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CHAPTER 2

DERIVATIVE SECURITIES - THE THEORY

he valuation of derivative securities has drawn the attention of mathematicians across
Tthe world and has become a field of research for many. In order to obtain the fair value
of any derivative security, it is important to understand the concepts of a stochastic process,
arbitrage, martingales and partial differential equations. In this chapter, the fundamentals of

option pricing theory are briefly set out.

Since 1973, the Black-Scholes model (Black & Scholes, 1973) has been the most popular option
pricing model. This model can be adjusted in order to price options on various underlying

instruments. The theory of option pricing can be applied to derive the two Black-Scholes
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option pricing formulas for call and put options, given by equations (19) and (20) (in this

chapter).

2.1 Basic theory

2.1.1 Introduction

One could consider a probability space (¥,.7,P), where ¥ is a sample space; .7 is a o-field on
¥, and .# consists of a collection of subsets of ¥, called events; and P denotes a probability
measure on (¥,.#). The measure P is a countable additive set function assigning a non-

negative number P(A) to each set A € V.

A random variable, called u, is a measurable mapping of ¥ into K. A sequence (i) of random
variables is called a discrete time stochastic process. Let.7, be the set of events known at time
t,. A filtration of the probability space is an increasing sequence of o-algebras F,c Foc ...c

F .7,

If each u, is measurable with regard to the corresponding member of 7, of the filtration, then
the stochastic process is said to be adapted. This means that u,,is measurable with regard to 5,
but not necessarily in respect of .#,.;. If an event %, is not known, then one can find a 5, ,
measurable approximation to 1,. This approximation is denoted by E(u1,| #,,,) and is called the

conditional expectation of u, in respect of 7, .

An adapted sequence (1,) of random variables is predictable if u, is 7, , measurable for all n >

1.



University of Pretoria etd — Smit, L (2005)

Theintegrablerandom variables are the subset of random variables for which the integral with

regard to P exists, and

j‘udP < o

The integral of u is the unconditional expected value, denoted by E(x). For any event Q in &,
and By (the set of points in ¥ for which Q occurs), B, € 7. The expected value may be defined
as follows:

E(Q) = P(By)

Assume that the price S, of an asset is a stochastic variable and follows an Ito process described

by the following stochastic differential equation:

ds, = p(Sdt + o(S,HdW 1)

where W is a Wiener process with a drift rate of 0 and a variance rate of 1.0. A variance rate
of 1.0 means that the variance of the change in W in an interval of length T equals T. The
variable S, has an expected drift rate (average drift per unit time ) of # and a variance rate

(variance per unit of time) of ¢ and satisfies the equations

P}'p[dt<w =1

P[j odt < =| = 1

o

If N assets are traded in a market and the i-th asset is defined as a risky asset and priced at S ,f
attime t, the riskless asset can be defined as an investment at the risk-free rate, r, which gives

apriceof S’=e", attimet, where S,’=1. This is the ‘zero-th’ share. The market price of all

Eref
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assets is given by

5. = {8).8%. L8N

A trading strategy is a predictable N-dimensional stochastic process,
0 4 N
®, = @ g a0 )

denoting the holding or position in each asset at time . The value of a portfolio I at time ¢ is

given by the following equation:

N
0.0 Han
O = @):'St =4, 5 + Zﬁ;‘h S (2)

For two different periods in time, the strategic position of a portfolio is given by the equation

@0, 0<tc<

tTle, t<tst,

b
The change in value of the portfolio at time ¢, is therefore

©, - )5

b

If this product is zero, the portfolio is defined to be self-financing or is called a self-financing

trading strategy. The strategy is represented by the following equation

8,:(S, - S) = 8,'S, - 0,5

£ iy 00

or, generally

H’m - H‘x - ®‘£I(S‘m

- St‘-)
A self-financing trading strategy in continuous time is therefore a strategy where

-10-
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t

Ht - HU = f®tdsn (3)
0

A strategy @ is admissible if it is self-financing and if II,(®) > 0 for any t. An admissible
strategy with zero initial value and non-zero final value is called an arbitrage strategy. In such

a strategy a riskless profit can be made, without initially investing anything .

