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SUMMARY 

 

The aim of this research is to affirm the application of closed-loop optimal control for load 

shifting in plants with electricity tariffs that include time-of-use (TOU) and maximum 

demand (MD) charges. The water pumping scheme of the Rietvlei water purification plant 

in the Tshwane municipality (South Africa) is selected for the case study. The objective is 

to define and simulate a closed-loop load shifting (scheduling) strategy for the Rietvlei 

plant that yields the maximum potential cost saving under both TOU and MD charges. 

 

The control problem is firstly formulated as a discrete time linear open loop optimal 

control model. Thereafter, the open loop optimal control model is converted into a closed-

loop optimal control model using a model predictive control technique.  Both the open and 

closed-loop optimal control models are then simulated and compared with the current 

(simulated) level based control model. The optimal control models are solved with integer 

programming optimization. The open loop optimal control model is also solved with linear 

programming optimization and the result is used as an optimal benchmark for 

comparisons. 

 

Various scenarios with different simulation timeouts, switching intervals, control horizons, 

model uncertainty and model disturbances are simulated and compared. The effect of MD 

charges is also evaluated by interchangeably excluding the TOU and MD charges.  

 

The results show a saving of 5.8% to 9% for the overall plant, depending on the simulated 

scenarios. The portion of this saving that is due to a reduction in MD varies between 69% 

and 92%. The results also shows that the closed-loop optimal control model matches the 

saving of the open loop optimal control model, and that the closed-loop optimal control 

model compensates for model uncertainty and model disturbances whilst the open loop 

optimal control model does not.  
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OPSOMMING 

 

Die doel van hierdie navorsing is om die applikasie van geslote-lus optimale beheer vir las 

verskuiwing in aanlegte met elektrisiteit tariewe wat tyd-van-gebruik (TVG) en maksimum 

aanvraag (MA) kostes insluit te bevestig. Die water pomp skema van die Rietvlei water 

reiniging aanleg in die Tshwane munisipaliteit (Suid-Afrika) is gekies vir die gevalle 

studie. Die objektief is om 'n geslote-lus las verskuiwing (skedulering) strategie vir die 

Rietvlei aanleg te definieer en te simuleer wat die maksimum potensiaal vir koste 

besparing onder beide TVG en MA kostes lewer.  

 

Die beheer probleem is eerstens gevormuleer as 'n diskreet tyd lineêre ope-lus optimale 

beheer model. Daarna is die ope-lus optimale beheer model aangepas na ‘n geslote-lus 

optimale beheer model met behulp van 'n model voorspellende beheer tegniek. Beide die 

ope- en geslote-lus optimale beheer modelle is dan gesimuleer en vergelyk met die huidige 

(gesimuleerde) vlak gebaseerde beheer model. Die optimisering van optimale beheer 

modelle is opgelos met geheeltallige programmering. Die optimisering van die ope-lus 

optimale beheer model is ook opgelos met lineêre programmering en die resultaat is 

gebruik as 'n optimale doelwit vir vergelykings.  

 

Verskeie scenarios met verskillende simulasie stop tye, skakel intervalle, beheer horisonne, 

model onsekerheid en model versteurings is gesimuleer en vergelyk. Die effek van MA 

kostes is ook geevalueer deur inter uitruiling van die TVG en MA kostes. 

  

Die resultate toon 'n besparing van 5. 8% tot 9% vir die algehele aanleg, afhangend van die 

gesimuleerde scenarios. Die deel van die besparing wat veroorsaak is deur 'n vermindering 

in MA wissel tussen 69% en 92%. Die resultate toon ook dat die geslote-lus optimale 

beheer model se besparing dieselfde is as die besparing van die ope-lus optimale beheer 

model, en dat die geslote-lus optimale beheer model kompenseer vir model onsekerheid en 

model versteurings, terwyl die ope-lus optimale beheer model nie kompenseer nie. 

  

SLEUTELWOORDE 

Model voorspellende beheer, las verskuiwing, maksimum aanvraag, optimale beheer. 
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LIST OF ABBREVIATIONS 

 

BIP Binary integer programming 

DME Department of Minerals and Energy 

DSM Demand side management 

IP Integer programming 

LP Linear programming 

MD Maximum demand 

MILP Mixed integer linear programming 

MINLP Mixed integer non-linear programming 

ML Mega litre 

MPC Model predictive control 

NERSA National Energy Regulator of South Africa 

NMD Notified maximum demand 

TOU Time-of-use 
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1. INTRODUCTION 

This dissertation defines and simulates a closed-loop optimal control strategy for load 

shifting in a specific water pumping scheme with an electricity tariff that includes both 

time-of-use (TOU) and maximum demand (MD) charges.  

1.1. Outline of the dissertation 

This chapter introduces the background to the research problem and briefly describes the 

research approach. Chapter 2 covers the literature survey, which includes a detail 

description of the research problem, the research approach and the contributions of this 

research. In Chapter 1 a generic optimal control model is defined. In Chapter 4 this general 

control model is applied to a specific case study. Chapter 5 reports on the simulated results 

for the case study, and Chapter 6 concludes and makes recommendations for further 

research. 

1.2. Background 

The demand for electricity is increasing throughout the world, which results in higher cost 

and additional greenhouse gas emissions. This is of particular concern in South Africa 

where large scale load shedding was recently required to reduce the electricity demand [1], 

[2]. To assist with this problem demand side management (DSM) initiatives are pursued. 

DSM initiatives are less expensive, cleaner, faster and have lower risks than building new 

power plants [3].  

 

DSM can be divided into two categories: energy efficiency and load management. Energy 

efficiency aims to reduce the net amount of energy consumed, whilst load management 

aims to reduce the load in peak demand periods. Load shifting is an aspect of load 

management where the load is moved from peak demand periods to lower demand periods, 

i.e., the load is simply moved, but the net amount of consumed energy may not change.  

 

To encourage load shifting utilities have structured electricity tariffs with time-of-use 
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(TOU) and/or maximum demand (MD) charges [4]-[7]. TOU charges are based on higher 

kWh rates during high demand periods, whilst MD charges are based on fixed fees per 

maximum kVA or kW for a month, typically in high demand periods [5]. MD is measured 

as the highest average demand in kVA or kW during any integrating period –the 

integrating period is generally 30 minutes, and it coincides with the TOU periods [5].  

 

Optimal control [8], [9] is new to the field of load shifting; specifically where both TOU 

and MD charges are applicable. Therefore, the goal of this research is to affirm that an 

optimal control model can be used to solve industrial load shifting problems for customers 

whose tariffs include TOU and MD charges. 

1.3. Approach 

The research objective is to define and simulate a closed-loop load shifting (scheduling) 

strategy that yields the maximum potential cost saving under both TOU and MD charges 

for a specific application. 

 

A generic open loop optimal control model is defined for a water pumping scheme. This 

generic open loop optimal control model is then converted into a closed-loop optimal 

control model using a model predictive control (MPC) approach. The generic open and 

closed-loop optimal control models are then applied to a case study. The water pumping 

scheme at the Rietvlei water purification plant in the Tshwane municipality (South Africa) 

is selected for the case study.  

 

Thereafter, the applied control models are simulated and compared with the current 

(simulated) level based control model. Integer programming (IP) is used to solve the 

optimization problem for the open and closed-loop optimal control models. The open loop 

optimal control model is also solved with linear programming (LP) to determine an 

optimal benchmark for comparisons. 

 

A number of scenarios with varying simulation timeout, switching intervals and control 

horizons are also simulated to evaluate the effect of compromises in practical applications.  
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The effect of MD charges is also evaluated by interchangeably excluding the TOU and MD 

charges. And finally, the affect of model uncertainty and model disturbances on the open 

and closed-loop optimal control models is evaluated.   
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2. LITERATURE SURVEY 

This chapter covers the literature survey. It includes a detail description of the research 

problem, the research approach and the contributions of this research 

2.1. Demand side management (DSM) in South Africa 

Approximately 95% of South Africa’s electricity is generated and distributed by the state 

owned utility Eskom [2]. Eskom has an installed electrical generation capacity of 

approximately 43,037 MW with an operating capacity of approximately 38,744 MW [2]. 

The difference between the installed and operating capacity is referred to as the net reserve 

margin. Due to fast economic growth and slow capital expansion the net reserve margin in 

2008 has decreased to 8%, compared to an internationally accepted margin of 15% [2]. As 

a result unplanned outages resulted in large scale load shedding [1], [2].  

 

In order to correct the situation Eskom has embarked on capital expansion and DSM 

programs [2]. The aim of the capital expansion program is to refurbish old mothballed 

power stations and to build new peak and base load power stations. The aim of the DSM 

programme is to affect the timing or amount of electricity used by customers [2], [10].  The 

DSM program is very important, because DSM initiatives are less expensive, cleaner, 

faster and have lower risks than building new power stations [3]. 

 

The current Eskom DSM program is an extension of an exiting DSM programme which is 

in line with the energy efficiency strategy for South Africa from the Department of 

Minerals and Energy (DME) [10], [11]. The aim of this overall program is to reduce 3,000 

MW from April 2007 to March 2012, and a further 5,000 MW by March 2025. The Eskom 

DSM program is approved and monitored by the National Energy Regulator of South 

Africa (NERSA). With these aggressive targets and the reality of load shedding it is clear 

that DSM is an important initiative in South Africa. 

 

DSM can be divided into two categories: energy efficiency and load management [12], 

[13]. Note that in some literature energy efficiency and DSM are referred to as two 
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separate activities [14]. In these cases DSM typically refers to load management. 

2.2. The energy efficiency component of DSM 

Energy efficiency aims to reduce the net amount of energy consumed. Various techniques 

are used to reduce energy consumption, for example, energy efficient lighting [15], 

variable speed drives [16], solar water heating systems [17], energy efficient motors [18], 

etc. These techniques reduce the net energy consumed, help in lowering the demand during 

peak periods and also reduce greenhouse gas emissions.  

2.3. The load management component of DSM 

Load management aims to schedule load out of peak demand periods to lower demand 

periods. As opposed to energy efficiency, the load is simply moved, but the net amount of 

consumed energy is not changed. Various techniques are used for load management, e.g., 

direct load control [19], real-time pricing [20], TOU pricing [21], MD pricing [22], etc. 

The focus of this dissertation is on the TOU and MD pricing techniques. With these 

techniques utilities do not actively manage the load, but customers are encouraged to re-

schedule loads to reduce electricity costs. This technique is commonly referred to as load 

shifting. 

2.4. Electricity tariffs applicable to load shifting 

As mentioned, to encourage load shifting utilities have structured electricity tariffs with 

TOU and/or MD charges [4]-[7]. MD charges are also used by utilities to represent 

infrastructure costs due to high peak demands. In other words, utilities charge for the MD 

to encourage more uniform load profiles. This reduces the cost of reticulation equipment, 

e.g., power transformers. MD charges are also typically applicable in high demand periods, 

which encourage load shifting to lower demand periods [4]-[7]. 

 

TOU charges are based on higher kWh rates during high demand periods, whilst MD 

charges are based on fixed fees per maximum kVA or kW for a month [5]. MD is 

measured as the highest averaged demand in kVA or kW during any integrating period. 
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The integrating period is generally 30 minutes, and it coincides with the TOU periods [5].  

 

The MD is different from the notified maximum demand (NMD) [4], [5]. The NMD is the 

agreed limit on the monthly MD. In other words, a customer agrees that his MD will not 

exceed his NMD. A customer that exceeds the NMD is typically charged with a penalty 

fee. This dissertation focuses on the MD only, because by optimizing the MD the NMD is 

automatically adhered to. 

2.5. Load shifting with optimal control models 

Various techniques are used to solve load shifting problems in different applications. 

Fuzzy logic is used in [23] for load shifting of a domestic hot water cylinder. A neural 

network is used in [24] for load shifting in a petrochemical plant. In [25]-[32] load shifting 

problems are modelled as optimization problems, and in [33]-[36] load shifting problems 

are modelled as optimal control problems [8], [9].  

 

A load shifting problem can be considered as an optimal control problem, because the 

objective is to control a process, within a set of constraints, whilst minimising a cost 

function. The cost function in this case is the cost of electricity. It is assumed that the 

applicable tariff is structured to encourage load shifting. 

 

The optimization techniques used in [25]-[32] do not consider external disturbances or 

inaccurate system models. In other words, no feedback and subsequent re-optimization is 

included to compensate for these deficiencies. From a control theory point of view [37], 

these types of applications can be referred to as open loop control models, because no 

feedback is used to determine if the controller’s input has achieved the desired output. This 

means that the system does not observe the output of the processes that it is controlling. 

  

The optimization techniques (open loop optimal control models) used in [25]-[32] are 

valuable starting points to quantify the potential for load shifting. However, they cannot 

actively control a load shifting process with disturbances. To actively control a load 
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shifting process a controller with feedback and subsequent re-optimization is required. This 

type of controller is referred to as a closed-loop optimal controller [37]. 

 

Table 2-1 shows that the load shifting techniques in [25]-[36] can be further categorized as 

follows: [25]-[27] considers optimization (open loop optimal control) with TOU charges, 

[28]-[32] considers optimization (open loop optimal control) with TOU and MD charges, 

[33] and [34] considers closed-loop optimal control models with TOU charges, and only 

[35] and [36] considers closed-loop optimal control models with TOU and MD charges. 

Furthermore, the closed-loop optimal control models in [35] and [36] are re-optimized 

daily, but should ideally be re-optimized more frequently to react to disturbances closer to 

real-time. Table 2-1 also shows that only [30]-[32] and [35]-[36] covers load shifting in 

water supply systems. 

 

Table 2-1: Summary of the optimal control based references. 

