≤

∑

j′∈J

mlt
in(s, j′, j, p) ≤ V max

j ylt(s, j, p) ∀ s ∈ S, j ∈ J, p ∈ P (3.15)

Constraint (3.15) states that the mass entering a process unit for latent storage must be

between the minimum and maximum capacities of the unit. Furthermore, it ensures that

mass can only enter the unit if the binary variable associated with latent storage is active

for unit j at time point p.

Material balances

∑

j′∈J

mlt
in(s, j′, j, p − 1) =

∑

j′∈J

mlt
out(s, j, j

′, p) ∀ s ∈ S, j ∈ J, p ∈ P, p > 1 (3.16)

min(s, j, p) =
∑

j′∈J

mlt
out(s, j

′, j, p) + ms
out(s, j, p) ∀ s ∈ S, j ∈ J, p ∈ P (3.17)

mout(s, j, p) =
∑

j′∈J

mlt
in(s, j, j ′, p) + ms

in(s, j, p) ∀ s ∈ S, j ∈ J, p ∈ P (3.18)

The mass balance over a process unit which is being used as latent storage is given by

constraint (3.16). It should be noted that the input and output states remain the same.

Constraints (3.17) and (3.18) are the inlet and outlet mass balances for mass which is

to be used for, or produced from processing, respectively. Mass which enters a unit for

processing comes from dedicated storage and/or latent storage as stated in constraint
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(3.17). Similarly, mass which exits a unit is either moved to dedicated storage or latent

storage as stated in constraint (3.18).

Duration constraints

tltout(s, j, p) = tltin(s, j, p − 1) + w(s, j, p) ∀ s ∈ S, j ∈ J, p ∈ P (3.19)

WL(s, j)ylt(s, j, p) ≤ w(s, j, p) ≤ WUylt(s, j, p) ∀ s ∈ S, j ∈ J, p ∈ P (3.20)

The duration constraint for a latent storage, constraint (3.19), is similar to constraint

(3.7) except that the residence time is a variable in the latter case. In the case of latent

storage the actual duration is a variable that can vary between the lower and upper limits

specified for state s in unit j, as shown in constraint (3.20).

Sequence Constraints

tltin(s, j, p) ≥ tltout(s
′, j, p) ∀ s, s′ ∈ S, j ∈ J, p ∈ P (3.21)

tltin(s, j, p) ≥ tout(s
′, j, p) ∀ s, s′ ∈ S, j ∈ J, p ∈ P (3.22)

tin(s, j, p) ≥ tltout(s
′, j, p) ∀ s, s′ ∈ S, j ∈ J, p ∈ P (3.23)

tltout(s, j, p) ≤ tin(s, j′, p) + H
(

2 − ylt(s, j, p − 1) − y(s, j′, p)
)

∀ s ∈ Sin,j′ , j, j′ ∈ J, p ∈ P, p > 1 (3.24)
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tltout(s, j, p) ≥ tin(s, j′, p) − H
(

2 − ylt(s, j, p − 1) − y(s, j′, p)
)

∀ s ∈ Sin,j′ , j, j′ ∈ J, p ∈ P, p > 1 (3.25)

tltin(s, j, p) ≤ tout(s, j
′, p) + H

(

2 − ylt(s, j, p) − y(s′, j′, p − 1)
)

∀ s ∈ Sout,j′ , s′ ∈ Sin,j′ , j, j′ ∈ J, p ∈ P, p > 1 (3.26)

tltin(s, j, p) ≥ tout(s, j
′, p) − H

(

2 − ylt(s, j, p − 1) − y(s′, j′, p − 1)
)

∀ s ∈ Sout,j′ , s′ ∈ Sin,j′ , s ∈ S, j, j′ ∈ J, p ∈ P, p > 1 (3.27)

tin(s, j′, p) ≥ tout(s, j, p) − H
(

2 − y(s, j′, p) − y(s′, j′, p − 1)
)

∀ s ∈ S, j, j′ ∈ J, p ∈ P, p > 1 (3.28)

tin(s, j′, p) ≤ tout(s, j, p) + H
(

2 − y(s, j′, p) − y(s′, j′, p − 1)
)