A derivative security is defined as an .#-measurable random variable u(T). The derivative is
attainable if there is a self-financing trading strategy ©, such that II(® ) = u(T) with a
probability of one. This self-financing trading strategy is then called a replicating strategy. If
all derivative securities in an economy are attainable, the economy is called complete. If there
are no arbitrage opportunities in an economy, the value of an attainable derivative u(T), is

given by the value of the unique replicating strategy.

Any tradable asset which has a strictly positive price (and pays no dividends) for all ¢ € [0,T]
is called a numeraire. Generally, the riskless money-market accountis the numeraire, although
the choice of numeraire is arbitrary. The price of any tradable asset (§) can be denominated

in terms of a numeraire, for example S°. The relative price is denoted by (S7)’ = §7/5°.

2.1.2 Markov chains

If 5, is an Ito process satisfying equation (1) and f(-) is any bounded function, and if the
information set .#, contains all information about S, until time ¢, then S, satisfies the Markov
property, provided that

E[f(S,..)| #,] = E[f(5,,)|S,], where i > 0

A Markov chain is a stochastic process where the only information useful for predicting future

J1-
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values is the current value. The stochastic process S, is a Markov chain if it satisfies the

Markov property.

2.1.3 Brownian motion

A Brownian motion is a real-valued continuous stochastic process, (5,), t € [0,T] (also called

a Wiener process) with independent increments, such that the increments

have a normal distribution with mean zero and variance |, - t|:

[2

5, = 5, = NO&,~t,)

with S, =0.

A Brownian motion is standard if

S,=0 E(S)=0 E(S}-=t

In this case, the density function of a variable x is given by

f@) = — exp[ —x—z]
2t 2t

2.1.4 Martingales

Consider a filtration {.#,},,,, where any information is generated by all observed events up to
time t. Assume that S is a stochastic process where S is adapted to the filtration {#},., and for

all f we have

E(|S®)]) < =

-12-
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A martingale is defined as a zero-drift stochastic process. Therefore, S(¢) is a martingale if

E(5(t)|.7)) is defined and for each ¢ and & > 0 the following relation holds

E(S(t+h)|.F) = S()
If

E(S(t+h)|.#) < S(t)
S(t) is called a super-martingale and if

E(S(t+)|.F) = S(t)
S(t) is called a sub-martingale.

Consider the set ® which contains all probability measures P* such that

° P"and P have the same null-sets and are therefore equivalent; and
. the relative price processes (S ')’ are martingales under P" for all i, therefore
E*ISH(D)|F] = (S)(1) fort < T (4)

The measures P’ € © are called equivalent martingale measures.

Derivative securities are defined as those securities for which the expectation of the payoff is
well-defined. A derivative security is therefore an .7 -measurable random variable, u(T), such

that

EP[[a(D)]] < =

A continuous trading economy is free of arbitrage opportunities and every derivative security
is attainable if ® contains only one equivalent martingale measure. This was proved by

Harrison and Pliska (1981).

18-
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For a given numeraire M with a unique equivalent martingale measure P,,, the value of a self-
financing trading strategy

II,(®,)

IL'e) - MO

is a Py, -martingale. For a replicating strategy @, that replicates the derivative security u(T),

it holds that
EPM{ u(T) 3_) ) EP-‘{ I,(®,) 9_]
Mm(Ty| ! MT) |
RUCH
- M
Therefore,
m@) = M) ™| 4D ‘F] 5
©) = Mo (XD |5, ®

2.2 Principles

2.2.1 Girsanov’s theorem

Girsanov’s theorem can be used to determine equivalent martingale measures by changing the

probability measure and therefore the drift of a Brownian motion.