Reference  
Open loop  

control  

Closed-loop 

control  

TOU 

charges  

MD 

charges  

Water 
supply 
system 

[25] X   X    

[26] X   X    

[27]  X   X    

[28] X   X  X  

[29] X  X X  

[30]  X   X  X X 

[31] X   X  X X 

[32]  X   X  X X 

[33]  X  X    

[34]  X X   

[35]    X*  X  X X 

[36]  X*  X  X  X 

*Includes daily feedback only 

 

The remainder of this section covers more details about the references [25]-[36] in Table 
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2-1. 

2.5.1. Open loop optimal control models with TOU charges only 

In [25] an open loop optimal control model is applied to a flour mill in India that is charged 

on both TOU and MD. However, the MD charge is not included in the objective function 

of the optimal control model. It is argued that the MD charges can be added later, because 

it is a constant charge throughout a 24 hour period. The problem in [25] is formulated as a 

discrete time linear problem and solved using IP. The total connected load of the plant is 

235 kW and the reduction in electricity cost after load shifting is 1.5%. With a different 

working shift strategy and additional storage capacity the cost saving increases to 29%.  

 

In [26] an open loop optimal control model is applied to a steel plant (arch furnace) in 

India that is charged on both TOU and MD. However, the MD charge component is not 

included in the objective function of the optimal control model. The same argument is used 

as in [25]. The problem is formulated as a discrete time linear problem and is solved using 

IP. The contracted demand for the plant is 70 MVA. The reduction in energy cost is not 

given against the current usage, but a comparison is done between the cost for an optimal 

schedule under a flat tariff and an optimal schedule under a TOU tariff. The saving in this 

comparison is 5.7 %.  

 

In [27] an open loop optimal control model is developed and simulated for a domestic hot 

water cylinder. Only TOU charges have been included in the objective function of the 

control model. A commercial TOU based tariff is used for illustration purposes, because 

TOU charges are not applicable to residential customers in South Africa. The problem is 

formulated as a continuous time switched optimal control model –based on a technique in 

[38]. The total cost saving is 35%, which is based on a simulated cost comparison between 

the traditional control model and the new optimal control model. Both control models are 

simulated with the selected TOU tariff. 

2.5.2. Open loop optimal control models with TOU and MD charges 
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In [28] an open loop optimal control model is developed and simulated for a fertilizer plant 

in India that is charged on both TOU and MD. The total connected load of the plant is 24.7 

MW and the reduction in electricity cost after load shifting is approximately 3%. This 

includes the saving on MD and TOU charges.  

 

In [29] an open loop optimal control model is developed and simulated for an electrolytic 

process (chlorine) plant in India that is charged on both TOU and MD. The problem is 

formulated as a discrete time linear problem and is solved using mixed integer non-linear 

programming (MINLP). The switching intervals are selected as 30 minute intervals, which 

coincides with the MD integrating periods. The MD charge component is included in the 

objective function of the optimal control model. The connected load of the plant is 40 MW 

and the contracted demand is 25 MVA. The reduction in electricity cost after load shifting 

is 3.9%. Although the reduction in MD is 19%, the affect on the total cost saving is small, 

i.e., the portion of saving due to MD reduction can be calculated from the paper as 0.078% 

of the total 3.9%. One of the reasons is that the MD charges are small compared to the 

TOU charges in the applicable tariff.  However, in South African tariffs the MD charges 

are higher in relation to the TOU charges [5], and it is expected that the MD charges will 

play a more significant role in South Africa. For example, the MD charges in [29] would 

account for approximately 7% of the total electricity cost for a constant load over a month, 

whilst the MD charges in South Africa for the same scenario would account for 

approximately 15% (high demand season) [5]. 

 

In [30] an open loop optimal control model is developed and simulated for a water supply 

network in England. The water supply network consists of a number of pumping stations 

that are charged on both TOU and MD. The control horizon is divided into control 

intervals that coincide with the TOU periods. The required operating time in each control 

interval is then solved with linear programming. The advantage of this approach is that the 

variables are not binary integer constrained and can therefore be solved faster. The 

disadvantage is that a discrete pump schedule still needs to be determined from the results. 

The MD cost is optimized by repeated linear optimization for different pump 

combinations. The total load of the plant is not given. The cost saving for TOU 

optimization only is 7.7%, and for both TOU and MD optimization it is 15.6%. This 
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proves that in certain applications the optimization of MD costs is important. An indication 

of computation time is also given which shows reasonable computation times of 2 to 42 

seconds, depending on the size of the problem. 

 

In [31] an open loop optimal control model is developed and simulated for a hypothetical 

water supply system. The main idea in [31] is the consideration of future water demand in 

the optimization of MD. The daily water demand is modelled as a Markov process, which 

is then used in a dynamic programming algorithm to determine daily MD limits for a 

month. This calculation is done occasionally, e.g., once per month. The daily MD limits 

are then used as constraints in the daily optimization scheduler. A specific daily 

optimization scheduler is not described.   

 

In [32] an open loop optimal control model is developed and simulated for a hypothetical 

water distribution system. The hypothetical system is charged on both TOU and MD. The 

problem is formulated as a discrete time non-linear model and solved with a generalized 

reduced gradient optimization algorithm. The control variables are continuous and they 

represent the required flow from a pump station. This means that the discrete pump 

schedule at each pump station still needs to be determined from the results. The control 

horizon is 24 hours and it is divided into 24 hourly control intervals. The TOU electricity 

saving is 6.3 %, and the total saving (including MD charges) is 8.3%. The computation 

time for the problem is approximately 5 minutes; it is assumed that it would be faster on a 

more modern computer. 

2.5.3. Closed-loop optimal control models with TOU charges only 

In [33] a closed-loop optimal control model is developed and simulated for a colliery 

conveyor system in South Africa. The plant is charged on TOU only. The problem is 

formulated as a discrete time linear model and solved with binary integer programming 

(BIP). The closed-loop model is re-optimized on the arrival of a new train. The control 

horizon is the time period between the arrival of coal trains, and the control intervals are 

selected as one hour. The TOU cost saving on a specific conveyor is 49%.  
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In [34] a closed-loop optimal control model is developed and simulated for a heating 

cogeneration system of a sample building. Although, this is not a typical load shifting 

application, the principles are the same. A simple tariff with a day-night TOU charge is 

used. The problem is formulated as a discrete time linear problem, and solved with linear 

programming. The control variables are continuous because the output of the cogeneration 

engine is variable, i.e., not binary controlled. The control horizon is 24 hours, the switching 

intervals are 15 minutes, and the simulation is executed over a 1 year period. The results 

are compared with a conventional simulated system without any cogeneration. The results 

show a 29% saving in overall energy cost. 

2.5.4. Closed-loop optimal control models with TOU and MD charges 

In [35] a closed-loop optimal control model is developed and simulated for a water supply 

system in the USA that is charged on both TOU and MD. The MD costs are first optimized 

with a long term model over a month to determine an optimal MD. This information is 

then used in a daily optimization schedule. Continuous variables are used in the long term 

model and binary integer variables are used in the short term model. The long and short 

term control horizons are divided into switching intervals of one hour. The long and short 

term models are formulated as non-linear problems and solved with a dynamic 

programming algorithm. The total cost saving is 20%.  

  

In [36] a closed-loop optimal control model is developed and simulated for a water 

pumping scheme in the USA that is charged on both TOU and MD. The problem is 

formulated as a continuous time linear problem and solved using mixed integer linear 

programming (MILP). The control horizon is divided into varying control intervals that 

coincide with the TOU periods. The control variables are continuous and they represent the 

pump duration required for each pump in a control interval. This means that the discrete 

pump schedules still need to be determined from the results. The MD charge component is 

included in the objective function of the optimal control model as a continuous variable. 

The total demand in each MD interval is then constrained to this variable. At the beginning 

of each month a monthly optimal schedule is determined based on forecasted water 

demands. The schedule is then followed until demand levels deviate from the predicted 
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demand to a point that the reservoir levels are not acceptable. To compensate for this 

deviation a short term (daily) schedule is determined using the same optimization model. 

The short term schedule then restores reservoir levels to the predicted levels of the monthly 

model. Thereafter, the monthly model is followed again. The total connected load of the 

plant is not given, but it is estimated as 5 MW based on the ratings of the individual 

motors. The reduction in electricity cost after load shifting varies between 3% and 40% per 

month over a 7 month period. The actual cost is compared to the cost of an optimized 

model.  

2.6. Rationale for this study 

As discussed, only [33]-[36] uses closed-loop optimal control models that includes TOU 

charges, and only [35]-[36] uses closed-loop optimal control models that includes both 

TOU and MD charges. As mentioned, the closed-loop optimal control models in [35]-[36] 

are re-optimized daily. Ideally they should be re-optimized more frequently to react to 

disturbances closer to real-time.  

 

Therefore, little evidence could be found to prove the applicability of closed-loop optimal 

control for load shifting in different applications, and specifically where both TOU and 

MD charges are included in the objective functions of the control models. 

  

Although the problem and the optimization techniques are similar between an open and 

closed-loop optimal control models, it is important to prove the applicability of the closed-

loop control model, because there are certain issues that are not addressed by an open loop 

control model. For example, the optimization time of a closed-loop optimal control model 

has to be short in order to actively control a process. This might require a compromise on 

the optimality of the solution, like the selection of shorter control horizons to improve the 

optimization time. 

 

Furthermore, there are differences in application of the optimal control models in 

[25]-[36], which means that the techniques and assumptions are not universally applicable. 

For example, only [30]-[32] and [35]-[36] covers load shifting in water supply systems, 
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and these solutions are also not universally applicable to all water supply problems. 

Therefore, an additional case study adds to the available body of knowledge. 

 

Note that the switching intervals in [28]-[32] and [35]-[36] are greater than or equal to the 

MD integrating period. This means that optimization within the MD integrating interval is 

not considered. This dissertation shows that smaller switching intervals can reduce MD 

costs in certain applications.  

 

A two step optimization approach is used in [35]-[36] to optimize the TOU and MD costs. 

In both cases the first optimization step uses continuous variables, which are then 

scheduled into binary statuses in the second optimization step. This dissertation considers a 

single optimization step that is based on the technique used in [36]. This is covered in more 

detail in section 2.7 and Chapter 1. 

2.7. Approach of this study 

2.7.1. Hypothesis 

The hypothesis is that a closed-loop optimal control model can be used for load shifting 

problems in industrial applications; including customers that are charged on TOU and MD. 

2.7.2. Motivation for the model predictive control (MPC) approach 

The control problem of a specific case study is formulated as a discrete time linear closed-

loop optimal control problem. The closed-loop optimal control model is implemented with 

an MPC approach [39]-[43].  

 

MPC is an optimal control approach that uses an explicit model of the plant to predict 

future responses (outputs). With an MPC approach an open loop optimal control problem 

is solved repeatedly over a finite control horizon at each switching interval, and only the 

first control step (input) is implemented after each iteration. At the next sampling interval 

the state of the plant is re-sampled (measured) and the process of optimization is repeated 
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[40], [43]. The basic structure of the MPC approach is shown in Figure 2-1. The MPC 

approach is explained in more detail in section 3.2. 

 

Optimization PlantObjective

Constraints

Output
Input

Measurements  
Figure 2-1: Basic structure of an MPC model (adapted from [40]). 

 

An MPC approach is selected for the following reasons [43]: 

 

1. The periodic re-optimization characteristic of an MPC model provides stability 

during external disturbances. 

2. The re-optimization also compensates for inaccurate or simplified system models 

i.e. model uncertainty.   

3. An MPC model converges to the solution of the open loop optimal control model. 

4. An MPC controller can be started and restarted at any time, whilst an open loop 

controller must be started at the correct simulated start time. 

5. An MPC approach is a generic closed-loop optimal control solution that is not only 

applicable to a specific control problem. 

2.7.3. Research process and modelling 

The research comprises of the following sequential activities: 

 

1. A generic open loop optimal control model is defined with an objective function 

that includes TOU and MD charges. The control model is formulated as a discrete 

time linear problem so that standard optimization algorithms can be applied to 

solve the problem [44],[45],[46]. One of these standard optimization algorithms is 
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IP, which is selected for the optimization in this dissertation. 

2. The generic open loop control model is then converted to a closed-loop optimal 

control model using the MPC approach with IP optimization.  

3. The generic open and closed-loop optimal control models are then applied to a 

specific case study. 

4. The current level based control model for the case study is then defined and 

simulated as the baseline for comparisons. 

5. The applied open loop optimal control model is then simulated with an LP 

optimization algorithm. The LP simulation is included to calculate a benchmark to 

evaluate the effectiveness of the IP solutions. The LP model solves very quickly 

(less than 10 seconds), and the result is considered optimal, because the variables 

are not constrained to integer values. Note that this is not a practical solution, 

because the pumps are binary controlled. 

6. The applied open loop optimal control model is then simulated with IP optimization 

for a specific scenario with different simulation timeout values. The simulated 

scenario uses two switching intervals per MD period, a control horizon of 24 hours 

is used and it is simulated over a one day period. Based on the results a practical 

timeout value is selected for subsequent simulations. Note that with 2 switching 

intervals per MD period the switching intervals are 15 minutes long, because the 

MD integrating period is 30 minutes long. 

7. The open loop optimal control model with IP optimization is then simulated over 

30 days to get a monthly average. The results are also used for comparison with the 

closed-loop optimal control model in step 11. This scenario uses two switching 

intervals per MD period, and a control horizon of 24 hours. 