∀ s ∈ S, j, j′ ∈ J, p ∈ P, p > 1 (3.29)

Constraints (3.21), (3.22) and (3.23) ensure that a state can only be processed or stored

in unit j when the unit is available. It is assumed that after a batch has been stored

in a process unit then it must follow the next processing step in its recipe. Constraints
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(3.24) and (3.25) ensure that the time at which a state leaves a unit after latent storage

coincides with the time that the state enters a unit which is capable of processing that

state. Constraints (3.26) and (3.27), are similar to constraints (3.24) and (3.25), however

these apply to a state moving from processing to latent storage. If mass is moved from

processing in unit j to processing in unit j′, the time at which the mass is produced must

coincide with the time at which it is used, as shown by constraints (3.28) and (3.29).

Time Horizon Constraints

tltin(s, j, p) ≤ H ∀ j ∈ J, p ∈ P, s ∈ S (3.30)

tltout(s, j, p) ≤ H ∀ j ∈ J, p ∈ P, s ∈ S (3.31)

These constraints ensure that all storage activities take place within the time horizon of

interest.

Feasibility Constraints

∑

s∈Sin

ylt(s, j, p) +
∑

s′∈Sin

y(s′, j, p) ≤ 1 ∀ j ∈ J, p ∈ P (3.32)

∑

j∈J

ylt(s, j, p) ≤ 1 ∀ s ∈ S, p ∈ P (3.33)

To ensure that a unit is only used for either processing or storage at a particular time

point, constraint (3.32) is required. Constraint (3.33), ensures that a batch can not be

split. Constraint (3.11) is redundant in the presence of constraint (3.32).
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3.1.4 Necessary modifications to the basic scheduling model

In order to ensure the completeness of the model that takes the PIS operational policy

into account, the basic scheduling model developed by Majozi & Zhu (2001) has to be

modified as follows.

q(s, p) = q(s, p − 1) +
∑

j∈Jout
s

ms
in(s, j, p) −

∑

j′∈Jin
s

ms
out(s, j

′, p)

∀ s ∈ S, j ∈ J, p ∈ P (3.34)

q(s, p) = q(s, p−1)−
∑

j∈Jin
s

ms
out(s, j, p) ∀ s ∈ S, S = feed, j ∈ J, p ∈ P, p > 1 (3.35)

q(s, p) = q(s, p − 1) +
∑

j∈Jout
s

ms
in(s, j, p) − d(s, p)

∀ s ∈ S, S = product, j ∈ J, p ∈ P, p > 1 (3.36)

q(s, p1) = Q0

s(s) −
∑

j∈Jin
s

ms
out(s, j, p1) ∀ s ∈ S, j ∈ J, p1 ∈ P (3.37)

The balance over a dedicated intermediate storage unit has to be modified because of the

possibility of latent storage. Constraint (3.34), provides the link for the inlet and outlet

mass balance between units, as shown in constraints (3.17) and (3.18). Constraints (3.35),

(3.36) and (3.37), are similar to constraints (3.4), (3.5) and (3.6), however they apply to

the case where the PIS operational policy is taken into account.
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tin(sin, j, p) ≥
∑

s

∑

j

∑

p′≤p

(

tout(sout, j, p
′) − tin(sin, j, p

′ − 1) + tlsout(s
′, j, p′)

− tlsin(s′, p′ − 1)
)

∀ j ∈ J, p ∈ P, p > 1, p′ > 1, sout ∈ Sout, sin ∈ Sin, s
′ ∈ S (3.38)

Constraint (3.8) has to be modified to include the possibility of using a unit as latent

storage, as shown by constraint (3.38).

3.1.5 Objective Functions

The main goal of the project is the minimization of plant size via the exploitation of

latent storage. In order to achieve this goal two cases are considered. The goal of the

first case is to check the advantages gained in terms of throughput (constraint 3.39) when

there is zero intermediate storage (constraint 3.40), while in the second case the goal is

the minimization of intermediate storage (constraint 3.43) while maintaining the optimal

throughput (constraint 3.41). In this case the optimal throughput is defined as that

which is achieved when the model is solved with infinite intermediate storage. Both cases

investigate the effect of using latent storage.

