
 69

CHAPTER 3 

 

Dimensions of spatial heterogeneity: a classification of non-, semi- and 

explicit spatial heterogeneity 
 

 

 

INTRODUCTION 

 

Understanding the causes of spatial heterogeneity in the abundance of organisms is 

central to ecology. The quantification of spatial pattern in biotic and abiotic variables, and how 

such pattern may influence species interactions and their responses to resources, is an ongoing 

research focus (Ives & Klopfer 1997; Stewart et al. 2000; Wiens 2000; Liebhold & Gurevitch 

2002). Typically, species occurrences are aggregated and numbers of individuals are unevenly 

distributed across sites (Cole 1946; Perry et. al. 2002). Although aggregation is an inherent 

species property (a function of species dispersal and behavioural patterns), the occurrence of 

individuals at different densities across space may also reflect a response to biotic and abiotic 

environmental conditions (e.g. resource quality and availability) (Taylor 1984; Wiens 2000). 

The study of the aggregation of individuals is almost as old as ecology itself (Raunkiaer 1934; 

Cole 1946). That it remains a focus in ecology today (Perry et al. 2002) is testimony to its 

significance as an emergent property of responses of species to their environment, and its 

importance in interactions within and across trophic levels (Hassell & Pacala 1990; Sevenster 

1996; Murrell et al. 2001; Plotkin et al. 2002; Porter & Hawkins 2003; Warren et al. 2003).  

One of the consequences of the widespread significance of aggregation is the extensive 

array of methods that have and continue to be developed for its measurement (Dale et al. 2002; 

Perry et al. 2002). However, these methods differ in their information content, biological 

relevance, and conclusions regarding the form of spatial heterogeneity (e.g. clumped or 

random) that they identify (Perry 1998; Wiens 2000; Tenhumberg et al. 2001). Moreover, a 

distinction has recently been made between measures of spatial heterogeneity (sensu Wiens 

2000) that do and do not incorporate spatial information, and the degree to which these 

methods provide solutions that are spatially explicit (Wiens 2000; Perry et al. 2002). In this 
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study we highlight the spatial reference-related (spatial co-ordinates, e.g. latitude and 

longitude) differences between methods in terms of both the data used and pattern identified 

(synthesizing the approaches of Wiens (2000) and Perry et al. (2002)). 

We distinguish three major groups of methods, i.e. those that are spatially non-explicit, 

semi-explicit and explicit, and discuss their application to abundance and occurrence data. 

Distinguishing between these approaches has become particularly important with the continued 

proliferation of analytical methods (and associated terminology, see Dutilleul & Legendre 

(1993)) (e.g. Plotkin et al. 2002; Perry & Dixon 2002), and the absence of comprehensive 

empirical comparisons between them (see Dale et al. 2002 for theoretical relationships). We 

propose a classification scheme for various measures of spatial heterogeneity for both 

occurrence and abundance data, based on the degree to which the described pattern is spatially 

explicit. The framework provided allows measures and their strengths to be compared, 

highlights the most commonly used examples of these measures, and proposes a hierarchy of 

information content and biological relevance. We emphasize opportunities that exist for 

empirical comparisons of spatially explicit and non-explicit approaches to the measurement of 

spatial heterogeneity, and the potential value of spatially explicit approaches for the re-

evaluation of theory developed using more traditional methods. The potential problems with 

quantifying different dimensions (i.e. the same entity with increasing amounts of available 

spatial information) of spatial heterogeneity but using them interchangeably, are illustrated 

using field-collected abundance data on an insect-herbivore, and the number of individuals 

parasitised and the imposed parasitism rate. Using these data we test whether the form of 

spatial heterogeneity found, for abundance data only, depends on the degree to which the 

method used to describe it is spatially explicit. We thus test if there is a difference between 

spatially non-explicit, semi-explicit and explicit methods in the form of spatial heterogeneity 

identified, and thus the conclusions drawn about aggregation. 

 
Dimensions of spatial heterogeneity  

Although the aggregation of individuals has been a recurring theme in ecology for many 

decades (Raunkiaer 1934; Cole 1946, Taylor 1984, Perry et al. 2002), until recently the lack of 

adequate spatial analytical methods has limited the examination of spatially explicit 

phenomena (Liebhold et al. 1993; Perry et al. 2002). The wide array of possible approaches to 
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the measurement and interpretation of aggregation that are now available were recently 

reassessed in light of current analytical developments (Coomes et al. 1999, Dale et al. 2002, 

Perry & Dixon 2002). However, these reviews do not consider the quantification of 

aggregation per se but rather any spatial pattern described in ecology. We use the term 'spatial 

heterogeneity', sensu Wiens (2000), to broadly encompass the array of spatial patterns 

(aggregation being only one of these) that can be described (Table 1, Fig. 1). Spatial 

heterogeneity can formally be defined as "discontinuities in space" (Wiens 2000), or pattern in 

spatial data (Liebhold & Gurevitch 2002), and may be quantified for either abundance (count), 

or occurrence (presence-absence) data. Although, spatially-referenced occurrence data can be 

transformed (with a loss of fine scale spatial information) to abundance per unit area (Perry & 

Dixon 2002; Perry et al. 2002), the use of untransformed occurrence data is common in 

ecology (Coomes et al. 1999; Plotkin et al. 2002 Wiegand & Moloney 2004). Therefore, 

defining terminology for spatial heterogeneity in both abundance and occurrence data will 

further contribute to unambiguous definitions in spatial ecology. Nonetheless, potential 

differences between the forms of spatial heterogeneity describe are likely to be greater for 

abundance than occurrence data, because spatial references are accompanied by recorded 

variable. Consequently, we focus on the differences between different degrees of spatial 

explicitness using abundance data (see Coomes et al. 1999; Plotkin et al. 2002; Wiegand & 

Moloney 2004 for detailed coverage of measures used to describe occurrence data). 

The term ‘aggregation’ has commonly been used to denote the grouping of elements or a 

contagious condition of spatial heterogeneity. However, this term does not distinguish between 

the dimension (thus the level of spatial explicitness) used to quantify this form of spatial 

heterogeneity (i.e. the method used) (Wiens 2000). Because the form of spatial heterogeneity 

that is identified (e.g. overdispersed versus underdispersed, or regular versus aggregated, Table 

1) may differ depending on the measure used to identify it (Perry 1998), the term 'aggregation' 

has become potentially misleading. Therefore, to allow unambiguous reporting of results, a 

need for formalised terminology to describe different forms of spatial heterogeneity has arisen. 

Here we use ‘aggregation’ as a loose, generic term for any grouping of elements (which is one 

form of spatial heterogeneity), and use the terminology outlined in Table 1 for reference to 

specific dimensions, measures and forms of spatial heterogeneity. The terms provided are 
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Table 1. Classification of spatial heterogeneity in abundance and occurrence data based on the degree of spatial explicitness (spatially 

non-explicit, semi-, and explicit). For each category an example of a measure used to determine the form of spatial heterogeneity is 

given. With each the measure terms and definitions used as well as synonyms (chronological order of use) and spatial applications or 

statistics used to quantify it are presented. Numbers in superscript denote source of terminology or example of recent use. For 

abundance data different measures to quantify correlation (A* vs. A^, with different symbols representing different data sets) are given. 

