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SummaryTitle: Robust Model Preditive Control of an Eletri Ar FurnaeRe�ning ProessBy: Lodewius Charl CoetzeeSupervisor: Professor I.K. CraigDepartment: Department of Eletrial, Eletroni and Computer EngineeringDegree: Master of Engineering (Eletroni Engineering)This dissertation forms part of the ongoing proess at UP to model and ontrol theeletri ar furnae proess. Previous work foused on modelling the furnae proess fromempirial thermodynami priniples as well as �tting the model to atual plant data.Automation of the proess mainly foused on subsystems of the proess, for example theeletri subsystem and the o�-gas subsystem.The modelling e�ort, espeially the model �tting, resulted in parameter values that aredesribed with on�dene intervals, whih gives rise to unertainty in the model, beausethe parameters an potentially lie anywhere in the on�dene interval spae.Robust model preditive ontrol is used in this dissertation, beause it an expliitlytake the model unertainty into aount as part of the synthesis proess. Nominal modelpreditive ontrol - not taking model unertainty into aount - is also applied in orderto determine if robust model preditive ontrol provides any advantages over the nominalmodel preditive ontrol.This dissertation uses the proess model from previous work together with robustmodel preditive ontrol to determine the feasibility of automating the proess with re-gards to the primary proess variables. Possible hurdles that prevent pratial implemen-tation are identi�ed and studied.Keywords: Eletri Ar Furnae, Robust Model Preditive Control, EAF, RMPC.

 



OpsommingTitel: Robuuste Model Voorspellende Beheer van 'n Elektriese BoogoondVerfyningsprosesDeur: Lodewius Charl CoetzeeStudieleier: Professor I.K. CraigDepartement: Departement van Elektries, Elektronies and Rekenaar IngenieursweseGraad: Meester van Ingenieurswese (Elektroniese Ingenieurswese)Die verhandeling vorm deel van die voortgaande studie deur UP om 'n elektriese boo-goondproses te modelleer en te beheer. Vorige modellering het gefokus op die gebruik vanempiriese termodinamiese beginsels waarna die empiriese model gepas is op gemete aan-legdata. Outomatisasie word hoofsaaklik gemik op substelsels van die proses, byvoorbeelddie elektriese substelsel.Die modelleringsproses, veral die passing van die model op aanlegdata, het daartoegelei dat daar onsekerhede in die model vervat word. Die onsekerhede word beskryf deurparameters wat binne vasgestelde grense lê.In die verhandeling word robuuste model voorspellende beheer gebruik, omdat dit dieonsekerhede van die aanleg eksplisiet in ag kan neem gedurende die sinteseproses. Dierobuuste beheerder word vergelyk met 'n nominale beheerder - wat nie die onsekerhedein ag neem nie - om te bepaal watter voordeel die robuuste beheerder oor die nominalebeheerder bied.Die aanlegmodel, wat in 'n vorige studie verkry is, tesame met robuuste model voor-spellende beheerteorie word gebruik om te bepaal hoe haalbaar dit is om die elektrieseboogoondverfyningsproses te outomatiseer. Die studie het moontlike struikelblokke geï-denti�seer wat praktiese implementering kan belemmer.Sleutelwoorde: Elektriese Boogoond, Robuuste Model Voorspellende Beheer.
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Chapter 1
Introdution
This hapter provides a motivation for the the study undertaken in this dissertation. Ashort overview of the eletri ar furnae proess is given, followed by an explanation of theontribution of this dissertation as well as the organization of the rest of the dissertation.1.1 MotivationWith the growth of the world eonomies, the demand on natural resoures is growing. Ironore is no di�erent, and like most natural resoures, it is not renewable. The solution is toreuse old materials through reyling in order to redue the demand for natural resoures.The use of eletri ar furnaes (EAFs) is an important part of the reyling e�ort in thesteel industry. EAFs are apable of melting down solid srap metal and re�ning it to therequired steel grade by manipulating the hemial properties of the steel. The eletriar furnae is slowly replaing the basi oxygen furnae (BOF) (IISI, 2003), beause ituses hemial as well as eletrial energy to melt the srap metal. The eletrial energyis introdued by three arbon eletrodes that form an eletri ar between them thatradiates heat to the metal. Chemial energy is primarily provided by natural gas andoxygen.The eletri ar furnae proess is still heavily dependent on operator ontrol. Theoperator uses a reipe based on initial measurements of the hemial omposition todetermine how long eletrial power should be applied, as well as how muh oxygen,1

 



Chapter 1 Operation of the Eletri Ar Furnaearbon and other additives should be added. The melting time is often based on a feelfor the proess and the sound emanating from the furnae. Measurements are takenintermittently to gauge the progress and to make adjustments as needed. This leads tovarying suess in obtaining the desired steel grade.The proess ould bene�t hugely from the use of better automation to inrease energye�ieny as well as to improve the onsisteny of the quality of the �nal produt byemploying good set-point following. Automation ould also improve the safety of theproess. Most of the urrent automation only fouses on the parts of the proess thatultimately do not have a diret in�uene on the grade of the steel produed.The mathematial model of the eletri ar furnae re�ning proess inludes uner-tainty. Control of the proess requires that the ontroller needs to remain stable over allpossible realizations of the model while providing aeptable performane. Robust modelpreditive ontrol is well suited for unertain multi-variable systems with onstraints,beause it takes the model unertainty expliitly into aount as part of the synthesisproess. The losed-loop system is guaranteed stable over all modelled realizations of theunertain system. This makes robust model preditive ontrol well suited as a ontrolmethod for the eletri ar furnae re�ning proess.1.2 Operation of the Eletri Ar FurnaeThe eletri ar furnae proess is onerned with melting srap metal and produing steel.Eah iteration of the proess is alled a tap. The time it takes to �nish one iteration ofthe proess is alled the tap-to-tap time. One tap onsists of a few stages; harging thefurnae, melting down the srap metal, re�ning the steel, removing the slag layer, tappingthe �nished steel, and furnae turnaround. The eletri ar furnae re�ning proess iswell desribed by Taylor (1985); Fruehan (1998)Charging: Figure 1.1 shows a shemati representation of an eletri ar furnae that isbeing harged. Charging onsists of omposing a buket made up of srap, other metallielements and slag formers. The omposition of the srap metal is dependent on thedesired grade of steel to be produed. The layering of the srap is important: softer srapEletrial, Eletroni and Computer Engineering 2

 



Chapter 1 Operation of the Eletri Ar Furnae
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Chapter 1 Operation of the Eletri Ar Furnaeis plaed at the bottom of the buket, while harder srap is loaded on top. The softersrap protets the furnae during harging and also melts down quikly. The melted srapforms a pool of molten metal that aids in melting the larger piees. This physial layeringshould prevent ave-ins from ourring, whih ould damage the arbon eletrodes andause a atastrophi breakdown. To harge the buket into the furnae, the roof of thefurnae swings away to expose the inside of the furnae. A rane positions the buketon top of the furnae and the �oor of the buket is opened to allow the srap to fall intothe furnae. Some melt-shops only harge one buket and then add diret redued iron(DRI) through hutes in the roof of the furnae. This requires extra infrastruture suhas a onveyor belt to transport the DRI to the hutes.The type of srap used in harging will have an in�uene on the time of the meltdownstage. Light srap melts down easily but does not ontain as muh metal as denser,heavier srap. More bukets of light srap will thus be neessary to reah the requiredmolten weight. With heavier srap the melting proess takes longer, but less hargingneeds to be done. The danger with denser srap is the potential for late ave-ins that andamage the eletrodes.Melting: Figure 1.2 shows a shemati representation of an eletri ar furnae in theproess of melting down the solid srap. The roof of the furnae is swung bak on topof the furnae. The roof ontains the three arbon eletrodes that are used to reate aneletrial ar. Melting is initiated by applying eletrial power to the furnae's eletrodesas well as �ring up the oxyfuel burners. The heat from the ar radiates towards the srapto melt it down. A long ar between the eletrodes and srap is seleted during meltdown,beause it radiates more heat over a greater area than a short ar. The eletri ar boresa hole into the middle of the srap heap, and as the hole is forming, the eletrodes arelowered into the hole. The surrounding srap protets the furnae walls from the heatradiating from the ar. As the eletrodes bore into the srap, a molten pool of metalforms, whih protets the bottom of the furnae from the ar. The burners proeed tomelt the metal at the edges of the furnae that are not reahed by the ar.The use of oxyfuel burners and oxygen lanes do not guarantee that there will be noEletrial, Eletroni and Computer Engineering 4
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Chapter 1 Operation of the Eletri Ar Furnaeold spots in the furnae. When heavy piees of srap are aught in the old spots, it anlead to late ave-ins during �at bath onditions (this is when all the srap has melted).These heavy piees an fall onto the eletrodes and damage them (Taylor, 1985). Thedamaged eletrodes will partially dissolve in the bath, leading to higher arbon ontent,whih in turn leads to long delays in order to remove it.The oxyfuel system is the most e�ient during the early meltdown stage. The solidsrap usually has a large surfae area exposed to the burner �ame, whih yields goodheat transfer to the srap. As the srap melts, it moves away from the �ame and makesway for other srap to ome into ontat with the �ame. A high temperature di�erenebetween the srap and �ame leads to good heat transfer, but the burner's e�etivenessdereases as the temperature di�erene shrinks (Fruehan, 1998). The e�etiveness of theoxyfuel burners are monitored by measuring the o�-gas temperature. The less heat thatis transferred to the srap, the higher the o�-gas temperature will beome.Re�ning: Figure 1.3 shows a shemati representation of an eletri ar furnae inthe re�ning stage, where all the solid srap is melted down and �at bath onditions areobtained. Re�ning ommenes as soon as all the srap is melted down and only a moltenpool of metal remains. There is no longer any solid srap left to protet the furnaewalls and roof from the eletri ar. A short ar is seleted during re�ning, beause itfouses the heat more loally. To protet the walls and roof further as well as improveheat transfer to the molten metal, a foamy slag layer is formed that overs the ar. Theslag layer is ontrolled by injeting C and O2 into the bath. The CO gas bubbles rise upand form a foamy slag layer on top of the molten metal. The impurities are removed fromthe molten metal primarily through oxidation. The oxidized impurities are trapped in theslag layer. Common impurities found in the bath are phosphorus, sulphur, aluminium,silion, manganese and arbon. During the re�ning proess the oxyfuel system is used inlaning mode. Large amounts of oxygen are fored into the bath. The arbon reats withthe oxygen and is an e�ient soure of heat for the bath, while the remaining oxygenreats with the iron to form FeO that is transferred to the slag. The oxidation of arbonis the primary mehanism for dearburization when bath arbon is high. As the bathEletrial, Eletroni and Computer Engineering 6

 



Chapter 1 Operation of the Eletri Ar Furnae
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Chapter 1 Operation of the Eletri Ar Furnaearbon dereases, the redution of FeO from the slag beomes the main mehanism ofdearburization.Phosphorus is removed from the bath through oxidation. The phosphorus is oxidizedto P2O5 and transferred to the slag. The apaity of the slag to retain P2O5 is ontrolledby MgO and CaO omponents of the slag as well as a relatively lower temperature, high
FeO ontent in the slag and the aidity of the slag (Fruehan, 1998). The slag should bebasi, whih requires a CaO/SiO2 of greater than 2.2. Most of the phosphorus is removedduring the early part of re�ning when the temperature is lower. Deslagging should ourearly in the re�ning stage to prevent phosphorus from returning to the bath when thetemperature rises (Taylor, 1985).Manganese is oxidized as MnO and transferred to the slag. It has most of the samerequirements as phosphorus, exept that CaO/SiO2 should be less than 2.2. To ompen-sate for the suboptimal onditions, more oxygen an be injeted into the bath to aid inthe removal of manganese.Sulphur is one of the more di�ult impurities to remove from the bath, beause itrequires the opposite onditions to most of the other impurities. It requires high basiity,low bath oxygen and thus low FeO in the slag as well as high slag �uidity (Taylor, 1985).The other impurities suh as SiO2 and P2O5 ause the slag to beome more aidi andredue the ability of the slag to retain sulphur. The proess is also primarily based onoxidation, while sulphur needs to be redued from the bath. If the steel produer has aladle furnae, it is used for desulphurization, beause additions an be made to lower thebath oxygen and improve the onditions for desulphurization.Silion is the easiest impurity to remove from the bath. It is oxidized during dear-burization muh faster than arbon and is present as SiO2 in the slag. The silion level isusually lower than spei�ed and ferrosilion is added to bring it bak up to spei�ation.Deslagging: To prevent the impurities aught in the slag layer from re-entering thebath, the slag is removed from time to time in a proess alled deslagging. This isaomplished by opening a door above the molten metal level and tipping the furnaeslightly toward the opening to drain o� the slag. Phosphorus is primarily removed inEletrial, Eletroni and Computer Engineering 8

 



Chapter 1 Aims and objetivesthe early stages of re�ning, while sulphur is removed later in the proess, beause of thehanging hemial omposition of the environment and bath.Tapping: At the end of the proess when the steel has reahed the desired hemialomposition and temperature, it is removed from the furnae. The steel is removed byopening the tap hole at the bottom of the furnae and pouring it into a ladle for furtherproessing. This proess is alled tapping. In the ladle, de-oxidisers and bulk alloyadditions are added. The de-oxidizers aid in removing sulphur from the steel, beauseremoving sulphur requires low oxygen levels. The tap hole is just higher than the bottomof the furnae. This is to ensure that a small amount of molten metal remains in thefurnae for the next heat. This is alled a hot heel pratie. The remaining molten metalaids in melting down the new srap early in the meltdown stage.Furnae turnaround is where the furnae is inspeted for damage and repairs areonduted before the next tap is started.1.3 Aims and objetivesThe main aim of this dissertation is to determine the feasibility of automating the eletriar furnae proess with regards to the main variables of steel arbon ontent, temperatureat tapping and impurities in the steel. To this aim:
• a robust model preditive ontroller needs to be synthesised, whih expliitly takesmodel unertainty into onsideration during ontroller synthesis.
• The ontroller should be veri�ed through a simulation study of the losed-loopsystem in order to evaluate the performane of the ontroller:� in the presene of unertainty,� and under limited feedbak onditions inherent in most EAF melt-shops.
• The performane of the robust ontroller is ompared to nominal model preditiveontrol to gauge the advantage of using robust ontrol.Eletrial, Eletroni and Computer Engineering 9

 



Chapter 1 OrganizationThis dissertation ontributes the following:
• Linearized models of the redued nonlinear model in strutured unertainty desrip-tion.
• Synthesis of a nominal model preditive ontroller (one that does not take modelunertainty into aount) for the eletri ar furnae re�ning proess.
• Synthesis of a feedbak robust model preditive ontroller for the eletri ar furnaere�ning proess.
• Synthesis of a dual-mode robust model preditive ontroller for the eletri ar fur-nae proess.
• Simulation study to ompare the stability and performane of the above-mentionedontrollers under extreme model mismath situations:� using full state feedbak in order to evaluate the performane of the ontrollerin the presene of unertainty,� using a �ve state nonlinear preditor with one orretion measurement fromthe plant for a more realisti losed-loop analysis,� and a �ve state nonlinear preditor with one orretion measurement from theplant, and an internal model parameter update whih attempts to improve thelosed-loop performane.1.4 OrganizationChapter 2 provides a brief overview of the modelling of the proess as well as the lin-earization approah and model validation.Chapter 3 provides an overview of the theory of stability of model preditive ontroland the development of robust model preditive ontrol theory. The hapter ontinues bytaking an in-depth look at the two robust model preditive ontrol methods employed inthe simulation study.Eletrial, Eletroni and Computer Engineering 10

 



Chapter 1 OrganizationChapter 4 provides an in-depth study of the robust and nominal model preditiveontrol of the redued nonlinear model of the eletri ar furnae proess. Pratialsenarios are investigated in an attempt to quantify the e�ets of a lak of feedbak fromthe plant, as well as pratial disturbanes suh as leaving the slag door open and lateave-ins.Chapter 5 provides a short summary of the dissertation, some onlusions drawn fromthe simulation studies and reommendations for further work regarding the automationof the eletri ar furnae re�ning proess.Appendix A provides a simulation study on an aademi problem in order to showthe advantage of robust model preditive ontrol in terms of stability with regards tonominal model preditive ontrol. The aademi problem gives further insight into theperformane of feedbak and dual-mode robust model preditive ontrollers.Appendix B provides additional simulation results.Appendix C provides measured bath and slag data.

Eletrial, Eletroni and Computer Engineering 11

 



Chapter 2
Proess modelling
This hapter details the mathematial model of the eletri ar furnae. The hapterstarts by outlining the models that are available for the eletri ar furnae and thenfouses on the hosen model. The hosen nonlinear model is then linearized around anoperating point with di�erent model parameters to inlude the total unertainty regionaround that operating point.2.1 IntrodutionThe eletri ar furnae proess is a very di�ult proess to model aurately, beause itis di�ult to obtain proess data. This is due to the extreme environment in whih thefurnae operates, whih makes it di�ult to install measurement instruments. Some of theinstruments that are in ommon use do not allow for on-line measurements to be taken,e.g. temperature probes that are manually dipped into the bath and burnt away as partof the measurement proess. Before any temperature measurements and samples an betaken, the slag layer must be removed. The eletrial power level must be redued, whihin turn will ause the furnae to operate at a redued e�ieny. The sample of moltensteel that is taken during the measurement proess takes a few minutes to analyse in alab. All these measurements have assoiated osts, and these also in�uene the operationof the furnae.There are di�erent approahes to modelling the eletri ar furnae (EAF) proess.12

 



Chapter 2 IntrodutionThe �rst approah is to develop stati models of the EAF proess. This is a popularmethod of modelling the EAF proess (Taylor, 1985; Turkdogan, 1989; Fruehan, 1998;Deo and Boom, 1993). The modelling method is adapted from basi oxygen furnaeswhere the model alulates o�ine the bulk mass and energy additions to attain requiredsteel properties with regards to temperature and hemial omposition. Corretions aremade on-line to aount for deviations one measurements have been made. Nyssen et al.(1999) reated a stati model as an operator aid. The operating shedule is alulatedbefore the proess is started and updates are made during the proess to aount fordeviations in the predited and atual progress. The authors extended their work toreate a dynami model as an on-line operator aid. The model gives an estimate ofthe progress with regards to material melting, slag foam height, bath temperature andomposition (Nyssen et al., 2002). De Vos (1993) developed a stati model with eonomiobjetives in mind. The model helped optimize the slag additives in order to redue osts.The seond approah is to use dynami models to model the proess as onsisting ofequilibrium zones with limited mass transfer between the equilibrium zones governed byonentration gradients.Cameron et al. (1998) (as disussed in MaRosty (2005)) developed the EAF modelwith simulation in mind. The authors used the model to �nd improved praties for theEAF through dynami simulation. The model onsists of four equilibrium zones with sixinterfaes between the zones. The four zones are metal, slag, organi solid and gas. Thematerial is transferred between the zones driven by onentration gradients. Chemialequilibrium is assumed at the interfaes. O�-gas data was used to validate the model.Proprietary reasons may aount for the lak of detail dislosed about the model.Matson and Ramirez (1999) (as disussed in MaRosty (2005)) reated a model of theEAF by desribing it as two ontrol volumes. One volume ontains the bath, slag and asmall amount of gas. The other volume ontains the freeboard gases. The transfer of massbetween the ontrol volumes is modelled as di�usion driven by a onentration gradient.Modigell and oworkers (Modigell et al., 2001a,b; Traebert et al., 1999) (as disussedin MaRosty (2005)) reated a mathematial model of the EAF that onsists of fourEletrial, Eletroni and Computer Engineering 13

 



Chapter 2 Introdutionreation zones. The zones are assumed to be in hemial equilibrium and the transport ofmass between the zones is driven by onentration gradients. The model was developed forsimulation purposes, but details of the model are laking, probably beause of proprietaryreasons.The third approah is to model the proess from fundamental thermodynami andkineti priniples. Bekker et al. (1999) reated a dynami model of the EAF that onsistsof 17 ordinary di�erential equations (ODEs). This is a generi model that an be �ttedwith plant data to any eletri ar furnae. Rathaba (2004) �tted the generi model ofBekker et al. (1999) with plant data from an industry partner. Rathaba (2004) reduedthe omplexity of the generi model for the re�ning stage to a nonlinear model onsistingof 5 ODEs. The re�ning stage is of further interest, beause during this stage the atualgrade of the steel is determined.There are models that only fous on ertain subsystems of the proess. The oxyfuelsystem inreases the e�ieny of the EAF proess by adding an extra soure of energy.The oxygen injetion by the oxyfuel subsystem has an e�et on the dearburization of theproess (Fruehan, 1998; Thomson et al., 2001; Pujadas et al., 2003; Khan et al., 2003).The foamy slag is an important aspet of the eletri ar furnae proess. It is respon-sible for trapping the impurities that are oxidized from the bath. The foamy slag oversthe eletri ar to shield the walls and roof of the furnae from the radiating heat andalso inreases the heat transfer from the ar to the bath. It is important to ontrol theslag height in order to produe the greatest e�ieny in the proess (Oosthuizen et al.,2001; Galgali et al., 2001; Morales et al., 2001b; Kimihisa and Fruehan, 1987, 1989a,b;Jiang and Fruehan, 1991; Gou et al., 1996). One of the main ontributors to EAF mod-elling and the study of slag foaming is Morales et al. (2001b). Extensive slag data wasolleted and analysed, during whih the advantages of extended use of foaming were ob-served through redued eletrial onsumption and inreased yield (Morales et al., 2001b).This work was extended by reating an EAF simulator with emphasis plaed on the be-haviour of the slag; espeially the e�ets that FeO and diret redued iron (DRI) have onthe slag and the proess (Morales et al., 2001a). The EAF modelling and slag foamingEletrial, Eletroni and Computer Engineering 14

