A morphological analysis of weevils from sub-Antarctic Prince Edward Islands: an assessment of ecological influences

by

Lindie Janse van Rensburg

Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Entomology)

in the Faculty of Natural & Agricultural Sciences

University of Pretoria

Pretoria

November 2005
Vir Ma
met baie liefde

1952 - 2003
A morphological analysis of weevils from sub-Antarctic Prince Edward Islands: an assessment of ecological influences

Student: Lindie Janse van Rensburg

Supervisors: Prof Christian T. Chimimba & Dr Armanda D. Bastos

Departments: 1Department of Zoology & Entomology, University of Pretoria, Pretoria, 0002 South Africa

2Mammal Research Institute (MRI), Department of Zoology & Entomology, University of Pretoria, Pretoria, 0002 South Africa

Degree: Doctor of Philosophy (Entomology)

Abstract The ecologically sensitive, but relatively simple sub-Antarctic mouse-colonised Marion and mouse-free Prince Edward Islands represent ideal ecosystems for addressing questions relating to the partitioning of potential influences of anthropogenic changes, such as climate change and alien species on ecosystem functioning. Consequently, weevil species were used in the present investigation to address questions of morphological change over time with reference to climate change and mouse predation.

As a prelude to the assessment of morphological changes over time, the six currently recognised weevil species, namely, Bothrometopus randi, B. parvulus, B. elongatus, Ectemnorhinus similis, E. marioni and Palirhoeus eatoni from both Marion and Prince Edward Islands were confirmed by morphometric analyses. However, the taxonomic status of Ectemnorhinus weevil species on both islands is much more complex than previously considered. A multi-faceted approach based on both morphometric and molecular (COI gene) data suggest the presence of a single species, comprising diverse, genetically discrete populations on Marion Island and two genetically distinct species on Prince Edward Island.

The assessment of morphological changes over time included the four remaining weevil species (B. elongatus, B. randi, B. parvulus and P. eatoni) occurring on both Marion and Prince Edward Islands, collected non-consecutively over five decades. These analyses suggest morphometric size differences between samples from both Marion and Prince Edward Islands collected in the mid-1960s and 1970s and those collected recently. Similarly, samples from both islands collected in the early- to mid-1980s also showed morphometric shape differences with those collected recently for both Prince Edward and Marion Islands, respectively. Generalized Linear Models (GLZ) suggested year of sampling to contribute more, to both,
morphometric size and shape in all species sampled on both islands, while temperature contributed more to shape for species collected on Marion Island. Given the consistent pattern of morphological change over time for both the mouse-infested Marion Island and the mouse-free Prince Edward Island, it is possible that climate change rather than mouse predation may primarily influence weevil morphological changes on the two islands.

Subsequent analyses extended the question of weevil morphological changes over time with reference to climate change and mouse-predation, and included sub-fossil weevil elytra and head capsule remains collected on Marion Island mire habitats. As a prelude to these analyses, an attempt was made to first identify the sub-fossil samples (using head capsules) with reference to recent samples of the currently recognised weevil species on both islands. While species-level identifications were not possible, morphometric analyses suggest that the sub-fossil remains belong to the *Ectemnorhinus* group of weevils. Sub-fossil weevil remains recovered in mire sediments from 2 m and 2.5 m depths, considered to represent different dimensions in space and time, were dated at 789 BC and 2331 BC, respectively. Subsequent analyses showed no significant morphometric changes in sub-fossil material between the various depths, predating the effects of climate change on both islands and the introduction of the house mouse (*Mus musculus*) on Marion Island in the early 1800s. However, a comparison between the sub-fossil remains and recently collected material considered to represent a period characterised by climate change and mouse-predation showed significant morphometric differences over time. However, the questions investigated in this study need to be investigated further because the potential ecological influences driving ecosystem functioning on the islands may be much more complex than currently understood.