Case 1

Z = max
∑

s∈S

∑

p∈P

d(s, p) (3.39)

while q(s, p) =0 ∀s ∈ S, p ∈ P (3.40)

Case 2

Step 1:
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Z = max
∑

s∈S

∑

p∈P

d(s, p) (3.41)

while q(s, p) ≥0 ∀s ∈ S, p ∈ P (3.42)

Step 2:

Z = min
∑

s∈S

∑

p∈P

q(s, p) (3.43)

while d(s, p) = production goal ∀s ∈ S, p ∈ P (3.44)

3.1.6 Illustrative example

In order to illustrate these cases an example taken from the papers of Ierapetritou &

Floudas (1998) and Majozi & Zhu (2001) will be used. The flowsheet for the example is

given in Figure 3.5 with the SSN representation shown in Figure 3.6. The data for the

example is shown in Table 3.2, the time horizon of interest for this example has been

altered from 12 hours presented in Ierapetritou & Floudas (1998) and Majozi & Zhu

(2001) to 24 hours for illustrative purposes.

Feed

Mixer Reactor

Purificator

Product

Feed

Mixer Reactor

Purificator

Product

Figure 3.5: Flowsheet for the literature example
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Figure 3.6: SSN for the literature example

Table 3.2: Data for illustrative example
Unit Capacity Suitability Processing time (h)

1 100 Mixing 4.5
2 75 Reaction 3
3 50 Purification 1.5

State Storage capacity Initial amount Price
1 Unlimited Unlimited 0.0
2 100 0.0 0.0
3 100 0.0 0.0
4 Unlimited 0.0 1.0

Case 1

Case 1 involves solving the model using the first case where the objective is to find the

maximum throughput with zero intermediate storage without using the PIS operational

policy and then resolving the model with the use of the PIS operational policy to compare

the results. The optimal throughput achieved without using the PIS operational policy is

200, the schedule is shown in Figure 3.7. The stair step nature of the schedule is expected

due to the NIS operational policy. When the PIS operational policy is introduced the

optimal throughput increases from 200 to 300 units as shown in Figure 3.8

The way this improvement is achieved is clearly seen in Figure 3.8. A portion of a batch

is stored in a unit while the remaining batch is sent to processing. In this case half of the

batch processed in the mixer is taken for storage in the purificator while the remaining

mass is processed in the reactor. Once the reaction has proceeded to completion the mass

that was stored in the purificator is moved to the reactor for processing. Further latent

storage is required at 13.5 and 18 hours, in this case the mass is stored in the reactor

after processing and then moved to the purificator for processing. It should be noted that

there is a cycle in this schedule. A cycle occurs when a unit fills and empties at the same

time.
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Figure 3.7: Literature example without using the PIS operational policy
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Figure 3.8: Literature example using the PIS operational policy
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The model was solved using GAMS and the CPLEX solver version 9.1.2. The computa-

tional results for case 1 are shown in are shown in Table 3.3. From these results it is clear

to see the potential benefits for using the PIS operational policy, with a 50% increase in

throughput.

Table 3.3: Results from the first case
Without PIS policy With PIS policy

Number of time points 7 10
Objective function value 200 300
Number of binary variables 18 87
Solution time (CPU s) 0.062 1.718
Number of variables 561 921
Number of constraints 1619 2592

Case 2

The purpose of this case is to determine the minimum amount of intermediate storage

available while maintaining the optimal throughput, where the optimal throughput is

defined as that which is achieved when the model is solved with infinite intermediate

storage. In this example the optimal throughput was 350 units. The schedule for this

case is shown in Figure 3.9. Without using the PIS operational policy the minimum

amount of intermediate storage required was 300 units. The schedule for this case is

shown in Figure 3.10. In the case where the PIS operational policy was used a minimum

of 200 units of dedicated intermediate storage was required. The schedule for this example

is shown in Figure 3.11.