(Z), (D) and (X,Y) denote measured attribute, measured distance and spatial co-ordinates (e.g. latitude and longitude) respectively. 

Measure 
Form 

Definition Synonyms Spatial applications Example statistics  

     
1. Spatially non-explicit heterogeneity 

     
A) Statistical heterogeneity 1 
(Z) 

Skewness in the frequency 
distribution of counts; usually the 
relationship between the mean and 
variance 1 

Spatial distribution 2, 3; 
Parametric intensity 4; 
Density aggregation 5; 

No spatial pattern 
applications 1, 4, 6, 7; 
Spatially non-explicit 
modelling of species 
area relationships 3 

Poisson index of 
dispersion 8, 9; 
Moore’s index 10 
Morista’s index 10, 11 

     
Over dispersed  4, 10 Variance greater than the mean –

Negative binomial or geometric 
distribution 8, 12 

Aggregation 3, 9, 13; 
Aggregated 14 

  

Under dispersed  4, 10 Variance smaller than the mean – 
Binomial distribution 12 

Uniform 12; Regularity 9; 
Regular 8 

  

Dispersed 4 Variance approaches the mean – 
Poisson distribution 8, 12 

Randomness 9; Random 10   

     
A* vs. A^) Correlation 15 Magnitude of one variable 

measured at a sampling point 
changes as that of another changes15 

 Spatially non-explicit 
matching of variables 

Spearman R 15 

     
B) Nearest neighbour 
distance 11 
(D) 

Distance between spatially 
referenced point and its nearest 
neighbour/s 

Spatial distribution16 Test for spatial 
randomness with no 
spatial reference 11 

NN; kNN 10 
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Table 1. continued    
Measure 
Form 

Definition Synonyms Spatial applications Example statistics  

2. Spatially semi-explicit heterogeneity 

     
A) Spatial structure 17 

[(Z, X, Y), local pattern not 
incorporated 11] 

Values measured for points in space 
are similar, dissimilar or not related 
to neighbouring points 

Surface pattern spatial 
heterogeneity 18; Spatial 
abundance structure 19 

Allowance for spatial 
dependence in 
quantification of 
biological responses7, 20 

Moran’s I  17; Trend 
surface analysis 17;  

     
Spatial dependence 17 Spatial structure in response 

variable due to spatial structuring in 
explanatory variables 20 

 Sampling design 17; 
Variance partitioning 17 

 

     
Spatial autocorrelation 17 Degree of dependence in error 

components of data due to 
neighbouring sites having an 
influence on the measured value 20 

Spatial clustering 21 Identification of patch 
size 17; Measuring 
correlation between 
neighbouring points 17 

 

     
Positive autocorrelation 17 Points close in space are more 

similar than expected by chance 17 
   

Negative autocorrelation 17 Points close in space are more 
dissimilar than expected by chance 
17 

   

No significant 
autocorrelation 

Points close in space are spatially 
independent 

   

     
A* vs. A^) Cross-
correlation 22 

Determine to which degree two data 
sets exhibit concordant periodic 
variations17 

 Describes relationship 
between co-occurring 
species 22 

Mantel statistic 17 
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Table 1. continued    
Measure 
Form 

Definition Synonyms Spatial applications Example statistics  

     
B) Spatial distribution 15, 23 

(X, Y) 
Physical position (distribution) of 
sample points in two-dimensional 
space 23; Location of clusters of 
points in study arena 24 

Point pattern spatial 
heterogeneity 18; 
Spatial aggregation 5; 
Spatial clustering 24 

Presence-absence data 
18 

Index of aggregation 
(SADIE-map) 6,23 

     
     

3. Spatially explicit heterogeneity 
     
A) Spatial non-randomness 1 
(Z, X, Y), local pattern 
incorporated11 

Difference between physical 
arrangement of the counts and 
randomisations of these counts 1 

Spatial arrangement 4, 25; 
Spatial distribution 6, 26  

Determination of 
overall pattern 1 

Index of aggregation 
(SADIE regular) 1, 10; 
 

     
Regular 1, 4 Sample counts are equally spread 

among sampling points 
   

Random 1, 4 The spatial arrangement of counts is 
no different from that expected by 
chance 

   

Aggregated 1, 4 Arrangement of counts are non-
random 27 

Spatial aggregation 25   

Spatial clustering 28 Counts are clustered into patches 
(groups of high counts) and gaps 
(groups of low counts) 

Spatial patchiness 6 Identifying the location 
of patches and gaps 1 

Mean and local 
clustering values 
(SADIE red/blue) 6 

     
Local indices of spatial 
autocorrelation 29 

Describes spatial autocorrelation for 
each sampled data point 29 

Local spatial 
autocorrelation indices 30 

Determining local 
indicators of non-
stationarity 29; Detect 
outliers of the global 
spatial autocorrelation 
value29 

LISA statistic29 
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Table 1. continued    
Measure 
Form 

Definition Synonyms Spatial applications Example statistics  

    
A* vs. A^) Spatial 
Association 27, 31 

Degree of matching between two 
sets of spatially referenced counts 
27, 31 

 Method for detecting 
correlation between 
two sets of spatially 
referenced data 31, 32, 33 

Mean and local 
association values 
(SADIE Association 
test) 27 

Significant association 27, 31 Spatial matching of clusters of two 
sets of data 27, 31 

   

Significant dissociation 27, 31 Spatial mismatching of clusters of 
two sets of data 27, 31 

   

Non-significant association Degree of spatial matching or 
mismatching is not significantly 
different from expected by chance  

  
 

     
B) Point-cluster analysis 24 

(X, Y) 
Number of sampling points 
connected to at least one neighbour 
within a minimum specified 
distance 24 

Spatial clumping 24 To determine size and 
position of clusters of 
sampling points 24 

No statistic as yet, 
but rather descriptive, 
i.e. distance moved 24 

     
(1) Perry 1998; (2) He & Legendre 2002; (3) He & Gaston 2003; (4) Bohan et al. 2000a; (5) Tenhumberg et al. 2001; (6) Perry et al. 1999; (7) Jumars 

et al. 1977; (8) Bliss & Fisher 1953; (9) Perry & Hewitt 1991; (10) Dale et al. 2002; (11) Perry et al. 2002 (12) Iwasa et al. 1981; (13) Gross & Ives 

1999; (14) Rosewell et al. 1990; (15) Zar 1984; (16) Williams et al. 2001; (17) Legendre & Legendre 1998; (18) Dutilleul & Legendre 1993; (19) 

Brewer & Gaston 2002; (20) Legendre et al. 2002; (21) Ni et al. 2003; (22) Rossi et al. 1992; (23) Perry 1995a; (24) Plotkin et al. 2002; (25) Perry 

1995b; (26) Ferguson et al. 2000; (27) Perry & Dixon 2002; (28) Wiens 2000; (29) Anselin 1995, (30) Sawada 1999; (31) Winder et al. 2001; (32) 

Korie et al. 2000; (33) Thomas et al. 2001;. 
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2. Spatial structure

3. Spatial non-randomness

1. Statistical heterogeneity

Increasing “aggregation”A

 

2. Spatial distribution

3. Point-cluster analysis

1. Nearest neighbour distance

B Increasing “aggregation”

 
 

Figure 1. Different measures of spatial heterogeneity in abundance (A) and occurrence (B) data in ecology, with ‘aggregation’ increasing 

from left to right. Measures numbered 1, 2 and 3 represent spatially non-explicit, semi-explicit and explicit spatial heterogeneity 

respectively. In A. all sampling points within a study area/block have the same spatial references, with the size of a circle denoting the 

magnitude of a count at that sampling point. In B. each circle denotes the presence of an individual. 
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largely a synthesis of those in the literature, and their distinction here is intended to avoid 

confusion between the data type, category and form of spatial heterogeneity described by 

different measures of spatial heterogeneity (Table 1). In the following paragraphs I outline the 

three categories that vary in the degree to which they are spatially explicit, each generally 

represented by a single commonly used measure of spatial heterogeneity in abundance and 

occurrence data. The three dimensions are spatially non-explicit, spatially semi-explicit and 

spatially explicit heterogeneity (Table 1). In addition, for abundance data we list a method for 

each dimension of spatial heterogeneity used to correlate the spatial heterogeneity in two data 

sets. 