 



Chapter 2 Redued Nonlinear Modelresults were ombined in a new model. The emphasis was still on slag omposition, butthe e�et of hanging onditions in the furnae on slag foaming was added to the model;a onept named dynami foaming index (Morales et al., 2002). Controlling the foamingin the eletri ar furnae has been done suessfully by using soni analysis to measurethe aoustis of foaming. The sound emanating from the foaming slag is reorded andanalysed and the results used to ontrol graphite injetion whih has a diret in�ueneon the slag foaming (Holmes and Memoli, 2001; Marique et al., 1999).Neural networks are a popular modelling tool for stohasti proesses, making it wellsuited for modelling the voltage and urrent relationships that our in the eletri ar.King and Nyman (1996) used neural networks to predit the future behaviour of theeletri ar. Neural networks were used by Raisz et al. (2000) to predit the furnaestate in terms of meltdown and �at bath foaming. Billings and Niholson (1977) andBillings et al. (1979) made an important ontribution to the modelling and ontrol of theeletri ar by studying impedane and urrent ontrol and the need for a strategy thatinludes both methods, whih will help improve e�ieny of heat transfer to the bath.Chen-Wen et al. (2000) modelled the dramati urrent variations alled �iker that ourduring the early meltdown stage in order to design ompensation iruits. Other ontribu-tions to the modelling of the eletrial subsystem of the eletri ar furnae were made byCollantes-Bellido and Gomez (1997); Meng and Irons (2000) and Guo and Irons (2003),who reated a detailed three-dimensional model of the furnae in order to investigate theradiative heat transfer.Post ombustion in the furnae free board gases was studied and modelled by Kleimt and Kohle(1997); Tang et al. (2003).2.2 Redued Nonlinear ModelThe following riteria were used in seleting the mathematial model:1. The model should be able to predit the nonlinear dynami behaviour during there�ning stage of the eletri ar furnae proess. The key reason is that the model isEletrial, Eletroni and Computer Engineering 15

 



Chapter 2 Redued Nonlinear Modelintended to be used to ontrol the grade of the steel, whih is primarily determinedduring the re�ning stage, given that the orret harging is performed.2. The model should be simple enough to be used on-line. The reason is that the modelwill be used as a preditor for the on-line ontroller.The redued nonlinear model of Rathaba (2004) was hosen. The model spei�allymodels the re�ning stage of the proess. Rathaba (2004) redues the generi eletriar furnae model of Bekker et al. (1999) from 17 to 5 ordinary di�erential equations.Rathaba (2004) identi�es the parameters of the redued Bekker et al. (1999) model andused proess data from an industry partner to �t the parameters. The resulting parametersare unertain and have on�dene intervals desribing the unertainty.Over an entire tap, the proess is very unpreditable due to delays and breakdowns thatinvalidate the assumption of proess ontinuity. The advantage of the re�ning stage is thatafter the initial measurement, exept for deslagging, the proess is mostly uninterrupteduntil the �nal measurement is made. At the start of the re�ning stage, all the solid sarp isusually melted; the modelling assumption of homogeneity is also valid. Proess variablesthat undergo signi�ant hange during re�ning are bath temperature, arbon and siliononentrations (masses), masses of SiO2 and FeO in slag and all free-board gases. Themasses of the bath and omposite slag are approximately at steady state - they an betreated as onstants.The redued Bekker et al. (1999) model is given as
ẋ3 = −kdC (XC − Xeq

C ) , (2.1)
ẋ4 = −kdSi (XSi − Xeq

Si) , (2.2)
ẋ7 =

2MFeOd1

MO2

−
x7kgrMFed5

(

mT (slag) + x7 + x8

)

MC

+0.13d2, (2.3)
ẋ8 =

MSiO2

MSi
kdSi (XSi − Xeq

Si) + 0.045d2, (2.4)
˙x12 = (pt + ηARCd4 − kV T (x12 − Tair)) / (2.5)Eletrial, Eletroni and Computer Engineering 16

 



Chapter 2 Redued Nonlinear Model
[

mT (Fe)Cp(FeL)

MFe

+
2mT (slag) + 2x7 + 3x8

Mslag
Cp(slag(L))

]

,

where the molar onentrations are given as
Xc =

x3/MC

mT (Fe)/MFe + x3/MC + x4/MSi
, (2.6)

XFeO =
x7/MFeO

mT (slag)/Mslag + x7/MFeO + x8/MSiO2

, (2.7)
Xeq

C = kXC

(

mT (slag)MFeO

x7Mslag
+

x8MFeO

x7MSiO2

+ 1

)

, (2.8)
XSi =

x4/MSi

mT (Fe)/MFe + x3/MSi + x4/MSi

, (2.9)
Xeq

Si = kXSi

(

mT (slag)MFeO

x7Mslag
+

x8MFeO

x7MSiO2

+ 1

)2

. (2.10)
The redued equations for the heat balane are:

p2 = (−2∆HFeOd1/MO2) ηFeO, (2.11)
p5 =

d1

MO2

(x12 − TO2) CP (O2), (2.12)
p11 =

x7kgrd5 (∆HFeO − ∆HCO)
(

mT (slag) + x7 + x8

)

MC

, (2.13)
pt = p2 + p5 + p11, (2.14)with the parameters that are relevant to the redued modelEletrial, Eletroni and Computer Engineering 17

 



Chapter 2 Preditor designState State Desription Input Input Desription
x3 Dissolved Carbon [kg℄ d1 Oxygen injetion rate [kg/s℄
x4 Dissolved Silion [kg℄ d2 DRI addition rate [kg/s℄
x7 FeO in bath [kg℄ d3 Slag addition rate [kg/s℄
x8 SiO2 in bath [kg℄ d4 Ar power [Kilowatt℄
x12 Bath temperature [Celsius℄ d5 Graphite injetion rate [kg/s℄Table 2.1: Redued model states and inputs.
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, (2.15)
where kdC and kdSi are the rate onstants for removal of arbon and silion from thebath; kgr is the graphite reativity onstant; kV T is the EAF heat loss oe�ient; ηARCand ηFeO are the e�ienies of ar energy input and bath oxidation; mT (Fe) and mT (slag)are the total masses of the slag formers and bath - both are assumed onstant; MC , MFe,

MFeO, MSi, MSiO2 and Mslag are the molar masses of the di�erent elements. The statesand inputs are desribed in table 2.1. A shemati of the eletri ar furnae is shown in�gure 2.1, whih shows the physial loation of the states.
2.3 Preditor designThe simulation of the losed-loop system where only limited feedbak is available, requiresa preditor to estimate the plant states between measurements. The preditor is theredued nonlinear model of the previous setion. The parameters of the preditor need tobe updated in some of the simulation senarios of hapter 4, where a simple ad-ho methodis used as outlined in (2.16-2.17). Only one variable, temperature, is measured and onlyone measurement is available, therefore the number of parameters that are updated needsEletrial, Eletroni and Computer Engineering 18

 



Chapter 2 Preditor design
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Figure 2.1: Eletri ar furnae shemati showing states.
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Chapter 2 Linearized modelto be limited. The parameters are updated by taking the di�erene between the estimatedtemperature and the measured temperature value and multiplying it with a sale fatorbefore applying it to the e�ienies ηFeO and ηARC .
ηFeO−New = ηFeO−Old + CFeO(Tactual − Testimated), (2.16)
ηARC−New = ηARC−Old + CARC(Tactual − Testimated), (2.17)where CFeO and CARC are onstants that a�et the rate of hange for ηFeO−New and

ηARC−New. The onstants CFeO and CARC are tuned until the error between the preditorand plant is minimized. The temperature is most signi�antly in�uened by the parametervariations. The top row of �gure 2.2 (a to ) shows the senario where the e�ienies(ηFeO and ηARC) are at their maximum versus the senario where all parameters are setto produe the fastest temperature response. The bottom results of �gure 2.2 (d to f)show the senario where the e�ienies are at their minimum versus the senario whereall parameters are set to produe the slowest temperature response. In both senariosthe preditor remains su�iently aurate just by manipulating the e�ienies ηFeO and
ηARC .2.4 Linearized modelThe robust model preditive ontrol theory used in this study is dependent on a linearinternal model to predit the future response of the system. Therefore the model of setion2.2 should be linearized for use in the model preditive ontrollers.The linearization proedure for the nonlinear model of setion 2.2 onsists of thefollowing steps (Goodwin et al., 2001):1. Calulate the operating point of the proess.2. Calulate the derivative of the nonlinear model.3. Substitute the operating point into the derivatives.Eletrial, Eletroni and Computer Engineering 20

 



Chapter 2 Linearized model
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2.4.1 Operating pointThe operating point of a system is the area of the state spae where the proess is in op-eration most of the time. The proess dynamis an be approximated by linear dynamisin the region around the operating point. The proedure for �nding the operating pointwould be to simulate the proess over the time interval of operation and average the val-ues for eah state. Initial onditions and the time interval are required to ommene thesimulation. The initial onditions are obtained by averaging the proess data at the startof re�ning over all the measured taps. The time interval is the average time it takes fromthe start of re�ning until tapping, as obtained from proess data. The initial onditionsare summarized in table 2.2 and the average time for the re�ning stage is 10 minutes or600 seonds.Eletrial, Eletroni and Computer Engineering 21

 



Chapter 2 Linearized modelTable 2.2: Operating point of redued model.State Initial Condition Operating Point
x3 Dissolved Carbon 160 kg 76 kg
x4 Dissolved Silion 24 kg 24 kg
x7 FeO in bath 4250.6 kg 7692.3 kg
x8 SiO2 in bath 1405 kg 1405 kg
x12 Bath temperature 1600 0C 1785 0C

2.4.2 Derivative of nonlinear model
The next step in the linearization proedure is to alulate the partial derivative of eahstate or output equation with regards to one of the state or input variables, dependingon whih matrix is alulated. The nonlinear system is de�ned as

ẋ(t) = f(x(t), d(t)), (2.18)
y(t) = g(x(t), d(t)), (2.19)where x ∈ R

n is the state vetor, d ∈ R
m is the input vetor, y ∈ R

p is the output vetorof the system and f and g are nonlinear funtions of the vetors x and d. The numberof states is n, the number of inputs is m and the number of outputs is p. The nonlinearsystem an be linearized to the form
ẋ(t) = Ax(t) + Bd(t), (2.20)
y(t) = Cx(t) + Dd(t), (2.21)where A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n and D ∈ R
p×m are matries of the appropriatedimensions. The proedure (Goodwin et al., 2001) for the redued Bekker et al. (1999)model of (2.1) to (2.5) an be summarized as follows:Eletrial, Eletroni and Computer Engineering 22

 



Chapter 2 Linearized model
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C =
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D =
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where xQ is the operating point and dQ the input vetor that keeps the system at theoperating point.

The output funtions for the system are as follows: the �rst equation (2.26) gives thetemperature, the seond equation (2.27) gives perentage arbon in the bath and the thirdequation (2.28) gives the amount of FeO in the slag:Eletrial, Eletroni and Computer Engineering 23

 



Chapter 2 Linearized model
y1 = x12, (2.26)
y2 = 100

x3

MT (Fe) + x3 + x4

, (2.27)
y3 = x7. (2.28)The partial derivatives are too large to put in matrix form, thus the matries (2.22-2.25) show whih derivative �ts where and the atual derivatives are shown below. Thederivatives that form the A matrix:
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1/MC

mT (Fe)/MFe + x3/MC + x4/MSi
−

x3/M
2
C

(

mT (Fe)/MFe + x3/MC + x4/MSi

)2

)

,

∂f1

∂x4

= −kdC

(

−
x3/ (MCMSi)

(

mT (Fe)/MFe + x3/MC + x4/MSi

)2

)

,

∂f1

∂x7
= −kdC

(

mT (slag)MFeOMslag

(x7Mslag)
2 +

x8MFeOMSiO2

(x7MSiO2)
2

)

,

∂f1

∂x8

= kdC

(

MFeO

x7MSiO2

)

,

∂f1

∂x12
= 0,

∂f2

∂x3
,
∂f2

∂x4
,
∂f2

∂x7
,
∂f2

∂x8
,

∂f2

∂x12
= 0,

∂f3

∂x3
,
∂f3

∂x4
,

∂f3

∂x12
= 0,

∂f3

∂x7
= −

kgrMFed5
(

mT (slag) + x7 + x8

)

MC

+
x7kgrMFed5MC

((

mT (slag) + x7 + x8

)

MC

)2 ,

∂f3

∂x8
=

x7kgrMFed5MC
((

mT (slag) + x7 + x8

)

MC

)2 ,

∂f4

∂x3
,
∂f4

∂x4
,
∂f4

∂x7
,
∂f4

∂x8
,

∂f4

∂x12
= 0,

∂f5

∂x3
,
∂f5

∂x4
= 0, (2.29)

∂f5

∂x7
=

[

kgrd5 (∆HFeO − ∆HCO)
(

mT (slag) + x7 + x8

)

MC

−
x7kgrd5 (∆HFeO − ∆HCO) MC
((

mT (slag) + x7 + x8

)

MC

)2

]
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Chapter 2 Linearized model
[

mT (Fe)Cp(FeL)

MFe
+

2mT (slag) + 2x7 + 3x8

Mslag
Cp(slag(L))

]

−

[pt + ηARCd4 − kV T (x12 − Tair)] 2Cp(slag(L))/Mslag/
[

mT (Fe)Cp(FeL)

MFe
+

2mT (slag) + 2x7 + 3x8

Mslag
Cp(slag(L))

]2

,

∂f5

∂x8

=

[

−
x7kgrd5 (∆HFeO − ∆HCO) MC
((

mT (slag) + x7 + x8

)

MC

)2

]

/

[

mT (Fe)Cp(FeL)

MFe
+

2mT (slag) + 2x7 + 3x8

Mslag
Cp(slag(L))

]

−

[pt + ηARCd4 − kV T (x12 − Tair)] 3Cp(slag(L))/Mslag/
[

mT (Fe)Cp(FeL)

MFe
+

2mT (slag) + 2x7 + 3x8
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Cp(slag(L))

]2

,

∂f5

∂x12
=

[

d1

MO2

CP (O2) − kV T

]

/

[

mT (Fe)Cp(FeL)

MFe
+

2mT (slag) + 2x7 + 3x8

Mslag
Cp(slag(L))

]

.The derivatives that form the B matrix:
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∂d3
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[(

−2∆HFeO
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)

ηFeO +
(x12 − TO2)CP (O2)
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/ (2.30)
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mT (Fe)Cp(FeL)

MFe

+
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Cp(slag(L))

]

,

∂f5

∂d2

= 0,

∂f5

∂d3
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Chapter 2 Linearized model
∂f5

∂d4
= ηARCd4/

[

mT (Fe)Cp(FeL)

MFe
+

2mT (slag) + 2x7 + 3x8

Mslag
Cp(slag(L))

]
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∂d5
=
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x7kgr (∆HFeO − ∆HCO)
(

mT (slag) + x7 + x8
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]

/
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mT (Fe)Cp(FeL)
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+

2mT (slag) + 2x7 + 3x8
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Cp(slag(L))

]

.The derivatives that form the C matrix:
∂g1

∂x3
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∂g1

∂x4
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∂x7
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∂x8
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∂x12
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∂g2

∂x3

= 100
1

MT (Fe) + x3 + x4

− 100
x3

(

MT (Fe) + x3 + x4

)2 , (2.31)
∂g2

∂x4

= −100
x3

(

MT (Fe) + x3 + x4

)2 ,

∂g2

∂x7

,
∂g2

∂x8

,
∂g2

∂x12

= 0,

∂g3

∂x3

,
∂g3

∂x4

,
∂g3

∂x8

,
∂g3

∂x12

= 0,

∂g3

∂x7

= 1.2.4.3 Linearized modelsThe nonlinear model has unertain parameters with the unertainty desribed in termsof on�dene intervals. The parameter unertainty is assumed to be uniform and antherefore lie anywhere within the on�dene intervals. Eah parameter vetor produesa model with di�erent dynamis. The linear model an only model a spei� parametervetor within a spei� region of state-spae. In order to model all the possible dynamis,di�erent linear models are onstruted. The unertain spae an be represented by apolytopi unertainty (Kothare et al., 1996) with eah linear model representing a vertex ofthe polytope. This representation requires 2n models, where n is the number of unertainentries in the linear model. In this ase, there are 17 unertain entries, whih wouldrequire 217 = 131072 di�erent models.Eletrial, Eletroni and Computer Engineering 26

 



Chapter 2 Linearized modelTable 2.3: Nonlinear redued model parameters.Parameter Lower bound Nominal Upper bound
kV T 1.73 2.08 2.42
ηARC 0.29 0.51 0.73
ηFeO 0.54 0.75 0.96
kdC 54.74 54.90 55.05
kgr 0.08 0.42 0.76Polytopi unertainty desriptions are very ine�ient, thus the strutured unertainty(Kothare et al., 1996) representation is preferred. The strutured unertainty representa-tion makes use of a nominal model and a deviation model as follows

A = Anominal + Bp∆Cq, (2.32)
B = Bnominal + Bp∆Dqu, (2.33)where

∆ =

































∆1

∆2

·

·

·

∆n

































, (2.34)
where −1 ≤ ∆i ≤ 1, i = 1, 2, ..., n and BP Cq is the maximum deviation from Anominaland BpDqu is the maximum deviation from Bnominal.The nonlinear model has �ve parameters that an vary, but when the model is lin-earized the unertainty a�ets 17 entries in the A and B matries. Four parameters werevaried in small inrements, whih resulted in over 214 ≈ 200,000 models being onstruted.For eah parameter, 21 di�erent values were used and kdC was assumed onstant. Theparameters of the nonlinear model are shown in table 2.3.The nominal linear model is given below:Eletrial, Eletroni and Computer Engineering 27

 



Chapter 2 Linearized model
Anominal =

























0.996 1.78e − 5 −4.47e − 6 4.18e − 6 0

0 1 0 0 0

0 0 1 2.94e − 5 0

0 0 0 1 0

0 0 −7.96e − 6 −1.08e − 5 1

























, (2.35)
Bnominal =

























−2.68e − 5 −1.97e − 7 0 2.11e − 6

0 0 0 0

12 0.13 0 −0.943

0 0.045 0 0

0.42 −7.61e − 7 6.20e − 6 −0.014

























. (2.36)
To onstrut the strutured unertainty desription, the extreme points Kmin and Kmaxof the unertain values are used as follows:

Knom =
1

2
(Kmax + Kmin), (2.37)

Kdev =
1

2
(Kmax − Kmin), (2.38)whih results in the following linear models

AKnom =

























0.996 1.78e − 5 −4.47e − 6 4.18e − 6 0

0 1 0 0 0

0 0 1 3.64e − 5 0

0 0 0 1 0

0 0 −7.96e − 6 −1.04e − 5 1

























, (2.39)

Eletrial, Eletroni and Computer Engineering 28

 



Chapter 2 Linearized model
AKdev =

























0 0 0 0 0

0 0 0 0 0

0 0 0 3.08e − 5 0

0 0 0 0 0

0 0 3.22e − 6 4.82e − 6 0

























, (2.40)
BKnom =

























−2.68e − 5 −1.97e − 7 0 2.11e − 6

0 0 0 0

12 0.13 0 −1.17

0 0.045 0 0

0.41 −7.46e − 7 6.08e − 6 −0.017

























, (2.41)
BKdev =

























0 0 0 2.21e6

0 0 0 0

0 0 0 0.988

0 0 0 0

0.11 2.92e − 7 3.03e − 6 0.014

























, (2.42)
where AKdev ≡ BpCq and BKdev ≡ BpDqu.2.4.4 Linear models analysisThe linear models are ompared to the nonlinear model in order to asertain whetherthey approximate the nonlinear model su�iently well. Three senarios are used; thenominal ase; parameters that produe the least e�ieny, and parameters that produethe best e�ieny, i.e. the lower and upper bounds respetively as given in table 2.3. Theparameters in�uene the dynamis of the model and ause deviation from the nominalase. Only the extreme ases are doumented here, beause they would provide thelargest deviation from the nominal ase. In all ases, the inputs are �rst set to theirmaximum levels, and then to their minimum levels. All these simulations (�gures 2.3, 2.4and 2.5) show that the linear models approximate the nonlinear model very well. Theworst approximation is for arbon, whih shows the most nonlinear response of all theEletrial, Eletroni and Computer Engineering 29

 



Chapter 2 Linearized modelvariables. In �gure 2.6, the dearburization responses of all the di�erent senarios areshown on top of eah other, and it is lear that only the inputs ause a slightly di�erentresponse, while the parameter values have no signi�ant in�uene. This result shows thatthe inputs do have a slight in�uene on dearburization, but not enough to aelerate theproess signi�antly. The proess an only be aelerated if the target temperature andarbon ontent an be reahed in a shorter time.A modal analysis (How, 2001) is done on the linearized model in order to determineif the arbon ontent is ontrollable. Before the modal analysis an be performed, the Amatrix is deomposed into its eigenvetors and eigenvalues as follow:
A = TΛT−1, (2.43)where

T =













| |

v1 · · · vn

| |













, (2.44)
T−1 =













− wT
1 −...