The model was solved on an Intel Core 2 CPU, T7200 2GHz processor with 1 GB of

RAM, using GAMS and the CPLEX solver version 9.1.2. The computational results for

the second case are shown in Table 3.4.
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Figure 3.9: Literature example with infinite intermediate storage

 
 
 



C
H

A
P

T
E

R
3
.

M
E

T
H

O
D

O
L
O

G
Y

47

i1

i2

i3

Time (h)

d1

d2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

100 100 75 75

75 75 50 75 75

50 25 50 50 50 2525

7525 50

25 2525

50 25

25

i1

i2

i3

Time (h)

d1

d2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

100 100 75 75

75 75 50 75 75

50 25 50 50 50 2525

7525 50

25 2525

50 25

25

Figure 3.10: Literature example without using the PIS operational policy
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Figure 3.11: Literature example without using the PIS operational policy
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Table 3.4: Results from the second case
Infinite storage Without PIS policy With PIS policy

Number of time points 10 13 11
Objective function value 350 300 200
Number of binary variables 27 36 96
Solution time (CPU s) 0.156 5.734 10.125
Number of variables 801 605 1014
Number of constraints 2432 2605 2893

3.2 Design implications

This section furthers the model developed in the previous section to include the possibility

of design.

3.2.1 Problem Statement

The problem considered in this subsection can be stated as follows,

Given:

(i) the production recipes, i.e. processing times for each task in a suitable unit as well

as their sequence,

(ii) the availability and suitability of process vessels,

(iii) the potential number of process units in a stage, and range of capacity of potential

process vessels,

(iv) production requirement, and

(v) the time horizon of interest,

determine,

the optimal number of units in a particular stage so as to minimise the capital cost
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3.2.2 Necessary modifications to case 1

Constraints (3.1), (3.2), (3.7), (3.9), (3.10), (3.12), (3.13) (3.15) to (3.31) and (3.34) to

(3.38) still apply to the model, however, further modifications of the model in section 3.1

are required to take into account the possibility of design.

Capacity constraints

V min
j e(j) ≤ c(j) ≤ V max

j e(j) ∀ j ∈ J, p ∈ P (3.45)

mlt
in(s, j, j ′, p) ≤ c(j′) ∀ s ∈ S, j, j′ ∈ J, p ∈ P (3.46)

min(s, j, p) ≤ c(j) ∀ s ∈ S, j ∈ J, p ∈ P (3.47)

c(j) ≤ c(j′) + V max
j (2 − e(j) − e(j′)) ∀j, j′ ∈ J (3.48)

c(j) ≥ c(j′) − V max
j (2 − e(j) − e(j′)) ∀j, j′ ∈ J (3.49)

Constraint (3.45) ensures that the capacity of unit j is between the minimum and maxi-

mum permissible range, furthermore, it ensures that for a unit to have a capacity it must

exist. Constraint (3.46) ensures that the mass entering unit j′ for latent storage does not

exceed the capacity of the unit. Constraint (3.47) is similar to constraint (3.46), however,

it applies to unit j which is processing state s at time point p. It is further assumed that

units in the same stage all have the same capacity, as shown by constraints (3.48) and

(3.49), where units j and j′ are units in the same stage.

 
 
 



CHAPTER 3. METHODOLOGY 51

Feasibility Constraint

∑

s∈S

y(s, j, p) +
∑

s′∈S

ylt(s′, j, p) ≤ e(j) ∀ j ∈ J, p ∈ P (3.50)

Constraint (3.50) is similar to constraint (3.32), however, it ensures that a unit can only

be used for either processing or latent storage if that unit exists.

3.2.3 Objective function

∑

j∈J

(

Ae(j) + B [c(j)]α
)

(3.51)

The objective function in this case is the minimization of capital cost. Due to the non-

linearity of this equation the model becomes an MINLP model.

3.2.4 Illustrative example

This example is similar to the previous example in section 3.1.6, however, there is another

reactor in the reaction stage as shown in Figure 3.12. The SSN remains the same and is

shown here in Figure 3.13. The data for this example is shown in Tables 3.5 and 3.6.