Statistical heterogeneity and nearest neighbour distance (quantified for abundance and 

occurrence data respectively) can be considered measures of spatially non-explicit 

heterogeneity, because records are taken across a series of sampling points in a site, which are 

not spatially referenced (e.g. Williams et al. 2001) (Table 1, Fig. 1). In fact statistical 

heterogeneity can be said to be totally independent of spatial pattern. Nonetheless, not using 

spatial information (spatially non-explicit heterogeneity) can be seen as the preceding step of 

using spatial information (spatially semi- and explicit heterogeneity, Table 1) in a classification 

of spatial data use. Spatial structure (abundance data) (Legendre & Legendre 1998) and spatial 

distribution (occurrence data) (Perry 1995a), are measures of spatially semi-explicit 

heterogeneity, because although spatial dependencies or patterns can be accounted for (Perry et 

al. 2002), the heterogeneity described is not explicitly related to any particular location within 

the study site (i.e. the exact pattern of specific locations or areas within a site are unknown) 

(Wiens 2000). Spatial non-randomness and point-spatial clustering are measures of spatially 

explicit heterogeneity (Table 1, Fig. 1). These measures are spatially explicit because spatial 

heterogeneity may be related to particular sample points or areas within the study arena (Wiens 

2000). For example, with spatial non-randomness the position of areas of comparatively high 

counts can be described, while point-spatial clustering describes the position and size (number 

of individuals) of groups of individuals (Plotkin et al. 2002). 

The traditional, spatially non-explicit approach to the measurement of heterogeneity, 

statistical heterogeneity (Table 1), is merely the relationship between the variance and the 

mean of the frequency distribution of counts and can be quantified by the Poisson index of 

dispersion (Perry 1998) (Table 1, Fig. 1). Animal abundance, usually with many zero and few 
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large counts, is also considered overdispersed when fit by the negative binomial distribution 

(NBD) (Bliss & Fisher 1953; Williams et al. 2001). In such cases the index of aggregation of 

the NBD, k, is less than unity (Bliss & Fisher 1953). However, the ability of k to describe 

ecologically relevant spatial pattern has long been contested (Taylor et al. 1979). For example, 

the inverse of k behaves inconsistently over ranges of over dispersion even when the NBD fits 

the data, indicating the inadequacy of k to describe statistical heterogeneity  (Taylor et al. 

1979). Also, the NBD is not suitable for quantifying aggregation in patches of variable size 

(Sevenster 1996), or predicting abundance from occupancy in some cases (Warren et al. 2003). 

Furthermore, Perry & Hewitt (1991) and Perry (1995b) consider overdispersion to be of 

limited interest when investigating the spatial heterogeneity of individuals, because 

overdispersion in biological data is virtually universal (Taylor et al. 1978). The relationship 

between two variables described by statistical heterogeneity can only be determined by 

correlation (Table 1). Although the two data sets may share spatial references, spatial 

references are not included in the quantification of the relationship. Any correlation detected 

will therefore be spatially non-explicit. 

The quantification of spatial structure, a semi-explicit approach, has also been used to 

measure spatial heterogeneity (Jumars et al. 1977; Dessaint et al. 1991; Loch & Zalucki 1998; 

Brewer & Gaston 2002) (Table 1, Fig. 1). If the values of any point-referenced, continuous 

variable are spatially dependent or spatially autocorrelated, then the data are spatially 

heterogeneous (Legendre & Legendre 1998; Wiens 2000; Perry et al. 2002) (Table 1). Positive 

autocorrelation, for example, indicates that adjacent values of a variable are more similar to 

each other than expected by chance (Sokal & Oden 1978; Koenig 1999). Determining this area 

of comparative homogeneity, or 'patch size' of biotic and abiotic variables is of particular 

interest in spatial ecology (Legendre & Fortin 1989; Koenig & Knops 1998; Koenig & 

Haydock 1999; Manson 2000). However, although spatial structure is quantified from 

spatially-referenced data, it does not incorporate information on patterns associated with 

physical positions (local pattern) (Perry et al. 2002), i.e. the value of an autocorrelation 

function is not influenced by the exact position of two sampling points in the study arena, only 

by their relative positions measured by the distance between them (Legendre & Legendre 

1998). The spatial structure of two variables may be compared by cross–correlation methods 

(Table 1, see also Rossi et al. 1992). Although this allows the spatial references of each 
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variable to be considered, it is not possible to determine if the quantified spatial patterns match 

in a particular direction. Any relationship between the two variables will thus be spatially semi-

explicit. 

The more recent, spatially explicit approach to describing heterogeneity in spatially 

referenced count (abundance) data, involves the measure of spatial non-randomness (Perry 

1998) (Table 1, Fig. 1). The quantification of this measure is based on the Spatial Analysis by 

Distance IndicEs (SADIE) method, which measures how much an observed arrangement of 

counts differs from a completely regular arrangement of the same counts (Perry 1995a). Using 

this method, spatial heterogeneity is quantified by an overall measure of non-randomness, as 

well as the degree to which individual sample counts contribute to overall clustering into 

patches (areas of high abundance counts) and gaps (areas of low abundance counts). The 

contribution of an individual sample to a local patch or gap is defined by a local clustering 

index (Perry et al. 1999; Perry & Dixon 2002). Consequently, local spatial pattern is dependent 

on the size of the count and its spatial position relative to neighbours (Perry et al. 2002). This 

is currently the most widely-used spatially explicit method that quantifies spatial heterogeneity 

from count data and simultaneously permits hypothesis testing (Bohan et al. 2000b; Ferguson 

et al. 2000; Korie et al. 2000; Thomas et al. 2001; Winder et al. 2001, Perry et al. 2002). 

Spatial association (Table 1) is a method that is able to determine overall and local (spatially 

explicit) matching in spatial heterogeneity based on spatial non-randomness (Perry & Dixon 

2002). Because spatial association compares the spatial pattern of two variables instead of only 

counts, this method has greater power to detect significant relationships between them (Winder 

et al. 2001).  