− wT
n −













, (2.45)
and vi, i = 1, . . . , n is the right eigenvetor of eigenvalue λi, wi, i = 1, . . . , n is the lefteigenvetor of eigenvalue λi and Λ = diag(λ1, . . . , λn) is the matrix of eigenvalues. Tohek the ontrollability of the arbon ontent, a modal analysis is performed as follows:

ControllabilityC = wT
1 B, (2.46)

=

[

1.00 −5.70e − 3 1.45e − 3 −1.36e − 3 0

]

B, (2.47)
=

[

1.74e − 2 1.28e − 4 0 −1.70e − 3

]

, (2.48)where the B matrix used in the analysis is the matrix (2.36). The ontrollability analysisEletrial, Eletroni and Computer Engineering 30
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Figure 2.3: Linear and nonlinear model omparison with nominal parameters.of the arbon ontent (2.46-2.48) shows that the arbon ontent is ontrollable throughoxygen injetion, slag additives and graphite injetion. The modal analysis does not takeonstraints on the inputs into onsideration. The onstraints on the inputs limit thee�et of the inputs on the dearburization rate. This an be seen from �gure 2.3 whihshows the redution in arbon ontent with the inputs at their maximum and minimum.Dearburization an therefore be desribed as marginally ontrollable.2.4.5 Simpli�ation of linear modelsFrom the previous setion, it is lear that arbon is only marginally ontrollable. Studyingthe linear models more losely, it is lear that ertain states and inputs an be eliminated.The inputs that are ontrolled during the re�ning stage are oxygen injetion, eletripower and graphite injetion. DRI and slag are not added during the re�ning stage andEletrial, Eletroni and Computer Engineering 31
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Figure 2.4: Linear and nonlinear model omparison with e�ienies at their minimum.
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Figure 2.5: Linear and nonlinear model omparison with e�ienies at their maximum.
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Figure 2.6: Dearburization response with all parameter variations.Eletrial, Eletroni and Computer Engineering 33

 



Chapter 2 Linearized modelan be removed from the linear models. The important states are arbon ontent, FeOontent in the slag as well as temperature. Si and SiO2 are impurities that need to beminimized, or steered to a desired spei�ation.From the seond row of equation (2.41) , it is lear that there is no input that in�uenes
Si. The �rst olumn of equation (2.39), shows that arbon has no in�uene on the otherstates. The seond olumn shows that only Si has an in�uene on arbon. The in�ueneof Si on arbon is very insigni�ant. Carbon will therefore be removed from the model,for ontrol purposes, beause it annot be signi�antly ontrolled as shown in the previoussetion. Si annot be ontrolled and has no e�et on any relevant term, and an thereforealso be removed.From the fourth row of equation (2.41) , it is lear that only DRI addition in�uenes
SiO2. The fourth olumn of (2.39) shows that SiO2 has a very small in�uene on arbon,
FeO and temperature. In eah instane, the ross-oupling term of SiO2 is at least 1000times smaller than the term for SiO2 itself. SiO2 an therefore be removed from themodel without signi�antly a�eting the dynamis of the system.DRI only a�ets SiO2 and thus beomes redundant and an be safely removed. Thetwo remaining states in (2.49) have no unertainty on the diagonal terms. The onlyremaining term that has signi�ant unertainty is the term that links FeO to temperature.The ross-ouple term between FeO and temperature is a 1000 times smaller than thediagonal term, and the unertainty entry of this term is therefore left out, beause of itsinsigni�ant ontribution to temperature. The simpli�ed linear model an then be givenas follows

Anominal−simplified =







1 0

−7.87e − 6 1






, (2.49)

Bnominal−simplified =







12 0 −1.17

0.41 6.07e − 6 −0.017






, (2.50)

Bdev−simplified =







0 0 0.988

0.11 3.03e − 6 0.014






, (2.51)Eletrial, Eletroni and Computer Engineering 34

 



Chapter 2 Conlusionwhere Bdev−simplified ≡ BpDqu. Bp and Dqu an be realized from Bdev−simplified as
Bp =







1 0 0 0

0 1 1 1






, (2.52)

Dqu =



















0 0 0.988

0.11 0 0

0 3.03e − 6 0

0 0 0.014



















, (2.53)
and the delta operator that is manipulated to desribe the unertain system is

∆ =



















∆1 0 0 0

0 ∆2 0 0

0 0 ∆3 0

0 0 0 ∆4



















, (2.54)
where −1 ≤ ∆i ≤ 1, i = 1, 2, 3, 4.2.4.6 Analysis of simpli�ed linear modelsThe simpli�ed linear models are ompared to the original nonlinear model. Three senar-ios are used; the nominal ase; parameters that produe the least e�ieny, and param-eters that produe the best e�ieny. In all ases, the inputs are set to their maximumlevels.Figure 2.7 shows that the simpli�ed linear models approximate the nonlinear modelreasonably well. The simpli�ed linear models are therefore taken to be suitable as theinternal model for the model preditive ontrollers.2.5 ConlusionIn this hapter the redued nonlinear model for the re�ning stage of the eletri arfurnae was linearized. The strutured unertainty desription was used to desribe theEletrial, Eletroni and Computer Engineering 35
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(f) E�ienies MaximumFigure 2.7: Simulation to ompare simpli�ed linear model to nonlinear model.unertainty of the nonlinear model in terms of linear models. A simulation study showedthat the linear models approximated the nonlinear models reasonably well. The onlyvariable that showed signi�ant deviation was arbon, beause of its highly nonlinearbehaviour.In the simpli�ation of the linear models, it was shown that arbon is not signi�antlyontrollable, whih implies that ontrol annot be used to aelerate the re�ning stage.The best option would be to ensure that the tapping temperature is at the desired valueby the time arbon reahes its desired level.The simpli�ed linear models approximated the nonlinear model reasonably well withregards to FeO and temperature.The simpli�ed linear models are used in the synthesis of the model preditive on-trollers in hapter 3.
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Chapter 3
Model preditive ontrol
This hapter desribes model preditive ontrol and espeially robust model preditiveontrol that is applied to the plant outlined in hapter 2. The hapter starts by explain-ing model preditive ontrol and its history, followed by a desription of robust modelpreditive ontrol and the reason for its development, and �nally fouses on the ontrollertheory used for the simulation study in hapter 4. The desription of model preditiveontrol and the development of stability theory inluding robust stability are summarizedin the survey done by Mayne et al. (2000).3.1 IntrodutionModel preditive ontrol (MPC), also known as reeding horizon ontrol (RHC), uses amathematial model of a system to predit its future behaviour in order to alulate asequene of ontrol moves (N steps) into the future that will optimize (usually minimize)an objetive or penalty funtion, whih desribes a measure of performane of the system.The �rst ontrol move of the alulated sequene is applied to the system and a new mea-surement is taken. The proess is then repeated for the next time step. Model preditiveontrol alulates the ontrol sequene on-line at eah time step, ompared to onventionalontrol theory where the ontrol law is pre-alulated and valid for all possible states of thesystem. Model preditive ontrol has the distint advantage of ontrolling multi-variablesystems well and an expliitly take into onsideration onstraints on the inputs (suh as37

 



Chapter 3 Introdutionatuators, valves, et.) as well as states or outputs (Camaho and Bordons, 2003). MPCis espeially useful in situations where an expliit ontroller annot be alulated o�ine.The basi ideas present in the model preditive ontrol family aording to Camaho and Bordons(2003) are:
• outputs at future time instanes are predited by the expliit use of a mathematialmodel ;
• an objetive funtion is minimized by alulating the appropriate ontrol sequene;and
• at eah time instant, the horizon is displaed towards the future, whih involvesapplying the �rst ontrol signal alulated at eah time instane to the system;alled the reeding horizon strategy.The MPC theory desribed in this hapter is in disrete time and the system takes thefollowing form (Mayne et al., 2000):

x(k + 1) = f(x(k), u(k)), (3.1)
y(k) = g(x(k)). (3.2)The ontrol and state sequenes must satisfy

x(k) ∈ X, (3.3)
u(k) ∈ U, (3.4)where X ⊂ R

n and U ⊂ R
m. The objetive funtion that is used in the optimizationproess has the following form:

V (x, k,u) =
k+N−1
∑

i=k

l(x(i), u(i)) + F (x(k + N)), (3.5)Eletrial, Eletroni and Computer Engineering 38

 



Chapter 3 Introdutionwhere l(x(i), u(i)) is the ost at eah time step into the future with regards to the statesand inputs, while F (x(k+N)) is the ost at the �nal state reahed after the whole ontrolsequene has been applied. At eah time k, the �nal time is k+N, whih inreases as kinreases and is alled a reeding horizon. In ertain model preditive ontrol formulations,a terminal onstraint set is de�ned
x(k + N) ∈ Xf ⊂ X. (3.6)The optimization of the objetive funtion is performed subjet to the onstraints onthe ontrol and state sequenes and in ertain ases the terminal onstraint to yield theoptimized ontrol sequene

u
o(x, k) = (uo(k; (x, k)), uo(k + 1; (x, k)), ..., uo(k + N − 1; (x, k))), (3.7)and optimized value for the objetive funtion

V o(x, k) = V (x, k,uo), (3.8)where (x, k) denotes that the urrent state is x at time k. The �rst ontrol move at timek of the sequene u
o(x, k) is implemented to form an impliit ontrol law for time k

κ(x, k) = uo(k; (x, k)). (3.9)
The objetive funtion is time invariant, beause neither l(x(i), u(i)) nor F (x(k +N))have terms that depend on time. The optimization problem PN(x) an be de�ned asstarting at time 0. N represents the �nite predition horizon over whih the optimizationtakes plae, and the optimization problem an be rede�ned as

PN(x) : V o
N(x) = min

u

{VN(x,u)|u ∈ UN} , (3.10)Eletrial, Eletroni and Computer Engineering 39

 



Chapter 3 Introdutionwhere the objetive funtion is now
VN(x,u) =

N−1
∑

i=0

l(x(i), u(i)) + F (x(N)), (3.11)with UN the set of feasible ontrol sequenes that satisfy the ontrol, state and terminalonstraints. If problem PN(x) is solved, the optimal ontrol sequenes are obtained
u

o(x) = {uo(0, x)), uo(1, x)), ..., uo(N − 1, x)}, (3.12)and the optimal state trajetory, if the ontrol ations are implemented, is given by
x

o(x) = {xo(0, x), xo(1, x), ..., xo(N − 1, x), xo(N, x)}. (3.13)The optimal objetive value is
V o

N(x) = VN(x,uo). (3.14)The �rst ontrol ation is implemented, leading to the impliit time invariant ontrol law
κN(x) = uo(0, x). (3.15)

Dynami programming an be used to determine a sequene of objetive funtions
Vj(·) deterministially in order to alulate the sequene of ontrol laws κj(·) o�ine,where j is the time-to-go until the predition horizon. This is possible beause of thedeterministi nature of the open-loop optimization. This would be preferable, but isusually not possible. The di�erene between MPC and dynami programming is purely amatter of implementation. MPC di�ers from onventional optimal ontrol theory in thatMPC uses a reeding horizon ontrol law κN(·) rather than an in�nite horizon ontrollaw.Eletrial, Eletroni and Computer Engineering 40

 



Chapter 3 Historial bakground3.2 Historial bakgroundModel preditive ontrol builds on optimal ontrol theory, the theory (neessary andsu�ient onditions) of optimality, Lyapunov stability of the optimal ontrolled system,and algorithms for alulating the optimal feedbak ontroller (if possible) (Mayne et al.,2000). There are a few important ideas in optimal ontrol that underlie MPC. The �rstlinks together two priniples of the ontrol theory developed in the 1960s: Hamilton-Jaobi-Bellman theory (Dynami Programming) and the maximum priniple, whih pro-vides neessary onditions for optimality. Dynami programming provides su�ient on-ditions for optimality as well as a proedure to synthesise an optimal feedbak ontroller
u = κ(x). The maximum priniple provides neessary onditions of optimality as wellas omputational algorithms for determining the optimal open-loop ontrol uo(·; x) for agiven initial state x. These two priniples are linked together as

κ(x) = uo(0; x), (3.16)in order for the optimal feedbak ontroller to be obtained by alulating the open-loopontrol problem for eah x (Mayne et al., 2000). From the ommenement of optimalontrol theory it is stated by Lee and Markus (1967, p. 423): �One tehnique for obtaininga feedbak ontroller synthesis from knowledge of open-loop ontrollers is to measure theurrent ontrol proess state and then ompute very rapidly for the open-loop ontrolfuntion. The �rst portion of this funtion is then used during a short time interval,after whih a new measurement of the proess state is made and a new open-loop ontrolfuntion is omputed for this new measurement. The proedure is then repeated.�Kalman, as disussed inMayne et al. (2000), observed that optimality does not guar-antee stability. There are onditions under whih optimality results in stability: in�nitehorizon ontrollers are stabilizing, if the system is stabilizable and detetable. Calulatingin�nite horizon optimal solutions is not always pratial on-line and an alternate solutionwas needed to stabilize the reeding horizon ontroller. The �rst results for stabilizingreeding horizon ontrollers were given by (Kleinman, 1970), who developed a minimumEletrial, Eletroni and Computer Engineering 41

 



Chapter 3 Historial bakgroundenergy ontroller for linear systems. He showed that the feedbak ontroller is linear,time invariant and stable if a Lyapunov funtion V (x) = xT Px is used as the objetivefuntion. Another approah is to de�ne a stability onstraint as part of the optimal on-trol problem. The stability onstraint is de�ned as an equality onstraint x(T ) = 0 thatfores the solution to onverge to the origin. Thomas, as disussed in Mayne et al. (2000),suggested this tehnique as part of a linear quadrati ontrol problem and implementedit by using M := P−1 in plae of P as the Riatti variable and solving the Riatti-likedi�erential equation with terminal ondition M(T ) = 0.MPC was really driven by industry as part of proess ontrol theory. Rihalet et al.(1978) was the �rst to propose MPC for proess ontrol appliations, but MPC was pro-posed earlier by Propoi and Lee and Markus (as disussed in Mayne et al. (2000)). TheMPCmethod, alled identi�ation and ommand (IDCOM), was proposed by Rihalet et al.(1978). It uses a linear model in the form of a �nite horizon impulse response, quadratiost and onstraints on the inputs and outputs. The method makes provision for linearestimation using least squares and the algorithm for solving the open-loop optimal ontrolproblem is the �dual� of the identi�ation algorithm.Dynami matrix ontrol (DMC) is a later method proposed by Cutler and Ramaker(1980) and Prett and Gillette (as disussed in Mayne et al. (2000)). DMC uses a stepresponse model, but as in IDCOM, handled onstraints in an ad-ho fashion. This lim-itation was addressed by Garía and Morshedi (as disussed in Mayne et al. (2000)) byusing quadrati programming to solve the onstrained open-loop optimization problem.This method also allows ertain violations of the onstraints in order to enlarge the setof feasible states. This method is alled QDMC (Quadrati Dynami Matrix Control).The third generation of MPC tehnology, introdued about a deade ago, �distin-guishes between several levels of onstraints (hard, soft and ranked). This tehnologyprovides some mehanism to reover from an infeasible solution, and addresses the issuesresulting from a ontrol struture that hanges in real time, and allows for a wider rangeof proess dynamis and ontroller spei�ations� (Qin and Badgwell, 2003). The Shellmulti-variable optimizing ontrol (SMOC) uses state-spae models, inorporates generalEletrial, Eletroni and Computer Engineering 42

 



Chapter 3 Stability of MPCdisturbane models and allows for state estimation using Kalman �lters (as disussed inMayne et al. (2000)).An independent but similar approah was developed from the adaptive ontrol the-ory and is alled generalized preditive ontrol (GPC). The method uses models in thebakward shift operator q-1 whih is more general than the impulse and step responsemodels of DMC. GPC started as minimum variane ontrol (Mayne et al., 2000) that onlyallowed for a horizon of length 1. Minimum variane ontrol was extended to allow forlonger predition horizons by Peterka (1984) as well as Clarke et al. (1987a,b). GPC, andearly versions of DMC, did not expliitly inorporate stability in the method and had torely on the tuning of the predition horizon as well as the weights on the states and inputsto ahieve stability.3.3 Stability of MPCThe inability of both GPC and DMC to guarantee stability aused researhers to fousmore on modifying PN (x) to ensure stability due to inreased ritiism (Bitmead et al.,1990) of the makeshift approah of using tuning to attain stability.With terminal equality onstraints, the system is fored to the origin by the ontrollerthat takes the form F (x) = 0, as there is no terminal ost and the terminal set is Xf = {0}.Keerthi and Gilbert, as disussed in Mayne et al. (2000), proposed this stabilizing strategyfor onstrained, nonlinear, disrete systems, and showed a stability analysis of this version(terminal equality onstraints) of disrete-time reeding horizon ontrol. MPC with aterminal equality onstraint an be used to stabilize a system that annot be stabilized byontinuous feedbak ontrollers, aording to Meadows et al. (as disussed in Mayne et al.(2000)).Using a terminal ost funtion is an alternative approah to ensure stability. Herethe terminal ost is F (·), but there is no terminal onstraint and the terminal set isthus Xf = R
n. For unonstrained linear systems the terminal ost of F (x) = 1

2
xT Pfx isproposed by Bitmead et al. (1990).Terminal onstraint sets di�er from the terminal equality onstraints, in that subsetsEletrial, Eletroni and Computer Engineering 43

 



Chapter 3 Stability of MPCof R
n that inlude a neighbourhood of the origin are used to stabilize the ontrol, notjust the origin. The terminal onstraint set, as with the terminal equality onstraint,does not employ a terminal ost, thus F (x) = 0. The MPC ontroller should steer thesystem to Xf within a �nite time, after whih a loal stabilizing ontroller κf (·) is em-ployed. This methodology is usually referred to as dual mode ontrol and was proposed byMihalska and Mayne (1993) in the ontext of onstrained, nonlinear, ontinuous systemsby using a variable horizon N.A terminal ost and onstraint set is employed in most modern model preditive on-trollers. If a in�nite horizon objetive funtion an be used, on-line optimization is notneessary and stability and robustness an be guaranteed. In pratial systems, on-straints and other nonlinearities make the use of in�nite horizons impossible, but it ispossible to approximate an in�nite horizon objetive funtion if the system is suitablylose to the origin. By hoosing the terminal set Xf as a suitable subset of R

n, theterminal ost F (·) an be hosen to approximate an in�nite horizon objetive funtion.A terminal ost and onstraint set ontroller therefore needs a terminal onstraint set
Xf in whih the terminal ost F (·) and in�nite horizon feedbak ontroller Kf are em-ployed. To synthesise these, Sznaier and Damborg (as disussed in Mayne et al. (2000))proposed that the terminal ost F (·) and feedbak ontroller Kf of a standard LQ prob-lem be used, whih is an unonstrained in�nite horizon problem, when the system islinear (f(x, u) = Ax + Bu) and the state and input onstraint sets, X and U, are poly-topes. The terminal onstraint set Xf is hosen to be the maximal output admissible set(Gilbert and Tan, 1991) of the system f(x, u) = (A + BKf)x.3.3.1 Stability onditions for model preditive ontrollersFrom the above disussion, it is lear that the additions of a terminal onstraint set Xf ,terminal ost F (·) and loal feedbak ontroller κf in the terminal onstraint set, form thebasis of stabilizing model preditive ontrol. Some onditions, in the form of axioms, areformulated (Mayne et al., 2000) for the terminal onstraint set, terminal ost and loalfeedbak ontroller, whih ensure that the ontroller is stabilizing.Eletrial, Eletroni and Computer Engineering 44

 



Chapter 3 Stability of MPCTwo related methods are available for establishing stability. Both methods use aLyapunov funtion as the objetive funtion. The �rst method ensures that the objetivefuntion V o
N(x) evolves with the state from x to x+ = f(x, κN(x)) so that