Feed

Mixer
Unit 1

Reactor 1
Unit 2

Purificator
Unit 4

Product

Reactor 2
Unit 3

Feed

Mixer
Unit 1

Reactor 1
Unit 2

Purificator
Unit 4

Product

Reactor 2
Unit 3

Figure 3.12: Flowsheet for the literature example
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Figure 3.13: SSN for the literature example

Table 3.5: Design data for illustrative example
Unit Capacity range Suitability Processing time (h) Capital Cost

1 25 - 100 Mixing 4.5 V0.68

2, 3 25 - 75 Reaction 3 V0.6

4 25 - 50 Purification 1.5 V0.7

Results

The model was solved using GAMS DICOPT, with CLPEX as the MIP solver and

CONOPT as the NLP solver. The computational results are shown in Table 3.7. The

resulting plant requires only one reactor as shown in Figure 3.14. The optimal capacites

of the remaining units are 75 units for the mixer (U1), 75 units for the reactor (U2) and

37.5 units for the purificator (U3). The resulting schedule for the optimal plant is shown

in Figure 3.15, where the numbers above the bars are the amount of each state processed

and the dotted lines represent the storage of a state in a process unit.

3.3 Conclusions

MILP and MINLP models are developed to take into account the PIS operational policy

for testing and design, respectively. The MILP model is used to determine the effective-

ness of the PIS operational policy by, firstly, solving the model with zero intermediate

storage with and without the use of latent storage. In the illustrative example a 50% in-

Table 3.6: Design data for illustrative example
State Storage capacity Initial amount Price

1 Unlimited Unlimited 0.0
2 0 0.0 0.0
3 0 0.0 0.0
4 Unlimited 0.0 1.0
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Feed

Mixer
Unit 1

Reactor 1
Unit 2

Purificator
Unit 4

Product

Feed

Mixer
Unit 1

Reactor 1
Unit 2

Purificator
Unit 4

Product

Figure 3.14: Resulting design from the model

Table 3.7: Computational results of the design literature example
Model property Model Results
Number of time points 11
Number of constraints 3864
Number of variables 1616

Number of binary variables 132
MINLP solution 44.82
CPU time (s) 35.858

Number of major iterations 3

crease in the throughput was achieved. Secondly, the minimum amount of interemediate

storage is determined with and without the PIS operational policy In both cases the pro-

duction goal was set to that which was achieved when the model was solved with infinite

intermediate storage. In the illustrative example a 33.33 % reduction in the amount of

intermediate storage is achieved. The design model is an MINLP model due to the non-

linear capital cost objective function. This model is applied to an illustrative problem

and results in the flowsheet as well as determining the capacities of the required units.
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Figure 3.15: Schedule for the optimal design

 
 
 



CHAPTER 4

Industrial Application

The industrial case study presented in this section is taken from the petrochemicals

industry. The project is in the design phase and as such the design model will be

used to determine the design which leads to the minimum capital cost, while using

the PIS operational policy. For secrecy reasons the example has been modified and

the names of the raw materials and products have been changed to the generic

form.

The flowsheet for the industrial case study is shown in Figure 4.1, this case study is used

to illustrate the application of the design model. The SSN for the case study is shown in

Figure 4.2.

The process has four stages, separated in Figure 4.1 by dashed lines. The first stage

involves the reaction between raw 1 and raw 2. This reaction can take place in either of

the two reactors (R1 1 and R1 2) in stage 1. The intermediate produced in this reaction

is then transfered to either of the four reactors in the second step (R2 1, R2 2, R2 3 and

R2 4) where a further reactant, raw 3 is added as well as the solvent. In this stage the

hot solvent is added to the reactor, so parts of the reaction mixture from the previous