Keywords: *Ectemnorhinus* weevils, sub-fossils, systematics, morphometrics, COI gene, morphological change over time, ecosystem functioning, anthropogenic influences, climate change, mouse-predation, sub-Antarctic Marion and Prince Edward Islands
I praise the Lord, He has given me an opportunity to explore His magnificent creation on the most incredible island. I stand in awe of the absolute detail and perfection of His work. I want to thank the Lord for enabling me to complete this thesis and also thank Him for using these past years working on this PhD, to shape my character and give me the chance to live each day surrounded by His love and peace. For His strength and motivation to face life’s trials and to finish this PhD, not out of my own strength.

A very special thanks to my Mom, my best friend and mentor. She always loved, encouraged and believed in me, helping me sort through life’s little hurdles, to focus on the task at hand. Her death has left an incredible miss in my life which only God can understand and through His strength I’m living each day. I am grateful that for a large part of this study she was still part of my life. Thanks Dad for encouraging me to pursue this degree, for your love, support and encouragement, I really appreciate it and I love you very much. To Jaco, the coolest brother in the world, I appreciate your listening, always willing to sort out my computer problems and your love and support everyday, I love you very much. I would also like to thank all my grandparents, Tannie Ruby, Lyrentia, Sampie, the du Plessis family, Tannie Annemarie en Oom Theuns for their support and love through really tough times these past few years.

Marié, there is not enough words to say how much you mean to me as a friend and colleague. God sent you on my path, for He knew I needed someone really clever in an academic way and spiritually in tune with Him to support me. I treasure each day and appreciate your willingness and eagerness to read my work and give comment. Catherine, thank you very much for your love and support as a friend and colleague, always willing to listen and help. To all my friends and colleagues I would like to express my appreciation for their support and friendship during my studies (especially Magdel, Lydia, Marietjie, Mieke, Jean). Then I would like to thank everyone who regularly prayed with Marié and I (Sarita, Elisabé, Hannelie, Wendy, Marna, Cath). It is the little things that made the difference.

To my supervisors, Chris and Armanda, thank you for your guidance and support with this thesis, I appreciate it. I would also like to thank Steven Chown for making his previously collected data available for use during my studies. I sincerely thank everyone who assisted me in the field on Marion Island, especially Gert Grobler, Mark Keith and Dr. Dmitri Mauquoy. Tannie Babsie Potgieter and Kitty Stamhuis, thank you for your friendship and all the logistical assistance in the department, always ready to lend a helping hand. I’m also grateful to Riaan...
Stals at the National Collection of Insects (NCI), Pretoria and the Transvaal Museum for making their weevil collections available for use during my study.

I would like to thank the Department of Environmental Affairs and Tourism (DEAT), as well as the National Research Foundation (NRF) for financial support during my PhD studies.

...

“Challenge is a dragon with a gift in its mouth. Tame the dragon and the gift is yours.”

Noela Evans
Disclaimer

The present study forms part of a larger study entitled: Threats to biodiversity and ecosystem functioning at the Prince Edward Islands: Developing a conservation strategy for endemic and keystone insect species. All genetic work and analyses presented in the study were conducted by Mr. Gert Grobler, Department of Zoology and Entomology, University of Pretoria. This thesis consists of a series of chapters that have been prepared as “stand alone” manuscripts for subsequent submission for publication purposes. Consequently, unavoidable overlaps may occur between chapters.
Table of contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>Disclaimer</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>Table of contents</td>
<td>vi</td>
</tr>
<tr>
<td>1</td>
<td>Chapter 1: General Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Chapter 2: Morphometric measurement selection: an invertebrate case study based on weevils from sub-Antarctic Marion Island</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Chapter 3: Molecular and morphometric assessment of the taxonomic status of Ectemnorhinus weevil species (Coleoptera: Curculionidae) from the sub-Antarctic Prince Edward Islands</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>Chapter 4: Morphometric changes over time: an analysis based on weevils (Coleoptera: Curculionidae) from the sub-Antarctic Marion and Prince Edward Islands</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>Chapter 5: Morphometric changes over time in weevils (Coleoptera: Curculionidae) from the sub-Antarctic Marion Island: an analysis based on mire sediment sub-fossil remains and recent samples</td>
<td>105</td>
</tr>
<tr>
<td>6</td>
<td>Chapter 6: Synopsis and conclusion</td>
<td>126</td>
</tr>
</tbody>
</table>