Developing largely as a separate field, geostatistics has also made attempts to describe 

spatially explicit heterogeneity (Anselin 1995; Sawada 1999). Local indices of spatial 

autocorrelation (LISAs) provide spatial information that is spatially explicit in much the same 

way that spatial non-randomness does (Table 1). With this measure the semi-explicit spatial 

autocorrelation index, which summarises largely all local autocorrelation indices, can be 

further scrutinised to detect areas of non-stationarity and to detect outliers of the global spatial 

autocorrelation value (Anselin 1995). Since this measure is very similar in conception to 

spatial non-randomness, LISA’s were not calculated for this data set. 
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Although these three approaches have all been used, some extensively, to quantify spatial 

heterogeneity, few comprehensive comparisons have been made between them (although see 

Dale et al. 2002, Perry et al. 2002). However, the results of statistical heterogeneity analyses 

have been found to be unrelated to those of spatial structure (Dessaint et al. 1991) and spatial 

non-randomness (e.g. Perry 1995b; Perry 1998; Bohan et al. 2000a), although the latter 

relationship has not been fully explored. Furthermore, although k of the NBD is still regularly 

used to describe spatial heterogeneity (e.g. He & Gaston 2000; Tenhumberg et al. 2001; 

Williams et al. 2001), the conclusions reached using this measure have also not been 

quantitatively compared with the results of spatial structure and spatial non-randomness. 

Consequently, whether the degree of spatial explicitness of the measure used to describe spatial 

heterogeneity, i.e. statistical heterogeneity, spatial structure and spatial non-randomness, 

determines the form of spatial heterogeneity identified, has not been shown. Here, I thus test if 

these measures are interchangeable in the light of their current use, i.e. does the degree of 

spatial explicitness incorporated in a measure of spatial heterogeneity matter? 

 

 

METHODS 

 

Study Area 

Gonometa postica populations were examined at five localities within the known 

(historic and recent records) outbreak range of this species, spanning a distance of 400km 

between the two furthest localities. The localities were Vryburg (26°59'S, 24°40'E) and 

Hotazel (27°15'S, 23°03'E) in North-central South Africa and Gabane (24°37'S, 25°46'E), 

Kumukwane (24°38'S, 25°40'E), and Kopong (24°31'S, 25°48'E) in South-Eastern Botswana. 

The dominant woody host species utilized by G. postica at the first two localities was Acacia 

erioloba Meyer and at the remainder, Acacia tortillis Hayne (both Mimosaceae) (Veldtman et 

al. 2002).  

One site was selected at each locality, except at Vryburg where two sites (approximately 

1.5 km apart) were selected. Sampling was standardized by delimiting an approximately 

rectangular area (plot) incorporating 100 trees at each site to compensate for possible tree-
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density differences between host-plants and localities. An initial minimum of 40 first-

generation cocoons per plot was a prerequisite for site selection.  

Surveys of plots commenced in winter (June to July, 2000) and were repeated in mid 

summer (January, 2001). During the first survey, the number and fate of overwintering pupae 

were recorded. With the second survey, the resulting fate of those individuals that were alive in 

the first survey as well as the number of new first generation pupae were recorded. Similarly, 

the fate of these first generation pupae were followed (two subsequent surveys repeated at 

same periods as above) until mid-summer of the following year (January 2002).  

 

Cocoon sampling 

Within each plot every tree was carefully searched for cocoons. Cocoons were inspected 

to determine the fate of the pupa inside the cocoon, i.e. i) parasitised, ii) alive, iii) dead as a 

result of unknown causes, or iv) successfully emerged. This was indicated respectively by the 

i) presence or ii) absence of small emergence hole(s), iii) light weight of the cocoon or iv) a 

single large anterior emergence hole (pers. obs.). Parasitoid species responsible for parasitism 

may be identified from the shape and size of emergence holes left in the cocoon wall of a 

parasitised pupa (Veldtman et. al 2004). The number of pupae and parasitised pupae per tree 

were counted. 

The position of each tree within a plot was measured at the main trunk of the tree with a 

hand held Global Positioning System (GPS). For trees in close proximity to each other the 

direction and distance between the two trees were noted and assigned to one of three categories 

(half, quarter and a tenth of the third (last) decimals of a minute) based on hand drawn maps 

which specifically documented this fine scale distribution of trees. These spatial co-ordinates 

were used in all spatial analyses. 

For the investigation of the spatial pattern of parasitism, only sampling points (trees) with 

at least one pupa were included in analyses, as parasitism events can logically not be observed 

if there are no pupae. All counts of pupae or parasitised pupae were thus made per tree. At each 

site, pupae parasitised by different species of parasitoid were either analysed individually, or 

collectively (‘all species’) as a measure of total parasitoid mortality (see also Heads & Lawton 

1983; Williams et al. 2001). Additionally we also considered the proportion of parasitised 
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pupae (parasitism rate from here on), which was transformed into integers by multiplying by 

ten and rounding off. 

 

Quantification of spatial heterogeneity in abundance: what do the data say? 

Spatial heterogeneity in three types of site recorded abundance data, namely number of 

pupae, number of parasitised pupae and parasitism rate (all per tree) were quantified using 

three measures, i.e. statistical heterogeneity (Table 1, A1), spatial structure (Table 1, A2) and 

spatial non-randomness (Table 1, A3), representing an increase in the degree of spatial 

explicitness with which the pattern was quantified (Table 1, Fig. 1A). This permitted direct 

comparison between the results of the three approaches in the conclusion reached regarding the 

form of spatial heterogeneity in the data.  

 

Statistical heterogeneity 

Statistical heterogeneity was quantified by determining the relationship between the mean 

and the variance of the frequency distribution for count data (Perry & Hewitt 1991) (Table 1). 

The Poisson index of dispersion (s2/m) was calculated by dividing the sample variance by the 

sample mean (Perry & Hewitt 1991). If this index is close to unity the data have a Poisson 

distribution. When this index is smaller or greater than one it indicates that the distribution is 

under- and over dispersed and the data are best fit by a binomial or negative binomial 

distribution (or another over-dispersed distribution, e.g. gamma distribution) respectively 

(Table 1). Significant departures from randomness were determined by calculating (n-1)*(s2/m) 

and comparing it to the X2
n-1 distribution (Perry & Hewitt 1991). 

Another measure of statistical heterogeneity, namely the index of aggregation, k, was also 

used to describe statistical heterogeneity. When the negative binomial distribution fits the data 

and the value of k is greater than unity (Bliss & Fisher 1953), count data are considered to be 

aggregated (Tenhumberg et al. 2001; Williams et al. 2001). The index k ranges from zero to 

infinity (∞) and the larger the value of k the greater the degree of aggregation (Bliss & Fisher 

1953; Williams et al. 2001). The fit of the data to the negative binomial distribution (NBD) 

was tested using the method of Bliss and Fisher (1953), where k is first determined by a 

maximum likelihood solution and then used in the formula 

U = s2 – ( x  + x 2/ k̂ 2)         (1) 
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to calculate the difference between observed and expected second moments. Adequate fit by 

the NBD is indicated if U falls within the range of its standard deviation (Bliss & Fisher 1953).  

 

Spatial structure 

Spatial structure was quantified using spatial autocorrelation (SAAP v 4.3 and Moran’s I) 

(Wartenberg 1989), because there was no a priori evidence for spatial dependence in any of the 

biotic variables due to physical variables of the study sites (Legendre et al. 2002) (Table 1). 