V o
N(x+) − V o

N (x) + l(x, κN (x)) ≤ 0, (3.17)while the alternative method uses the fat that
V o

N(x+) − V o
N(x) + l(x, κN (x)) = V o

N(x+) − VN−1(x
+), (3.18)and shows that the right-hand side is negative, either diretly or by showing that V o

1 (·) ≤

V o
0 (·) and exploiting monotoniity whih implies that if V o

1 (·) ≤ V o
0 (·) then V o

i+1(·) ≤ V o
i (·)for all i ≥ 0.Assume a model preditive ontroller that an steer the system state x to the ter-minal onstraint set Xf within the predition horizon N or fewer steps. The ontrolsequene that aomplishes this is alled an admissible or feasible ontrol sequene u =

{u(0), u(1), ..., u(N − 1)}. This ontrol sequene should satisfy the ontrol onstraints
u(i) ∈ U for i = 0, 1, ..., N − 1 and ensure that the ontrolled states satisfy the stateonstraints xu(i) ∈ X for i = 0, 1, .., N and the �nal state satis�es the terminal on-straint set xu(N) ∈ Xf . If the ontrol problem PN(x) is solved, the ontrol sequene
u

o(x) is obtained that will steer the system within the set of states that is possiblewith a model preditive ontrol of horizon N, x ∈ XN . The optimal ontrol sequene
u

o(x) = {u(0; x), u(1; x), ..., u(N −1; x)} will result in the optimal state sequene x
o(x) =

{xo(0; x), xo(1; x), ..., xo(N − 1; x), xo(N ; x)}. The �rst ontrol ation of u
o(x), that is

u = κN (x) = uo(0; x) is implemented to get to the next state x+ = f(x, κN(x)) = xo(1; x).A feasible ontrol sequene x̃(x+) for the state x+, will result in an upper bound for theoptimal objetive funtion V o
N(x+), beause a feasible ontrol sequene should give a largervalue for the objetive funtion than an optimal ontrol sequene. The abbreviated on-trol sequene {u(1; x), u(2; x), ..., u(N − 1; x)} derived from u

o(x) should be a feasibleontrol sequene to steer state x+ to xo(N ; x) ∈ Xf . If an extra term is added to theEletrial, Eletroni and Computer Engineering 45

 



Chapter 3 Stability of MPControl sequene {u(1; x), u(2; x), ..., u(N − 1; x), u}, the ontrol sequene will be feasiblefor PN(x+) if u ∈ U and u steers xo(N ; x) ∈ Xf to f(xo(N ; x), u) ∈ Xf . This will betrue if u = κf(x
o(N ; x)), with the terminal state onstraint Xf and loal ontroller κf (·)having the properties:

Xf ⊂ X, κf (x) ∈ U and f(x, κf(x)) ∈ Xf ∀x ∈ Xf , (3.19)implying that the terminal set Xf is invariant when the ontroller is κf(·). The feasibleontrol sequene for PN(x+) is
ũ(x) = {uo(1; x), uo(2; x), ..., uo(N − 1; x), κf(x

o(N ; x))}, (3.20)with the assoiated ost
VN(x+, ũ(x)) = V o

N(x) − l(x, κN (x)) − F (xo(N ; x))

+l(xo(N ; x), κf (x
o(N ; x))

+F (f(xo(N ; x), κf (x
o(N ; x))). (3.21)This ost is the upper bound on V o

N (x+) and satis�es
VN(x+, ũ(x)) ≤ V o

N(x) − l(x, κN(x)), (3.22)if F (f(x, κf(x))) − F (x) + l(x, κf (x)) ≤ 0 ∀x ∈ Xf . This is aomplished if F (·) is aontrol Lyapunov funtion in the neighbourhood of the origin and the ontroller κf andthe terminal onstraint set Xf are hosen appropriately. If this ondition is satis�ed, then(3.17) will hold for all x ∈ XN and it is su�ient to say that the losed-loop system
x+ = f(x, κN(x)) will onverge to zero as time tends to in�nity, provided that the initialstate is within XN . The stability onditions an be summarized in the following axioms(Mayne et al., 2000):A1: Xf ⊂ X, Xf is a losed set and 0 ∈ Xf . This ondition implies that the stateEletrial, Eletroni and Computer Engineering 46

 



Chapter 3 Stability of MPConstraints should be satis�ed in the terminal onstraint set.A2: κf (x) ∈ U, ∀x ∈ Xf . This ondition implies that the onstraints on the ontrolsshould be satis�ed by the loal ontroller in the terminal onstraint set Xf .A3: f(x, κf(x)) ∈ Xf , ∀x ∈ Xf . This implies that the terminal onstraint set Xf ispositively invariant under the loal ontroller κf(·).A4: F (f(x, κf(x)))−F (x) + l(x, κf (x)) ≤ 0 ∀x ∈ Xf . The terminal ost funtion F (·) isa loal Lyapunov funtion in the terminal onstraint set Xf .The onditions as summarized in A1 to A4 are merely su�ient onditions to ensurestability in model preditive ontrollers. These onditions an be shown to hold for themonotoniity approah as well as the ontinuous ase (Mayne et al., 2000). The followingfew paragraphs will show how the stabilizing methods of setion 3.3 satisfy the stabilityonditions A1 to A4.3.3.2 Terminal state MPCThe terminal state variant of model preditive ontrollers (Mayne et al., 2000) uses theterminal state Xf = {0} with no terminal ost F (·) = 0. The loal ontroller in theterminal onstraint set is κf(x) = 0 that will ensure that the state remains at the originif this ontroller is applied. The funtions F (·) and κf(·) are only valid in Xf whih is atthe origin. The satisfation of the stability onditions A1 to A4 are as follows:A1: Xf = {0} ∈ X - Satis�ed.A2: κf (0) = 0 ∈ U - Satis�ed.A3: f(0, κf(0)) = f(0, 0) = 0 ∈ Xf - Satis�ed.A4: F (f(0, κf(0))) − F (0) + l(0, κf(0)) = 0 - Satis�ed.The ontroller ensures that the losed-loop system is asymptotially (exponentially) stablewith region of attration XN .Eletrial, Eletroni and Computer Engineering 47

 



Chapter 3 Stability of MPC3.3.3 Terminal ost MPCTerminal ost model preditive ontrollers are only valid for linear unonstrained (Bitmead et al.,1990) and linear, stable, onstrained (Rawlings and Muske, 1993) ases. In order to en-sure stability a terminal onstraint is neessary if the system is nonlinear or linear, on-strained and unstable. Linear, unonstrained systems are de�ned as f(x, u) = Ax + Bu,and l(x, u) = 1
2
(|x|2Q + |u|2R) where Q > 0 and R > 0. The �rst three onditions A1 to A3are trivially satis�ed in the unonstrained ase, beause X = R

n and U = R
m. In the asewhere A and B are stabilizable, the loal ontroller is de�ned as κf := Kfx, and Pf > 0should satisfy the Lyapunov equation

AT
f PAf + Qf = 0, Af := A + BKf , Qf := Q + KfRKf , (3.23)then the terminal ost funtion F (x) := 1

2
xT Pfx satis�es A4 and the losed-loop system isasymptotially (exponentially) stable with a region of attration R

n. Linear, onstrained,stable systems have ontrol onstraints u ∈ U, but no onstraints on the states, thus
X = Xf = R

n. In order to satisfy A2, the ontroller funtion, if linear, should be
κf(x) = 0 (Rawlings and Muske, 1993), that leads to the �rst three onditions (A1 toA3) being satis�ed. The �nal ondition A4 is satis�ed if the terminal ost funtion is
F (x) := 1

2
xT Pfx, where Pf satisfy the Lyapunov equation AT PA + Q = 0, that results ina ontroller with asymptoti (exponential) stability with region of attration R

n.3.3.4 Terminal onstraint set MPCTerminal onstraint set model preditive ontrollers employ a terminal onstraint set
x(N) ∈ Xf without a terminal ost F (x) = 0 for nonlinear, onstrained systems. Mihalska and Mayne(1993) introdued the idea of a variable predition horizon N for ontinuous-time, on-strained, nonlinear systems. Sokaert et al. (1999) proposed a �xed horizon version fornonlinear, onstrained, disrete-time systems. The ontroller steers the state of the sys-tem x to within the terminal onstraint set Xf , after whih a loal stabilizing ontroller
κf(x) = Kfx is employed. This type of MPC is sometimes referred to as dual-mode MPC.Eletrial, Eletroni and Computer Engineering 48

 



Chapter 3 Stability of MPCThis method is similar to the terminal equality onstraint method, exept that the equal-ity {0} is replaed by a set Xf . The loal ontroller κf (·) and the terminal onstraint set
Xf are hosen to satisfy the �rst three onditions A1 to A3. The loal ontroller κf (·) ishosen to steer the system exponentially fast to the origin for all states in the terminalonstraint set (∀x ∈ Xf). The stage ost of the objetive funtion l(x, κf(x)) should be 0when the system state is within the terminal onstraint set Xf in order to satisfy A4. Asuitable hoie for the stage ost is

l(x, u) := α(x)l(x, u), (3.24)where α(x) = 1, ∀x /∈ Xf , else α(x) = 0 and l(x, u) = 1
2
(xT Qx + uTRu), where Q > 0and R > 0. The losed-loop system is exponentially stable with domain of attration XN ,beause the MPC ontroller steers the system with initial state x ∈ XN within �nite timeto Xf with the ontroller value κN(·).

3.3.5 Terminal ost and onstraint set MPCTerminal ost and onstraint sets are employed by most modern model preditive on-trollers. In linear, onstrained systems the terminal ost funtion an be hosen F (x) =

V 0
uc(x) = 1

2
xT Pfx, that is the same as the unonstrained in�nite horizon optimal on-trol problem. The loal ontroller κf (x) = Kfx is the optimal in�nite horizon on-troller and the terminal onstraint set Xf is the maximal admissible set for the system

x+ = Afx, Af := A + BKf , thus satisfying A1-A4. This results in an exponentiallystable ontroller with domain of attration Xf . The ideal hoie for the terminal ostwould be to hoose F (x) = V o
∞(x), the objetive funtion of an in�nite horizon optimalontroller, that would result in the objetive funtion for model preditive ontroller being

V o
N(x) = V o

∞(x), and on-line optimization would not be neessary. The resulting MPController will have all the advantages of in�nite horizon ontrol. This is usually notpratial, and the use of the terminal onstraint set Xf and F (x) = V 0
uc(x) = 1

2
xT Pfxapproximates the advantages of using F (x) = V o

∞(x). The nonlinear ase is also given inEletrial, Eletroni and Computer Engineering 49

 



Chapter 3 Robust MPC - Stability of unertain systemsMayne et al. (2000).From this disussion, it is lear that the use of a terminal onstraint set Xf , terminalost funtion F (·) and loal stabilizing ontroller κf(·) is neessary to ensure stabilityin model preditive ontrol. The �rst two requirements, terminal onstraint set Xf andterminal ost funtion F (·), are expliitly inorporated into the ontroller, while the feed-bak ontroller κf(·) is only impliitly needed to prove stability. If the ost funtion F (·)is as lose to the objetive funtion V o
∞(·) as possible, the losed-loop trajetory is exatlythe same as that predited by the solution of the optimal ontrol problem PN(x).3.4 Robust MPC - Stability of unertain systemsRobust model preditive ontrol is onerned with the stability and performane of thelosed-loop system in the presene of unertainty in the plant model. Early studies inrobustness of model preditive ontrollers onsidered unonstrained systems and foundthat if the Lyapunov funtion retains its desent property in the presene of disturbanes(unertainty), it will remain stable. In the onstrained ase, the problem beomes moreomplex, beause the unertainty or disturbanes should not ause the losed-loop systemto violate its state or ontrol onstraints.Rihalet et al. (1978) performed one the earliest studies in robustness on systems withimpulse response models, by investigating the e�et of gain mismathes on the losed-loopsystem. Later work on systems modelled by impulse responses approahed the optimalontrol problem as a min-max problem, that aused the problem to grow exponentiallywith the size of the predition horizon.There are several approahes to robust model preditive ontrol, the �rst being a studyof the robustness of model preditive ontrol designed with a nominal model (that does nottake unertainty into aount). The seond approah onsiders all the possible realizationsof the unertain system when alulating the open-loop optimal ontroller (min-max open-loop MPC). The open-loop nature of model preditive ontrol is a problem when modelunertainty is present and the third approah addresses this by introduing feedbak inthe optimal ontrol problem that is solved on-line.Eletrial, Eletroni and Computer Engineering 50

 



Chapter 3 Robust MPC - Stability of unertain systemsFor the disussion of robust model preditive ontrol, the unertain system is desribedas
x+ = f(x, u, w), (3.25)
y = g(x), (3.26)where the state x and ontrol u satisfy the same onstraints

x(k) ∈ X, (3.27)
u(k) ∈ U, (3.28)and the disturbane or unertainty w satis�es w ∈ W (x(k), u(k)) for all k where, for eah

(x, u), W (x, u) is losed and ontains the origin in its interior. The disturbane sequene
w := {w(0), w(1), ..., w(N − 1)} together with the ontrol sequene u and initial state
x will produe the resulting state trajetory xu,w(·; x). Let F(x, u) := f(x, u, W (x, u)),whih will map values in X and U to subsets of R

n, resulting in x+ ∈ F(x, u).De Niolao et al. (1996) and Magni and Sepulhre (1997) studied the inherent robust-ness of model preditive ontrollers that were designed without taking unertainty intoaount.3.4.1 Stability onditions for robust MPCMost versions of robust model preditive ontrol take all the realizations of the unertaintyor disturbane w into onsideration that requires strengthened assumptions to be satis�ed,whih are summarized as robust versions of axioms A1-A4 (Mayne et al., 2000):A1: Xf ⊂ X, Xf losed, 0 ∈ Xf .A2: κf (x) ∈ U, ∀x ∈ Xf .A3a: f(x, κf(x), w) ∈ Xf , ∀x ∈ Xf , ∀w ∈ W (x, κf (x)).A4a: F (f(x, κf(x), w)) − F (x) + l(x, κf (x), w) ≤ 0, ∀x ∈ Xf , ∀w ∈ W (x, κf(x)).Eletrial, Eletroni and Computer Engineering 51

 



Chapter 3 Robust MPC - Stability of unertain systemsIf F (·) is a robust Lyapunov funtion in the neighbourhood of the origin, there exists atriple (F (·), Xf , κf (·)), whih ensures that A4a is satis�ed and results in an asymptotiallyor exponentially stable ontroller.
3.4.2 Open-loop min-max MPCOpen-loop min-max model preditive ontrol onsiders all the possible realizations of theunertain system in order to ensure that the state, ontrol and terminal onstraints aremet for all the possible realizations (Mihalska and Mayne, 1993). The objetive funtionvalue in this ase is determined for eah realization

J(x,u,w) :=
N−1
∑

i=0

l(x(i), u(i)) + F (x(N)), (3.29)where x(i) = xu,w(i; x; 0) and the �nal objetive value is the worst ase for all the real-izations
VN (x,u) := max{J(x,u,w)|w ∈ WN(x,u)}, (3.30)where WN (x,u) is the set of admissible disturbane sequenes. Other hoies are to takethe objetive value as the nominal objetive value by using w = 0. Badgwell (as disussedin Mayne et al. (2000)) used an interesting approah, where the ontroller should reduethe objetive funtion value for every realization, whih is assumed �nite, for a linearsystem. This is stronger than only reduing the worst-ase objetive value.The set of admissible ontrol sequenes Uol

N (x) is that set whih satis�es the ontrol,state and terminal onstraints for all possible realization of the disturbane sequene wwhen the initial state is x. Suppose the the set X
ol
i , for all i ≥ 0, is the set of statesthat an be robustly steered to the terminal state onstraint Xf in i steps or less by anadmissible ontrol sequene u ∈ Uol

N (x). The open-loop optimal ontrol problem is
P ol

N (x) : V o
N(x) = min{VN(x,u)|u ∈ Uol

N (x)}. (3.31)Eletrial, Eletroni and Computer Engineering 52

 



Chapter 3 Robust MPC - Stability of unertain systemsThe solution to P ol
N (x) yields the optimal ontrol sequene u

o(x), where the impliit min-max ontrol law is
κol

N(x) := u
o(0; x), (3.32)as in the nominal ase. The ontrol sequene will result in a �bundle� of optimal statesequenes {xo(x,w)} as a result of the disturbane sequenes w, so that

x
o(x,u) = {xo(0; x;w), xo(1; x;w), ..., xo(N − 1; x;w), xo(N ; x;w)}. (3.33)The triple (F (·), Xf , κf (·)) is assumed to satisfy the stability onditions A1-A4a. Assumethe proess is started with an initial state x ∈ X ol

N and has an optimal (and by impliationa feasible) ontrol sequene {uo(0; x), uo(1; x), ..., uo(N − 1; x)} for the optimal ontrolproblem P ol
N (x) that steers the state to within the terminal onstraint set Xf within N stepsor less, so that xo(N ; x;w) ∈ Xf , ∀w ∈ W(x,uo(x)). As a result the abbreviated ontrolsequene {uo(1; x), uo(2; x), ..., uo(N − 1; x)} should steer the state x+ ∈ F(x, κN(x)) tothe terminal onstraint set Xf within N − 1 steps or less, where x+ ∈ X ol

N−1. A problemarises when a feasible ontrol sequene needs to be generated by adding a term to theabbreviated ontrol sequene
ũ(x) = {uo(1; x), uo(2; x), ..., uo(N − 1; x), v}, (3.34)for the optimal ontrol problem P ol

N (x+), where the ontrol ation v ∈ U is required tosatisfy f(xo(N ; x;w), v, wN) ∈ XN for all w ∈ W(x,uo(x)). The stability ondition A3adoes not ensure that suh a ontrol ation v an be obtained, whih prevents the upperbound of the objetive funtion V o
N (x+) from being alulated. Mihalska and Mayne(1993) irumvent this problem by using a variable horizon optimal ontrol problem P (x)with deision variables (u, N). The optimal solution (uo(x); No(x)) is obtained by solving

Eletrial, Eletroni and Computer Engineering 53

 



Chapter 3 Robust MPC - Stability of unertain systemsthe optimal ontrol problem P (x), where
u

o(x) = {uo(0; x), uo(1; x), ..., uo(N(x) − 1; x)}.For the optimal ontrol problem P (x+) the solution (u(x), No(x)−1) is a feasible solutionfor any x+ ∈ X (x, κN(x)). The variable horizon objetive funtion V o(·) and impliitontroller κol(·) will ensure that stability ondition A4a holds for all x ∈ X
ol
N ⊂ Xf , ∀w ∈

W (x, κol(x)). Inside the terminal onstraint set Xf , a suitable loal ontroller κf(·) is usedsubjet to stability onditions A1-A4a. This will result in an asymptoti (exponential)stable ontroller with domain of attration X
ol
N , subjet to further modest assumptions(Mihalska and Mayne, 1993).