8. The open loop optimal control model with IP optimization is then simulated with 

different switching intervals to evaluate the effect on the TOU and MD costs. For 

these scenarios a control horizon of 24 hours is selected and the control model is 

simulated over 30 days. It is assumed that the results from the closed-loop model 

will match the results from the open loop model for all the scenarios with different 

switching intervals if the results for one of the scenarios between the open and 

closed-loop control models match.  
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9. The open loop IP control model is then interchangeably simulated with TOU and 

MD charges. The purpose of this simulation is to evaluate the effect of the TOU 

and MD optimization separately. This scenario uses 11 switching intervals per MD 

period (i.e., 2.73 minutes), a control horizon of 24 hours, and is simulated over 30 

days. Initially two switching intervals per MD period were used for this simulation. 

However, the optimal schedule coincidently resulted in a low MD cost, and 

therefore 11 switching intervals is selected which results in a better example of the 

problem.  

10. The closed-loop control model is then simulated with different control horizons to 

evaluate the effect on TOU and MD costs. For these scenarios 2 switching intervals 

per MD period is used and the control model is simulated over 30 days.  The 

purpose of this simulation is to evaluate the effect of possible compromises in 

practical applications where shorter control horizons are required to improve the 

simulation time.  

11. The open and closed-loop control models are then compared over 30 days for a 

specific scenario, i.e., two switching intervals per MD period and a control horizon 

of 24 hours.   

12. The open and closed-loop control models are the then simulated with an inaccurate 

system model and with model disturbances to show how the closed-loop control 

model compensates for the model uncertainty and the model disturbances, whilst 

the open loop control model does not. 

2.7.4. Selected case study 

The water pumping scheme at the Rietvlei water purification plant in the Tshwane 

municipality (South Africa) is selected for the case study. A tariff that includes TOU and 

MD charges is selected for the simulations [5]. A tariff is selected because the plant is not 

currently charged on a TOU based tariff by the Tshwane municipality [5]. This is covered 

in more detail in section 4.2. A specific part of the plant is selected for this research, i.e., 

the part of the plant that has potential for load shifting without large infrastructure 

expenditure. The detail of the plant is described in Chapter 4.  
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2.7.5. How this approach addresses current deficiencies 

The selected approach addresses the deficiencies described in section 2.6 as follows: 

 

1. The selected case study affirms the application of closed-loop optimal control for 

load shifting in plants with electricity tariffs that include TOU and MD charges. 

2. The selected case study also specifically affirms the use of a closed-loop optimal 

control model in water supply systems. 

3. The MPC approach optimizes regularly (at every control step) as oppose to just 

daily, which enables a faster reaction to disturbances. 

4. The MPC approach is a generic approach that is not specific to the optimization 

problem. The only difference is the modelling of the optimization problem.  

5. This approach evaluates the effect of various control parameters that can be 

considered in practical applications of closed-loop optimal control models, i.e., 

simulations timeouts, switching intervals and prediction horizons.  

6. The selected approach optimizes within the MD period, e.g., at 15 minute intervals. 

7. The selected approach determines the optimal binary pumping schedule for both 

TOU and MD charges in a single step. 

2.7.6. Challenges and limitations of the selected approach 

The challenges and limitations of this approach are: 

 

1. The research is limited to a specific case study only. The aim is simply to affirm the 

hypothesis by adding to the existing body of knowledge. 

2. The interpretation and modelling of the specific plant might not be 100% accurate. 

A real implementation is required as part of a further research initiative to affirm 

the results. 

3. The control model is simplified for simulation purposes and cannot be implemented 

as is. For example, the design does not factor in disturbances like motor failures 

and maintenance outages. The design also does not consider the maturity of process 
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control technology, i.e., existing process controllers might not be able to compute 

complicated optimization algorithms. 

4. Modelling and optimization under both TOU and MD charges is challenging. The 

control model and the simulation results provide information to guide future 

applications. 

2.8. Contributions of this study 

The contributions of this study can be summarized as follows: 

 

1. This study affirms that a closed-loop optimal control model can be used to solve 

industrial load shifting problems for customers whose tariffs include TOU and MD 

charges. In other words, it adds value by adding to the available case studies [35], 

[36]. 

2. This study affirms that an MPC approach can be used to design the closed-loop 

controller for load shifting problems [33]. 

3. This study considers scheduling within the MD integrating period, where other 

work does not [28]-[32], [35], [36].  

4. This study validates the convergence of the electricity cost of the closed-loop MPC 

solution to the open loop controller [43]. 

5. This study validates the robustness of the MPC solution [43]. 

6. This study evaluates the effect of various control parameters that can be considered 

in practical compromises. This kind of comparative information is not available 

from exiting references [25]-[36]. 

7. This study validates the importance of including MD charges in the optimization 

where applicable, i.e., it adds to the available case studies [28]-[32], [35], [36]. 

8. This study proves that an optimal binary pump schedule that optimizes both TOU 

and MD charges can be obtained in a single optimization step. This is done as a two 

step approach in existing literature [28]-[32], [35], [36]. 
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3. GENERIC CONTROL MODEL FOR A WATER PUMPING SCHEME 

This chapter defines a generic open and closed-loop optimal control model for load 

shifting in a water pumping scheme.  

 

As described in section 2.7.2, with an MPC approach an open loop optimal control 

problem is solved repeatedly over a finite control horizon at each switching interval, and 

only the first control step is implemented after each iteration. Therefore, the first step 

required to define a generic closed-loop optimal model is to define a generic open loop 

optimal control model. The second step is to convert the open loop model to a closed-loop 

model.  

3.1. Generic open loop optimal control model 

The state model of the open loop optimal control model is defined as  

 

r
n

tnrntrrt BuALL +⋅+= ∑+ )1( ,             (3-1) 

 

where: 

n The n-th pump, and n = 1,…,N. 

N The total number of pumps. 

t The t-th discrete switching interval, and t = 1,…,T. 

T The total number of discrete switching intervals. 

utn The binary switching status of the n-th pump at the t-th switching interval; utn = 0 

when the pump is off and utn = 1 when the pump is on. 

r The r-th reservoir, and r = 1,…, R0. 

R0 The total number of reservoirs. 

Ltr The level of the r-th reservoir at the t-th switching interval. 
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Arn The flow rate of the n-th pump at the r-th reservoir. 

Br The constant inflow or outflow rate of the r-th reservoir, e.g., gravitational flow. 

 

The aim is to optimize the switching of a number of pumps (N) to reduce the cost of both 

TOU and MD charges over a control horizon (H), for example 24 hours. The objective 

function to minimize is defined as  
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where: 

s The s-th switching interval in any MD integrating period, and s = 1,…,S. 

S The total number of switching intervals in an MD integrating period. 

pn The power consumption of the n-th pump. 

ct The TOU energy cost in the t-th switching interval. 

zn The n-th MD integer variable for the n-th pump, and 0 ≤ zn ≤ S. 

C The MD charge in R/kW or R/kVA, and ‘R’ represents the South African currency 

called Rand (US $1 ≈ R8.00). 

λ1 The weight assigned to the TOU energy cost. 

λ2 The weight assigned to the MD cost. 

 

The variables utn and zn needs to be solved by the optimization algorithm over the control 

horizon (H).  

 

The relationship between the variables can be explained as follows: a control horizon is 

divided into T switching intervals, and each MD interval consists of one or more switching 

intervals (S). For example, if a control horizon (H) of 24 hours is divided into 15 minute 

switching intervals, then the total number of switching intervals is 96 (T=96). This means 
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that each MD interval is divided into two switching intervals (S=2), if the MD integrating 

intervals are 30 minutes long. 

 

Note that the technique to represent the MD costs with a variable in the objective function 

is based on [36]. In this dissertation the variables utn and zn are modeled as binary integer 

and pure integer variables respectively, whilst in [36] all the variable are modeled as 

continuous variables. The benefit of the integer variables is that it avoids a second 

scheduling step within the MD period. 

 

The reservoir level constraints are defined as  

 

rtrr ELD ≤≤                 (3-3) 

 

where Dr represents the minimum level constraint of the r-th reservoir and Er represents 

the maximum level constraint of the r-th reservoir.  

 

The following constraints are required to force zn to represent the highest MD across all 

MD integrating periods: 
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where k represents the number of MD periods in the control horizon. In other words, the 

purpose of (3-4) is to constrain each individual MD period to the maximum value of the 

MD that is represented by zn in the objective function in (3-2). 

3.2. Generic closed-loop optimal control model 

The closed-loop optimal control model is defined with the same state model as the open 

loop model in (3-1), and the objective function is defined as 
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where m = 1,…,M, and M represents the last switching interval of the controller. The last 

switching interval could be considered as infinite unless the controller is stopped. 

 

In (3-5) the open loop optimal control problem is solved repeatedly over a finite control 

horizon (H) at each switching interval t, and only the first control step utn is implemented 

after each iteration. At the next sampling interval (t+1) the state of the plant (Ltr) is re-

sampled and the process of optimization is repeated over the new control horizon [m, 

m+T]. 

 

The same constraints for the open loop model in (3-3) and (3-4) apply to the closed-loop 

model. The only difference is that the constraints need to be updated after each switching 

interval is implemented. 

 

The MPC control strategy can be explained further with Figure 3-1, which shows the result 

of a hypothetical controller that controls the level of one reservoir. The reservoir has a 

constant inflow rate and the outflow is controlled with only one pump. 

 

The control model in Figure 3-1 uses 15 minute switching intervals (S=2), and a control 

horizon (H) of 8 hours. Figure 3-1 shows the level of the reservoir Lt1 (output), the statuses 

of the pump ut1 (inputs) and the TOU energy charges (ct) over 14 hours. 

 

Figure 3-1 shows that the current time is 6h00, which means that the inputs and output 

prior to 6h00 are historical and the inputs and output after 6h00 are the future predicted 

values. Note that the MPC sampling intervals are chosen to coincide with the switching 

intervals of the pumps. 
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The process of the MPC controller in Figure 3-1 can be described as follows: At the 

current time (6h00) the controller samples the current reservoir level, applies all the 

constraints, and predicts the future statuses of the pump that will optimize cost over the 

next 8 hours. The calculated statuses of the pump are referred to as the predicted inputs 

(ut1). The results in Figure 3-1 show that the pump needs to be switched on for the next 15 

minutes (6h00 to 6h15), and that pump needs to be switched on for a few more 15 minute 

intervals between 10h00 and 14h00. Figure 3-1 also shows how the level of the reservoir is 

predicted over the next 8 hours from 6h00 to 14h00.  

 

 
Figure 3-1: MPC strategy; only the first predicted input is implemented (adapted from [40]). 

 

However, once the predicted inputs are calculated only the first predicted input is 

implemented and the rest of the predicted inputs are discarded. After the first predicted 

input is implemented the entire optimization process is repeated. This means that the pump 

is switched on for 15 minutes, and when the 15 minute interval lapses the level of the 

reservoir is sampled again, the constraints are re-applied and the future statuses of the 
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pump over the next 8 hours are predicted again. When the new statuses of the pump are 

determined only the first status (predicted input) is implemented again. Therefore, the 

optimization process repeats indefinitely at each switching interval (t). 

3.3. Impact of tariff and system parameters on the optimal control model 

The generic optimal control model is defined for a water pumping scheme with an 

electricity tariff that includes TOU and/or MD charges. It is expected that this generic 

optimal control model is applicable to most water pumping schemes with an electricity 

tariff that includes TOU and/or MD charges. For example, the generic optimal control 

model is still applicable if the structure of the plant is similar, i.e., only the system 

parameters such as the number of pumps, number of reservoirs, flow rates, and reservoir 

capacities change. Therefore, it is expected that the prices in the electricity tariff and the 

system parameters will only affect the optimal scheduling (computation results) of each 

plant.  

 

It is expected that the optimal control model will change if the structure of the plant is 

different or if the tariff structure is different, e.g., when the plant is not a water pumping 

scheme or when a third charge component is added to the tariff.  However, it is expected 

that the modelling idea is applicable to load shifting applications in general, even if the 

plant structure or tariff structure is different. 

3.4. Validation of the generic optimal control model 

The generic open and closed-loop optimal control models are validated in Chapter 4 where 

the generic control models are applied to a specific case study. In Chapter 5, both the 

applied open and closed-loop optimal control models are then simulated and compared 

with the current level based control model. The optimal control models are solved with 

integer programming optimization. The results show that the applied control model reduces 

electricity costs within the constraints of the plant. 
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4. APPLICATION OF THE GENERIC CONTROL MODEL TO A CASE STUDY 

This chapter describes the selected case study, and applies the generic open and closed-

loop optimal control models from Chapter 3 to the case study.  

4.1. Plant overview 

A water purification plant in the Tshwane municipality in South Africa is selected for the 

case study. The plant can be divided into the purification plant itself and the pumping 

scheme of the purified water (see Figure 4-1). This dissertation focuses on the water 

pumping scheme, because it consumes the bulk of the electricity and it has potential for 

load shifting.  

 

Reservoir(R1)
1.4 ML

Boreholes
10 ML/day, 
R 0.30/kL

Randwater
R 2.98/kL

20ML/day
R 1.03/kL

Purification
40 ML/day
Gravitational flow

Fountain
5 ML/day
Gravitational flow

25ML/day
R 1.03/kL

Reservoir (R3)
60 ML

Reservoir (R2)
120 ML

275 kW, 10 ML/day/pump300 kW, 22 ML/day/pump

Randwater
R 2.98/kL

Purification 
Plant

Consumers Consumers
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G2

G3

K1

K2

K3

 
Figure 4-1: Pumping scheme of the Rietvlei water purification plant. 
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Water flows from the dam through the purification plant into a reservoir (R1) at 40 ML/day 

(mega liter per day). R1 is also supplied with water from a fountain at 5 ML/day. R1 has a 

capacity of 1.4 ML.  