The optimal number of equal-length distance classes was determined using Sturge’s rule 

(Legendre & Legendre 1998). Overall correlogram significance (determined by comparing 

each distance class to a Bonferroni corrected α-level) was a prerequisite for the indication of 

spatial structure (Legendre & Legendre 1998). The size and significance of Moran’s I values in 

distance classes with sufficient sample size were then examined. Often, when analysing 

biological data, the greatest Moran’s I values are expected for the first distance class (Legendre 

& Legendre 1998).  

 

Spatial non-randomness 

SADIE methodology was used to quantify the degree of departure from spatial 

randomness for the spatially referenced (X,Y) count data in this study (Table 1). Spatial non-

randomness is based on the distance to regularity (minimum cumulative distance to achieve a 

regular distribution of counts, thus when all sample counts are equal to the mean) that can be 

quantified for the data set as a whole (overall aggregation) or indicate the contribution of each 

sample point (degree of clustering) to local departures from randomness within the data set 

(Perry et al. 1999). The significance of overall aggregation was tested by dividing the actual 

distance to regularity by the average distances of randomisations of the sample counts, to give 

the index of aggregation (Ia) (Perry 1995a). This index summarises the spatial arrangement of 

the counts relative to one another (Perry et al. 1999; Perry & Dixon 2002). Although 

significance is actually tested, values of Ia of approximately 1.5 and greater indicate significant 

aggregation (Perry et al. 1999) 

Whether or not there is evidence of overall aggregation, the degree of clustering in count 

data can be quantified (Perry & Dixon 2002). The index of clustering, v, provides information 

on the degree of clustering for each spatially referenced point based on the magnitude of the 
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count and its occurrence in relation to neighbouring counts. Clustering occurs in two forms, 

namely patches (counts greater than the sample mean, vi) and gaps (counts smaller than the 

sample mean, vj). For random arrangements of counts, vi and vj have expected values of 1 and -

1. Values greater than these expected values indicate membership by the count of a patch (vi > 

1.5) or gap (vj < -1.5) (Perry et al. 1999). Non-randomness is formally tested by comparing 

mean vi and mean vj values with their expected values of 1 and -1 for random arrangements 

(Perry et al. 1999). If mean vi and mean vj are not significant, the lack of overall, strong 

clustering into patches and gaps is indicated (Perry et al. 1999; Perry & Dixon 2002). 

Within each plot, Ia, mean vi and mean vj was calculated for every parasitoid species that 

attacked pupae on more than 20% of the trees occupied by pupae. At densities lower than this 

(e.g. mean count per tree < 0.2), it is not possible to quantify overall aggregation and spatial 

clustering (Winder et al. 2001). The maximum ratio of non-zero values to total number of 

measured values that still allows the detection of significant spatial clustering (sufficient 

power) has been shown to be 4: 25 (Korie et al. 2000). In this study the lowest ratio was 9 to 

38; within the specified limit. All non-randomness statistics were calculated with SADIEShell 

v. 1.21, red-blue analysis. 

 

 

RESULTS 

 

The number of pupae, number of parasitised pupae and parasitism rate varied greatly 

between sites (see Appendix). On average (± SE) there were 319 (± 66) pupae per plot 

occupying 52 (± 3) trees. Single parasitoid species parasitised an average of 50 (± 10) pupae on 

22 (± 3) trees, while all parasitoids together parasitised 111 (± 25) pupae on 34 (± 4) trees per 

plot. There were thus marked differences in host abundance at the between sample (tree) scale 

in this study. 

 

Quantification of spatial heterogeneity in abundance 

In the following paragraphs the results of the three measures used to quantify spatial 

heterogeneity in Gonometa postica’s pupal and parasitised pupal abundance, as well as the 

parasitism rate of its parasitoids are reported.  
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Statistical heterogeneity  

The number of pupae was over-dispersed in the majority of cases, but did not fit the NBD 

in any case (Table 2). Number of parasitised pupae was over-dispersed in two thirds of the 

cases and the NBD provided a significant fit in most cases. Parasitism rate was always over-

dispersed but did not follow the NBD in a third of all cases. The discrepancy between presence 

of over-dispersion and adequate fit by the NBD was a result of more extreme over-dispersion 

than allowed for by this distribution (Bliss & Fisher 1953), evident from the large variance to 

mean ratios in these instances (Table 2, see also Warren et al. 2003). The index of aggregation 

of the NBD, k, was usually below 1.0 when the index of dispersion indicated significant over-

dispersion, and greater than 1.0 or approached infinity when the data were not over-dispersed. 

Thus in terms of statistical heterogeneity the form of spatial heterogeneity identified was 

predominantly aggregated (Table 2, see Fig. 2a, c). 
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Table 2. Spatial heterogeneity (statistical heterogeneity, spatial structure and spatial non-randomness) for number of Gonometa postica 

pupae, parasitised pupae and parasitism rate (individual or all parasitoid species) per tree for each site. Statistical heterogeneity: s2/m = the 

Poisson index of dispersion; fit by the negative binomial (NB) distribution: yes (Y) and no (N); k = the index of aggregation. Spatial 

structure: P(I) = overall Moran’s I correlogram significance. Spatial non-randomness: Ia, overall index of aggregation. Form of spatial 

heterogeneity (FSH) quantified is indicated as being aggregated (A), random (R) or regular (E), or present (yes (Y)) and absent (no (N)). 

*, ** and *** denote significance at the p < 0.05, p < 0.01 and p < 0.001 level respectively. - indicates value unavailable 

Site  Statistical heterogeneity Spatial structure Spatial non-randomness 

Species or  

Category 
Number of pupae Parasitism rate 

Number of 

pupae 

Parasitism 

rate 

Number of   

pupae 

Parasitism 

rate 

 s2/m NB    k FSH s2/m NB    k FSH P(I) FSH P(I) FSH Ia FSH Ia FSH 

                 
Vryburg1                
Pupae 4.39*** N - A     0.218 N   1.34* A   
?Palexorista sp. 3.87*** N - A 2.79*** N - A 0.210 N 0.383 N 1.37* A 0.85 R 
All species 4.45*** N - A 1.73** Y    ∞ A 0.114 N 0.791 N 1.46* A 1.13 R 
                 
Vryburg2                
Pupae 6.69*** N - A     0.281 N   0.92 R   
Brachymeria sp. 2.87*** Y 0.427 A 2.73*** Y 0.441 A 0.096 N 0.411 N 0.76 R 0.86 R 
P. semitestacea 2.43*** Y 1.004 A 3.32*** Y 0.804 A 0.535 N 1.000 N 1.01 R 0.98 R 
All species 3.95*** Y 0.972 A 2.37*** N    - A 0.505 N 0.519 N 0.85 R 0.89 R 
                 
Gabane generation 1                
Pupae 11.12*** N    - A     0.834 N   1.19 R   
Brachymeria sp. 3.80*** Y 0.279 A 3.84*** Y 0.225 A 0.891 N 0.001 Y 1.16 R 1.10 R 
P. semitestacea 2.42*** Y 0.381 A 2.21*** Y 0.396 A 0.795 N 0.499 N 0.99 R 1.14 R 
All species 5.85*** N 0.608 A 2.33*** N - A 0.637 N 0.043 Y 1.09 R 1.13 R 
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Table 2. continued.                
Site  Statistical heterogeneity Spatial structure Spatial non-randomness 