3.4.3 Feedbak robust MPCFeedbak robust model preditive ontrol is better suited for unertain systems than open-loop min-max ontrollers, beause open-loop ontrollers assume that the trajetories ofthe system may diverge, whih may ause X
ol
N to be very small, or even empty for amodest sized predition horizon N , whih is very onservative. This happens beausethe open-loop min-max ontrollers do not take the e�et of feedbak into onsideration,whih would prevent the trajetories from diverging too muh. To address the shortom-ings of open-loop min-max ontrol, feedbak MPC was proposed by Lee and Yu (1997),Sokaert and Mayne (1998), Magni et al. (2001) and Kothare et al. (1996). In feedbakmodel preditive ontrol, the ontrol sequene u is replaed by a ontrol poliy π whihis a sequene of ontrol laws:

π := {u(o), κ1(·), ..., κN−1(·)}, (3.35)where κi(·) : X → U is a ontrol law for eah i, while u(0) is a ontrol ation, beausethere is only one initial state. The objetive funtion for the feedbak model preditiveEletrial, Eletroni and Computer Engineering 54

 



Chapter 3 Robust MPC - Stability of unertain systemsontroller is
VN(x, π) := max{J(x, π,w)|w ∈ WN(x, π)} (3.36)and the objetive funtion for eah realization
J(x, π,w) :=

N−1
∑

i=0

l(x(i), u(i)) + F (x(N)), (3.37)where x(i) = xπ,u(i; x) is the state at time i resulting from an initial state at time 0,a ontrol poliy π and a disturbane sequene w. The admissible set of disturbanes,given the ontrol poliy π is implemented, is WN (x, π). The set of admissible ontrolpoliies that will satisfy the ontrol, state and terminal onstraints for all the admissibledisturbanes with initial state x, is ΠN (x). The set of initial states that an be steeredto the terminal onstraint set Xf by an admissible ontrol poliy π in i steps or less, is
X

fb
i , ∀i ≥ 0. The feedbak optimal ontrol problem beomes

P fb
N (x) : V o

N(x) = min{VN(x, π)|π ∈ ΠN(x)}. (3.38)If a solution to P fb
N (x) exists, the optimal ontrol poliy is

πo(x) = {uo(0; x), κo
1(·; x), κo

2(·; x), ..., κo
N−1(·; x)}, (3.39)where the impliit feedbak model preditive ontrol law is

κfb
N (x) := uo(0; x). (3.40)If the stability onditions A1-A4a are satis�ed for P fb

N (x), a feasible ontrol poliy for
P fb

N (x+) for all x+ ∈ F(x, κfb
N (x)) and x ∈ X

fb
N is

π̃(x, x+) := {κo
1(x

+; x), κo
2(·; x), ..., κN−1(·; x), κf(·)}. (3.41)
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Chapter 3 Robust MPC - Stability of unertain systemsWith this feasible ontrol poliy, and with X
fb
N an invariant set for x+ ∈ F(x, κfb

N (x)),assumption A4a will be satis�ed for all x ∈ X
fb
N and w ∈ W (x, κfb

N (x)). The resultingrobust model preditive ontroller is asymptotially (exponentially) stable with domainof attration X
fb
N under further modest assumptions. The results are very similar to open-loop min-max ontrol, exept that the domain of attration X

fb
N inludes X

ol
N and ouldpossibly be muh larger. Feedbak MPC is enouraging, but su�ers from muh higheromplexity than open-loop min-max ontrol.3.4.4 Robust MPC implementationsSome implementations of robust model preditive ontrollers that fall into the above-mentioned ategories, are linear matrix inequality (LMI) based ontrollers that produefeedbak poliies whih are implemented at eah time interval. The problem with theseontrollers is that they use an ellipsoid invariant set for their domain of attration, whihmakes them onservative. This is beause the sets must be symmetri, and in systemswhere the onstraints are non-symmetri, the ellipsoid sets will be a small subset ofthe maximum admissible set. The feedbak robust MPC tehnique was introdued byKothare et al. (1996). The tehnique was improved by Cuzzola et al. (2002) by desribingthe unertain system as a polytope and applying di�erent Lyapunov funtions to eahvertex of the unertain polytope to redue the onservatism of the method. The methoduses semide�nite programming (SDP) to solve the minimization problem on-line, whihis omputationally very expensive ompared to quadrati programming (QP) used innominal MPC. Further improvements made by Wan and Kothare (2003); Casavolaa et al.(2004); Ding et al. (2004) resulted in an attempt to move as muh of the alulation aspossible o�ine. The LMI methods have been used to robustify PID (Proportional, Integraland Derivative) ontrol (Ge et al., 2002) and a few ase studies on LMI based ontrol weredone by Park and Rhee (2001) and Wu (2001).An approah to feedbak robust model preditive ontrol is proposed by Langson et al.(2004) who uses tubes to enapsulate all the possible states that an result from theontroller. If the unertainties an be su�iently desribed, the optimization problemEletrial, Eletroni and Computer Engineering 56

 



Chapter 3 Robust MPC - Stability of unertain systemsneeds only be alulated one, and the ontrol poliy will steer the system to the terminalonstraint set Xf , where a loal stabilizing ontroller will keep the unertain system inthe terminal onstraint set.There is a movement in robust model preditive ontrol to redue the on-line ompu-tational burden. Lee and Kouvaritakis (2002) propose a method where optimal ontrolsequenes are omputed o�ine for ertain anonial states. A feasible (suboptimal) on-trol sequene is generated on-line for the state x by using linear ombinations of thepreomputed optimal ontrol sequenes. The on-line omputation is redued to a simplematrix multipliation, and no on-line optimization is performed. De la Pena et al. (2004)proposed using multi-parametri methods to desribe a suboptimal ontrol strategy thatwill be less omputationally expensive for on-line use. Fukushima and Bitmead (2005)inorporate the unertainties and bounded disturbanes into a omparison model, andthe ontrol algorithm an then be set up as a nominal MPC (without unertainties) withonly a QP problem to solve on-line. The omparison model provides an upper bound onthe objetive funtion value used in the on-line optimization. Mayne et al. (2005) reduedthe on-line optimization of robust model preditive ontrol to a QP problem, with theinitial state as well as the ontrol sequene as part of the deision variables. As the on-lineproblem is a nominal ontrol problem, tighter onstraints are used to ensure robustness.This is only valid for linear systems, and annot be easily extended to nonlinear systems.An interesting robust ontroller, in a proess ontrol environment, was proposed byTsai et al. (2002), whih uses neural adaptive ontrol based on arti�ial neural networks(ANN) in onjuntion with normal robust MPC. The outputs of the two ontrollers areombined and the weightings are alulated from regional knowledge of the ANN, whihdetermines whether the ANN is operating in an area of good predition harateristis ornot.An alternative approah to robust model preditive ontrol, is to modify the objetivefuntion to ensure robust stability in the presene of unertainties. Wang and Romagnoli(2003) used robust identi�ation theory to onstrut a generalized objetive funtion, toreplae the quadrati objetive funtion usually employed to produe a robust ontroller.Eletrial, Eletroni and Computer Engineering 57

 



Chapter 3 Robust model preditive ontrollersThe on-line optimization uses the nominal model, and robustness is provided by theobjetive funtion. A method for robustifying generalized preditive ontrol (GPC) hasbeen proposed by Rodríguez and Dumur (2005).The robust model preditive ontrollers do not always provide o�-set free traking,and this problem is addressed by Wang and Rawlings (2004b,a) who use a robust predi-tor that updates itself eah time measurements are available to ensure that the o�-set iseliminated. Pannohia (2004) approahes the problem by designing a robust linear feed-bak ontroller and an appropriate invariant set where the ontroller will satisfy the on-straints. The ontroller uses the dual-mode approah suggested by Rossiter et al. (1998)and later implemented by Kouvaritakis et al. (2000); Shuurmans and Rossiter (2000) andLee and Kouvaritakis (2000), where the feedbak law ui(·) in the poliy π is restrited tohave the form ui(x) = vi + Kx, i = 0, 1, 2, ..., N − 1, that hanges the optimization prob-lem to alulating the free ontrol moves {v0, v1, v2, ..., vN−1} rather than the poliy. Thedual-mode ontroller remains essentially a feedbak model preditive ontrol, beause Kxlimits the diversion of trajetories of the losed-loop system.
3.5 Robust model preditive ontrollersIn this setion two robust model preditive ontroller methods, used in omparison withnominal MPC in the next hapter, are disussed in more detail. The �rst method, pro-posed by Kothare et al. (1996) alulates a feedbak poliy at eah time interval forthe system. The seond method onsists of a dual-mode ontroller �rst proposed byRossiter et al. (1998), where the feedbak poliy is a ombination of an open-loop feed-bak ontrol law κf ≡ −Kx with free ontrol moves v, ui(·) = v − Kx.3.5.1 Robust MPC using LMIsTraditional model preditive ontrol solves an open-loop onstrained optimization prob-lem. The internal model is a nominal model and the assumption is that feedbak willompensate for the model unertainty and unmeasured disturbanes. The struture ofEletrial, Eletroni and Computer Engineering 58

 



Chapter 3 Robust model preditive ontrollersthe value funtion usually does not take the e�et of feedbak into onsideration.Kothare et al. (1996) formulated a new model preditive ontrol strategy with robust-ness in mind. The robust ontroller design expliitly inorporates model unertainty. Thevalue funtion is also formulated to take feedbak into onsideration. The whole theory isbased on linear matrix inequalities (LMI) (Boyd et al., 1994). With urrent interior pointmethods and omputer tehnology, these funtions an now be solved fast enough to beappliable in on-line use. Current model preditive ontrol theory an be reast as linearmatrix inequalities that inorporate input and output onstraints, model unertainty androbustness measures.
3.5.1.1 System desriptionsThe system is de�ned as a linear time-varying system by Kothare et al. (1996).

x(k + 1) = A(k)x(k) + B(k)u(k), (3.42)
y(k) = Cx(k), (3.43)

[ A(k) B(k)] ∈ Ω, (3.44)where x(k) is the state of the system, u(k) is the ontrol vetor, y(k) is the output ofthe system and Ω is the set of models that desribes the system. For polytopi unertainsystems, the set Ω is the polytope
Ω ∈ Co

{

[ A1 B1 ], [ A2 B2 ], ..., [ Ai Bi ]

}

,where Co denotes the onvex hull.A seond representation of the system is alled the strutured feedbak unertainty. Theunertainty is desribed as perturbations in the feedbak loop. The system desriptionlooks as follows:Eletrial, Eletroni and Computer Engineering 59

 



Chapter 3 Robust model preditive ontrollers
x(k + 1) = Ax(k) + Bu(k) + Bpp(k),

y(k) = Cx(k),

q(k) = Cpx(k) + Dquu(k), (3.45)
p(k) = (∆q)(k).The operator ∆ is blok-diagonal:
∆ =

























∆1

∆2

.

.

∆r

























, (3.46)
with ∆i : R

ni → R
ni.For a linear time varying system, it an be shown that (3.45) an be ast in the formof (3.42-3.43) by using

Ω =

{[

A + Bp∆Cq B + Bp∆Dqu

]

: ∆ satis�es (3.46) with σ(∆i) ≤ 1

}

.(3.47)3.5.1.2 Objetive funtionThe stage ost of the objetive funtion used is a standard quadrati funtion of the form
Jp(k) =

p
∑

i=0

[

x(k + i|k)T Q1x(k + i|k) + u(k + i|k)T Ru(k + i|k)
]

, (3.48)where Q1 > 0 and R > 0 are symmetri weighting matries. The objetive funtionstrives to drive the state vetor to zero. The Q weighting matrix de�nes the severity ofthe state position penalty and the R matrix that of the ontrol ation. The ratio of Qand R will determine the priority of state position versus ontrol ation objetives.Eletrial, Eletroni and Computer Engineering 60

 



Chapter 3 Robust model preditive ontrollers3.5.1.3 Linear matrix inequalitiesLinear matrix inequalities have the following form
F (x) = F0 +

f
∑

i=1

xiFi > 0, (3.49)where x1, x2, ..., xf are the variables, Fi = F T
i ∈ R

nxn are given, and F (x) > 0 meansthat F (x) is positive-de�nite. Multiple LMIs F1(x) > 0, ..., Fn(x) > 0 an be expressedas the single LMI
diag (F1(x), ..., Fn(x)) > 0. (3.50)Convex quadrati inequalities are onverted to linear form using Shur's omplements. Inthe ase of matrix inequalities of the form

R(x) > 0, Q(x) − S(x)R(x)−1S(x)T > 0, (3.51)or
Q(x) > 0, R(x) − S(x)T Q(x)−1S(x) > 0, (3.52)where Q(x) = Q(x)T , R(x) = R(x)T , and S(x) depends a�nely on x, then the matrixinequality an be rewritten as







Q(x) S(x)

S(x)T R(x)






> 0. (3.53)3.5.1.4 Unonstrained robust model preditive ontrolFor robust model preditive ontrol, the optimization beomes a min-max problem. Theobjetive funtion is maximized as a funtion of the unertain models. The worst ase isthen minimized as a funtion of the ontrol sequene.Eletrial, Eletroni and Computer Engineering 61

 



Chapter 3 Robust model preditive ontrollers
min

u(k+i/k),i=0,1,2,..,m
max"

A(k + i) B(k + i)

#

∈Ω,i≥0
Jp(k), (3.54)with

Jp(k) =

p
∑

i=0

[

x(k + i|k)T Q1x(k + i|k) + u(k + i|k)T Ru(k + i|k)
]

. (3.55)This problem an be reast as linear matrix inequalities and in this ase the optimizedstate-feedbak gain x(k + i|k) = Fx(k + i|k) is determined that minimizes the objetivefuntion as
min
γ,Q,Y

γ (3.56)subjet to






1 x(k|k)

x(k|k) Q






≥ 0 (3.57)and



















Q QAT
j + Y T BT

j QQ
1/2
1 Y T R1/2

AjQ + BjY Q 0 0

Q1/2Q 0 γI 0

R1/2Y 0 0 γI



















≥ 0, j = 1, 2, .., L, (3.58)
where L is the number of linear models in the set Ω and x(k|k) is the measured state.From this optimization the feedbak gain is F = Y Q−1.In the ase of strutured feedbak unertainty, the optimization beomes

min
γ,Q,Y,Λ

γ (3.59)Eletrial, Eletroni and Computer Engineering 62

 



Chapter 3 Robust model preditive ontrollerssubjet to






1 x(k|k)

x(k|k) Q






≥ 0 (3.60)and

























Q Y T R1/2 QQ
1/2
1 QCT

q + Y T DT
qu QAT + Y T BT

R1/2Y γI 0 0 0

Q
1/2
1 Q 0 γI 0 0

CqQ + DquY 0 0 Λ 0

AQ + BY 0 0 0 Q − BpΛBT
p

























≥ 0, (3.61)
where

Λ =

































λ1In1

λ2In2

.

.

.

λrInr

































> 0, (3.62)
where x(k|k) is the measured state and Ini

, i = 1, 2, .., r is the identity matrix of theorret dimensions for the diagonal entry i. The optimal feedbak gain is F = Y Q−1.
3.5.1.5 Input onstraintsInput onstraints an be inorporated into the robust model preditive formulation asadditional linear matrix inequalities. The input onstraints of the form

‖u(k + i|k)‖2 ≤ umax, (3.63)Eletrial, Eletroni and Computer Engineering 63

 



Chapter 3 Robust model preditive ontrollersan be written as linear matrix inequalities of the form






u2
maxI Y

Y T Q






≥ 0. (3.64)For onstraints on the individual omponents of the input vetor of the form

|uj(k + i|k)| ≤ uj,max, i ≥ 0, j = 1, 2, ..., nu, (3.65)the linear matrix inequalities are






X Y

Y T Q






≥ 0, with Xjj ≤ u2

j,max, j = 1, 2, ..., nu, (3.66)with X a symmetri matrix.
3.5.1.6 Output onstraintsOutput onstraints an be added to the robust model preditive ontrol formulation asadditional linear matrix inequalities. Here the output has to be maximized over theunertain models. This ensures that the onstraints will not be violated even in the worstase senario. The output onstraints of the form

max

[ A(k + i) B(k + i)] ∈Ω,i≥0

‖y(k + i|k)‖2 ≤ ymax, i ≥ 1, (3.67)an be written in the following linear matrix inequality form for a polytopi unertaintydesription






Q (AjQ + BjY )T CT

C(AjQ + BjY ) y2
maxI






≥ 0, j = 1, 2, ..., L, (3.68)Eletrial, Eletroni and Computer Engineering 64

 



Chapter 3 Robust model preditive ontrollerswhere L is the number of linear models in the unertainty desription. For the struturedunertainty ase, the output onstraints beome












y2
maxQ (cqQ + DquY )T (AQ + BY )T CT

CqQ + DquY T−1 0

C(AQ + BY ) 0 I − CBpT
−1BT

p CT













≥ 0, (3.69)
with

T =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t1In1

t2In2

.

.

.

trInr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0. (3.70)
The ase for omponents of the output vetor is exatly the same, exept for C = Ci and
T = Ti, where i is the output omponent in question, in (3.68) and (3.69).
3.5.1.7 Synthesis of the ontrollerThe ontroller is synthesised by applying the linear models of setion 2.4.5 in (3.61) andhoosing the weighting for the state deviation Q and the penalty of the ontrol ation
R as in table 2.1. The input onstraints are spei�ed through (3.64) or (3.66) and theoutput or state onstraints through (3.69) and (3.70).
3.5.1.8 Controller operationAt eah time interval k, the semide�nite optimization (3.59) is performed subjet to thelinear matrix inequality onstraints (3.60,3.61,3.62,3.66,3.69,3.70). The feedbak law fortime step k is K = −F , where F = Y Q−1.Eletrial, Eletroni and Computer Engineering 65

 



Chapter 3 Robust model preditive ontrollers3.5.2 Dual-mode robust model preditive ontrollerThe ontroller proposed by Pluymers et al. (2005b) uses an optimized ontrol sequeneover the predition horizon N after whih a global stabilizing state feedbak gain K isused.3.5.2.1 Augmented system desriptionThe system x̃(k + 1) = Φ(k)x̃(k) uses an augmented desription with verties of theunertainty polytope given by:
Φi =













Ai − BiK Bi 0

0 0 I((N−1).nu,(N−1).nu)

0 0 0













, i = 1, .., L, (3.71)
where L is the number of models.3.5.2.2 Constraints of the augmented systemThe onstraints of the augmented system are given by Ax̃x̃(k) ≤ bx̃, k = 0, ...,∞ with Ax̃and bx̃ de�ned as:

Ax̃ =







Ax 0 0

−AuK Au 0






Bx̃ =







bx

bu






, (3.72)where the state onstraints are Axx ≤ bx and the input onstraints are Auu ≤ bu.To alulate the robust invariant set fromAx̃ and bx̃ the algorithm from Pluymers et al.(2005a) is used to onstrut Saug = {x̃|ASx̃ ≤ bS}.3.5.2.3 Quadrati problem weighting matrixThe quadrati program weighting matrix forms part of the value funtion (3.78) that isoptimized on-line. The weighting matrix P should satisfy:

P − ΦT
i PΦi > ΓT

x QΓx + ΓT
u RΓu, i = 1, ..., L, (3.73)Eletrial, Eletroni and Computer Engineering 66

 



Chapter 3 Robust model preditive ontrollerswhere Γx=

[

I(nx,nx) 0

], Γu=

[

−K I(nu,nu) 0

] and Φi, i=1,...,L. The R matrix is theweighting on the inputs and Q the weighting on the states. The P matrix an be obtainedby doing onvex optimization
min

P=P T >0
tr(P ), subjet to (3.73). (3.74)3.5.2.4 On-line ontrol problemThe implemented input vetor u(k) is the ombination of the state feedbak gain and the�rst blok of the optimized sequene of free ontrol moves,

u(k) = −Kx(k) + co(k|k). (3.75)The optimized sequene of free ontrol moves co
N(k) is determined from a quadrati pro-gram subjet to the polyhedral set onstraints ASx̃ ≤ bS that form Saug as follows

min
cN (k)

J (x(k), cN (k)) , (3.76)subjet to
[

x(k)T cN(k)T

]T

∈ Saug, (3.77)where the objetive funtion is
J (x(k), cN(k)) =

[

x(k)T cN(k)T

]

P

[

x(k)T cN(k)T

]T

, (3.78)with P = P T ∈ ℜ(nx+N.nu)×(nx+N.nu) satisfying (3.73).3.5.2.5 Synthesis of ontrollerThe ontroller is synthesised by �rst onstruting all the augmented linear systems as in(3.71). This ontroller uses the polytopi unertainty desription Ω =

[

Ai Bi

]

, i =

1, 2, ..., L, where L is the number of models. The polytopi unertainty desription an beEletrial, Eletroni and Computer Engineering 67

 



Chapter 3 Conlusionalulated from the strutured unertainty desription by applying all the ombinationsof the ∆ operator to the strutured unertainty desription. Eah entry on the diagonal of
∆ an be either −1 or 1 and all other entries are 0. Eah ombination of diagonal entriesgives ∆i, i = 1, 2, ..., L, where L = 2n and ∆ ∈ R

n×n, gives a vertex of the polytopiunertainty desription by produing [ Ai Bi

]. The simpli�ed model of setion 2.4.5has a ∆ with dimension 4. This gives a total of L = 24 = 16 models.The globally stabilizing unonstrained feedbak gain K is then synthesised, suh thatall the models [ Ai Bi

]

, i = 1, 2, ..., L are stabilized by K. The augmented system issynthesised as desribed in setion 3.5.2.1 by using the globally stabilizing unonstrainedfeedbak gain K and the polytopi unertain models Ω =

[

Ai Bi

]

, i = 1, 2, ..., L.The polyhedral set that desribes the onstraints of the system is then alulated fromthe augmented system desription and K as in setion 3.5.2.2. The weighting matrix Pof the quadrati program is then alulated o�ine using the augmented system, K, theweighting on the state deviation Q, and weighting on the ontrol ation R as desribedin setion 3.5.2.3. The values for Q and R are shown in table 2.1.3.5.2.6 Controller operationThe ontroller omponents of the augmented system, globally stabilizing feedbak gain
K, quadrati program weighting matrix P , and the polyhedral onstraint set Saug, assynthesised in setion 3.5.2.5, are then used as part of the quadrati program (3.76,3.77and 3.78) at eah time step k. The input vetor is obtained by (3.75).3.6 ConlusionThis hapter brie�y desribes the development of stability theory for model preditiveontrol and the subsequent robust stability and robust performane theory for modelpreditive ontrol. The hapter further highlights two robust model preditive ontrollermethods, namely feedbak robust model preditive ontrol and dual-mode robust modelpreditive ontrol. The synthesis and operation of both these ontrollers are desribed,as they will be ompared to nominal model preditive ontrol, in terms of performaneEletrial, Eletroni and Computer Engineering 68