55
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Figure 4.1: Flowsheet for the industrial case study

reaction are flashed off and sent to the scrubber. After 3 hours of drying raw 3, is added

and the reaction proceeds. During the reaction, parts of the reaction mixture are vented

and transported to storage tank, Stor 1, before distillation in unit D1. In the distillation

stage the raw material, raw 1, is separated from the solvent. Following the separation

both the raw 1 and the solvent are recycled back to storage for reuse. The remaining

reaction mixture is then transfered to either of the four settlers (Sep 1, Sep 2, Sep 3 and

Sep 4) where the product, prod, is separated from the solvent, solv. The solvent is then

recycled back to the solvent storage tank to be reused. All of the units in stages 1, 2 and

4 can be used for latent storage, while, the distillation column, unit D1, in stage 4 cannot

be used as storage for contamination reasons. Furthermore, only intermediate states can

make use of latent storage. The time horizon of interest for the case study is 48 hours

for illustrative purposes. The production goal for the plant was 109.9t of product.

The data for the case study is shown in Tables 4.1, 4.2, 4.3 and 4.4.
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Figure 4.2: SSN for the industrial case study

Table 4.1: Data for industrial case study
Unit Max. Capacity (t) Suitability Processing time (h)

R1 1, R1 2 25 Reaction 1 5
R2 1, R2 2, R2 3 and R2 4 83 Reaction 2 8

D1 100 Purification 1
Sep 1, Sep 2, Sep 3 and Sep 4 41 Separation 4

Table 4.2: Capital cost data for industrial case study
Unit Capital cost

R1 1, R1 2 89.1(c(j)/Vmax
j )0.6

R2 1, R2 2, R2 3 and R2 4 169.5(c(j)/Vmax
j )0.6

D1 41.4(c(j)/Vmax
j )0.6

Sep 1, Sep 2, Sep 3 and Sep 4 109(c(j)/Vmax
j )0.6

Table 4.3: Storage and initial amount of state for the case study
State Description Storage capacity Initial amount
S1 Raw 1 500 400
S2 Stage 2 feed 0 0.0
S3 Stage 4 feed 0 0.0
S4 Stage 3 feed 25 0.0
S5 Raw 2 400 400
S6 Solvent 1000 100
S7 Product 600 0.0
S8 Raw 3 Unlimited Unlimited
S9 Vent to scrubber Unlimited 0.0
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Table 4.4: Feed and output ratios
State units ton/ton
S1/S5 R1 1, R1 2 0.9
S2/S8 R2 1, R2 2, R2 3 and R2 4 7
S2/S6 R2 1, R2 2, R2 3 and R2 4 0.5
S3/S9 R2 1, R2 2, R2 3 and R2 4 4
S3/S4 R2 1, R2 2, R2 3 and R2 4 15
S6/S7 Sep 1, Sep 2, Sep 3 and Sep 4 3.5
S1/S6 D1 0.02

4.1 Computational results

The model was solved on an Intel Core 2 CPU, T7200 2GHz processor with 1 GB of

RAM. The computational results are shown in Table 4.5. The model was solved using

GAMS DICOPT using CONOPT as the NLP solver and CPLEX as the MIP solver. The

resultant flowsheet is shown in Figure 4.3, as can be seen from this flowsheet the design

calls for fewer units in stages 2 and 4. The schedule is shown in Figure 4.4. As can be

seen from the schedule latent storage is utilised during the time horizon of interest and

the there are no cycles in this schedule. Table 4.6 details the required unit capacities,

which are lower than the original design.

Table 4.5: Results from the industrial case study
Model property Model Results
Number of time points 8
Objective function value 1727.9
Number of binary variables 228
Solution time (CPU s) 12082
Number of variables 4777
Number of constraints 8183
Number of major iterations 3

Table 4.6: Unit capacity results from the industrial case study
Unit Capacity
R1 1, R1 2 25
R2 2, R2 3 and R2 4 75.138
Sep 1, Sep 2 and Sep 3 32.700
D1 1.54
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Figure 4.3: Resultant flowsheet for the industrial case study