Species or  

Category 

Number of pupae Parasitism rate Number of 
pupae 

Number of 
pupae 

Parasitism 
rate 

Number of 
pupae 

 s2/m NB    k FSH s2/m NB    k FSH P(I) FSH P(I) FSH Ia FSH Ia FSH 

                 
Gabane generation 2                
Pupae 10.01*** N - A     1.000 N   0.90 R   
Brachymeria sp. 2.97*** Y 0.491 A 2.16*** Y 0.586 A 1.000 N 0.922 N 0.63** E 0.75 R 
P. semitestacea 2.29*** Y 0.317 A 4.07*** N 0.296 A 1.000 N 1.000 N 0.73* E 0.90 R 
All species 5.61*** Y 0.476 A 2.93*** N - A 0.659 N 0.621 N 0.74* E 0.86 R 
                 
Kumukwane                
Pupae 3.82*** N - A     0.125 N   1.12 R   
?Tachinidae sp. 1.18 Y 2.391 R 5.19*** Y 0.219 A 0.654 N 0.825 N 0.86 R 0.75 R 
P. semitestacea 1.31 Y 1.407 R 5.21*** Y 0.234 A 0.128 N 0.522 N 1.24 R 0.99 R 
All species 1.56** Y 2.319 A 3.79*** N - A 0.162 N 0.462 N 1.19 R 1.11 R 
                 
Kopong                
Pupae 1.26 N - R     0.508 N   0.94 R   
P. semitestacea 0.96 Y    ∞ R 5.89*** Y 0.129 A 0.530 N 0.088 N 1.16 R 1.16 R 
All species 0.90  Y    ∞ R 4.19*** Y 0.428 A 0.324 N 0.898 N 0.96 R 1.09 R 
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Figure 2. Statistical heterogeneity 

described by the frequency distribution of 

a) number of pupae, b) number of 

parasitised pupae and resulting c) 

parasitism rate of P. semitestacea at 

Kumukwane. Fitted line denotes an 

expected Poisson frequency distribution 

for the data. See Table 2 for specific 

statistics. 
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Spatial structure 

No significant spatial structure (positive autocorrelation) was detected for number of 

pupae or number of parasitised pupae per tree (Table 2). No correlograms met the criteria of 

overall significance, and Moran’s I was significant for the first distance class in only one case 

(number of pupae at Kopong) Other distance classes had significant Moran’s I values but were 

characterised by small Moran’s I values (I < 0.2), with only one or two isolated significant 

distance class per correlogram (e.g. Fig 3a-c). For parasitism rate there were two cases of 

overall correlogram significance (i.e. Gabane first generation pupae parasitised by 

Brachymeria sp. and all species, Table 2), but in both cases the first distance class was not 

significant, and only the second, and third and six distance class respectively was significant. 

For all three sets of abundance data, individual Moran’s I values were small and significant for 

only one or two scattered distance classes, with no appreciable pattern overall (i.e. Moran’s I 

values close to zero) (e.g. Fig. 3a, b, c).  

 

Spatial non-randomness 

Spatial heterogeneity in the counts of samples (Table 2), and their clustering into gaps 

and patches (Table 3), were generally not significant for either number of pupae or parasitised 

pupae and in no cases for parasitism rate. The pattern identified using this measure was thus 

mostly random (Fig. 4a, b, c). Exceptions that were significantly aggregated, were pupae and 

number of parasitised pupae at Vryburg1, (Table 2) with significant clustering into gaps and 

patches (Table 3). Another exception showing significant regularity was the number of 

parasitised pupae at Gabane (Table 2), with a significantly smaller degree of patchiness or 

gappiness than expected my chance (Table 3). 

At Kumukwane, representative of other sites, although abundance data was mostly 

overdispersed (spatially non-explicit heterogeneity, Fig. 2), there was no significant spatial 

structure (semi-explicit heterogeneity, Fig 3.), or overall aggregation into gaps and patches, 

although certain sample points represented single sample point patches and gaps (spatially 

explicit heterogeneity, Fig 4).  
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Figure 3. Spatial structure indicated by 

correlograms of Moran’s I for a) 

number of pupae and b) number of 

parasitised pupae and resulting c) 

parasitism rate of P. semitestacea at 

Kumukwane. Significant distance 

classes are indicated with filled circles. 

See Table 2 for overall Moran’s I 

correlogram significance. Number of 

point pairs per distance class: (1) 52; 

(2) 114; (3) 147; (4) 190; (5) 194; (6) 

196; (7) 152; (8) 126; (9) 76; (10) 21; 

and (11) 10.  
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Table 3. Spatial non-randomness in terms of overall aggregation (also in Table 2) and local 

clustering of the number of Gonometa postica pupae and parasitised pupae, and resulting 

parasitism rate. n = number of non zero sampling points (maximum 100); Ia, overall index of 

aggregation; mean vi and mean vj, indices of clustering of patches and gaps respectively. * and 

** denote significance at the p < 0.05 and p < 0.01. 

Site n Number of pupae or parasitised 
pupae Parasitism rate 

Species or Category  Ia mean vi mean vj Ia mean vi mean vj 

        
Vryburg1        
Pupae 53 1.34* 1.17 -1.48*    
?Palexorista sp. 40 1.37* 1.42* -1.45* 0.85 0.97 -0.95 
All species 46 1.46* 1.37 -1.55* 1.13 1.15 -1.24 
        
Vryburg2        
Pupae 55 0.92 1.03 -0.96    
Brachymeria sp. 23 0.76 0.76 -0.76 0.86 0.89 -0.90 
P. semitestacea 34 1.01 0.98 -0.93 0.98 1.00 -0.99 
All species 42 0.85 1.03 -0.86 0.89 0.83 -0.83 
        
Gabane (generation 1)       
Pupae 60 1.19 0.99 -1.22    
Brachymeria sp. 17 1.16 0.95 -1.20 1.10 1.06 -1.08 
P. semitestacea 18 0.99 0.70 -1.01 1.14 1.34 -1.19 
All species 35 1.09 0.86 -1.12 1.13 1.25 -1.16 
        
Gabane (generation 2)       
Pupae 56 0.90 0.94 -0.84    
Brachymeria sp. 25 0.63** 0.71 -0.65** 0.75 0.74 -0.89 
P. semitestacea 15 0.73* 0.75 -0.71* 0.90 0.55 -0.93 
All species 32 0.74* 0.73 -0.74 0.86 0.81 -0.91 
        
Kumukwane        
Pupae 51 1.12 0.76 -1.07    
?Tachinidae sp. 18 0.86 0.79 -0.86 0.75 1.02 -0.73* 
P. semitestacea 17 1.24 1.07 -1.2 0.99 1.20 -0.94 
All species 34 1.19 0.93 -1.00 1.11 1.30 -1.03 
        
Kopong        
Pupae 38 0.94 0.87 -0.94    
P. semitestacea 9 1.16 1.10 -1.23 1.16 1.07 -1.18 
All species 16 0.96 0.92 -1.03 1.09 1.13 -1.15 
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Figure 4. Spatial non-randomness indicated by least distance weighted interpolation of 

clustering indices of a) number of pupae, b) number of parasitised pupae and resulting c) 

parasitism rate of P. semitestacea at Kumukwane. Areas coded > 1.5 denote areas of 

significant positive (vi), and < -1.5 areas of significant negative (vj), clustering (Perry et 

al. 1999). See Table 2 for statistics. 
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DISCUSSION 