 



Chapter 3 Conlusionand stability in the presene of model unertainty, in hapter 4.
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Chapter 4
Simulation Study
In this hapter, a omparative simulation study is onduted between nominal MPC andtwo robust MPC shemes as applied to a model of an EAF. In the �rst instane, theability of the ontrollers to remain stable under model mismathes that our due to theunertainty of the model is studied. The performane of the ontrollers based on a suitablevalue funtion is used to ompare the ontrollers. Seondly, more pratial senarios areinvestigated, where a preditor is employed for feedbak to the ontrollers and only limitedmeasurements are available from the plant for feedbak. This provides an opportunity toinvestigate the e�et that a lak of measurements has on the performane of the system.4.1 IntrodutionThe purpose of the re�ning proess in an eletri ar furnae is to produe a ertain gradeof steel. The properties that de�ne the grade of the steel are all the impurities withinthe steel, of whih arbon is the most important. The downstream proessing of the steelrequires a ertain temperature at tapping.The redued model of Bekker et al. (1999) only models arbon ontent, temperature,
FeO, Si and SiO2. The arbon ontent is only marginally ontrollable as shown insetion 2.4.4 and setion 2.4.5, therefore the seondary objetive, that is to ontrol thetemperature to the desired value required for downstream proessing, is pursued. Insetion 2.4.5 it is shown that Si and SiO2 annot be ontrolled, and are as suh left out70

 



Chapter 4 Introdutionof the ontrol objetives.High levels of FeO in the slag are undesirable, beause eah time deslagging takesplae, iron is lost in the form of FeO. One of the objetives would be to limit the amountof FeO in the slag in order to maximize yield. There are two methods to aomplish this:1. The state deviation from the desired amount of FeO an be penalized. This willfore the ontroller to apply ontrol ations that will minimize the inrease of FeOin the slag.2. Exessive oxygen injetion ould be penalized, beause oxygen injetion inreasesthe FeO in the slag due to the oxidation of iron.The use of oxygen injetion is governed by the trade-o� between FeO prodution and itsuse as an additional soure of energy. Oxygen injetion is also a mehanism by whihdearburization takes plae. The trade-o� an be made by plaing a state onstraint onthe inrease of FeO; usually it is desirable to limit FeO to less than 40% of the totalslag mass. If yield is paramount, a state weighting on FeO is preferable. The ontrolleran be tuned to minimize the energy ost by setting the weights of the inputs aordingto the ost of eah energy soure. This may result in oxygen injetion being preferred asenergy soure beause it might be less expensive than eletriity.For these simulations, the bath temperature and FeO ontent in the slag are shown asoutputs and oxygen and graphite injetion as well as eletri power are shown as inputs.The arbon ontent in the bath is not shown beause in all instanes it will mirror thatof �gure 2.6 in setion 2.4.4.4.1.1 Controller weighting matriesThe state weighting is suh that only the deviation of temperature from the setpoint orreferene trajetory is penalized as shown in table 4.1. If FeO is penalized as an undesir-able produt, the optimization would try to minimize its prodution. The weighting onoxygen an be determined by energy priing onsiderations.Eletrial, Eletroni and Computer Engineering 71

 



Chapter 4 IntrodutionTable 4.1: MPC weighting matrix for states.Variable Weighting value
FeO ontent in slag 0Temperature 1Weighting matrix Q

[

0 0
0 1

]

Table 4.2: MPC weighting matrix for inputs.Variable Even weighting Oxygen heavy weightingOxygen injetion weighting 0.01 0.1Eletri power weighting 0.01 0.01Graphite injetion weighting 0.01 0.01Input weighting matrix R 



0.01 0 0
0 0.01 0
0 0 0.01









0.1 0 0
0 0.01 0
0 0 0.01





There are two input weighting senarios, the �rst where all the inputs have an equalweighting, to enourage the ontroller to make use of all the inputs equally. In the seondsenario, oxygen has a greater weighting to fore the ontroller to make less use of oxygeninjetion to manipulate the temperature in order to redue the amount of FeO that forms.The weighting of the inputs are summarized in table 4.2. The weighting of the inputsis less than the weighting of temperature, for two reasons: Firstly, it redues the steadystate o�set if the steady state values are not at the origin, and seondly, it enouragesgreater ontrol ation that leads to redued response times.4.1.2 Closed-loop arhiteturesThere are two ontrol arhitetures for the simulation study. The �rst ontroller arhi-teture (�gure 4.1) uses full state feedbak, assuming ontinuous feedbak for all states.The setpoint or referene for the model preditive ontroller ontains a value for the tem-perature and FeO ontent, but the ontroller will ignore this setting for FeO, beausethe weighting on the states (table 4.1) will ause no penalty in the objetive funtion forEletrial, Eletroni and Computer Engineering 72

 



Chapter 4 Introdution
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Figure 4.1: Full state feedbak ontrol arhiteture.the deviation of FeO from its setpoint or referene. The ontroller manipulates oxygeninjetion, eletri power and graphite injetion. The temperature and FeO ontent fromthe plant are measured ontinuously and fed bak to the model preditive ontroller.The seond ontrol arhiteture (�gure 4.2) is a limited measurement, preditor feed-bak arhiteture. The ontroller provides ontrol ation to both the plant and preditor,the �ve state nonlinear model of setion 2.2. The preditor provides ontinuous estimatesof the plant states, temperature and FeO, to the model preditive ontroller. Eah timea measurement is available from the plant, it is fed to the preditor in order to orretthe state values, and preditor parameter values are updated as neessary.4.1.3 Controller objetivesIn order to determine whether the ontrollers attained the required level of performane,the objetives against whih the performane an be measured have to be learly de�ned.The objetives usually stem from the proess that imposes the onstraints on the inputs(beause of atuator limitations) and states as well as the setpoints that the ontrollershould reah and maintain.The minimum and maximum oxygen and arbon injetion rates are determined bythe injetors. The minimum oxygen and graphite injetion rate is 0 kg/s, beause neitherEletrial, Eletroni and Computer Engineering 73

 



Chapter 4 Introdution
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Figure 4.2: Limited measurement with preditor feedbak ontrol arhiteture.oxygen nor graphite an be extrated by the injetors. The maximum oxygen injetionrate is 1 kg/s and the maximum graphite injetion rate is 0.5 kg/s as spei�ed by themanufaturer.The minimum power that the eletri ar an produe is 0 Watt and the maximumpower it an produe is 40 MW .The state onstraint on FeO is 40% of the total slag mass. This will prevent too muhiron being lost during deslagging.The initial onditions for the re�ning stage for temperature, arbon, FeO, Si and
SiO2 are alulated from the average values of measurements taken over multiple taps(Rathaba, 2004). The measurements are shown in appendix C.The initial value for temperature is hosen to be 16000C, whih is lose to the averagevalue, while the tap temperature should be 16500C as required by the industry partner(Bellingan, 2005) for downstream proessing.The initial values of the re�ning stage for arbon varies greatly, between 0.2% to 0.06%of the bath mass. The initial value for arbon is hosen to be 0.2% of total bath mass.The desired arbon ontent at tapping is 0.05% of the total bath mass as spei�ed by theindustry partner (Bellingan, 2005) for the desired grade of steel. The di�erene betweenEletrial, Eletroni and Computer Engineering 74

 



Chapter 4 IntrodutionTable 4.3: Initial onditions for simulationsState Initial Condition
x3 Dissolved Carbon 160 kg
x4 Dissolved Silion 24 kg
x7 FeO in bath 4250.6 kg
x8 SiO2 in bath 1405 kg
x12 Bath temperature 1600 0CTable 4.4: States and inputs onstraintsState / Input Minimum onstraint Maximum onstraint
x7 - FeO in bath 0% of total slag mass 40% of total slagmass
d1 - Oxygen injetion rate 0 kg/s 1 kg/s
d4 - Eletri power 0 kW 40 000 kW
d5 - Graphite injetion rate 0 kg/s 0.5 kg/sthe initial and desired arbon ontent values determines the duration of the re�ning stage.The time of 600s is derived from the time it takes the arbon ontent to redue from 0.2%to 0.05% of the total bath mass.The initial onditions used for the simulations are summarized in table 4.3 and theonstraints on the states and inputs are summarized in table 4.4.4.1.4 Typial operationThis setion gives a quik overview of a typial tap and how ontrol would be implemented.The tap starts with the harging of srap. The srap is melted down and a seond buketis added. When the seond buket is melted down, the slag layer is removed and atemperature measurement and a sample of the molten metal are taken. The temperaturemeasurements are ostly as the probes are burnt away. The temperature measurementregisters within seonds on the SCADA system, while the metal sample takes a fewminutes to analyze. The desired steel grade is deided before the tap ommenes andas soon as the sample is analyzed, the melter knows how muh time is needed to bringthe arbon ontent down to the desired level and what setting to put the burners on.Approximately halfway though the re�ning stage, the slag layer is again removed andanother temperature measurement is taken. When the melter thinks that the ompositionand temperature are at the desired values, the steel is tapped into a ladle for furtherEletrial, Eletroni and Computer Engineering 75

 



Chapter 4 Nominal Senarioproessing.If the re�ning stage is automated, the ontroller is engaged as soon as the sampleanalysis is available. The preditor estimates the states of the furnae from the time thatthe temperature measurement is taken with the sample and temperature data as initialonditions. The ontroller takes over the oxygen and graphite injetors as well as thepower ontrol for the furnae. The ontroller will give an indiation to the melter when itis time to take a temperature measurement and give an indiation when the steel is readyfor tapping. The estimated temperature and arbon values for the furnae, as alulatedby the preditor, an be displayed for the melter. The melter an use the estimates totrak the progress of the proess or use it to ontrol the proess manually for speialsenarios.4.2 Nominal SenarioThe nominal senario is where there is no model mismath between the internal model ofthe ontrollers, the preditor and the model of the plant. The nominal ase is used as abenhmark for further simulation studies. In this senario the following assumptions aremade:
• Full state-feedbak is available.
• There is no mismath between the preditor and atual plant.
• There are no disturbanes.In this senario, the e�et of di�erent weightings on the inputs as well as the use ofa referene trajetory are examined. Three ontrollers are ompared: nominal MPC,feedbak robust MPC and the dual-mode robust MPC. In the nominal ase there should(theoretially) be no di�erene between the performane of the ontrollers, exept thatthe robust ontrollers might be more onservative than the nominal MPC. The �rst setof results was obtained with even weighting (table 4.2) on the inputs and a setpoint of1650oC for temperature.Eletrial, Eletroni and Computer Engineering 76

 



Chapter 4 Nominal SenarioFrom �gures 4.3, 4.4 and 4.5, it is lear that, as expeted, the nominal MPC anddual-mode robust MPC have almost the same results. The feedbak robust MPC isnot able to deal with the nominal ase, beause of limitations inherent in the theory.Feedbak robust MPC an only deal with symmetri onstraints, and in order to apply itwhere the onstraints are asymmetri, a onstant disturbane is added to the inputs. Theonservatism of the theory shows its in�uene, beause the inputs must be driven to theonstraints in order to suessfully ontrol the system. The feedbak robust MPC beomesmore onservative further away from the steady state value for both the states and inputs,the origin for the states and the disturbane level for the inputs. To suessfully ontrolthe system, the inputs must be driven to the onstraints. Feedbak robust MPC onstrutsthe feedbak poliy in suh a manner that the inputs do not reah the onstraints andthe losed-loop system an therefore not follow the setpoint suessfully. The ontrollerdoes this to ensure that the feedbak gain an be applied to the whole trajetory of thestates from the urrent ondition until it reahes the origin without the resulting inputsviolating the onstraints. This method is therefore exluded from the rest of the study.The seond set of results was obtained with a higher weighting on the oxygen injetionrate (table 4.2) in order to limit FeO formation, and the temperature is driven to asetpoint of 1650oC.Figures 4.6 and 4.7 show that the inreased weighting on oxygen leads to reduedformation of FeO. The robust MPC ontroller made use of more oxygen, whih is evidentfrom the higher FeO ontent with the same weighting on the oxygen in omparison withthe nominal MPC ontroller.The third set of results was obtained with an even weighting on the inputs (table 4.2)and with a linear referene trajetory for the temperature over the duration of the re�ningstage.Figures 4.8 and 4.9 show that the use of a referene trajetory redues the amount ofoxygen and eletri power used, and that the redued levels of eletri power and oxygeninjetion are maintained for the entire duration of the re�ning stage.Eletrial, Eletroni and Computer Engineering 77

 



Chapter 4 Worst-ase senario: E�ienies at their minimumThe fourth set of results was obtained with a higher weighting on the oxygen injetionrate (table 4.2) in order to redue the formation of FeO, and a linear referene trajetoryfor temperature is employed over the duration of the re�ning stage.Figures 4.10 and 4.11 show that the use of a higher weighting on oxygen injetionredues the formation of FeO and it is lear that more eletriity and less oxygen is used.Again the nominal MPC ontroller uses less oxygen than the robust ontroller, resultingin signi�antly less FeO being produed.From the nominal ase, it is di�ult to distinguish between the nominal MPC anddual-mode robust MPC, beause there are no model mismathes.Robust MPC is more onservative in using oxygen than the nominal MPC ontrollerusing the same weighting matries, whih an be attributed to the globally stabilizingfeedbak gain of the dual-mode robust MPC introduing extra dynamis into the QP.The redued usage of oxygen will slightly redue the dearburization rate as well as theamount of FeO in the slag.With both ontrollers, there is a slight o�set between the setpoint and outputs, whihan be attributed to the steady-state inputs not reahing zero, and the o�set is a resultof the optimization of the objetive funtion being a trade-o� between making the stateerror zero and the inputs zero.The senarios where limited feedbak is available are not investigated as it will produethe same results as above. This is beause there is no model mismath between the internalontroller model and atual plant or between the preditor and atual plant.4.3 Worst-ase senario: E�ienies at their minimumThese worst-ase senario investigates the e�et of a model mismath between the internalmodel of the model preditive ontrollers and the atual plant when full state feedbak isemployed to gauge the robust stability and performane of the ontrollers. In the senarioswhere limited plant measurements are available, the e�et of model mismathes betweenthe preditor and the atual plant is investigated in order to gauge the sensitivity of thesystem to the performane of the preditor. This senario fouses on the e�et that lowerEletrial, Eletroni and Computer Engineering 78

 



Chapter 4 Worst-ase senario: E�ienies at their minimum
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Chapter 4 Worst-ase senario: E�ienies at their minimum
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(e) Graphite InjetionFigure 4.4: Dual Mode Robust MPC - Nominal Case with full state feedbak.
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Chapter 4 Worst-ase senario: E�ienies at their minimum
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(e) Graphite InjetionFigure 4.5: Feedbak Robust MPC - Nominal Case with full state feedbak.
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(e) Graphite InjetionFigure 4.6: Nominal MPC - Nominal Case with full state feedbak and redued oxygenusage.
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(e) Graphite InjetionFigure 4.7: Dual Mode Robust MPC - Nominal Case with full state feedbak and reduedoxygen usage.
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(e) Graphite InjetionFigure 4.8: Nominal MPC - Nominal Case, full state feedbak and referene trajetory.
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(e) Graphite InjetionFigure 4.9: Dual Mode Robust MPC - Nominal Case, full state feedbak and referenetrajetory.
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(e) Graphite InjetionFigure 4.10: Nominal MPC - Nominal Case, full state feedbak, referene trajetory andredued oxygen usage.
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(e) Graphite InjetionFigure 4.11: Dual Mode Robust MPC - Nominal Case, full state feedbak, referenetrajetory and redued oxygen usage.
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Chapter 4 Worst-ase senario: E�ienies at their minimumthan nominal e�ienies (ηFeO and ηARC) have on the ontroller and system as a whole.In these senarios the following assumptions are made:
• There are three feedbak senarios:� Full state-feedbak is available.� One temperature measurement is available.� One temperature measurement and an update of the e�ienies (ηFeO and

ηARC) of the preditor are available.
• The preditor and atual plant have a mismath in their e�ienies (ηFeO and ηARC)where the e�ienies are lower in the real plant than in the preditor.
• There are no disturbanes.The three feedbak senarios help to investigate the performane of the system withregards to the di�erent modules in the system, espeially the performane of the preditorand ontroller. One of the objetives of the ontrollers is to limit the amount of FeO thatforms. Only the senarios with a higher penalty on oxygen are evaluated here, with theother senarios evaluated in appendix B.1.1.4.3.1 Worst-ase senario: E�ienies at their minimum with fullstate feedbakIn this �rst instane, full-state feedbak is employed to evaluate the losed-loop perfor-mane without a preditor in the loop in the extreme ase where the e�ienies (ηFeOand ηARC) are at the minimum of the model parameter on�dene intervals. RobustMPC and nominal MPC are ompared to determine whether robust MPC provides betterperformane in the presene of model mismath ompared to nominal MPC.A setpoint of 1650oC for temperature as well as higher weighting on oxygen injetion(table 4.2) is used for the �rst set of simulations.From these results (�gures 4.12 and 4.13) it is lear that the robust MPC performsbetter than the nominal MPC. The robust ontroller produed a smaller steady-stateEletrial, Eletroni and Computer Engineering 88

 



Chapter 4 Worst-ase senario: E�ienies at their minimumtemperature o�set. It is interesting to note that the nominal ontroller is stable for thissimulation even in this extreme model mismath situation. The heavier weighting onoxygen injetion is not enough to limit the FeO prodution to below the onstraint limit.The seond set of simulations uses a referene trajetory for temperature and a higherweighting on the oxygen injetion (table 4.2).These results (�gures 4.14 and 4.15) show the superior performane of the robust MPCompared to the nominal MPC, with almost perfet traking of the referene trajetoryby the robust MPC. The higher weighting on the oxygen auses the FeO onstraint to bereahed muh later and it fores the robust ontroller to use more eletriity. The robustMPC used more oxygen, but this resulted in better trajetory following when omparedto results obtained with the nominal MPC.This senario showed that both ontrollers are stable for the respetive simulationswith extreme model mismath, but the robust ontroller showed better performane interms of setpoint and referene trajetory following than the nominal ontroller.4.3.2 Worst-ase senario: E�ienies at their minimum with oneplant measurementA more realisti feedbak senario is investigated, beause typially only one measurementof temperature is taken in the middle of the re�ning stage. The rest of the data is produedby the preditor. The preditor uses the nominal plant parameters, while the real plantuses the worst-ase senario where the e�ienies (ηFeO and ηARC) are at their minimum.This senario should shed light on the e�et of model mismath between the preditorand real plant when ompared to the results of the previous subsetion.A setpoint of 1650oC for temperature as well as higher weighting on oxygen injetion(table 4.2) is used for the �rst set of simulations.Figures 4.16 and 4.17 show that both ontrollers perform equally poorly as a result ofthe inaurate feedbak from the preditor. An aeptable margin on the tap temperatureis ±100C, whih both the ontrollers were unable to attain.A referene trajetory for temperature as well as higher weighting on oxygen injetionEletrial, Eletroni and Computer Engineering 89

 



Chapter 4 Worst-ase senario: E�ienies at their minimum
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(e) Graphite InjetionFigure 4.12: Nominal MPC - E�ienies at a minimum, full-state feedbak and reduedoxygen usage.
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(e) Graphite InjetionFigure 4.13: Dual-mode robust MPC - E�ienies at a minimum, full-state feedbak andredued oxygen usage.
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(e) Graphite InjetionFigure 4.14: Nominal MPC - E�ienies at a minimum, full-state feedbak, reduedoxygen usage and referene trajetory.
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(e) Graphite InjetionFigure 4.15: Dual-mode robust MPC - E�ienies at a minimum, full-state feedbak,redued oxygen usage and referene trajetory.
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(e) Graphite InjetionFigure 4.16: Nominal MPC - E�ienies at a minimum, one measurement and reduedoxygen usage.
(table 4.2) is used for the seond set of simulations.