 

The water from R1 is pumped to two reservoirs: R2 and R3, with a capacity of 120 ML and 

60 ML respectively. The water to R2 is pumped by motors K1, K2 and K3; each rated at 

300 kW with the ability to pump 22 ML/day per motor. The water to R3 is pumped by 

motors G1, G2 and G3; each rated at 275 kW with the ability to pump 10 ML/day per 

motor.  

 

The primary source of water to R2 and R3 is a water utility in the province called 

Randwater, and R3 is also supplied by boreholes at a rate of 10 ML/day. 

 

The remainder of this section focuses on the water pumping scheme at the purification 

plant, which includes reservoir R1 and motors K1, K2, K3, G1, G2 and G3.  

 

The constraints of R1 and the relevant pumps are: 

 

1. At least one of the pumps to both R2 and R3 must run continuously, otherwise the 

water in the pipes flows back into R1.  

2. As much water as possible must be pumped to R3, because the reservoir is small 

and therefore the risk of running out of water is high. 

3. Running three pumps to either R2 or R3 is not desirable, because the mechanical 

losses are too high. 

4. A motor should not be started more than three times per hour. 

5. There is no limit on the amount of water that can be pumped to R2 and R3. 

6. Randwater supplies most of the water to R2 and R3 at a cost of R 2.98/kL (Rand 

per kilolitre). The boreholes and the purification plant are used as alternative water 

supplies with significant lower costs, i.e., R 0.30/kL and R 1.03/kL respectively. 

This means that the maximum amount of water from R1 must be pumped to R2 and 
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R3, irrespective of the electricity costs –including peak electricity periods. 

 

The pumps K1, K2, K3, G1, G2 and G3 are currently controlled with a level based control 

system. This means that each pump switches on and off when R1 reaches a specific level. 

The current switching levels are shown in Table 4-1. Based on the on/off switching levels 

in Table 4-1, G1, G2 and K1 are running most of the time, whilst K2 switches on and off to 

control the level. The exception is during outages when the level of R1 may drop into the 

switching ranges of the other pumps. Note that K3 and G3 are used as back-up pumps. As 

a result this configuration pumps approximately 25 ML/day to R2 and 20 ML/day to R3, as 

shown in Figure 4-1. 

 

Therefore, the most viable load shifting option for the pumping scheme at the purification 

plant, within the listed constraints, and without large infrastructure expenditure, is the 

switching times of K2. The problem with the current switching times of K2 is that K2 

operates approximately six times per day, for more than 30 minutes at a time. This means 

that the maximum demand per month equals the maximum capacity of the motors. With 

the current control model K2 could also operate during peak demand periods, because the 

motor simply starts when the reservoir level is too high. Therefore, it would be more 

desirable if K2 can run more frequently, for shorter periods, and preferable not during peak 

demand periods.  

 

Table 4-1: Switching levels of motors in the Rietvlei water pumping scheme. 

Pump 
Current  

“on” level  
Current  

“off” level 
Revised  

“off” level 

K1 0.6 0.3 0.05 

K2 1.3 0.9 0.2 

K3 back-up   

G1 0.8 0.4 0.1 

G2 1.0 0.7 0.15 

G3 back-up   

 

To enable more effective load shifting of K2 the “off” switching levels of all the motors 
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are revised to allow K2 with a wider operating band. The revised switching levels are 

shown in Table 4-1. Based on the revised switching levels G1, G2 and K1 will still run 

most of the time, whilst K2 switches on and off to control the level. 

4.2. Electricity tariff 

The purification plant is supplied with electricity from the Tshwane municipality on the 

standard 11 kV bulk supply tariff. This tariff includes a flat energy charge and an MD 

charge [5]. However, for this case study the municipality’s 11 kV TOU tariff is used 

instead. The 11 kV TOU tariff includes a TOU and an MD charge [5]. Note that the 

electricity cost is more or less the same on the flat and TOU tariffs if the load is not shifted. 

The variable fees of the TOU tariff for September 2008 are summarized in Table 4-2. 

 

Table 4-2: Summary of the Tshwane 11 kV TOU tariff. 

Period Cost 

Off-peak (0h00 to 6h00 and 22h00 to 24h00) 

High demand (winter) 0.1187 R/kWh 

Low demand (summer) 0.1049 R/kWh 

Standard (6h00 to 7h00 and 10h00 to 18h00) 

High demand (winter) 0.1411 R/kWh 

Low demand (summer) 0.1383 R/kWh 

Peak (7h00 to 10h00 and 18h00 to 22h00) 

High demand (winter) 0.8205 R/kWh 

Low demand (summer) 0.2628 R/kWh 

Maximum demand charge (applicable in peak and standard times) 

 R 66.50/kVA 

4.3. Current electricity costs 

The calculated electricity cost of the overall pumping scheme over 30 days is shown in 

Table 4-3. The overall cost calculation is required to determine the overall saving for the 

plant.  
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The simulated energy cost for K2 from section 5.1 is used in Table 4-3, whilst the energy 

cost for K1, G1 and G2 is calculated with the high demand (winter) TOU tariff. A uniform 

load throughout the month is assumed in the calculations.  

 

Table 4-3: Calculated electricity costs of the overall pumping scheme over 30 days. 

Pump kWh MD (kVA) Energy cost MD cost Total costs 

K1 (calculated) 216,000 300 R 59,438 R 19,950 R 79,388 

K2 (simulated) 30,348 300 R 8,351 R 19,950 R 28,301 

G1 (calculated) 198,000 275 R 54,485 R 18,288 R 72,772 

G2 (calculated) 198,000 275 R 54,485 R 18,288 R 72,772 

Total 642,348 1,150 R 176,758 R 76,475 R 253,233 

 

The calculated results in Table 4-3 correlates with the actual consumption for the plant 

during June 2008 where an MD of 1,152 kVA was registered with a total energy 

consumption of 640,416 kWh. As mentioned, the actual cost is not used, because the plant 

is currently charged on a flat energy rate.  

4.4. Assumptions for the optimal control model 

The following assumptions are made for the optimal control models: 

 

1. The revised switching levels from Table 4-1 are used. 

2. Only K2 is considered in the optimal control model. Pumps K1, K3, G1, G2 and 

G3 are assumed to be controlled with the existing level based control model, which 

(as explained) results in K1, G1 and G2 to always run. 

3. The high demand season (winter) tariffs are used. 

4. The off-peak, standard and peak times for all days are considered the same as a 

week day. This is to simplify simulation over a 30 day period.  

5. A motor power factor of one is used for the simulations. This means the kVA and 

kW consumption is equal.  

6. A utilization factor of one is used for the simulations. This means that the motors 
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run at full load. 

7. The pumping scheme consumes more than 90% of the electricity of the total plant, 

and therefore the overall cost saving is evaluated against the consumption of the 

pumping scheme only. 

4.5. Formulation of the current level based control model 

The current level based control model is also defined as a discrete time model, which is 

based on the state model in (3-1). Since there is only one reservoir (R1) and one pump (K2) 

to consider, the level of reservoir R1 at the t-th switching interval is defined as  

 

∑
=

+ ⋅−+=
t

t
tttt uFLOWOUTFLOWINLL

1
01 ,           (4-1)

 

 

where L0 is the initial level of reservoir R1, and t=1,…,T. The upper level limit is used as 

the initial level, i.e., L0 =1.3 ML. FLOWINt is the relative inflow to R1 over the t-th 

switching interval, which is a constant flow from the fountain and the purification plant, 

minus the outflows from the level controlled motors, i.e., FLOWINt = purification plant + 

fountain - G1 - G2 - K1 = 3 ML/day. FLOWOUTt is the outflow of K2 for the t-th 

switching interval, which is a constant value of 22 ML/day. 

 

The control status of the pump (K2) is based on the revised switching levels, and it is 

defined as 
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4.6. Open loop optimal control model with IP optimization 

Since these is only one reservoir (R1) and pump (K2) to consider, the state model in (4-1) 

also applies to the open loop optimal control model, and the generic objective function in 
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(3-2) is simplified as 
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where C = R 66.50 for the maximum kVA/kW over any 30 minute integrating period, p = 

300 kW, S = 2, T = 2HS, and λ1=λ2=1. Setting λ1=λ2=1 means that the total cost in (4-3) 

represents actual costs with no preference between a TOU or MD reduction. The objective 

function in (4-3) is subject to the constraints in (4-5)-(4-7).  

 

Based on Table 4-2, the cost of energy in Rands for the high demand season is defined as 
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The generic level constraints in (3-3) are defined as the upper and lower level constraints 

as 

 

ML 3.1≤tL for Tt ,...,1= ,              (4-5) 

 

and 

 

ML 2.0≥tL for Tt ,...,1= .              (4-6) 

 

The generic MD constraints in (3-4) (applicable in peak and standard times) are simplified 

and defined as 
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Note that the constraint of the number of allowable starts per hour for K2 is automatically 

adhered to as part of the optimization, i.e., K2 will be switched on at most once per MD 

period, which results in a worst case of two starts per hour. 

 

The optimization problem is solved with IP, because the variables ut and z are defined as 

binary integer and pure integer variables. 

4.7. Open loop optimal control model with LP optimization 

If the integer variables (ut and z) in the open loop optimal control model (4-3)-(4-7) are 

treated as real variables, then the optimization problem becomes a linear programming 

problem. This strategy is not practical for the selected case study, because the pumps are 

binary controlled. However, the LP optimization strategy is included as a benchmark to 

evaluate the effectiveness of the IP solutions. 

 

The LP solution is considered as a benchmark, because the variables are not constrained to 

integers, which results in one optimal result that satisfies all the constraints. The LP 

optimization also solves very quickly (less than 10 seconds). 

 

Therefore, the result from the LP optimization is better or equal to the result form the IP 

optimizations, which provides a possible least bound for the objective function value 

evaluated at integer feasible solutions. 

 

The formulation of the open loop optimal control model with LP optimization is the same 

as the formulation of the open loop optimal control model with IP optimization in section 

4.6. The only difference is that ut and z are not constrained to integer values –ut is only 

constrained as 10 ≤≤ tu .  
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4.8. Closed-loop optimal control model with IP optimization 

The closed-loop optimal control model is defined with the same state model as the current 

control model and the open loop optimal control model in (4-1).  

 

Since there is only one pump (K2) and one reservoir (R1) to consider, the generic closed 

loop objective function in (3-5) is simplified as 
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The objective function in (4-8) is minimized subject to the constraints in (4-5), (4-6), and 

(4-7) over the prediction horizon [m, m+T], as described in section 3.2. This means that the 

closed-loop model is not a simple optimization problem, but a series of optimization 

solutions with iterative implementations of obtained solutions. 

 

Note that the TOU cost function in (4-4) applies to the objective function in (4-8) as well. 

4.9. Choice of simulation timeout 

Solving an IP problem could take very long, depending on the number of variables, the 

optimization algorithm, the level of LP relaxation, etc. [50]. This is often referred to as the 

curse of dimensionality. However, optimization software provides parameters that can be 

set to improve the optimization time. For example, maximum number of iterations, 

maximum optimization time, gap between bounds, etc. In many cases this results in near-

optimal solutions as opposed to the absolute optimal solutions.  

 

If a timeout parameter is used, the best available result is presented when the optimization 

terminates. This is important in a closed-loop control model where the optimization can not 

run indefinitely, i.e., a less optimal solution that satisfies the constraints in a practical 

timeframe is preferred. Therefore, a timeout parameter is selected for this case study. The 
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timeout value for this case study is selected as 10 seconds. This selection is based on an 

evaluation that is covered in section 5.3.1. The 10 second value is also a practical selection 

that gives near optimal results for this case study. 

4.10. Choice of switching intervals 

The switching intervals are chosen to coincide with the TOU and MD periods, i.e., at least 

one switching interval per 30 minute integrating period (S=1). To reduce the MD charge in 

this application S needs to be bigger than one (S>1), which divides the MD integrating 

period into smaller intervals. 

 

However, the size of S is a trade-off between computational time, equipment constraints 

and cost saving. For example, with S=6 the switching intervals are only five minutes long. 

This enables fine optimization, especially for the MD charges, because a motor can be 

started every 30 minutes for only five minutes. However, with S=6 the number of variables 

over a 24 hour period is very high, which has a significantly affect on computation time 

and it could make the solution impractical.  

 

Furthermore, there might also be a limitation on the number of times a motor can be started 

in an hour and/or in the expected lifetime of the motor [47],[48]. One of the assumed 

limitations in section 4.1 is that a motor may not be started more than three times per hour. 

As mentioned in section 4.6, this limitation is automatically adhered to as part of the 

optimization 

 

The effect of the switching intervals (S) on the TOU and MD cost for S=1 to S=13 is 

covered in section 5.3.3. 

4.11. Choice of control horizon 

Like the switching interval, the control horizon (H) is a trade-off between computational 

time and cost saving. The control horizon is selected as 24 hours for most of the 

simulations in Chapter 5. The only exception is the scenarios in section 5.4.1 where the 
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effect of different control horizons is simulated. 

4.12. Solving the problem with Matlab and LPSOLVE 

The IP optimization problem is solved with the Matlab [49] and LPSOLVE [50]. 

LPSOLVE is an open source library that is callable from Matlab and it solves mixed 

integer linear programming (MILP) and IP problems. LPSOLVE is required, because 

Matlab only provides a binary integer programming function (called bintprog) with the 

Matlab optimization toolbox.  

 

However, in an initial exercise, the problem was formulated as a pure binary integer 

programming problem and the Matlab bintprog function was used. In this initial exercise z 

was formulated as a number of binary integer variables (one for each switching interval). 

However, the simulation times were impractical, especially when S>2. For example, a 

scenario with S=2 that provides good results within 10 seconds with LPSOLVE takes 

approximately 20 minutes with the Matlab bintprog function, for the same results. The 

same problem with bintprog was encountered in [51]. Therefore, LPSOLVE is used for 

this case study. 