 

The form of spatial heterogeneity detected for pupal abundance, parasitised pupae or 

parasitism rate at any particular site was inconsistent across the three methods used, and the 

methods were thus not interchangeable with respect to the form of spatial heterogeneity 

described. Data were in some cases over-dispersed (statistical heterogeneity), but spatially 

random (spatial structure and spatial non-randomness). Also, significant spatial non-

randomness was present in the absence of spatial structure in some cases (e.g. Vryburg1, 

Gabane (second generation)). Thus, the spatially non-explicit approach demonstrated almost 

exclusively that the data were aggregated, while according to the semi-explicit approach the 

data were random in all cases. The spatially explicit approach also mostly indicated 

randomness, but did detect three cases of aggregation and regularity each. Therefore, using 

spatially referenced counts changed the conclusions reached regarding the form of spatial 

heterogeneity (from aggregated to random). Further, using a method that describes spatial 

heterogeneity at different locations within a site (thus spatially explicit), increased the ability to 

detect non-random spatial heterogeneity. This was also graphically visible from the three sets 

of data that these three measures were quantified for Kumukwane (Figs 2, 3, 4) (representative 

of the majority of localities).  

Although spatial heterogeneity quantified in data is also a function of the scale of 

investigation (Wiens 2000), our study only compares different measures at the same scale, 

thereby controlling for scale. However, this study was limited in the sense that the data did not 

encompass the full range of possible patterns that are described by spatial non-randomness. For 

example in most cases there was no significant clustering into patches and gaps. Therefore it 

was unlikely that spatially semi-explicit heterogeneity would be identified with measures of 

spatial structure. It is suspected that if there were multi-sample point patches and gaps, that 

spatial structure would reveal stronger and significant patterns. Nonetheless, were this the case 

where these patches were, would not be known when quantifying spatial structure. In this study 

which compares the three dimensions of spatial heterogeneity, a measure of spatially explicit 

heterogeneity in abundance data provided the most detailed spatial information at the between-

plant scale. 
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The problem with describing different forms of spatial heterogeneity correctly is partly a 

theoretical and partly a methodological problem. When the objective is to quantify spatially 

explicit heterogeneity, but a semi-explicit method is used, then the problem is methodological. 

On the other hand, when quantifying non-explicit spatial heterogeneity but interpreting it as 

equivalent to explicit spatial heterogeneity, then the problem is theoretical because the spatial 

heterogeneity described is not of a similar dimension. The diverse array of methods available 

to quantify spatial heterogeneity is partly due to the dimensionality of spatial heterogeneity 

(Wiens 2000). Methods cannot simply be selected based on data type or objective, but a 

relevant dimension also has to be considered. In some instances systems may be simple enough 

to be described by spatially non-explicit measures of spatial heterogeneity. If the objective is to 

simply know what the variation in count size between sample points are, then a frequency 

distribution will adequately describe the statistical properties of the data (Dutilleul & Legendre 

1993). However, when values are autocorrelated, the form of spatial heterogeneity indicated by 

statistical heterogeneity will not differ from a scenario where no autocorrelation is present 

(Wiens 2000). As a consequence, potentially important information is lost. Repeating spatial 

patterns (i.e. multiple peaks of variability, see Legendre & Legendre 1998) may be more 

accurately described by semi-explicit measures, because differences between locations within 

data sets will be non-significant or weak. The presence of spatial autocorrelation indicates the 

size of an area that have sample points with counts more similar to each other, than samples 

further away (Legendre & Legendre 1998). However, although samples may have 

autocorrelated values, the position and number of areas with significantly higher or lower 

values compared to the entire data set is unknown. Also, when describing the average spatial 

heterogeneity of samples, local pattern is averaged out. In a similar manner that statistical 

heterogeneity cannot describe all the possible permutations identifiable with spatial structure, 

spatial structure cannot encompass all possible dataset pattern variations distinguished by 

spatial non-randomness. In this case aggregation, regularity and randomness (Table 1) refers to 

the spatial non-randomness of measured or recorded quantities for every spatially referenced 

sample point (Perry 1995; Perry 1998). Complex spatial mosaics may best be described by 

spatially explicit measures of spatial heterogeneity, which can allow for sample point 

differences in heterogeneity (see also Wiens 2000). 
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In population count data, there are two added complications with using spatial structure 

to describe spatial heterogeneity. First, spatial autocorrelation and other geostatistical methods 

assume stable covariance structure (Legendre & Legendre 1998; Perry 1998; Perry et al. 2002), 

which may not be the case for rapidly dispersing organisms with highly patchy occurrence in a 

study arena (Perry 1998). Second, Moran’s I is sensitive to asymmetry as it increases the 

kurtosis and variance of the data that makes it harder for the correlogram to reach significance 

(Legendre & Legendre 1998). To counter this problem the data is usually normalized before 

computing correlograms to ensure that a single autocorrelation function can describe the area 

of study. However, counts comprising large numbers of zero values and high counts in close 

proximity may not fulfil the assumption of stable covariance structure or asymmetry 

(normality) (Perry 1998). This study shows that when sample points are spatially independent, 

but differ widely in abundance, local patterns are not detected by spatial structure. In some 

cases, although no significant spatial structure was detected, spatial non-randomness did 

indicate certain sampling points forming significant patches and gaps. 

Therefore, a major difference between spatial structure and spatial non-randomness is the 

ability of spatial non-randomness to describe local (within-site) spatial heterogeneity. The 

value of an autocorrelation function is not influenced by position of two sampling points in a 

site, only by the distance between them (Legendre & Legendre 1998). When a measured 

variable is accompanied by a spatial reference at each sampling point, trend surface analysis 

and spatial autocorrelation can be used to describe spatial non-independence (Dutilleul & 

Legendre 1993; Legendre & Legendre 1998). However, these two methods cannot be used to 

make biological inferences regarding sample point specific local pattern (Perry et al. 2002), 

limiting the biological relevance of spatial structure for analysis of population count data 

(Perry 1998). Spatial non-randomness, based on both abundance and spatial position data, is 

currently the only option for describing spatial heterogeneity in abundance where local pattern 

is important (Perry & Dixon 2002; Perry et al. 2002).  

The possible implications of not specifying the dimension of spatial heterogeneity when 

quantifying it, where aggregation in one dimension does not translate to aggregation in higher 

dimensions, may be severe. For example, in the host parasitoid literature heterogeneity in host 

parasitism risk (of which abundance is the most obvious, Hassell 2000) has been said to result 

in stable host-parasitoid populations cycles, if this risk is sufficiently aggregated (variance of 
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the hosts frequency distribution a certain times greater than the mean) (Hassell 2000). In the 

field of plant ecology, aggregation has been proposed to facilitate species coexistence (Murrell 

et al. 2001). In the following paragraphs the implications of the dimension of spatial 

heterogeneity affecting the form of spatial heterogeneity detected, are discussed. Both 

examples also illustrate the importance of using specific terminology to describe spatial 

heterogeneity in ecology. 