Theorem: For any stochastic process w(f) such that with a probability of 1,

"w(s)%ds <
/

0

one can state that under the measure dP * = pdP the process

-14-
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t
W*(t) = W(t) - f w(s)ds
0
is also a Brownian motion, where the Radon-Nikodym derivative is given by

t t
p() = exp{ [o(E)dus) - % [o(syds
0 0

It therefore follows that

AW = dW™ + w(t)dt (6)

2.2.2 Ito’s lemma

Theorem: X, is an R-valued Ito process if the following relation holds for all £ > 0,

t t
X, =X, + fpds + fodWS (7)
0 0

where p and o are functions of X and . This stochastic integral is usually interpreted as the

stochastic differential equation

aX(t) = pH)dt + o(t)dW() )

Then, for a sufficiently differentiable function, (t,X(#)) - f(,X(#)) of the process X, for which the
partial derivatives are continuous with respect to (f,X(t)), the function f has a stochastic

differential given by the following equation ( Bjork, 1999)

= ..ai + g. + o Zd_zf + g
af(t,X(t)) UaxdW(f) [uax ~ 2 at]dt ©)

-15-
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The Ito-formula can also be written as follows:

AX) = %) + [+ 2[R AR, (10)
0 0

where, by definition

t
(X%, = fchfdu
0

2.2.3 The Feynman-Kac proposition

If one assumes that fis a solution to the boundary value problem

Frot v ot o Loz OF _ ,
5D AT SN = of . AT - o)

and one furthermore assumes that the process o(s,Xs);—F-(s,XS) is in &2, then f can be
X

represented as

fitay = e"TIE, L [O(X)] 11)

where X satisfies the stochastic differential equation
dX, = p(s,Xdt + o(s,X)dW,

X, =%

t

The process is fully described by Bjérk (1999). L
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2.2.4 The Ornstein-Uhlenbeck process

If X solves the stochastic differential equation

dX, = -1X,dt + dW,
2

then X is an Ornstein-Uhlenbeck process. Such a process has the normal distribution as its

invariant measure. =

2.3 The Black-Scholes model

2.3.1 An exact solution for European options

In the Black-Scholes economy itis assumed that there are two tradable instruments: the riskless
money market instrument M(t) (where M(0) = 1) and a stock S(f). The value of the money
market instrument is strictly positive and can therefore serve as a numeraire. Since the money
market instrument is assumed to be riskless if it has a constant risk-free interest rate and no

stochastic term, its price is described by

dM = rMdt (12)

One can assume that the stock price follows a geometric Brownian motion

dS = pSdt + oSdW (13)

with constant drift u and volatility o.

Since the stock price can be expressed in terms of the numeraire,

-17-
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5.5
M
it follows from Ito’s Lemma that:
MiS _ Mg
ds’ = M. “Sdf « Baw
M? M

== By usdt —dW
M

(n - r)S’dt + oS’'dW

For ¢ # 0 Girsanov’s theorem can be used to turn the relative stock price into a martingale.
Therefore a unique measure P is used, where 6P * = pdP with w(t) = -(p - 1)/0 , to

obtain

Therefore,
ds’ = aS"dw* (14)
The stochastic process S’ is therefore a martingale, and, consequently, this economy is

arbitrage-free and complete for o = 0. The original price process S follows, under the measure

P, the process

ds = pSdt + GS(dW‘ o =47 (15)

or

dS = rSdt + aSdW* (16)
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Equation (16) shows that under the equivalent martingale measure, the drift u is replaced by

the risk-free rate r. The equivalent form is

t t

S(t) = 5(0) + [rS(wdu + [oS@)AW" (17)
0 0

If

fS) = mn(S)

where §, is an Ito process and a solution of equation (17), and the Ito formula is applied to this

equation, the following equation results:

5

0 u 0

f.dSu ! 202
n(S,) = (S, + j— - —f — | 0*S, du

Using equation (16), it follows that

t t
n(Sy) + f(r - 02/2)du + fodW'
0

0

n(S))

]

n(Sy) + (r - %oz)t + oW"

Consequently,

S(t) = S(0) exp[(r - %oz)t + gW* (18)

is a solution of equation (17), and therefore a solution of equation (16). The random variable

W'(t) has a normal distribution with mean 0 and variance ¢.