 

LPSOLVE uses a branch and bound strategy with LP relaxation to solve the IP problem 

[50],[52]. This means that the solution is not necessarily the true optimal solution, but a 

good approximation of the true optimal solution. Although the Matlab bintprog function 

uses the same strategy the LPSOLVE algorithm is more effective, especially in scenarios 

with many variables.  

 

There are many settings that can be used to increase the optimization performance of 

LPSOLVE. Some of the settings are a trade-off between performance and the true optimal 

solution. The following LPSOLVE settings are used in the IP simulations in this case 

study: 

 

1. The LPSOLVE bound on the objective function is set to 15,000 for all the open and 
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closed-loop optimal control model simulations. The only exception is the scenario 

in section 5.3.3 where S=1 where the bound was set to 30,000. This setting 

improves performance, because the solver can ignore unwanted solutions. 

2. The tolerance on the integers is selected as 0.01 for all the open and closed-loop 

optimal control model simulations.  

3. As mentioned, the timeout on the optimization is selected as 10 seconds for all the 

open and closed-loop optimal control model simulations. The justification for this 

value is covered in section 5.3.1. 

 

LPSOLVE does not provide the capability to suggest a solution to the optimization 

algorithm. This capability is available in the Matlab bintprog function though. The 

advantage of this capability in a closed-loop model is that the optimization results from the 

previous step can be suggested to the next optimization step. However, this limitation is 

not critical, because LPSOLVE (as mentioned) is effective and provides the desired result 

in a very short time. 

 

The LP optimization problem is solved with the Matlab LP function (linprog). As 

mentioned, the Matlab LP function is included to calculate a benchmark to evaluate the 

effectiveness of the integer solutions. The LP model solves very quickly (less than 10 

seconds), and the result is considered optimal, because the variables are not constrained to 

integer values. 

 

The LPSOLVE and linprog functions are defined as 

 

xf
x

T ⋅min
 such that bxA ≤⋅ and beqAeq = ,            (4-9) 

 

where f, b, and beq are vectors; A and Aeq are matrices; and the solution x is a integer 

vector for bintprog and a decimal value for linprog. For LPSOLVE the values of x that 

represent ut are constrained to binary integers, whilst the value of x that represents z is 

constrained to an integer only. 
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The Matlab simulation environment is summarized in Table 4-4.  

 

Table 4-4: Matlab simulation environment. 

Component Description 

Computer Dell PowerEdge, 1955 blade 

Processor Intel Xeon, 5355, Quad-Core, 2.66GHz 

Random access memory  8 GB 

Operating system Debian Linux 

Matlab version Version 7.7.0.471 (R2008b) 

LPSOLVE version 5.5.0.10 for 64 bit operating systems 

 

Note that LPSOLVE is a single threaded application which means that only one of the four 

processors is utilized for the optimization.  
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5. SIMULATION RESULTS OF THE APPLIED CONTROL MODEL 

This chapter simulates and compares the control models that are defined in Chapter 4. This 

comparison includes: 

 

1. The current level based control model. 

2. The open loop optimal control model with LP optimization. 

3. The open loop optimal control model with IP optimization. 

4. The closed-loop optimal control model with IP optimization. 

 

The effect on TOU and MD costs with each control model is evaluated in section 5.1 to 

5.4. Significant results from this evaluation is summarized and compared in section 5.5. 

The robustness of the closed-loop optimal control model is evaluated in section 5.6, and 

the practicality of the optimal control model is discussed in section 5.7. 

 

The results in this chapter are listed in Table 5-1 and Table 5-2. The saving on the overall 

plant is covered in Table 5-1, and the saving on K2 in isolation is covered in Table 5-2.  

 

Table 5-1: Overall saving for the pumping scheme for significant scenarios. 

S 
Energy 

cost 

% From 
baseline 

(energy cost) 

MD 
Cost 

% From 
baseline 

(MD cost) 

Total 
costs 

% From 
baseline 

(total) 

MD portion 
of saving 

Current level based control model –the baseline 

2 176,758 0.00% 76,475 0.00% 253,233 0.00% N/A 

Open loop optimal control model with IP optimization –different switching intervals (S) and H=24. 

2 172,101 -2.63% 58,306 -23.76% 230,407 -9.01% 79.6% 

Open loop optimal control model with LP optimization –the optimal benchmark 

2 172,158 -2.60% 66,500 -13.04% 238,658 -5.76% 68.4% 

11 172,105 -2.63% 58,339 -23.71% 230,444 -9.00% 79.6% 

Closed-loop optimal control model with IP optimization (H=24) 

2 172,175 -2.59% 66,500 -13.04% 238,675 -5.75% 68.5% 
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Table 5-2: Summary of results for K2 (timeout=10 seconds, simulated over 30 days). 

H S 
Energy 

cost 

% From 
baseline 

(energy cost) 

MD 
Cost 

% From 
baseline 

(MD cost) 

Total 
costs 

% From 
baseline 
(total) 

MD 
portion of 

saving 

Current level based control model –the baseline 

N/A 2 8,351 0.0% 19,950 0.0% 28,301 0.0% N/A 

Open loop optimal control model with LP optimization –the optimal benchmark 

24 2 3,694 -55.8% 1,781 -91.1% 5,475 -80.7% 79.6% 

Open loop optimal control model with IP optimization –different switching intervals (S) 

24 1 3,800 -54.5% 19,950 0.0% 23,750 -16.1% 0.0% 

24 2 3,751 -55.1% 9,975 -50.0% 13,726 -51.5% 68.4% 

24 3 3,737 -55.3% 6,650 -66.7% 10,387 -63.3% 74.2% 

24 4 3,728 -55.4% 4,988 -75.0% 8,716 -69.2% 76.4% 

24 5 3,717 -55.5% 3,990 -80.0% 7,707 -72.8% 77.5% 

24 6 3,715 -55.5% 3,325 -83.3% 7,040 -75.1% 78.2% 

24 7 3,709 -55.6% 2,850 -85.7% 6,559 -76.8% 78.6% 

24 8 3,706 -55.6% 2,494 -87.5% 6,200 -78.1% 79.0% 

24 9 3,706 -55.6% 2,217 -88.9% 5,923 -79.1% 79.2% 

24 10 3,704 -55.6% 1,995 -90.0% 5,699 -79.9% 79.4% 

24 11 3,698 -55.7% 1,814 -90.9% 5,512 -80.5% 79.6% 

24 12 3,704 -55.6% 3,325 -83.3% 7,029 -75.2% 78.2% 

24 13 3704 -55.6%  3,070 -84.6% 6,774 -76.1% 78.4% 

Closed-loop optimal control model with IP optimization –different control horizons (H) 

0.5 2 7,448 -10.8% 9,975 -50.0% 17,423 -38.4% 91.7% 

1 2 6,728 -19.4% 9,975 -50.0% 16,703 -41.0% 86.0% 

2 2 5,122 -38.7% 9,975 -50.0% 15,097 -46.7% 75.5% 

3 2 4,139 -50.4% 9,975 -50.0% 14,114 -50.1% 70.3% 

4 2 3,858 -53.8% 9,975 -50.0% 13,833 -51.1% 68.9% 

5 2 3,838 -54.0% 9,975 -50.0% 13,813 -51.2% 68.9% 

6 2 3,813 -54.3% 9,975 -50.0% 13,788 -51.3% 68.7% 

7 2 3,791 -54.6% 9,975 -50.0% 13,766 -51.4% 68.6% 

8 2 3,772 -54.8% 9,975 -50.0% 13,747 -51.4% 68.5% 

12 2 3,763 -54.9% 9,975 -50.0% 13,738 -51.5% 68.5% 

24 2 3,768 -54.9% 9,975 -50.0% 13,743 -51.4% 68.5% 
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The overall calculated cost from section 4.3 is used to calculate the overall saving in Table 

5-1. Note that Table 5-1 lists the simulated scenarios with significant results only, whilst 

Table 5-2 lists all the simulated scenarios. 

5.1. Current control model –the baseline 

The current control model is simulated over a 30 day period. The current model is 

simulated with the revised switching band for K2 as defined in Table 4-1. The total energy 

and MD costs are shown in Table 5-2. Figure 5-1 shows the results of the current control 

model on the first day. From the figure it is clear that the current model results in an 

undesirably high MD, and K2 runs for 1½ hours in standard time.  

 

 
Figure 5-1: Current control model for K2 with no optimization on the first day. 

 

Figure 5-2 shows the results of the current control model on the 30th day. The 30th day is 

selected, because it is a good example where K2 switches on in peak times, i.e., in Figure 
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5-2 K2 runs for 2½ hours in peak time and a ½ hour in standard time. 

  

Note that the resulting MD is registered in the applicable 30 minute MD integrating period 

with the highest average usage. As mentioned, MD charges are applicable in standard and 

peak TOU times, i.e., between 6h00 and 22h00. If more than one period results in the same 

MD, the first MD period represents the maximum.  In Figure 5-1 K2 runs for the full 30 

minutes in an applicable MD period, which result in the highest possible MD for K2. 

 

Note that switching intervals are not really applicable in the current control model, because 

the controller constantly monitors the reservoir level and start the pump when required. 

However, for simulation purposes a switching interval of 15 minutes is used, i.e., S=2. 

 

 
Figure 5-2: Current control model for K2 with no optimization on the 30th day. 

5.1.1. Validation of the current control model 
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The simulation results in Figure 5-1 and Figure 5-2 shows that the definition of the current 

control model corresponds with the description of the actual control model in section 4.1. 

Furthermore, as mentioned in section 4.3, the actual electricity cost for the plant closely 

matches the simulated electricity costs.  

5.2. Open loop optimal control model with LP optimization –the benchmark 

As mentioned, the open loop optimal control model with LP optimization is simulated to 

get a benchmark result that is considered optimal. The control model is simulated over a 30 

day period. The reservoir level at the end of each day is used as the initial reservoir level 

for the next day. Figure 5-3 shows the simulated results on the first day. The resulting 

energy cost is the same on each of the simulated days, and the monthly energy and MD 

costs are shown in Table 5-2. 

 

 
Figure 5-3: Open loop optimal control model for K2 with LP optimization (H=24, S=2, 

timeout=N/A). 
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The load in Figure 5-3 is moved out of the peak energy charge periods, and the load in the 

standard energy charge periods is reduced. The MD is also reduced by spreading the load 

evenly over the applicable 30 minute MD periods. Note that the LP optimization completes 

quickly (less than 10 seconds), and the timeout value is therefore not applicable. 

Furthermore, the value of S does not affect the TOU or MD costs. 

 

Also note that the open loop LP model is not considered as a control solution for the 

specific case study, because the pumps are binary controlled, therefore this solution is only 

a benchmark for comparisons. 

5.3. Open loop optimal control model with IP optimization 

5.3.1. Effect of optimization time 

The open loop control model with S=2 is simulated with a number of different timeout 

values over a 24 hour period. The effect of the different timeout values is shown in Table 

5-3. Figure 5-4 shows a graphical representation of the results in Table 5-3. 

 

A one day (24 hours) simulation period is selected instead of a 30 day period, because the 

longest timeout value of 24 hours is impractical over 30 days, i.e., the simulation will have 

to run for 30 days. This is considered an acceptable compromise, because the aim of this 

simulation is to analyse the relative affect of the timeout values. 

 

Table 5-3 shows that the MD cost is the same across all timeout values. However, the 

energy cost changes slightly, i.e., the energy cost with a 24 hours timeout is 1.3% lower 

than the energy cost with a one second timeout. Note that the results only improve from 

two hours onwards, but it does not change between two and 24 hours. 

 

Therefore, a timeout value of 10 seconds is selected for all subsequent simulations. The 

results for the 10 seconds simulation is considered near-optimal and practical for the 

closed-loop control models that are covered in section 5.4. Furthermore, the results from 
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section 5.3.3 for the open loop IP model with S=11 (timeout=10s) shows the results closely 

match the benchmark LP control model. 

 

Table 5-3: Effect of simulation timeout on the open loop optimal control model with IP 

optimization (H=24h, S=2, simulated over a one day period). 

Timeout 
Daily 

energy cost 
Monthly 
MD cost 

1s 133.0 9,975 

10s 133.0 9,975 

1 min 133.0 9,975 

1h 133.0 9,975 

2h 131.4 9,975 

4h 131.4 9,975 

8h 131.4 9,975 

12h 131.4 9,975 

24h 131.4 9,975  
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Figure 5-4: Effect of simulation timeout on the open loop optimal control model with IP 

optimization (H=24h, S=2, simulated over a one day period). 

 

Figure 5-5 shows the results of the open loop control model with IP optimization for the 10 

second timeout scenario. The load is moved out of the peak periods, and the load in the 

standard periods is also reduced. The MD is reduced by 50%, because K2 runs more 
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frequently, but for shorter times, i.e., only 15 minutes per 30 minute MD period. Note that 

between 17h00 and 18h00 K2 runs for two consecutive switching intervals. However, 

these two switching intervals fall within two separate MD charge periods and therefore the 

resulting MD is still 50% lower. 

 

 
Figure 5-5: Open loop optimal control model for K2 with IP optimization (H=24h, S=2, 

timeout=10s). 

 

Figure 5-6 is the same scenario as in Figure 5-5, but with a timeout period of two hours. 

The main difference between the two figures is that K2 runs for five switching intervals in 

standard time in Figure 5-5, and for only four switching intervals in standard time in Figure 

5-6. Note that the final reservoir level in Figure 5-6 and Figure 5-5 is the same, i.e., 1.092 

ML. 