 

Implications of quantifying spatially explicit heterogeneity  

Studies concerning host-parasitoid interactions almost universally assume that the host 

species have heterogeneous abundance patterns (Godfray et al. 2000). However, current 

descriptions of aggregation in host abundance are still almost exclusively quantified by spatial 

heterogeneity (Hassell 2000). In fact the CV2-rule, which specifies that the aggregation of hosts 

that lead to density dependent heterogeneity in attack rates, is described by a negative binomial 

frequency distribution of the data (Hassell 2000). The results presented here however suggest 

that semi-and spatially explicit dimensions of heterogeneity will not identify the same form of 

spatial heterogeneity as this spatially non-explicit dimension. In some laboratory or artificial 

field conditions the frequency distribution may adequately describe the effect of host 

abundance on parasitism, but more complex mosaics and patterns of spatial non-

independencies may not. Therefore relevant (explicit) spatial pattern in host abundance may 

have been undescribed in previous studies, although being important in determining 

interactions between parasitoid and host. 

The recent use of the experimental findings (Stoll and Prati 2001) to discuss the influence 

of aggregation on species coexistence (Murrell et al. 2001) highlights potential problems with 

using unspecific terminology for different measures of spatial heterogeneity (thus non-explicit, 

semi-explicit, and spatially explicit heterogeneity). In Stoll and Prati’s (2001) study, the 

‘random’ treatment consisted of point occurrences of plant seedling species mixes while the 

‘aggregated’ treatment consisted of mono-specific area occurrences species mixes. This is 

consistent with the increase in aggregation specified for point-cluster analysis (Fig 1, B3). 

However, Murrell et al. (2001) illustrate an aggregated condition as the spatial distributions 

(Fig 1 B2) of two species not over lapping, and a random condition when species overlap 

occurrence and this overlap occurs at random. They thus imply that the spatially explicit result 
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of Stoll and Prati’s (2001) experiment is similar to their theoretical, untested, illustration of the 

effect of semi-explicit occurrence of potentially competing species. Furthermore, the varied 

terminology used to describe spatial heterogeneity by Murrell et al. (2001) “…aggregation, 

segregation (overdispersion), and the spatial randomness...” is unspecific and confuses not only 

the category of spatial heterogeneity, but also the form described. By stating that ‘aggregation’ 

promotes species coexistence (e.g. Murrell et al. 2001; Stoll & Prati 2001) authors imply by 

default that spatial heterogeneity described by spatially non-explicit, semi- or explicit measures 

will have the same effect. In both examples, the advance of ecological theory is undoubtedly 

hampered by the use of vague terminology. 

Consequently, the accepted theory behind parasitoids regulating host populations if they 

or their hosts are sufficiently aggregated, in terms of statistical heterogeneity, may not hold 

true for higher dimensions of spatial heterogeneity that are potentially more biological realistic 

descriptors of the host-parasitoid interaction. In the same manner, only one dimension of 

spatial heterogeneity of a species occurrence may promote species coexistence (i.e. as shown 

by Stoll & Prati 2001). Any pattern of statistical heterogeneity or spatial structure in a species 

occurrence will not necessarily have an influence on its coexistence with other species. The 

importance of the correct use and specifying of measures used in all biological fields where 

spatial heterogeneity is of theoretical importance is thus highlighted. This has implications for 

the traditional view of quantifying aggregation in ecology. Future studies will have the 

opportunity to test the consequences of how aggregation is quantified and interpreted. 

This raises the important question of which measure gives the most correct description of 

spatial heterogeneity. Ultimately, the measure used to describe spatial heterogeneity should 

depend on the organism or interaction being studied (Wiens 2000), which in turn is dependent 

on the objective of the study. For example, the number of pupae per tree and the proportion of 

them parasitised describe an interaction between host and parasitoid. Considering parasitoid 

biology, theoretically the quantification of spatial heterogeneity, i.e. the spatial aggregation of 

hosts, is of vital importance in determining the existence of density dependent parasitism 

(Pacala & Hassell 1991; Gross & Ives 1999; Hassell 2000; Chapter 4). Because the type of 

spatial aggregation, regularity or randomness shown by pupae, number parasitised and 

parasitism rate was shown to be dependent on the measure of spatial heterogeneity used, it is 

vital that the correct form of spatial heterogeneity be recorded. In the case of G. postica, host 
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abundance represents a patchy resource for foraging parasitoids because pupae occur on trees 

that are irregularly spaced, and only a few single occurring trees have many pupae per tree 

(significant patch of high pupal abundance on a single tree), while the majority have few. 

Therefore, spatial heterogeneity in pupal abundance that is spatially explicit (locational) will 

include relevant spatial information not available from spatially non-explicit, or even semi-

explicit categories. 

In the future it is proposed that the quantification of aggregation in biology takes the data 

type, objectives, and the biology of the process under investigation in consideration. First, the 

type of data gathered should be classified as either abundance or occurrence data. Second the 

dimension of spatial heterogeneity relevant to the biological process being studied, as well as 

suitable for addressing the objectives needs to be chosen. Only hereafter is a specific associated 

measure chosen to quantify the form of spatial heterogeneity (i.e. Table 1). This procedure, as 

well as using specifically assigned terminology, will ensure that conclusions about the form of 

spatial heterogeneity can be compared between studies. 

In summary this study illustrates that statistical heterogeneity and spatial structure are 

complimentary to spatial non-randomness. For example, statistical heterogeneity gives some 

information on aggregation at a scale smaller than at which the data was collected. Therefore, 

spatial non-randomness should be seen as another addition to the list of methods available to 

ecologists to describe spatial heterogeneity (see Dutilleul & Legendre 1993). However, the 

empirical comparison of spatially non-explicit, semi-, and explicit to approaches to the 

measurement of spatial heterogeneity in this study, highlights the need for specific definition of 

spatial heterogeneity and aggregation. Here the potential value of spatially explicit approaches 

for the re-evaluation of theory developed using more traditional methods has been highlighted. 

In the future the dimensionality of spatial heterogeneity should thus be considered when 

quantifying aggregation in ecological data. 
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Appendix. Number of Gonometa postica pupae and the percentage parasitised at surveyed 

sites (Gen. = generation). The number of pupae, number of parasitised pupae as well as 

percentage parasitised (individual species or all combined) per plot is given. The number of 

trees (maximum 100) with at least one pupa or parasitised pupa, as well as the percentage of 

host occupied trees with at least one parasitised pupae is also shown. 

Locality Gen. Number of Parasitoid species 
or category 

Number of 
parasitised  

Percent 
parasitised 

  pupae trees  pupae trees pupae trees 
         

Vryburg1 1 202 53 ?Palexorista sp. 117 40 57.9 75.5 
    All species 150 46 74.3 86.8 
         
Vryburg2 1 426 55 Brachymeria sp. 69 23 16.2 41.8 
    P. semitestacea 83 34 19.5 61.8 
    All species 192 42 45.1 76.4 
         
Gabane 1 505 60 Brachymeria sp. 36 17 7.1 28.3 
    P. semitestacea 37 18 7.3 30.0 
    All species 100 35 19.8 58.3 
         
 2 439 56 Brachymeria sp. 64 25 14.6 44.6 
    P. semitestacea 31 15 7.1 26.8 
    All species 128 32 29.2 57.1 
         
Kumukwane 1 252 51 ?Tachinidae sp. 27 18 10.7 35.3 
    P. semitestacea 23 17 9.1 33.3 
    All species 75 34 29.8 66.7 
         
Kopong 1 92 38 P. semitestacea 10 9 10.9 23.7 
    All species 20 16 21.7 42.1 
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