If one defines a contingent claim of maturity T by giving its payoff # >0 , which is .7, -

-19-



University of Pretoria etd — Smit, L (2005)

measurable, then a European call option on the underlying price of the stock, S, with strike K,

at the exercise time T has a payoff of
w(T) = max{S(T) - K,0}

In this case, u is a function of the underlying price at time T only. Some options depend on the
whole path of the underlying asset, for instance Asian options. From equation (5) it follows

that the price of a call option ¢, at time 0 is given by
¢ = E[max{S(T) - K,0}/M(T)]

If one uses the explicit solution of S(T ) given in equation (18), one gets

1s?

c= [e Tmax{S(0)e(r = o/2)T+ox _ K,O}j/_ dx
2xT

—co

The payout is non-zero if

S(O) e(r - 0%/2)T+ox _ K>0

L) r - =09T - ox
K 2

K
X > -

[ Qn(&) + {r - %oI)T

o

Therefore, it follows that
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1:2
e -rT (r-o¥2)Teox _ gy 2"
¢ f_ n(S(0)/K) + (r-0%/2)T e "{5(0)e K},/zﬂ" e
[+
S0) [* M
= g e x
f (SQ)/K) + (r-0%/AT
> 4
axt
_ T @ 1 xr
€ f w(S(O)/K) + (r-o¥/AT  por ¢ ax
a
=1 - I,
If one changes variables in I, and I,, this results in
(S0)/K) + (r+0%/2)T 12
-=p
I =1+ S(0) /T —e " dp
1 N V=
and
n(S(0)/K) + (r-0%/2T i i
R -—t)
I,=1+e K ovT e ! do
2 o n
Therefore,
¢ = S(O)N(d) - e ""KN(d - oy/T)
where

En(ﬂ] +(r + 09T
i} K :

d =
oyfT

(19)

which is the well-known Black-Scholes call option pricing formula. The price of a put option

is given by

p = e KN(-d + oT) - 5(0) N(-d)

Ha

(20)

b u 2o
WLiursyey
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2.3.2  The Black-Scholes partial differential equation

In the case of path-dependent options, one cannot use the exact solution, and therefore it is
necessary to use a numerical solution of the Black-Scholes partial differential equation. If one
assumes that a stock price, S, follows a Wiener process, where the drift and volatility are

dependent on the level of the stock price,

dS = pSdt + oSdW 1)

Then the variable S has a lognormal distribution, where (n S follows a generalized Wiener

process.

If fis the value of a derivative security dependent on S, it follows from Ito’s Lemma that

F . . 12028 of
g = |psL + &L 1228 |y L 05T aw 22
f [psas Yo 277 ) T %% =

The discrete versions of equations (21) and (22) for a small interval Af are

AS = pSAt + aSAW (23)
and
o . 1 202d% of
Af = —_— 4+ = + —0g°§°—= | At + 0S—=—AW 24
f [psas at 2 ds? as )

where AS and Af are the changes for a small time interval At. If one chooses a portfolio of the

stock and the derivative as follows:
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. short 1 derivative, and
o long K shares,

then the value of the portfolio, I, is

I =-f+KS

and the change in the value of the portfolio in time At is

ATl = -Af + KAS

Substituting equations (23) and (24) gives

2
All = - usif v il o lozszd—f Af - GSa—fAW + KpSAt + KoSAW
o5 ot 2 ds? oS

Choosing K = aié eliminates the Wiener process and results in

Z
ALl = | - & - 19F 262 4y
of 2582

(25)

(26)

(27)

(28)

The portfolio is therefore riskless for the short period of time At. In order to agree with the

principle of no-arbitrage, it follows that the portfolio should earn the risk-free rate, 7, in this

period:
ATl = rIIAt

Substituting for AII and II, gives

[if + lﬁgzsz}At = v[f - a—fS]At
ot 2552 as

-23-
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or

%r + rsai); + %ozs 2:%}; = #f (29)
Equation (29) is known as the Black-Scholes partial differential equation (Black & Scholes,
1973). When Black and Scholes published this equation in 1973, they made a major
breakthrough in the pricing of any derivative dependent on non-dividend paying stock.
Equation (29) can be solved using the Feynman-Ka¢ proposition, to give the exact solution in

Section 2.3.1.