These simulations (�gures 4.18 and 4.19) show that the robust ontroller manages totrae the referene better when ompared to the nominal ontroller, but that it is stilloutside the aeptable interval of ±100C. Both ontrollers using a referene trajetory onaverage steer the temperature �ve degrees further from the desired �nal value omparedto when a setpoint is employed. The higher weighting on the oxygen auses less FeOto be produed by both ontrollers and limits the FeO ontent to within the onstraintlimit.Eletrial, Eletroni and Computer Engineering 94
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(e) Graphite InjetionFigure 4.17: Dual-mode robust MPC - E�ienies at a minimum, one measurement andredued oxygen usage.
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(e) Graphite InjetionFigure 4.18: Nominal MPC - E�ienies at a minimum, one measurement, referenetrajetory and redued oxygen usage.
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(e) Graphite InjetionFigure 4.19: Dual-mode robust MPC - E�ienies at a minimum, one measurement,referene trajetory and redued oxygen usage.
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Chapter 4 Worst-ase senario: E�ienies at their minimum4.3.3 Worst-ase senario: E�ienies at their minimum with oneplant measurement and preditor parameter updateIn the previous setion, the e�et of model mismath between the preditor and the atualplant on the performane of the losed-loop system is made lear. To ombat this, theparameters of the preditor are updated eah time a measurement is taken, in an attemptto improve performane. In this senario only one temperature measurement is taken inthe middle of the re�ning stage, with the rest of the state data produed by the preditor.The preditor uses the nominal plant parameters until the �rst measurement is taken,after whih the orreted parameters are employed. The real plant uses the worst-asesenario where the e�ienies (ηFeO and ηARC) are at their minimum.A setpoint of 1650oC for temperature as well as higher weighting on oxygen injetion(table 4.2) is used for the �rst set of simulations.Figures 4.20 and 4.21 show that both ontrollers are able to steer the temperature towithin the desired margin of ±100C. The robust ontroller overshoots the setpoint, whihan be attributed to an overorretion made in the preditor, as seen from the expetedtrajetory ompared to the atual trajetory. The expeted trajetory of the robust MPCends at the desired setpoint, while the expeted trajetory of the nominal MPC endswell outside the aepted margin of ±100C. The nominal MPC steers the temperatureto within the aepted margin of ±100C, but only beause of an overorretion of thepreditor. Both ontrollers use less oxygen, but the nominal ontroller less than therobust ontroller.A referene trajetory for temperature as well as higher weighting on oxygen injetion(table 4.2) is used for the fourth set of simulations.These simulations (�gures 4.22 and 4.23) show that the nominal ontroller misses the
±100C margin, while the robust ontroller does reah the ±100C margin. The expetedtrajetory of the robust ontroller reahes the desired value exatly, but the atual valueis somewhat lower, due to an underorretion in the parameters of the preditor. The ex-peted trajetory of the nominal MPC barely reahes the aepted margin, but the atualtrajetory misses the interval ompletely, due to the underorretion in the parameters ofEletrial, Eletroni and Computer Engineering 98
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(e) Graphite InjetionFigure 4.20: Nominal MPC - E�ienies at a minimum, one measurement and preditorparameter update and redued oxygen usage.
the preditor. The performane of the nominal MPC is hindered by its onservative useof oxygen.The inability of the ontrollers to follow the referene is due to an underorretionof the parameters of the preditor. The �rst sets of results show that the parameters ofthe preditor are su�iently orreted at the measurement point to enable satisfatoryresults. In the referene trajetory simulations, the orretions to the parameters of thepreditor are insu�ient, whih would require the updater to be tuned di�erently for thesetpoint ase and the referene trajetory ase. The updater is sensitive to the timingof the measurement, the initial onditions that vary for eah tap, and other disturbanessuh as late ave-ins.Eletrial, Eletroni and Computer Engineering 99
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(e) Graphite InjetionFigure 4.21: Dual-mode robust MPC - E�ienies at a minimum, one measurement andpreditor parameter update and redued oxygen usage.
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(e) Graphite InjetionFigure 4.22: Nominal MPC - E�ienies at a minimum, one measurement and preditorparameter update, referene trajetory and redued oxygen usage.
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Chapter 4 Worst-ase senario: E�ienies at their minimum
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(e) Graphite InjetionFigure 4.23: Dual-mode robust MPC - E�ienies at a minimum, one measurement andpreditor parameter update, referene trajetory and redued oxygen usage.
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Chapter 4 Worst-ase senario: E�ienies at their maximum4.4 Worst-ase senario: E�ienies at their maximumThese worst-ase senarios investigate the e�et of model mismath between the internalmodel of the ontrollers and the atual plant as well as the preditor and the atual plant.This senario fouses on the e�et reated if the e�ienies (ηFeO and ηARC) are higherthan nominal. This is a more theoretial senario, beause e�ienies do not tend tobe higher than expeted, but are neessary to determine whether the ontroller would beable to ope with suh a situation. In these senarios the following assumptions are made:
• There are three feedbak senarios:� Full state-feedbak is available.� One temperature measurement is available.� One temperature measurement and an update of preditor parameters areavailable.
• The preditor and atual plant have a mismath in their e�ienies (ηFeO and ηARC)where the e�ienies are higher in the real plant than in the preditor.
• There are no disturbanes.The three feedbak senarios help to investigate the performane of the system withregards to the di�erent modules in the system, espeially the performane of the preditorand ontroller.4.4.1 Worst-ase senario: E�ienies at their maximum withfull state feedbakIn this �rst instane, full-state feedbak is employed to evaluate the losed-loop perfor-mane without a preditor present, in the extreme ase where the e�ienies (ηFeO and

ηARC) are at the maximum of the on�dene interval for the plant model. Robust MPCand nominal MPC are ompared to determine whih provides better performane in thepresene of model mismath.Eletrial, Eletroni and Computer Engineering 103

 



Chapter 4 Worst-ase senario: E�ienies at their maximumThe �rst set of simulations uses a setpoint of 1650oC for temperature as well as higherweighting on oxygen injetion (table 4.2).Figures 4.24 and 4.25 show that both ontrollers are apable of following the setpoint,and the inreased weighting on oxygen redues the amount of FeO that forms. Thenominal MPC overshoots the temperature setpoint, while the robust MPC does not. Thenominal MPC uses less oxygen than the robust MPC, whih result in less FeO formingin the slag.The seond set of simulations uses a referene trajetory for temperature as well as ahigher weighting on oxygen injetion (table 4.2).The last simulations (�gures 4.22 and 4.23) show that both ontrollers have goodreferene following, with the robust ontroller overshooting slightly. The oxygen usage ofthe nominal ontroller is slightly lower than the previous run, but signi�antly lower thanthat of the robust ontroller.Both ontrollers perform very well in this senario where the e�ienies are higherthan expeted, and do not show any di�ulty with the model mismath between theinternal model and the atual plant.4.4.2 Worst-ase senario: E�ienies at their maximum withone plant measurementA more realisti feedbak senario is investigated, where only one measurement of tem-perature is taken in the middle of the re�ning stage, the rest of the data is produed by apreditor. The preditor uses the nominal plant parameters, while the real plant uses theworst-ase senario where the e�ienies (ηFeO and ηARC) are at their maximum. Thissenario should shed light on the e�et of model mismath between the preditor and realplant when ompared to the results of the previous setion.The �rst set of simulations uses a setpoint of 1650oC for temperature as well as higherweighting on oxygen injetion (table 4.2).Figures 4.28 and 4.29 show that both ontrollers fail to steer the temperature to withinthe ±100C margin. The ontrollers overshoot the setpoint, beause the e�ienies (ηFeOEletrial, Eletroni and Computer Engineering 104

 



Chapter 4 Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure 4.24: Nominal MPC - E�ienies at maximum with full state feedbak and reduedoxygen usage.
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Chapter 4 Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure 4.25: Dual-mode robust MPC - E�ienies at maximum with full state feedbakand redued oxygen usage.
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Chapter 4 Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure 4.26: Nominal MPC - E�ienies at maximum with full state feedbak, referenetrajetory and redued oxygen usage.
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Chapter 4 Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure 4.27: Dual-mode robust MPC - E�ienies at maximum with full state feedbak,referene trajetory and redued oxygen usage.
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Chapter 4 Temperature disturbaneand ηARC) are higher than expeted and the ontrollers drive the temperature too high.The measurement shows the ontrollers that the temperature is too high, and they respondby turning o� all energy soures. The temperature is lowered, but is limited by the tempoof natural heat loss, whih is too slow to reah the target by the end of the re�ning stage.The proess ould be aelerated by opening the furnae roof, whih would aid heat loss.This situation an be prevented by taking a measurement earlier in the re�ning stage toidentify the problem sooner.The seond set of simulations uses a referene trajetory for temperature as well ashigher weighting on oxygen injetion (table 4.2) and updates the parameters (ηFeO and
ηARC) of the preditor from the plant measurement.These simulations (�gures 4.30 and 4.31) show that both ontrollers steer the temper-ature to within the ±100C margin. The referene trajetory auses the temperature toinrease muh slower than with the setpoint, so that by the time a measurement is taken,the temperature has not yet passed the desired �nal value of 16500C. The temperaturedoes inrease above the referene, and after the measurement, the ontroller orrets theproblem and one it has reahed the referene, it follows it more losely. There is still anunderorretion, whih auses the temperature to inrease faster than expeted. The �nalvalue ends within the aepted ±100C margin. The heavier weighting on oxygen injetionusage results in lower FeO prodution without a�eting the temperature response.4.5 Temperature disturbaneA temperature disturbane an our due to a late ave-in. This happens when thereis solid srap that falls into the bath, whih is unexpeted, beause it is assumed thatall srap has melted when re�ning ommenes. As a result, the bath temperature dropsquikly, and an be modelled by a step disturbane on the temperature. The followingassumptions are used for this simulation:

• One measurement from the plant.
• No preditor parameters update.Eletrial, Eletroni and Computer Engineering 109

 



Chapter 4 Temperature disturbane
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(e) Graphite InjetionFigure 4.28: Nominal MPC - E�ienies at maximum, one measurement and reduedoxygen usage.
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Chapter 4 Temperature disturbane
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(e) Graphite InjetionFigure 4.29: Dual-mode robust MPC - E�ienies at maximum, one measurement andredued oxygen usage.
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Chapter 4 Temperature disturbane
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(e) Graphite InjetionFigure 4.30: Nominal MPC - E�ienies at maximum, one measurement and preditorupdate, referene trajetory and redued oxygen usage.
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Chapter 4 Temperature disturbane
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(e) Graphite InjetionFigure 4.31: Dual-mode robust MPC - E�ienies at maximum, one measurement andpreditor update, referene trajetory and redued oxygen usage.
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Chapter 4 Temperature disturbane
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(e) Graphite InjetionFigure 4.32: Dual-mode robust MPC - Temperature disturbane of −200C at time 200swith setpoint of 16500C.
• Atual plant and preditor use nominal plant parameters.
• Disturbane of −200C on temperature at time 200s.The �rst simulation uses a setpoint of 16500C for temperature and even weighting on theinputs (table 4.2) with a temperature disturbane of −200C at time 200s.Figure 4.32 shows that the robust ontroller is apable of handling a quite severetemperature drop of 200C and reover from it.The seond simulation uses a referene trajetory for temperature with even weightingon the inputs (table 4.2) with a temperature disturbane of −200C at time 200s.Figure 4.33 shows that the robust ontroller is apable of handling a quite severetemperature drop of 200C and reover from it even when employing a referene trajetory.The ontroller makes full use of the energy soures when the disturbane is deteted.Eletrial, Eletroni and Computer Engineering 114

 



Chapter 4 Temperature disturbane
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(e) Graphite InjetionFigure 4.33: Dual-mode robust MPC - Temperature disturbane of −200C at time 200swith a referene trajetory for temperature.
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Chapter 4 SummaryIn the limited feedbak senarios, the disturbane will only be deteted when it oursbefore a measurement, of whih there is usually only one during the re�ning stage. Inthis ase, preditor parameter update will have a detrimental e�et on the performane,beause the di�erene would be attributed to model mismath where the e�ienies arelower than nominal, and an overorretion would be made to the preditor. This willresult in the temperature ending up muh higher than desired.4.6 SummaryThis setion provides a summary of the results obtained in the previous setions. Theresults are summarized in tables 4.5, 4.6, 4.7, 4.8 and4.9. The notation used in the tablesis as follows:
• Feedbak:� FSF - Full state feedbak.� OM - One temperature measurement is taken in the middle of the re�ningstage with the rest of the data produed by a preditor.� OMPU - One temperature measurement is taken in the middle of the re�ningstage with whih the parameters of the preditor are updated.
• Setpoint or Referene:� Setpoint - A onstant setpoint for temperature of 16500C is employed.� Referene - A linearly inreasing referene is employed for temperature thatreahes 16500C at the end of the re�ning stage period.
• Input weighting:� Even - All inputs are penalized equally in the objetive funtion (table 4.2).� Oxygen Heavy (OH) - Oxygen usage is penalized more than the other inputsin the objetive funtion (table 4.2).Eletrial, Eletroni and Computer Engineering 116

 



Chapter 4 Conlusion
• ∆T - Temperature di�erene - The amount that the �nal temperature value di�ersfrom 16500C.
• Aeptable - If the �nal temperature value is within a ±100C margin of 16500C.
• Energy usage - The value of a linear penalty funtion that uses the same weightingsof the inputs as the ontrollers.The energy usage is a funtion that sums up all the inputs together over the wholeduration of the re�ning stage. All the inputs are saled so that the maximum value ofeah ontributes equally to the energy usage metri. This metri gives an indiation ofhow muh energy is applied throughout the re�ning stage for eah simulation senario.The metri is alulated as follows

EU =
√

u ∗ R1 ∗ uT (4.1)where R1 is the saling matrix and u ∈ R
600×3 , where there is a sample every seond over10 minutes and three inputs. The saling matrix is

R1 =













10 0 0

0 0.00025 0

0 0 20













. (4.2)
This gives an indiation of overall ontroller ation employed by the ontroller, beausethe same metri was inluded in the ontroller. The metri an be hanged to inludeenergy ost that will lead to the most energy e�ient solution.4.7 ConlusionThis omprehensive simulation study looked at some theoretial as well as more pratialsenarios in order to investigate the performane of the robust and nominal ontrollers inthe presene of model mismath. The performane of the losed-loop system where thereis model mismath between the preditor and atual plant was also studied.Eletrial, Eletroni and Computer Engineering 117

 



Chapter4
Conlusion

Table4.5:Summaryofsimulationresultswithnominale�ienies.

Controller Feedbak Setpoint or Referene Input weighting Temperature di�erene Energy usage FigNominal MPC FSF Setpoint Even < 10C 8.5e+004 4.3Robust MPC FSF Setpoint Even < 10C 1.0e+005 4.4Nominal MPC FSF Setpoint Oxygen Heavy < 10C 1.7e+005 4.6Robust MPC FSF Setpoint Oxygen Heavy < 10C 1.4e+005 4.7Nominal MPC FSF Referene Even < 10C 8.9e+004 4.8Robust MPC FSF Referene Even 30C 9.6e+004 4.9Nominal MPC FSF Referene Oxygen Heavy < 10C 1.8e+005 4.10Robust MPC FSF Referene Oxygen Heavy 30C 1.7e+005 4.11

Eletrial,EletroniandComputerEngineering
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Chapter4
Conlusion

Table4.6:Summaryofsimulationresultswithe�ieniesattheirminimum.

Controller Feedbak Setpoint or Referene Input weighting ∆T Aeptable Energy usage FigNominal MPC FSF Setpoint Even −20C Yes 2.3e+005 B.1Robust MPC FSF Setpoint Even < 10C Yes 2.3e+005 B.2Nominal MPC FSF Setpoint Oxygen Heavy −20C Yes 3.5e+005 4.12Robust MPC FSF Setpoint Oxygen Heavy < 10C Yes 2.7e+005 4.13Nominal MPC FSF Referene Even −40C Yes 2.2e+005 B.3Robust MPC FSF Referene Even < 10C Yes 2.5e+005 B.4Nominal MPC FSF Referene Oxygen Heavy −50C Yes 3.4e+005 4.14Robust MPC FSF Referene Oxygen Heavy < 10C Yes 3.5e+005 4.15Nominal MPC OM Setpoint Even −200C No 1.4e+005 B.5Robust MPC OM Setpoint Even −200C No 1.1e+005 B.6Nominal MPC OM Setpoint Oxygen Heavy −230C No 2.4e+005 4.16Robust MPC OM Setpoint Oxygen Heavy −210C No 1.9e+005 4.17Nominal MPC OM Referene Even −240C No 1.2e+005 B.7Robust MPC OM Referene Even −220C No 1.3e+005 B.8Nominal MPC OM Referene Oxygen Heavy −300C No 2.2e+005 4.18Robust MPC OM Referene Oxygen Heavy −270C No 2.1e+005 4.19Nominal MPC OMPU Setpoint Even −50C Yes 2.2e+005 B.9Robust MPC OMPU Setpoint Even +20C Yes 2.6e+005 B.10Nominal MPC OMPU Setpoint Oxygen Heavy −60C Yes 3.3e+005 4.20Robust MPC OMPU Setpoint Oxygen Heavy +60C Yes 3.0e+005 4.21Nominal MPC OMPU Referene Even −170C No 1.6e+005 B.11Robust MPC OMPU Referene Even −120C No 1.9e+005 B.12Nominal MPC OMPU Referene Oxygen Heavy −190C No 2.7e+005 4.22Robust MPC OMPU Referene Oxygen Heavy −90C Yes 2.7e+005 4.23
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Table4.7:Summaryofsimulationresultswithe�ieniesattheirmaximum.

Controller Feedbak Setpoint or Referene Input weighting ∆T Aeptable Energy usage FigNominal MPC FSF Setpoint Even < 10C Yes 4.3e+004 B.13Robust MPC FSF Setpoint Even < 10C Yes 7.4e+004 B.14Nominal MPC FSF Setpoint Oxygen Heavy < 10C Yes 1.1e+005 4.24Robust MPC FSF Setpoint Oxygen Heavy < 10C Yes 9.1e+004 4.25Nominal MPC FSF Referene Even < 10C Yes 4.3e+004 B.15Robust MPC FSF Referene Even +40C Yes 5.8e+004 B.16Nominal MPC FSF Referene Oxygen Heavy < 10C Yes 1.2e+005 4.26Robust MPC FSF Referene Oxygen Heavy +30C Yes 1.1e+005 4.27Nominal MPC OM Setpoint Even +110C No 6.0e+004 B.17Robust MPC OM Setpoint Even +140C No 8.3e+004 B.18Nominal MPC OM Setpoint Oxygen Heavy +190C No 1.4e+005 4.28Robust MPC OM Setpoint Oxygen Heavy +180C No 1.1e+005 4.29Nominal MPC OM Referene Even +110C No 5.8e+004 B.19Robust MPC OM Referene Even +130C No 6.4e+004 B.20Nominal MPC OM Referene Oxygen Heavy +110C No 1.3e+005 B.21Robust MPC OM Referene Oxygen Heavy +130C No 1.3e+005 B.22Nominal MPC OMPU Setpoint Even +110C No 6.0e+004 B.23Robust MPC OMPU Setpoint Even +140C No 8.3e+004 B.24Nominal MPC OMPU Setpoint Oxygen Heavy +190C No 1.4e+005 B.25Robust MPC OMPU Setpoint Oxygen Heavy +180C No 1.1e+005 B.26Nominal MPC OMPU Referene Even +70C Yes 4.9e+004 B.27Robust MPC OMPU Referene Even +80C Yes 6.0e+004 B.28Nominal MPC OMPU Referene Oxygen Heavy +50C Yes 1.2e+005 4.30Robust MPC OMPU Referene Oxygen Heavy +70C Yes 1.2e+005 4.31
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Table4.8:Summaryofsimulationresultswithe�ieniesatnominalandtemperature
disturbane.

Controller Feedbak Setpoint or Referene Input weighting ∆T Aeptable Energy usage FigRobust MPC OM Setpoint Even < 10C Yes 1.4e+005 4.32Robust MPC OM Referene Even +20C Yes 1.4e+005 4.33
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Table4.9:Summaryofsimulationresultsthatproduedaeptableresultsexluding
nominalandfullstatefeedbaksenarios.