4.2 Conclusions

The model is successfully applied to the case study resulting in fewer units required to

meet the demand. Furthermore, the units that are required have a lower capacity than

the original design called for. The model also makes effective use of the latent storage

available during the time horizon of interest. It is clear from Table 4.5 that the solution

time for this case study is long. The reasons for this are that there is a large degree

of complexity due to the possible use of latent storage. The use of latent storage also

has a significant contribution on the overall number of binary variables, which can lead

to increases in solution times. Due to the nonlinearity of the objective function global

optimality is not assured.
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Figure 4.4: Schedule for the optimal design

 
 
 



CHAPTER 5

Discussion and Conclusions

The literature survey was conducted to determine the best model to use as a basis

for the PIS operational policy, while the methodology development was focused

on the development of the model and its application to literature examples. Using

the design model developed in the methodology development the industrial case

study was solved. This section details the findings from all of three elements of

the adopted approach.

From the literature survey, i.e. Chapter 2, it was determined that the best framework

and model to base the models on, was that of Majozi & Zhu (2001). The reasons for this

are that, firstly, the models that exploit the structure of the SSN result in fewer binary

variables than those derived from other mathematical methods, because the SSN only

takes states into account while tasks are implicitly incorporated. Secondly, the model

developed by Majozi & Zhu (2001) is based on the non-uniform discretization of the time

horizon, thus resulting in fewer binary variables. Thirdly, the method is a mathematical

programming, implying that it would be able to handle tasks of varying duration, such

as the use of latent storage. Fourthly, the model developed by Majozi & Zhu (2001) is a

61
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MILP, thus solutions from this model are globally optimal. From this starting point the

model was developed as detailed in the methodology section, i.e. Chapter 3.

Two distinctive models were developed in order to investigate the effectiveness of PIS

operational policy. The first model is separated into two parts. The first part is used

to determine the optimal throughput when there is zero intermediate storage available.

Two situations were studied, firstly the model was solved without the use of the PIS

operational policy. Secondly, the model was solved with the PIS operational policy. In

the simple example shown in this section a 50% increase in the throughput was achieved

when the PIS operational policy was used. In both cases the models developed were a

MILP, thus garenteeing global optimality.

The second part of the first model was used to determine the minimum amount of inter-

mediate storage required to achieve the same throughput achieved when there is infinite

storage available. This part required a three step algorithm. Firstly, the optimal through-

put was determined where there was infinite storage available. Secondly, the model was

solved with the production goal set to that achieved in the first step and then the model

was solved with the objective of minimizing the amount of intermediate storage without

the use of the PIS operational policy. The third step of the algorithm is similar to the

second, however, the PIS operational policy is used. In the literature example an optimal

throughput of 350 units was achieved in the first step. Using this as the production goal a

33.33% reduction in the amount of intermediate storage required was achieved when the

model was solved without the PIS operational policy compared to the case with the PIS

operational policy. Once again the models derived were MILP models, thus guaranteeing

global optimality.

The second model developed in the methodology development section, presented in Chap-

ter 3, is a design model based on the PIS operational policy. The model developed in

this section is a MINLP model due to the capital cost objective function. The model is

applied to a literature example and an improved design is achieved when compared to

the flowsheet. The design model is then applied to an industrial case study to determine

its effectiveness.
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The industrial case study used in the industrial application section of Chapter 4 comes

from the petrochemicals industry. The data for the case study are subject to a secrecy

agreement and as such the names and details of the case study are altered.

The model is successfully applied to the case study resulting in lower capacity and fewer

units than the original design while achieving the required production goal. The model

also makes effective use of the latent storage available during the time horizon of interest.

However, the solution time for this case study is long, due to the large number of binary

variables and a complex non-linear objective function which leads to a high degree of

complexity. Furthermore, the possible use of latent storage results in a large number of

possible combinations which also contribute to the overall complexity of the model.

 
 
 



CHAPTER 6

Recommendations

Through the development of the model a number of potential improvements were

identified. This section details these improvements and the potential directions

for the application of these improvements. Further changes are suggested to the

model to remove the possibility of filling and emptying a unit at the same time,

while also proposing a new algorithm for the reduction of the number of transfers,

where cross contamination is a major concern.