 

A disadvantage with the pump schedule in Figure 5-5 and Figure 5-6 is that K2 is switched 

on and off unnecessarily in off-peak times, e.g., between 0h00 and 6h00.  Since the MD 
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charge is not applicable it would be ideal to keep K2 running for less longer intervals as 

opposed to many short intervals. It is recommended that this is considered in a future 

research initiative. It might be possible to modify the objective function and/or constraints 

to cater for this. Note that this problem is applicable to all the IP based optimal control 

models in this chapter. 

 

 
Figure 5-6: Open loop optimal control model for K2 with IP optimization (H=24h, S=2, 

timeout=2h). 

5.3.2. Open loop optimal control model over 30 days 

Figure 5-7 shows the daily energy cost over 30 days for the open loop IP model. The final 

reservoir level of each day is used as the initial reservoir level for the next day Figure 5-7 

shows that the daily energy cost is not the same for all days in the 30 day period; the 

energy cost is R 133.0 on days 1, 12 and 23, but only R 124.1 on the rest of the days. The 

cumulative average daily energy cost is also shown in Figure 5-7, which results in a daily 

average of R 125.0 after 30 days. The total monthly energy cost is therefore R 3,751 (i.e., 
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R 125.023 × 30 days).  

 

The energy cost is higher on days 1, 12 and 23 because on these days K2 runs for nine 

switching intervals in off-peak time and five switching intervals in standard time. On the 

rest of the days K2 runs only eight switching intervals in off-peak time and five intervals in 

standard time. The additional running interval is required on days 1, 12 and 23 because the 

initial reservoir level on these days is too high to run for only eight off-peak and five 

standard intervals. As mentioned the final reservoir level of each day is used as the initial 

reservoir level for the next day. 

 

 
Figure 5-7: Daily energy cost over 30 days for the open loop optimal control model with IP 

optimization (H=24h, S=2, timeout=10s). 

 

5.3.3. Effect of the switching interval (S) 
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Table 5-2 shows the effect of the switching interval on the TOU and MD cost over a 30 

day simulation period. Figure 5-8 shows a graphical representation of the results in Table 

5-2. 

  

The energy cost in Figure 5-8 (Table 5-2) does not change significantly, i.e., only a 6.2% 

difference between the lowest (S=1) and highest (S=11) values. However, the MD cost 

changes significantly, i.e., a 90.9% difference between the lowest (S=1) and highest (S=11) 

values. This is caused by the shorter switching intervals which allow K2 to run more 

frequently but for shorter intervals, which in turn reduces the MD cost. The results for 

S=11 also closely matches the optimal benchmark. This means that S=11 can be considered 

an optimal switching interval for this case study. As mentioned, with S=1 the switching 

intervals are 30 minutes long, and with S=11 the switching intervals are 2.73 minutes long. 
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Figure 5-8: Cost vs. switching interval for the open loop optimal control model with IP 

optimization (H=24h, timeout=10s). 

 

Note that the energy and MD cost started increasing again from S=12, because the 

switching intervals for S=12 are too short, i.e., only 2.5 minutes. This results in K2 running 

two consecutive switching intervals in certain MD periods to control the reservoir level. As 

S increases beyond S=12 the costs decreases again, and it is assumed that it will again 
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reach an optimal value. However, this is not practical, because the number of variables will 

be unnecessary high.  

 

Figure 5-9 shows the results of the open loop IP control model with S=1. The load is 

moved out of the peak periods, and the load in the standard periods is also reduced. The 

MD is not reduced, because K2 runs the full MD integrating period in MD applicable 

times. 

 

 
Figure 5-9: Open loop optimal control model for K2 with IP optimization (H=24h, S=1, 

timeout=10s). 

 

Figure 5-10 shows the results of the open loop IP control model with S=11. The load is 

also moved out of the peak periods, and the load in the standard periods is also reduced. 

However, the MD is reduced significantly, because K2 runs more frequently, but for 

shorter times, i.e., only 2.73 minutes per 30 minute MD period. 

 

 
 
 



Chapter 5  Simulation results of the applied control model       

Department of Electrical, Electronic and Computer Engineering 50 

University of Pretoria 

 
Figure 5-10: Open loop optimal control model for K2 with IP optimization (H=24h, S=11, 

timeout=10s). 

5.3.4. Effect of the maximum demand (MD) optimization 

Figure 5-11 shows the results of the open loop optimal control model with TOU 

optimization only, i.e., the MD constraints in (4-7) is removed, λ1=1 and λ2=0 in (4-3). 

Note that the simulation in Figure 5-11 is done with S=11, because with S=2 it coincidently 

results in the lowest MD. Therefore, S=11 is selected, because it results in a better example 

to prove the effect of MD optimization. 

 

The load in Figure 5-11 is moved out of the peak periods and the load in the standard 

periods is reduced, however the MD is not significantly reduced to the desired level 

because K2 runs for four consecutive switching intervals in the applicable MD period, i.e., 

109 kW as opposed to 27 (see Figure 5-10). The TOU cost is the same as the model that 

optimizes for both TOU and MD, i.e., it matches the TOU results for S=11 in Table 5-2 

and Figure 5-10. 
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Figure 5-11: Open loop optimal control model for K2 with IP optimization on TOU charges only 

(H=24h, S=11, timeout=10s). 

 

Figure 5-12 shows the results of the open loop control model with MD optimization only, 

i.e., λ1=0 and λ2=1 in (4-3). The MD cost is reduced by running K2 more frequently, but 

for shorter intervals. However, the TOU cost is reduced by only 21%, i.e., R 6,564 from 

R 8,351 per month (simulated over a 30 day period). The TOU cost is reduced because the 

net usage in the standard and peak periods is reduced by the MD optimization. 

5.4. Closed-loop optimal control model with IP optimization 

5.4.1. Effect of the control horizon (H) 

Table 5-2 shows the effect of the cost vs. the control horizon (H) for the closed-loop 

control model with IP optimization, simulated over a 30 day period. The switching interval 

is selected as S=2 for all the scenarios where the effect of the control horizon (H) is 

evaluated. 
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Figure 5-12: Open loop optimal control model for K2 with IP optimization on MD charges only 

(H=24h, S=11, timeout=10s). 

 

The results in Table 5-2 shows that the MD cost is not affected by the control horizon. The 

energy cost, on the other hand, is affected by H. The affect is more apparent in Figure 

5-13, which is a graphical representation of Table 5-2. Figure 5-13 shows that the energy 

cost does not significantly decrease for H≥4, i.e., only a 2.3% reduction from H=4 to 

H=24. This is due to the fact that the longest peak TOU period is only three hours, which 

enables the optimal control model to shift the load out of the peak periods.  

 

This result is important, because it allows the selection of shorter control horizons, which 

is easier to optimize, because of less integer variables. For example, in the scenarios with 

the shorter control horizons (H≤6) the optimization completes before the timeout value of 

10 seconds. 

 

Note that the energy cost for H=12 is slightly lower than the energy cost for H=24. This 
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might be as a result of better optimization due to fewer variables or just an integer 

tolerance error. 
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Figure 5-13: Costs vs. the control horizon (H) for the K2 closed-loop optimal control model with IP 

optimization (S=2, timeout=10s). 

 

Figure 5-14 shows the results of the closed-loop IP model with H=24 for the first day. The 

load is moved out of the peak periods, and the load in the standard periods is also reduced. 

The MD is reduced by 50%, because K2 runs more frequently, but for shorter times, i.e., 

only 15 minutes per 30 minute MD period. 

 

Note that the final reservoir level on the first day in Figure 5-14 is lower than the open loop 

control model for the same scenario in Figure 5-5, i.e., 0.6 ML for the closed-loop control 

model as oppose to 1 ML for the open loop control model. This is caused by the closed-

loop control model which predicts past the 24th hour, and is already compensating for the 

next 24 hours. As a result the energy cost on the first day is higher with the closed-loop 

control model than with the open loop control model. This is covered in more detail in 

section 5.4.2. 

 

Figure 5-15 shows the results of the closed-loop IP model with H=4 for the first day. The 

load is moved out of the peak periods, and the load in the standard periods is also reduced. 

The MD is reduced by 50%, because K2 runs more frequently, but for shorter times, i.e., 
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only 15 minutes per 30 minute MD period. 

 

 
Figure 5-14: Closed-loop optimal control model for K2 with IP optimization (H=24h, S=2, 

timeout=10s). 

 

Note that the final reservoir level on the first day is the same for H=24 and H=4. The main 

difference between the control models (H=24 and H=4) is that K2 runs for five switching 

intervals in standard TOU times with H=24, whilst K2 runs for six switching intervals in 

standard TOU times with H=4. This results in the mentioned 2.3% difference. 

5.4.2. Closed-loop optimal control model over 30 days 

Figure 5-16 shows the daily energy costs over 30 days for the closed-loop IP model. Figure 

5-16 shows that the daily energy cost is not the same for all days in the 30 day period; the 

energy cost is R 150.8 on day 1, R 133.0 on days 11 and 22, but only R 124.1 on the rest of 

the days. The cumulative average daily energy cost for the closed-loop model is also 
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shown in Figure 5-16, which results in a daily average of R 125.6 after 30 days. The total 

monthly energy cost is therefore R 3,768 (i.e., R 125.616 × 30 days).  

 

 
Figure 5-15: Closed-loop optimal control model for K2 with IP optimization (H=4h, S=2, 

timeout=10s). 

 

The energy cost is higher on days 1, 11 and 22, because on day 1 K2 runs for eleven 

switching intervals in off-peak time and five switching intervals in standard time, and on 

days 11 and 22 K2 runs for nine switching intervals in off-peak time and five switching 

intervals in standard time. On the rest of the days K2 runs only eight switching intervals in 

off-peak time and five intervals in standard time. 

 

The additional running interval is required on days 1, 11 and 22 because the initial 

reservoir level on these days is too high to run for only eight off-peak and five standard 

intervals. As mentioned, the final reservoir level of each day is used as the initial reservoir 

level for the next day. 
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The main difference between the open and closed-loop models is the energy cost on the 

first day. The energy cost of the closed-loop model on the first day is R 150.8 whilst the 

energy cost of the open loop model on the first day is R 133.0. As mentioned, this is 

caused by the closed-loop model which predicts past the 24th hour, and is already 

compensating for the next 24 hours.  

 

 
Figure 5-16: Daily energy cost over 30 days for the closed-loop optimal control model with IP 

optimization (H=24h, S=2, timeout=10s). 

 

The actual days with higher energy cost is also different between the open and closed-loop 

models, i.e., days 1, 12 and 23 for the open loop model, and days 1, 11 and 22 for the 

closed-loop model –the closed-loop model is one day earlier. This is caused by the closed-

loop model which always predicts further than the open loop model, and as a result the 

closed-loop model is already compensating for the following day. As explained in section 

5.3.2, the additional running interval is required on days 1, 11 and 22, because the initial 

reservoir level on these days is too high to run only eight off-peak and five standard 

 
 
 



Chapter 5  Simulation results of the applied control model       

Department of Electrical, Electronic and Computer Engineering 57 

University of Pretoria 

intervals.  

 

Figure 5-16 shows that the cumulative average daily energy cost of the closed-loop model 

converges towards the cumulative average daily energy cost of the open loop control 

model, i.e., after 30 days there is only a 0.5% difference in the cumulative average daily 

energy cost which equates to 0.5% difference in the monthly energy cost. 

5.5. Summarized comparison of the control models 

This section gives a brief summary of significant results from section 5.1 to 5.4. The 

scenarios from Table 5-2 with the most significant results are shown in Figure 5-17. 
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Figure 5-17: Summary of significant scenarios (simulated over a 30 days, timeout=10 seconds). 

 

Figure 5-17 (Table 5-2) shows that the open and closed-loop optimal control models with 

H=24 and S=2 results in approximately the same total saving (MD and TOU) for K2 over 

30 days, i.e., 51.5% and 51.4% respectively. This results in a total saving for the overall 

plant off 5.8% (see Table 5-1). Note that with S=2 the switching intervals are 15 minutes 

long. 

 

Figure 5-17 (Table 5-2) shows that the open loop IP optimal control model (H=24, S=11) 

and the open loop LP optimal control model results in approximately the same total saving 
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(MD and TOU) for K2 over 30 days, i.e., 80.5% and 80.7% respectively. This results in a 

total saving for the overall plant of 9% (see Table 5-1). Note that with S=11 the switching 

intervals are 2.73 minutes long. 

 

Figure 5-17 (Table 5-2) shows that the open loop IP optimal control model with H=24 and 

S=2 to S=11 saves approximately 55% on energy (TOU) cost for K2, which matches the 

result of the optimal benchmark. The overall plant saving on energy cost is 2.6%. This 

means that the open and closed-loop control models with IP can be considered optimal as 

far as TOU charges are concerned. This also means that the choice of the switching 

interval has an insignificant affect on the optimization for TOU charges.  

 

Figure 5-17 (Table 5-2) shows that the MD saving for K2 is significantly affected by the 

switching interval. With S=2 the MD saving is 50%, and with S=11 the MD saving is 

90.9% (overall plant 23.7%), which is close to the 91.1% saved by the benchmark LP 

model.  

 

Note that the closed-loop control model is not simulated with different switching intervals, 

because it is assumed that the closed-loop control model would converge to the open loop 

control model for all the values of S if the control models converge for S=2. 

 

Figure 5-17 (Table 5-2) shows that the MD portion of the saving is higher than the energy 

saving for all the scenarios, except the scenario in Table 5-2 where S=1. This confirms that 

MD charges needs to be included in the objective function of the optimal control model 

where applicable. 

 

Table 5-2 also shows that the control horizon (H) in the closed-loop simulation did not 

have an affect on the MD cost, but it did affect the TOU cost. The best results are with 

H≥4. 