2.3.2.1 Black’s model

In 1976, Black published a paper describing an adjustment to the Black-Scholes model in order
to price options on futures. Options on commodities, say beef, can be difficult to deliver at
expiry of the option, therefore it is easier to have an option on the future, and have cash
settlement at expiry. Since options on futures tend to be more attractive to investors than

options on spot prices, Black’s model became widely used in the option market.

If one assumes that the underlying instrument of the option is the future price, F, of the stock
on the expiry date of the option, and one assumes that the futures price, F, follows a geometric

Brownian motion, then

dF = pFdt + oEdW (30)

Since f is a function of F and ¢, it follows from Ito’s lemma that

-24-
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e 2
af = [ wrL + Lo 12p2 8 g 4 orSaw (31)
oF ot 2 dF? oF

Consider a portfolio consisting of
. short one option, and

. long K futures contracts.

Since it costs nothing to enter into a futures contract, the cash value of the portfolio at t = 0 is

given by the price of the option contract

The wealth of the portfolio can change in time At by the amount
AIl = KAF - Af

Using the discrete versions of equations (30) and (31), it follows that by choosing K = aii ,

~2
Al = [ - - 19L gp2| a (33)
ot 23F?

This change is riskless, therefore to ensure that the arbitrage-free assumption holds, the return

should be equal to the risk-free rate of interest

ATl = AIAt (34)

If one substitutes equations (32) and (33), this gives a partial differential equation for the price

-25-
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of an option on a futures price:

o , 1 2

= + —— = _g“F*“ =

at  25r? ! (35)
In the case of exchange traded options where a margin is paid, AII in equation (33) equals 0,

and

2
i + la_fozpz z i)

ot 232 &)

This equation can be solved analytically for European options and numerically for American

options.

2.4 Numerical methods

The exact solution of the Black-Scholes model gives the price of a European option, which can
only be exercised on the expiry date of the option. American options can be exercised at any
time before or on the expiry date of the option. This implies that whenever the intrinsic value
of the option is more than the value of the option, it would be profitable to exercise the option
early. The problem with the exact solution of the Black-Scholes model, as set out in section 2.3
above, is that it does not provide for American options with an early-exercise value. Two
numerical methods that solve the partial differential equations in Section 2.3 and which

support American options are the binomial method and the finite difference method.

-26-
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2.4.1 The binomial method

If S is the price of a non-dividend paying stock, and fis the value of an option on the stock, and
the life of the option is divided into intervals of length At, then in each time-interval the stock
price moves from its initial value of S to either Su or 54 with a probability of p and 1-p

respectively. This process is shown in Figure 2.1.

In a risk-neutral world, the expected rate of return from an investment should be the risk-free

rate, . Therefore

Se™ = pSu + (1-p)Sd

which gives

e™ = pu + (1-p)d (37)

Figure 2.1: The binomial tree for stock price movement

27.
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The variance of a parameter S is given by

Var(S) = E(S* - [E(S)]? (38)

where
Var(S) - SZleAt(eozAr = 1)
E(S) = Se™
E(S? = pS*u?* + (1-p)S%d*
or

leAr + oAt - puz + (1 _ p)dZ (39)

Equations (37) and (39) give two conditions for #, d, and p. Cox, Ross and Rubinstein (1979)

proposed a third condition:
1
= —
d
These conditions imply that:
p — a__d
u-d
u = eVM
d=eV™
where g = ™

A tree of stock prices can be constructed, starting at time zero, and calculating the possible

stock prices at time At, 2At and so on. In general, at time iAf, the i+1 stock prices are:
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SuldT =010

The value of the call option at time T is given by
max(S; - X, 0)
and for a put option by

max (X - 57, 0)

The value of the option is then calculated by working back through the tree. In a risk-neutral
world, the value of the option at time T - At can be calculated by discounting the value at time
T at the short term rate r. The same is done for the following time steps. For American options
one must check at each node that the early-exercise value is not bigger than the value of the

option.
2.4.2 The finite difference method

A finite difference method solves a partial differential equation by converting it into a set of
difference equations, which are then solved through an iterative process. Consider the

differential equation for the value of an option:

2
a_f + rs_aj.: + lo‘zsza_f = 7:f

ot as 2 as? A0

Since the time t and the stock price S are the two variables in equation (40), N equally spaced
time intervals can be chosen between zero and T, the expiry date of the option, and M price
intervals can be chosen between zero and S,,,,. This results in a finite difference grid of (M+1)
x (N+1) points. The (i,j) point corresponds to time iAt and stock price jAS and f;; is the value

of the option at the (i,f) point.

-29.
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2.4.2.1 The Implicit finite difference method

The value ofg—jsi at (i,j) is given by an average of the forward and backward differences:

of _ fi,j+1 —fi,j-l

S 41
as 2AS &1
The value of 2—{ at (i) is given by the forward difference approximation:
g = 'f_"‘Lf i f;}f (42)
ot At
The finite difference approximation for i{- at the (i,7) point is
és
a%f - f;',ja-l - f;; B fi,j-1 - f:; AS
852 AS AS
or
&f _ S = Zfi,f "'fi,,-'—l 43)

8s? AS?

Substituting equations (41), (42) and (43) into equation (40) gives, after some manipulation

Ailij1 * bjfi,j Gl T fr‘+1,j (44)

where

85
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o Ypiap - 1252
a, = Er;:ﬁ.t S At
b =1 + oj2At + rAt
¢; = ~—rjAt - %ozjzAt

The value of a put option at time T is max[X - S;, 0] or max[S; - X, 0] for a call option , therefore

fy; = max[k(X - jAS),0] j=01,.,M (45)

where k = 1 for a put and k = -1 for a call option.

2
a,
RV e ® ® . ° ®
o
2
)
[ ® L ] L ] [ ] L]
[ ] ® (i) . °
( © ° ° ® °
2AS ¢ ° ° ° ° ® °
AS ¢ ° ° ° ¢ ® ®
0 A-t 24 ) ) 1 Time

Figure 2.2: Finite difference grid
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When the stock price is zero or tends to infinity, the delta of the option tends to zero or 1
respectively. In order to find the value of the option at zero and infinity, one assumes
therefore that the second derivative at these points is approximately zero. Hence, when the

stock price is zero,

O o fatfo -2y
352 AS?

or

fi,ﬂ = 2fi,1 _ff,z t=0,1...,N (46)

In the same way, when the stock price tends to infinity:

fim = Yipr ~ fima t=01,...N (47)

Equations (45), (46) and (47) define the boundary conditions of either a put or a call option.
The boundary conditions together with equation (44) give (M - 1) equations which can be
solved for the (M - 1) unknown values for the (N - 1)-th time step. Ateach time step, the value
of f can be compared to the early-exercise value. Eventually, the value for fat time ¢ = 0 for the

particular spot rate is obtained.

In order to get an accurate approximation of the value of the option, a large number of time
steps should be used, which can be computationally time-consuming. The approximate value
for a very small time step can be obtained by solving the problem for two different time steps,

say At=0.1and At =0.01. These values are then linearly extrapolated to give an approximate

39,
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value for At ~0.

The control variate technique can be used when there is an analytic solution to a similar
problem, as with a European option. The approximation error is therefore calculated and can
be used as a correction term to adjust the numerical value obtained for problems where there

is no analytical solution available, for instance, for American options.

An explicit finite difference method can also be used if the implicit scheme is found to be time-
consuming. The explicit method is similar to a trinomial tree approach. Unfortunately, often
one or more of the two probabilities are negative, which can result in instability and
inconsistencies in the solution. For the purposes of this study, an implicit finite difference

method which is unconditionally stable is used.

This chapter provides the basic theory for pricing derivative securities. It forms the basis for
pricing bond options in Chapters 5, 6 and 7. Before one can value options on interest rates
accurately, it is, however, necessary to understand the underlying instrument. Therefore,

Chapters 3 and 4 discuss the theory of the term structure of interest rates.

-33-
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