6.1 Cycling

The model developed in this thesis does not preclude the possibility of cycles occurring in

the schedules, as shown in Figure 6.1. As can be seen the unit is emptying and filling at

the same time which is physically impossible. This is a current problem in the scheduling

of batch processes, where only the S-graph approach (Sanmart́ı et al., 1998) has been

proven to preclude these cycles from a schedule. However, S-graph cannot readily handle

tasks with variable duration, such as latent storage.
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Unit 1

Unit 2

Time

Unit 1

Unit 2

Time

Figure 6.1: Cycling

In the methodology development chapter (section 3.1.6) a cycle appeared in Figure 3.8,

however, this cycle can be removed through an iterative solution method where the cycles

are removed manually. In this particular case the transfer of mass from the mixer to the

purificator for storage at the particular time point is prevented. The resulting schedule is

shown in Figure 6.2. Although on this occasion this method worked, this will not always

be the case. In some case preventing the transfer of mass to latent storage will effect the

resulting objective function. If this is the case global optimality can no longer be assured,

in fact, very little is known about the resulting solution apart from its feasibility. This

method is a manual and iterative method and is, therefore, not general.

In order to remove the possibility of cycles from the model, tracing of the mass is required.

In the current model all mass that exits a unit, and moves for processing, enters a

dedicated intermediate storage unit, even if this is for a zero duration, as shown by

constraint 3.18. One has to note that when storage occurs all of the same state enters

the same storage vessel regardless of where it was produced, this is shown by constraint

3.34. As such, when a state leaves a unit for processing the information about its source

is lost. It is similar to adding drops of water to a glass, once in the glass its source cannot

be identified, it is just a glass of water.

The reason that tracking of mass is so important to the removal of cycles is that once

the mass can be tracked a binary variable can be initialised as shown by constraint 6.1.
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Figure 6.2: Literature example using the PIS operational policy without cycles
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This binary variable simply states that mass has moved from unit j to unit j′ at time

point p. Similar constraints can be applied to the case of latent storage, however, existing

variables can be used to achieve this, as shown by constraints 6.3 and 6.4. Using this

binary variable it is possible to remove the possibility of moving from j to j′ at the same

time point as moving from j′ to j, thus removing cycles as shown in constraint 6.2.

min(s, j, j ′, p) ≥ V min
j′ xtr(j, j

′, p) ∀ j, j′ ∈ J, p ∈ P (6.1)

xtr(j, j
′, p) + xtr(j

′, j, p) ≤ 1 ∀ j, j′ ∈ J, p ∈ P (6.2)

mlt
in(s, j, j ′, p) ≥ V min

j′ xtr(j, j
′, p) ∀ j, j′ ∈ J, p ∈ P (6.3)

mlt
out(s, j, j

′, p) ≥ V min
j′ xtr(j, j

′, p) ∀ j, j′ ∈ J, p ∈ P (6.4)

6.1.1 Minimising the number of transfers

By defining a transfer binary variable the practical concern of the number of times a unit

is used for storage or processing can be addressed without affecting the throughput. This

can be done by using a two step algorithm. Firstly, the model is solved using the PIS

operational policy to determine the optimal throughput. Secondly, the production goal

is set to that which was achieved in the first step and setting the objective function to

minimise the number of transfers as shown by equation 6.5.

min
∑

p

∑

j

∑

j′

xtr(j, j
′, p) (6.5)
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6.2 Complexity of the model

Using the PIS operational policy can lead to very complex models which, in general, lead

to longer solution times. The reason for this complexity is due to the possible number of

interactions for each unit, as shown in Figure 6.3. Due to this complexity the solution

times for large scale problems can be long, hence the model was based on the SSN and

non-uniform discretization of the time horizon model developed by Majozi & Zhu (2001).

However, this model is a short-term scheduling model, therefore in cases where the time

horizon of interest is long the model may become intractable. It is therefore recommended

that in the case of medium and long-term scheduling that the model be redeveloped to

test these cases.

j0

jn j’n

j’0j0

jn j’n

j’0

Figure 6.3: Complexity of unit interactions
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