  

Note that the total amount of energy consumed is the same for the current control model 

and all the scenarios of the optimal control models. The electricity cost is only optimized 
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by improving the timing of the energy consumption in the optimal control models. 

5.6. Robustness of the optimal control models 

This section evaluates the robustness of the open and closed-loop optimal control models 

(IP optimization) against disturbances and an inaccurate system model. 

5.6.1. Effect of disturbances on the optimal control models 

 
Figure 5-18: Open loop optimal control model with inflow disturbances for K2 with IP 

optimization (H=24h, S=2, timeout=10s). 

 

Figure 5-18 and Figure 5-19 show the results of the open and closed-loop optimal control 

models (IP optimization) with a positive random inflow disturbance, i.e.,  

 

)(2.0 mrFLOWINFLOWINFLOWIN ttt ⋅⋅+= ,            (5-1) 
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where r(m) is a random number between 0 and 1. This means that the assumed constant 

inflow rate is altered with a random disturbance. 

 

Figure 5-18 shows that the level of R1 exceeds the maximum level constraint (1.3 ML) in 

the open loop control model, whilst Figure 5-19 shows that the closed-loop control model 

compensates for the disturbances and keeps the level of R1 within the maximum level 

constraint. This result is important, because the inflow and outflow rates in practical 

applications could be by affected by external factors such as temperature, rain, equipment 

age, etc. 

 

 
Figure 5-19: Closed-loop optimal control model with inflow disturbances for K2 with IP 

optimization (H=24h, S=2, timeout=10s). 

 

The control models in Figure 5-18 and Figure 5-19 are simulated over a 24 hour period 

only. The aim is simply to show the relative effect of the disturbances on the control 

models.  
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The daily energy cost of the closed-loop control model increases from R 150.80 to 

R 170.30 due to the additional pumping time required to control the reservoir level. The 

MD cost remains the same though, i.e., R 9,975/month. 

5.6.2. Effect of an inaccurate system model on the optimal control models 

Figure 5-20 and Figure 5-21 show the results of the open and closed-loop optimal control 

models (IP optimization) with an inaccurate outflow model for K2.  

 

 
Figure 5-20: Open loop optimal control model with model disturbances for K2 with IP optimization 

(H=24h, S=2, timeout=10s). 

 

For demonstration purposes is assumed that the actual outflow is only 90% of the assumed 

outflow, i.e., 

 

MLFLOWOUT t 229.0 ⋅= .              (5-2) 
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Figure 5-20 shows that the level of R1 exceeds the maximum level constraint (1.3 ML) in 

the open loop control model, whilst Figure 5-21 shows that the closed-loop control model 

compensates for the inaccurate system model and keeps the level of R1 within the 

maximum level constraint. This result is important for practical applications, because it is 

likely that the defined plant model will contain some error. The plant model could also be 

incorrect due to a simplification of the model for practical reasons. 

 

 
Figure 5-21: Closed-loop optimal control model with model disturbances for K2 with IP 

optimization (H=24h, S=2, timeout=10s). 

 

The control models in Figure 5-20 and Figure 5-21 are simulated over a 24 hour period 

only. The aim is simply to show the relative effect of the disturbances on the control 

models.  

 

The daily energy cost of the closed-loop control model increases from R 150.80 to 

R 161.40 due to the additional pumping time required to control the reservoir level. The 
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MD cost remains the same though, i.e., R 9,975/month. 

5.7. Practicality of the optimal control model 

The main problem with the optimal control model from a practical point of view is the 

number of times that K2 needs to operate per day, which is related to the number of 

switching intervals per MD period (S). As mentioned in section 4.10, the number of 

switching intervals in an MD period (S) is a trade-off between computational time, 

equipment constraints and cost saving.  

 

The current implemented control model K2 operates approximately six times per day, for 

more than 30 minutes at a time (see section 4.1). This matches the number of times that K2 

will operate with the optimal control model when S=1 (see Figure 5-9). This means that the 

control model with S=1 can be implemented without additional strain on the motor, motor 

soft starter, or associated switchgear. However, as shown in this chapter, the control model 

with S=1 results in a saving on TOU cost only. 

 

The control model with S=2 in Figure 5-6 and Figure 5-14 can also be implemented 

without additional strain on the equipment, if the unnecessary switching in off-peak times 

is eliminated. This unnecessary switching problem is discussed in section 5.3.1, and it is 

recommended as a consideration for a future research initiative. Note that with S=2, both 

the TOU and MD costs are reduced. 

 

Another approach that can also be considered to reduce unnecessary switching is by 

running back-to-back intervals. This allows K2 to run for longer periods, but split across 

two MD intervals. The effect of this technique is shown in Figure 5-5. Note that the “back-

to-back” result in Figure 5-5 is a coincidence, however, it may be possible to modify the 

control model to derive the required back-to-back switching. This is also recommended as 

a consideration for a future research initiative.  

 

If the unnecessary switching in off-peak period is eliminated and back-to-back switching is 
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considered then K2 will operate fewer times per day. For example, with S=4 K2 will 

operate only 6 times per day, instead of 14 times per day, and with S=11 K2 will operate 

only 13 times per day, instead of 30 times day. This means that a control model with S≤4 

can be implemented without additional strain on the equipment.  

 

However, K2 will operate more times per day than in the current implemented control 

model if the unnecessary switching is not eliminated, or if S>4. In these cases the 

additional saving needs to be compared against the additional strain on the equipment, 

which in turn will have an impact on maintenance cost. Note that all the motors in the 

Rietvlei pumping scheme have soft starters installed, which reduce the stress on the 

equipment during starting [47]. Therefore more frequent operation can be considered for 

the Rietvlei plant. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

This dissertation defined and evaluated the efficiency of a closed-loop optimal control 

strategy for load shifting in a specific plant with TOU and MD charges. The closed-loop 

optimal control model was implemented with an MPC approach, and the water pumping 

scheme at the Rietvlei water purification plant in the Tshwane municipality was selected 

for the case study. 

 

The current control model of the plant was compared against optimal control models with 

LP and IP optimization. The LP optimization was included as a benchmark which is 

considered optimal. The LP optimization was used in an open loop control model only, 

whilst the IP optimization was used in open and closed-loop control models.  

 

The simulations focussed on the saving for a specific motor (K2), and it was assumed that 

the remaining part of the plant operates as is. The results showed that the optimal control 

models reduce both TOU and MD costs. The TOU cost is reduced by shifting load out of 

peak TOU periods, and the MD cost is reduced by pumping more frequently, but for 

shorter intervals.  

 

The total cost saving for both TOU and MD charges varied between 52% and 81% for K2, 

with a control horizon (H) of 24 hours and varying switching intervals. This resulted in a 

total saving of 5.8% to 9% for the overall plant. 

 

The TOU cost saving alone was approximately 55% for K2 for all the optimal control 

models across most of the simulated scenarios. The exception was the simulations with 

short control horizons (i.e., H < 4 hours). This resulted in a TOU cost saving of 2.6% for 

the overall plant. 

 

The MD cost saving alone varied between 50% and 91% for K2 for the open and closed-

loop IP control models, depending on the switching intervals. This resulted in an MD cost 

saving of 13% to 23% for the overall plant. The 91% saving for K2 matched the saving of 
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the benchmark optimal LP control model.  

 

The open and closed-loop control model for a specific scenario was compared, i.e., H=24, 

S=2, and simulated over 30 days. The results showed that the MD cost is the same 

throughout the 30 days, but the energy cost varies between days. That is, the energy cost 

for the closed-loop model was higher on the first day, but it was the same for the rest of the 

simulated days. As a result, the saving of closed-loop model converged to the saving of the 

open loop control model with only a 0.5% difference over 30 days. 

 

The effect of MD charges on the optimization was evaluated by interchangeably excluding 

the TOU and MD charges from the objective function of the open loop optimal control 

model. This resulted in an undesirably high MD cost when the MD charges were excluded, 

and an undesirably high TOU cost when the TOU charges were excluded. 

 

Across all the control models the largest portion of the savings was due to a reduction in 

the MD costs. The MD portion of the saving varied between 69% and 92% across all the 

simulated scenarios, except where S=1. In this case there was no MD saving. This confirms 

that MD charges needs to be included in the objective functions of optimal control models, 

where MD charges are part of the applicable tariff. 

 

The effect of different control parameters was also simulated to evaluate the effect of 

practical compromises. The control parameters that were considered are:  the simulation 

time, the number of switching intervals (S), and the control horizon (H) of the closed-loop 

control model. 

 

The simulation time was evaluated to help select a practical time limit for subsequent 

simulations. The results showed that there is not a significant difference between a 1 

second and a 24 hour timeout. A 10 second timeout was then selected, and the results from 

subsequent simulations corresponded closely with the results from the benchmark LP 

optimal control model. 
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The number of switching intervals (S) in the MD period had a significant affect on the MD 

cost, and a less significant affect on the TOU cost. For example, with one switching 

interval per MD period (S=1) the MD cost for K2 is not reduced, with two switching 

intervals (S=2) the MD cost for K2 is reduced by 50% and with 11 switching intervals 

(S=11) the MD cost for K2 is reduced by 91%, which matches the benchmark LP optimal 

control model. The TOU costs, for K2 varied by only 6.3% between the lowest and highest 

switching interval (i.e., S=1 and S=11). Note that with S=11 K2 runs for many short pump 

cycles which is not necessarily practical, depending on physical equipment limitations. 

Even without equipment limitations, an interesting discovery is that with S=12 the MD cost 

increased slightly, and then started to decrease again from S=13. It is assumed that with 

S>13 the cost will again converge to the optimal benchmark. For clarity, with S=1 the 

switching intervals are 30 minutes long, with S=2 the switching intervals are 15 minutes 

long, and with S=11 the switching intervals are 2.73 minutes long. 

 

The control horizon (H) in the closed-loop control model did not have an affect on the MD 

cost, but a longer control horizon did reduce the energy cost. However, the energy cost for 

K2 did not significantly decrease for H≥4, i.e., only a 2.3% reduction from H=4 to H=24. 

This result is important, because it allows the selection of shorter control horizons, which 

is easier to optimize, because of fewer integer variables.  

 

The affect of disturbances and an inaccurate system model was simulated for the open and 

closed-loop IP control models. The results showed that an open loop control model does 

not compensate for the disturbances or an inaccurate system model, whilst the closed-loop 

control model does. 

 

The contributions of this research in the context of existing work were also discussed. In 

summary, the contributions are: the application of a closed-loop (MPC based) control 

strategy for load shifting in plants that are charged on TOU and MD is affirmed; 

scheduling within the MD integrating period is considered; convergence of the open and 

closed-loop controller is shown; the robustness of the MPC controller is demonstrated; the 

effect of various control parameters is evaluated, which can be considered in practical 
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compromises; the importance of including MD charges in the optimization is affirmed; and 

it is shown that an optimal binary pump schedule that optimizes both TOU and MD 

charges can be obtained in a single optimization step. 

 

The practicality of the optimal control model was discussed, and it is shown that the 

control model with S=1 can be implemented as is. However, for S>1 the additional strain 

on the equipment due to the additional switching needs to be considered. Otherwise, the 

control model needs to be enhanced to reduce unnecessary switching, e.g., in off-peak 

times. 

 

It is recommended that further research is conducted where an MPC strategy is 

implemented to control a real plant. This will identify the practical issues that will guide 

future implementations, for example, physical equipment limitations, the maturity of MPC 

technology in industrial controllers, plant availability, etc. It is also recommended that the 

unnecessary switching in off-peak periods is investigated, which might be resolved with a 

modification to the control model formulation.  
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ADDENDUM A –MATLAB PROGRAMS (SOFTWARE ARCHITECTURE) 

 

RietvleiSolve.m

lp_solve.mmdlimits.mtariff.m

Baseline.m

Solves the current 
control model (i.e., 

the baseline)

Solves all the 
optimal control 

models

Calculates the applicable MD 
constraints

Interface to the 
LPSOLVE 
application

Calculates the 
applicable TOU and 

MD charges
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ADDENDUM B –MATLAB PROGRAMS (BASELINE.M) 

function  [ output_args ] = Untitled1( input_args )  
 
p = 48; % Prediction horizon in 30 minute MD intervals.  
s = 1;  % Number of switching intervals in an MD interval.  
  
uplimit = 1.3;  
lowlimit = 0.2;  
initialLevel = 1.3;  
 
% Flow per switching interval  
flowin = 3/24/60*(30/s); % per 5 minute  
flowout = 22/24/60*(30/s); % per 5 minute  
  
% Motor rated power in kW  
power = 300;   
  
% Initilize the current level  
currentLevel = initialLevel;  
  
% Declare variables that accumulates.  
ffinal = ones(0);  
zfinal = ones(0);  
level = currentLevel*ones(1);  
totalEnergyCost = zeros(1);  
x = 0;  
days = 1000;  
for  j = 1:days  
    j  
    xfinal = ones(0);  
    for  i = 1:p*s  
        if  currentLevel >= uplimit  
            x = 1;  
        elseif  currentLevel <= lowlimit  
            x = 0;  
        end  
        currentLevel = currentLevel+flowin-x*flowout;  
        level = [level; currentLevel];  
        xfinal = [xfinal; x];  
    end  
    [mdcost, energycost] = tariff(1, p*s,s);  
    a = totalEnergyCost;  
    b = power*energycost'*xfinal;  
    totalEnergyCost = a(1)+b(1);  
end  
  
totalEnergyCost = totalEnergyCost/30  
  
totalMDCost = 0;  
figure;  
hold on;  
axisx = [0:1/2/s:p/2];  
stairs([axisx],[xfinal; 0], 'g' );  
plot([axisx],level((days-1)*p*s+1:(days-1)*p*s+p*s+1), 'b' );  
%plot([axisx],level,'b');  
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stairs([axisx],[energycost(1:p*s)*60/30/30*s; 0], 'r' );  
  
legend( 'K2 Status (on/off)' , 'R1 Level (ML)' , 'TOU Charge (cents)' );  
legend( 'Location' , 'NorthWest' );  
xlabel( 'Hours' );  
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ADDENDUM C –MATLAB PROGRAMS (REITVLEISOLVE.M) 

function  [ argout ] = RietvleiSolve(p, s, startTime, endTime , step, 
stepSave)  
 
% Add the linux path to LPSOLVE for when we are on the cluster  
addpath( '/afs/ee.up.ac.za/user/n/jvstaden/lp_solve_5.5/extra /MATLAB/lpsol
ve' );  
  
% Add the windows path to LPSOLVE for when we are on the laptop  
addpath( '..\Tools\lpsolve\matlab' );  
  
% Example of variables  
p = 48; % Prediction horizon in 30 minute MD intervals.  
s = 2;  % Number of switching intervals in an MD interval.  
startTime = 1;  
endTime = p*s;  
step = p*s;  
stepSave = 0;  
  
% LPSOLVE Optimization parameters  
timeout = 10;  
obj_bound = 15000;  
  
% Levels  
uplimit = 1.3;  
lowlimit = 0.2;  
initialLevel = 1.3;  
  
% Flow per switching interval  
flowin = 3/24/60*(30/s);  
flowout = 22/24/60*(30/s);  
randomFlow = 0; % 0.2*flowin;  
  
% Motor rated power in kW  
power = 300;  
  
% Initilize the current level  
currentLevel = initialLevel;  
  
% Declare variables that accumulates.  
xfinal = ones(0);  
ffinal = ones(0);  
zfinal = ones(0);  
level = currentLevel*ones(1);  
  
% Initialize currentZ  
z=1;  % MD variables. Set z=s if binary valiables are requ ired.  
currentZ = 0;  
  
% Initialize x  
x = zeros((p*s+z),1);  
  
% Variable to keep all the objective functions  
objs = ones(0);  
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% Flag to load saved file on initial iteration  
loadFile = 1';  
  
startIter = startTime;  
  
% Load the saved file to solve the LPSOLVE hang problem  
if  stepSave == 1 & loadFile == 1  
    try  
        load( 'temp.mat' );  
    catch  
        disp( 'No file to load' );  
    end  
    loadFile = 0;  
end  
  
for  currenttime = startIter:step:endTime  
  
    % Display the current time  
    currenttime  
  
    % Get the applicable tariff  
    [mdcost, energycost] = tariff(currenttime, currenttime+p*s-1,s);  
  
    % MD Constraints  
    mdLimits = mdlimits(p, s, power, currentZ, currenttime-startTime+1, 
mdcost);  
    [r_mdLimits, c_mdLimits] = size(mdLimits);  
  
    Aflow =  ones(0,0);  
    bflow =  ones(0,0);  
  
    % Upper limit constraints  
    for  i = 1:1:p*s  
        outFlow = [ flowout*ones(1,i) zeros(1,p*s-i) zeros(1,z)];  
        Aflow = [Aflow; -outFlow];  
        bflow =  [ bflow; uplimit-flowin*i-currentLevel];  
    end ;  
  
    % Lower limit constraints  
    for  i = 1:p*s  
        outFlow = [ flowout*ones(1,i) zeros(1,p*s-i) zeros(1,z)];  
        Aflow = [Aflow; outFlow];  
        bflow =  [ bflow; flowin*i+currentLevel-lowlimit];  
    end ;  
  
    % Combine constraints  
    A = [ Aflow; mdLimits];  
    b = [ bflow; zeros(1,r_mdLimits)'];  
  
    % Function to minimize  
    f = [power*energycost' power*mdcost*ones(1,z)];  
  
    vlb = zeros(p*s+z,1);  
    %vub = ones(p*s+z,1); Use instead of next for binary  variables.  
    vub = [ones(p*s,1); inf*ones(z,1)];  
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    % Optimize  
    [obj,x,duals,stat] = lp_solve(f,A,b,-
1,vlb,vub,vub,[],[],timeout,obj_bound);  
    objs = [objs; obj];  
    obj  
  
    % Round x values to force integers. Comment out when  linprog is used.  
    x = round(x);  
  
    % If linprog is used  
    %x = linprog(f,A,b,[],[],vlb,vub);  
  
    % Add new x values to xfinal so that we can plot at the end  
    if  length(xfinal) == 0  
        xfinal = x(1:step);  
    else  
        xfinal = [xfinal; x(1:step)];  
    end  
  
    % Set new current level  
    for  i = 1:step  
        newLevel = currentLevel+flowin-flowout*x(i)+ 
randomFlow*abs(randn(1));  
        currentLevel = newLevel;  
        level = [level;currentLevel];  
    end ;  
  
    % Update zfinal with the highest maximum demand  
    ztemp = x( (length(x)-z+1):length(x) );  
    if  length(zfinal) == 0  
        zfinal = ztemp;  
    elseif  sum(ztemp) > sum(zfinal)  
        zfinal = ztemp;  
    end  
  
    % Reset current Z when a new MD period is entered  
    if  floor(currenttime/s) == currenttime/s  
        currentZ = 0;  
    else  currentZ = currentZ + x(1);  
    end  
  
    % Save each step to overcome the LPSOLVE hang proble m 
    if  stepSave == 1  
        startIter = startTime + currenttime;  
        save( 'temp' );  
    end  
end  
  
% Get the cost function for the entire interval  
[mdcost, energycost] = tariff(startTime, endTime, s);  
f = [power*energycost' power*mdcost*ones(1,z)];  
  
% Calculate costs  
totalEnergyCost = f(1:(length(f)-z))*xfinal;  
totalMDCost = f((length(f)-z+1):length(f))*zfinal;  
totalCost = [totalEnergyCost totalMDCost totalEnergyCost+totalMDCost];  
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disp( 'Energy    MD    Total' );  
disp(totalCost);  
  
% Calculate the daily costs  
dailyEnergyCosts = [];  
aveDailyEnergyCosts = [];  
for  i = 1:48*s:endTime  
    dailyEnergyCost = f(i:i+48*s-1)*xfinal(i:i+48*s-1);  
    dailyEnergyCosts = [dailyEnergyCosts; dailyEnergyCost];  
    aveDailyEnergyCosts = [aveDailyEnergyCosts; mean(dailyEnergyCosts)];  
end  
  
% Save the results  
save(strcat( 'Results2/p' ,num2str(p), '_s' ,num2str(s), '_start' ,num2str(star
t Time), '_end' ,num2str(endTime), '_step' ,num2str(step), '_to' ,num2str(timeou
t ), '_bound' ,num2str(obj_bound), '_R' ,num2str(randomFlow), '_' ,date));  
  
% Print some results  
zfinal  
  
% Plot the results  
figure;  
hold on;  
axisx = [0:1/2/s:(endTime-startTime+1)/2/s];  
stairs([axisx],[xfinal(1:(endTime-startTime+1)); 0], 'g' );  
plot([axisx],level, 'b' );  
stairs([axisx],[energycost*60/30/30*s; 0 ], 'r' );  
legend( 'K1 Status (on/off)' , 'R1 Level (ML)' , 'TOU Charge (cents)' );  
legend( 'Location' , 'NorthWest' );  
xlabel( 'Hours' );  
hold off ;  
  
% Plot the daily costs  
figure;  
hold on;  
plot(dailyEnergyCosts);  
plot(aveDailyEnergyCosts);  
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ADDENDUM D –MATLAB PROGRAMS (TARIFF.M) 

function  [ mdCost, energyCost ] = tariff( startInterval, end Interval, s )  
 
day = 48*s;  
  
% Calculate the minutes in a switching interval  
k = 30/s;  
 
cost =  ones(day,1);  
  
% Winter tariffs  
peak = 0.8205;  
standard = 0.1411;  
off_peak = 0.1187;  
  
for  i = 1:day  
    if  i <= 360/k  
        cost(i) = off_peak;  
    else  if  i <= 420/k  
        cost(i) = standard;  
        else  if  i <=600/k  
           cost(i) = peak;      
            else  if  i <= 1080/k  
               cost(i) = standard;      
                else  if  i <= 1200/k  
                       cost(i) = peak;  
                    else  if  i <= 1320/k  
                         cost(i) = standard;    
                        else  if  i <= 1440/k  
                                cost(i) = off_peak;  
                            end  
                        end  
                    end  
                end  
            end  
        end  
    end  
end  
  
tariff = 
[cost;cost;cost;cost;cost;cost;cost;cost;cost;cost;cost;cost;cost;cost;co
st;cost;cost;cost;cost;cost;cost;cost;cost;cost;cost;cost;cost;cost;cost;
cost;cost;cost;cost;cost;cost;cost;cost;cost;cost;cost];  
  
cost = tariff(startInterval:endInterval);  
  
% Multiply energy cost with 30 to get the equivalent monthly cost. This 
is  
% required so that the MD and Energy cost carries the same weight.  
energyCost = 30*k*cost/60;  
  
% MD cost  
mdCost = 66.5/s;  
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ADDENDUM E –MATLAB PROGRAMS (MDLIMITS.M) 

function  [ mdLimits  ] = mdlimits( p, s, power, currentZ, cu rrenttime, 
mdcost )  
 
% Shift data to the first day.  
currenttime = currenttime - round(currenttime/48/s)*48*s;  
  
% MD charge interval  
mdstart = 360/30+1;  
mdend = 1320/30;  
 
mdPeriodStart =  floor((currenttime-1)/s)+1;  
maskPosition =  currenttime - floor((currenttime-1)/s)*s;  
  
% extend p to an extra period so that we can apply the mask  
p = p+1;  
  
z = 1; % Makes z=s if binary z values are required.  
  
% MD Constraints  
mdLimits = [];  
 
for  i = 1:p  
    if   mdstart <= mdPeriodStart+i-1 && mdPeriodStart+i-1 <= mdend  
        mdLimit = [ zeros(1,i*s-s) power*mdcost*ones(1,s) zeros(1,p*s-
i*s)];  
        %mdLimit = [ zeros(1,i*s-s) power*ones(1,s) zeros(1, p*s-i*s)];  
        mdLimits = [mdLimits; mdLimit];  
    end ;  
end ;  
  
% Apply the mask  
[r,c] = size(mdLimits);  
if  r >= 1  
  
    if  maskPosition == 1  % No mask required, just remove the extra p  
        mdLimits = [ mdLimits(1:r,1:(p-1)*s)];  
        % Add the Z variables  
        Z = -power*mdcost*ones(r,z);  
        %Z = -power*ones(r,z);  
        mdLimits = [ mdLimits Z];  
    else  % mask required  
        % Add the mdcost occured up to now for the MD interv al  
        mdLimits(1,maskPosition:s) = 
mdLimits(1,maskPosition:s)+power*mdcost*currentZ;  
        %mdLimits(1,maskPosition:s) = 
mdLimits(1,maskPosition:s)+power*currentZ;  
        % Apply the mask in the x variables  
        mdLimits = [ mdLimits(1:r,maskPosition:s) mdLimits(1:r,s+1:(p-
1)*s+maskPosition-1)];  
        % Add the Z variables according to the mask  
        Z = -power*mdcost*ones(r,z);  
        mdLimits = [ mdLimits Z];  
    end ;  
end  
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ADDENDUM F –MATLAB PROGRAMS (LP_SOLVE.M) 

function  [obj, x, duals, stat] = lp_solve(f, a, b, e, vlb, v ub, xint, 
scalemode, keep, timeout,obj_bound)  
  
[m,n] = size(a);  
lp = mxlpsolve( 'make_lp' , m, n);  
mxlpsolve( 'set_verbose' , lp, 4);  
mxlpsolve( 'set_mat' , lp, a);  
mxlpsolve( 'set_rh_vec' , lp, b);  
mxlpsolve( 'set_obj_fn' , lp, f);  
mxlpsolve( 'set_int' , lp, [vub]);  
mxlpsolve( 'set_timeout' , lp, timeout);  
mxlpsolve( 'set_epsint' , lp, 0.01);   
mxlpsolve( 'set_print_sol' , lp, 1);   
 
for  i = 1:length(e)  
  if  e(i) < 0  
        con_type = 1;  
  elseif  e(i) == 0  
        con_type = 3;  
  else  
        con_type = 2;  
  end  
  mxlpsolve( 'set_constr_type' , lp, i, con_type);  
end  
if  nargin > 4  
  for  i = 1:length(vlb)  
    mxlpsolve( 'set_lowbo' , lp, i, vlb(i));  
  end  
end  
if  nargin > 5  
  for  i = 1:length(vub)  
    mxlpsolve( 'set_upbo' , lp, i, vub(i));  
  end  
end  
if  nargin > 6  
    mxlpsolve( 'set_obj_bound' ,lp,obj_bound);  
  for  i = 1:length(xint)  
     mxlpsolve( 'set_binary' , lp, vub(i), 1);  
  end  
end  
if  nargin > 7  
  if  scalemode ~= 0  
    mxlpsolve( 'set_scaling' , lp, scalemode);  
  end  
end  
result=mxlpsolve( 'solve' , lp);  
if  result == 0 | result == 1 | result == 11 | result = = 12  
  [obj, x, duals] = mxlpsolve( 'get_solution' , lp);  
  stat = result; 
else  
  obj = [];  
  x = [];  
  duals = [];  
  stat = result;  
end  
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if  nargin < 9  
  mxlpsolve( 'delete_lp' , lp);  
end  
mxlpsolve( 'is_integerscaling' , lp); 

 

 
 
 