Controller Feedbak Setpoint or Referene Input weighting ∆T E�ienies Energy usage FigNominal MPC OMPU Referene Even +70C Max 4.9e+004 B.27Robust MPC OMPU Referene Even +80C Max 6.0e+004 B.28Nominal MPC OMPU Referene Oxygen Heavy +50C Max 1.2e+005 4.30Robust MPC OMPU Referene Oxygen Heavy +70C Max 1.2e+005 4.31Nominal MPC OMPU Setpoint Even −50C Min 2.2e+005 B.9Robust MPC OMPU Setpoint Even +20C Min 2.6e+005 B.10Nominal MPC OMPU Setpoint Oxygen Heavy −60C Min 3.3e+005 4.20Robust MPC OMPU Setpoint Oxygen Heavy +60C Min 3.0e+005 4.21Robust MPC OMPU Referene Oxygen Heavy −90C Min 2.7e+005 4.23Robust MPC OM Setpoint Even < 10C Dist 1.4e+005 4.32Robust MPC OM Referene Even +20C Dist 1.4e+005 4.33
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Chapter 4 ConlusionIn the senarios where full state feedbak is available, both the dual-mode robustmodel preditive ontroller and the nominal model preditive ontroller perform equallywell. The model unertainty is suh that the nominal ontroller is apable of handlingit satisfatorily. The feedbak robust MPC annot handle asymmetri onstraints suhas those present in the EAF re�ning proess. An ad-ho solution to ompensate forthis limitation is to add a onstant disturbane to the inputs. This was not a suessfulstrategy, beause the inputs have to be driven to their onstraints, whih the feedbakrobust MPC avoids. This prevents the feedbak robust MPC method from suessfullyfollowing the temperature setpoint or referene.A bigger problem with automating the proess is the lak of feedbak from the plant.A preditor is used to estimate the plant states in order for the ontroller to generateontrol ations for the plant. With the limited number of measurements, the e�et ofmodel mismath between the preditor and atual plant has a muh bigger impat onthe performane of the losed-loop system than the e�ets of model unertainty. Thee�ets of model mismath an be redued by using the plant measurement to updatethe preditor parameters, but this will meet with varying suess, beause there is usu-ally only one measurement available during the re�ning stage from whih to update theparameters of the preditor. If a late ave-in ours, the preditor will be inorretlyupdated, whih will hinder further performane. The updating of the parameters of thepreditor was done using an ad-ho method to determine if it will produe better resultsthan a preditor without parameter update. The preditor utilizing this ad-ho methodshows an improvement over the preditor without parameter updates. A more in-depthstudy is neessary to design a proper preditor for the EAF re�ning proess, one thatutilizes better updating methods and takes all other aspets into onsideration through amore systemati design. This was not done here, beause it falls outside the sope of thisdissertation.
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Chapter 5
Conlusions and reommendations
5.1 Summary of dissertationThe main aim of the dissertation was to synthesise a robust and nominal model preditiveontroller for the eletri ar furnae re�ning proess and to evaluate the feasibility ofsuh a ontroller through a simulation study. This work is based on a �ve state nonlinearmodel that was derived by Rathaba (2004) for the eletri ar furnae re�ning stage fromprevious work by Bekker et al. (1999) and Oosthuizen et al. (2001) who reated a fulltwenty-two state nonlinear model of the eletri ar furnae proess.In Chapter 2 the �ve state nonlinear model was linearized for use in the model predi-tive ontrollers. A strutured unertainty desription was used to desribe all the linearmodels that resulted from the unertain nonlinear model. The linear models were reduedto simplify the ontrollers by eliminating states that are pratially unontrollable.In Chapter 3 a brief overview was given of the development of stability theory for robustmodel preditive ontrollers. Two ontrol methods, feedbak robust model preditiveontrol and dual-mode robust model preditive ontrol, were examined in more detailwith regards to synthesis and use.In Chapter 4 an extensive simulation study was done on the re�ning stage of theeletri ar furnae re�ning proess. Simulations were done where full state feedbak wasassumed in order to evaluate the baseline performane and stability of the robust andnominal ontrollers. Both the nominal and robust ontrollers were stable during all the124

 



Chapter 5 Conlusionsimulations and performed well under model mismath. More pratial senarios werealso investigated where there was only a limited number of measurements and a preditorwas employed to estimate the furnae states. Eah time a measurement was available,the preditor was orreted. In an extension, eah time a measurement was available, thepreditor was orreted and its internal model parameters updated to better approximatethe real plant. The simulations show that the lak of feedbak has a far greater e�et onperformane than model mismath.5.2 ConlusionA robust model preditive ontroller seemed appropriate at the onset of this study inorder to expliitly take the model unertainty into onsideration as part of the ontrollersynthesis. For omparison, a nominal model preditive ontroller was used to quantifythe advantage of using a robust ontroller. In the aademi problem it was lear thatthe robust ontrollers were the only ones to suessfully ontrol the unertain system.The eletri ar furnae proess does not beome unstable for all the simulations whennominal model preditive ontrol is used, even under extreme model mismath. Thenominal model preditive ontroller is therefore more than adequate for ontrolling theproess.The lak of feedbak is a muh bigger obstale in automating the eletri ar furnaere�ning proess. The preditor needs to be very aurate, but with the unertainty andlak of measurements, it is very di�ult to ensure auray. More frequent measurementswould need to be taken and improvements need to be made to the updating of the internalmodel of the preditor to ensure satisfatory results.The eletri ar furnae re�ning proess has states that are manipulated by more thanone input. The inputs and ertain states have onstraints. A simple single-input-single-output ontroller will be di�ult to tune in order to ontrol the proess and the onstraintswill be handled in an ad-ho fashion. A better strategy is to use a multi-variable ontrolsystem that an expliitly take onstraints into aount, e.g. model preditive ontrol.This study has shown that it is not neessary to use robust model preditive ontrol,Eletrial, Eletroni and Computer Engineering 125

 



Further workbeause the parameter variation does not pose a problem for nominal model preditiveontrol.Operators are using the eletri ar furnae daily without ontrol and are able to reahthe targets more often than not. This study shows that robust model preditive ontrolhave di�ulty to steer the temperature to the desired setpoint with the limited number ofmeasurements available. All simulation, exept for the nominal ases, assumed worst-asesenarios. It is therefore likely that the worst-ase senarios do not our frequently inpratie and that the performane of the losed-loop system might be better in reality.The unertainties in the model might also be overstated and therefore lead to overlyonservative results in the simulations.5.3 Further workThere are ertain areas where further work needs to be done in order to make automationtrol of the furnae pratial:
• A better preditor needs to be developed in order to handle the model unertaintyand take late ave-ins into aount, by using a more systemati design method andverifying it on real plant data.
• Methods should be devised to inrease measurements during the re�ning stage. Thisis quite a hallenge due to the harsh environment that the furnae operates in. Apossible solution is to develop soft sensors that estimate bath temperature from theo�-gas temperature and oolant temperature.Improvements an be made to the ontrol strategy in the following areas:
• Add eonomi objetives to the ontrol by examining:� Energy ost of eletriity and hemial soures as in Oosthuizen et al. (2004).� Optimizing yield.� Di�erent referene trajetories for temperature and other variables.Eletrial, Eletroni and Computer Engineering 126

 



Further work
• Safety and environmental impat.
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Appendix A
Aademi Problem
In this hapter, an aademi problem is used to ompare the two robust MPC togetherwith nominal MPC, with respet to robust stability and performane. The aademiproblem onsists of a system with greatly varying dynami behaviour, whih provides anexellent test of the stability and robustness of the di�erent ontrollers.
A.1 Aademi problem modelThis aademi problem was taken from Kothare et al. (1996). The problem is a two-mass-spring system (�gure A.1). The system was disretized using Euler's �rst orderapproximation for the derivative with a sampling time of 0.1s. The disretized system is

Mass 1 Mass 2

K

X1 X2

U

Figure A.1: Coupled mass-spring system.138

 



Appendix A Aademi problem modelgiven by
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u(k) (A.2)
y(k) = x2(k) (A.3)where x1 and x2 are the positions of body 1 and body 2 respetively and x3 and x4 arethe respetive veloities of body 1 and body 2. The mass of body 1 is m1 and the mass ofbody 2 is m2, while K is the spring onstant. The input of the system u is the fore thatis applied to the �rst body. The performane spei�ations an be summarized as follows

• Use onstant mass for body 1 and body 2 of 1 kg: m1 = m2 = 1.
• Use an unertain spring onstant that varies between 0.5 and 10: 0.5 ≤ K ≤ 10.
• An input onstraint of |u| ≤ 1 should be maintained.
• A output unit step should be followed.
• Assume full state feedbak is available.To desribe the e�et of the unertain spring onstant K, a strutured unertainty de-sription is used. The strutured unertainty desription has the form

Ω =

[

A + BpδCq B + BpδDqu

] (A.4)where Ω is the system spae, δ is an operator that varies between -1 and 1, BpCq desribesthe deviation from the nominal for A, and BpDqu desribes the deviation from nominalEletrial, Eletroni and Computer Engineering 139

 



Appendix A Simulation Resultsfor B.The system in (A.1) an be rewritten as a strutured unertainty desription with theonstant values substituted as:
δ =

K − Knom

Kdev

(A.5)
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(A.8)
Cq =

[

Kdev −Kdev 0 0

] (A.9)
Dqu = 0 (A.10)A.2 Simulation ResultsThree ontrollers were used in the simulation study. The ontroller losed-loop systemstruture is shown in �gure A.2. The feedbak robust model preditive ontroller is shown�rst, the dual-mode robust model preditive ontroller seond, and the nominal modelpreditive ontrol as a benhmark last. Three simulation senarios were onsidered:1. The nominal ase where δ = 0.2. Extreme deviation from nominal δ =-1.Eletrial, Eletroni and Computer Engineering 140

 



Appendix A Simulation Results
4 State

Linear

Plant

(Robust)

Model Predictive 

Controller

Setpoint
Position of mass 2 Force

- Positions of masses

- Velocity of massesFigure A.2: Aademi problem losed-loop system.Table A.1: Aademi problem MPC state and input weighting.Variable Desription ValueQ State weighting 







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







R Input weighting 0.000013. Extreme deviation from nominal δ =1.The nominal senario gives an indiation of the onservatism that is introdued in orderto robustify the losed loop. The nominal MPC will be the benhmark with whih toompare the two robust ontrollers. The two extreme ases provide a measure of theperformane of the two robust ontrollers.A.2.1 Nominal senarioThe nominal senario uses the nominal model (δ = 0). All the ontrollers use the samestate and input weighting (shown in table A.1) in order to gauge their relative perfor-mane, and to get a feel for the amount of onservatism that is introdued in order torobustify the ontrollers.These results (�gures A.3 and A.4) show that the nominal MPC gives the best per-formane when δ = 0. This is to be expeted, beause the robust ontrollers are moreEletrial, Eletroni and Computer Engineering 141

 



Appendix A Simulation Results
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Appendix A Simulation Results

0 20 40 60
0

0.5

1

1.5

Time [seconds]

S
ta

te
 1

State Response 1

Nominal MPC
Reference

0 20 40 60
0

0.5

1

1.5

Time [seconds]
S

ta
te

 2

State Response 2

Actual
Reference

0 20 40 60
−0.1

0

0.1

0.2

0.3

0.4

Time [seconds]

S
ta

te
 3

State Response 3

Nominal MPC
Reference

0 20 40 60
−0.2

0

0.2

0.4

0.6

Time [seconds]

S
ta

te
 4

State Response 4

Nominal MPC
Reference

0 20 40 60
−1

−0.5

0

0.5

1

Time [seconds]

In
pu

t

Input

Figure A.4: Nominal MPC - Nominal Senario
Eletrial, Eletroni and Computer Engineering 143

 



Appendix A Conlusiononservative in order to ensure stability for all the system realizations. The results alsoshow that the feedbak robust model preditive ontroller gives better performane thanthe dual-mode robust model preditive ontroller. The internal, globally stabilizing feed-bak ontrol employed by the dual-mode ontroller is generated by the feedbak robustontrol algorithm for the initial state. The feedbak gain was generated without tak-ing the input onstraint into aount in order to redue onservatism for the dual-modeontroller.A.2.2 Extreme deviation δ = −1 and δ = 1The extreme deviation senarios help gauge the performane of the robust ontrollers.Both ontrollers use the same weighting on state and input deviation as shown in tableA.1.The results in �gure A.5 show that both robust ontrollers are stable in this simulation,beause the losed-loop system onverges to the setpoints, but the feedbak robust modelpreditive ontroller delivers better performane in terms of settling time.The results in �gure A.6 mirror the previous onlusion, beause both robust on-trollers are stable in this simulation, but the feedbak robust model preditive ontrollerdelivers better performane in terms of reahing the desired setpoint as well as overshoot.Figure A.7 shows the performane of the losed-loop system with nominal MPC. Here itis lear that the losed-loop is unstable for this simulation, beause the losed-loop systemosillates with inreasing amplitude, and the same result is obtained in the ase where
δ = 1.
A.3 ConlusionThe aademi problem shows the advantage of using robust model preditive ontrol,where unertainty auses large variations in dynami behaviour. Both the robust on-trollers were stable for all the simulations over the whole variation in system dynamis,whereas the nominal MPC was unstable in both extreme senario simulations. The feed-Eletrial, Eletroni and Computer Engineering 144

 



Appendix A Conlusion
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Figure A.5: Feedbak and Dual-mode Robust MPC - Extreme senario δ = 1
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Appendix A Conlusionbak robust ontroller delivered better performane than the dual-mode robust ontroller,beause as the state and inputs approah 0, the ontroller makes the feedbak gain lessonservative. The feedbak ontroller has a problem with non-symmetri input onstraintswhen there is a steady-state other than the origin, beause the feedbak gain of the on-troller stays onservative and might also lead to large steady-state o�sets in the states.The behaviour of the dual mode ontroller is greatly in�uened by the globally stabilizingfeedbak gain K, more so than by the weighting matries Q and R.
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Appendix B
Auxiliary simulation results
In this appendix, all the auxiliary simulation results of hapter 4 are shown with a shortdesription of the simulation parameters and a short disussion of the results. In thisappendix, only the senarios where there are even weightings on the inputs are evaluated.This gives an indiation how it will a�et the temperature response if more oxygen isavailable as an energy soure when ompared to the redued oxygen usage senariosshown in hapter 4.B.1 Worst-ase senario: E�ienies at their minimumThis senario fouses on the e�et that lower than nominal e�ienies (ηFeO and ηARC)have on the ontroller and system as a whole. In this senario the following assumptionsare made:

• There are three feedbak senarios:� Full state-feedbak is available.� One measurement is available.� One measurement and update of the e�ienies (ηFeO and ηARC) of the pre-ditor are available.
• The preditor and atual plant have a mismath in their e�ienies (ηFeO and ηARC)where the e�ienies are lower in the real plant than in the preditor.149

 



Appendix B Worst-ase senario: E�ienies at their minimum
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(e) Graphite InjetionFigure B.1: Nominal MPC - E�ienies at a minimum with full-state feedbak.
• There are no disturbanes.B.1.1 Worst-ase senario: Minimum e�ienies with full statefeedbakIn this �rst instane, full-state feedbak is employed to evaluate the losed-loop perfor-mane without a preditor in the loop, in the extreme ase where the e�ienies (ηFeOand ηARC) are at the minimum of the on�dene interval for the plant model. RobustMPC and nominal MPC are ompared to determine whether robust MPC provides betterperformane in the presene of model mismath ompared to nominal MPC.A temperature setpoint of 1650oC as well as even weighting (table 4.2) is used for the�rst set of simulations.From these result (�gures B.1 and B.2), it is lear that the robust MPC performsEletrial, Eletroni and Computer Engineering 150

 



Appendix B Worst-ase senario: E�ienies at their minimum
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(e) Graphite InjetionFigure B.2: Dual-mode robust MPC - E�ienies at a minimum with full-state feedbak.
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Appendix B Worst-ase senario: E�ienies at their minimum
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(e) Graphite InjetionFigure B.3: Nominal MPC - E�ienies at a minimum, full-state feedbak and referenetrajetory.
better than the nominal MPC. The robust ontroller produed a smaller steady-stateo�set for the temperature. It is interesting to note that the nominal ontroller is stablefor this simulation with extreme model mismath.A referene trajetory is used for temperature over the duration of the re�ning stageas well as even weighting (table 4.2) on the inputs for the seond set of simulations.These results (�gures B.3 and B.4) show that the robust ontroller performs muhbetter with almost perfet referene following ompared to the nominal ontroller. Thenominal ontroller uses muh less oxygen than the robust ontroller, whih an aountfor the di�ulty in following the referene trajetory.Eletrial, Eletroni and Computer Engineering 152

 



Appendix B Worst-ase senario: E�ienies at their minimum
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(e) Graphite InjetionFigure B.4: Dual-mode robust MPC - E�ienies at a minimum, full-state feedbak andreferene trajetory.
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Appendix B Worst-ase senario: E�ienies at their minimum
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(e) Graphite InjetionFigure B.5: Nominal MPC - E�ienies at a minimum with one measurement.B.1.2 Worst-ase senario: Minimum e�ienies with one plantmeasurementIn this senario only one measurement of temperature is taken in the middle of the re�ningstage, the rest of the data is produed by the preditor. The preditor uses the nominalplant parameters, while the real plant uses the worst-ase senario where the e�ienies(ηFeO and ηARC) are at their minimum. This senario should shed light on the e�et ofmodel mismath between the preditor and real plant model.A setpoint of 1650oC for temperature as well as even weightings on the inputs (table4.2) are used for the �rst set of simulations.These results (�gures B.5 and B.6) show that both ontrollers perform equally poorly.The ontrollers are under the impression that they have reahed the desired setpoint as in-diated by the expeted line, but in reality the temperature is lower. At the measurementEletrial, Eletroni and Computer Engineering 154
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(e) Graphite InjetionFigure B.6: Dual-mode robust MPC - E�ienies at a minimum with one measurement.

Eletrial, Eletroni and Computer Engineering 155
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(e) Graphite InjetionFigure B.7: Nominal MPC - E�ienies at a minimum, one measurement and referenetrajetory.
point, the value of the preditor is orreted, and the ontrollers respond aordingly.The �nal value is still below the desired value, beause of the mismath in the preditor.An aepted margin of error is 100C eah way, whih the ontrollers are not apable ofattaining.A referene trajetory for temperature as well as even weighting on the inputs (table4.2) is used for the seond set of simulations.Figures B.7 and B.8 show poor referene following by both ontrollers due to theinauray of the preditor. The expeted line shows what the ontroller expets thevalues to be. The robust ontroller follows the referene slightly better than the nominalontroller but still ends below the 100C aepted interval.Eletrial, Eletroni and Computer Engineering 156

 



Appendix B Worst-ase senario: E�ienies at their minimum
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(e) Graphite InjetionFigure B.8: Dual-mode robust MPC - E�ienies at a minimum, one measurement andreferene trajetory.
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Appendix B Worst-ase senario: E�ienies at their maximumB.1.3 Worst-ase senario: Minimum e�ienies with one plantmeasurement and preditor parameter updateIn the previous setion, the e�et of model mismath between the preditor and theatual plant on the performane of the losed-loop system is lear. To ombat this, theparameters of the preditor are updated eah time a measurement is taken, in an attemptto improve performane. In this senario only one measurement is taken in the middle ofthe re�ning stage, the rest of the state data is produed by the preditor. The preditoruses the nominal plant parameters until the �rst measurement is taken, after whih theupdated parameters are employed. The real plant uses the worst-ase senario where thee�ienies (ηFeO and ηARC) are at their minimum.A setpoint of 1650oC for temperature as well as even weighting on the inputs (table4.2) is used for the �rst set of simulations.Figures B.9 and B.10 show that both ontrollers are now able to steer the proess towithin the desired ±100C margin. The robust ontroller is able to reah the desired set-point by the end of the re�ning stage, whih is slightly better than the nominal ontroller.A referene trajetory for temperature as well as even weighting for the inputs (table4.2) is used for the seond set of simulations.Figures B.11 and B.12 show that neither of the ontrollers an steer the temperature towithin±100C. This is due to an underorretion made in the preditor. In both ases, theexpeted state propagation follows the referene trajetory, but the atual performane ofthe robust ontroller is better than that of the nominal ontroller. The nominal ontrolleruses signi�antly less oxygen than the robust ontroller whih an explain why the robustMPC performs slightly better than the nominal MPC.B.2 Worst-ase senario: E�ienies at their maximumThis worst-ase senario investigates the e�et of model mismath between the internalmodel of the ontrollers and the atual plant, as well as the preditor and the atual plant.This senario fouses on the e�et reated if the e�ienies (ηFeO and ηARC) are higherEletrial, Eletroni and Computer Engineering 158

 



Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.9: Nominal MPC - E�ienies at a minimum with one measurement and pre-ditor parameter update.
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Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.10: Dual-mode robust MPC - E�ienies at a minimum with one measurementand preditor parameter update.
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Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.11: Nominal MPC - E�ienies at a minimum, one measurement and preditorparameter update and referene trajetory.
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Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.12: Dual-mode robust MPC - E�ienies at a minimum, one measurement andpreditor parameter update and referene trajetory.
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Appendix B Worst-ase senario: E�ienies at their maximumthan nominal. This is a more theoretial senario, beause e�ienies do not tend to behigher than expeted, but it is neessary to determine whether the ontroller would beable to ope with suh a situation. In this senario the following assumptions are made:
• There are three feedbak senarios:� Full state-feedbak is available.� One measurement is available.� One measurement and update of preditor parameters are available.
• The preditor and atual plant have a mismath in their e�ienies (ηFeO and ηARC)where the e�ienies are higher in the real plant than in the preditor.
• There are no disturbanes.B.2.1 Worst-ase senario: Maximum e�ienies with full statefeedbakIn this �rst instane, full-state feedbak is employed to evaluate the losed-loop perfor-mane without a preditor present in the extreme ase where the e�ienies (ηFeO and

ηARC) are at the maximum of the on�dene interval for the plant model. Robust MPCand nominal MPC are ompared to determine whih provides better performane in thepresene of model mismath.The �rst set of simulations uses a setpoint of 1650oC for temperature as well as evenweighting on the inputs (table 4.2).Figures B.13 and B.14 show that both ontrollers are able to follow the setpoint, andbeause of the inreased e�ieny of the oxygen and eletri power, less energy is needed,whih results in both ontrollers keeping the FeO ontent below the onstraint level.The seond set of simulations uses a referene trajetory for temperature as well aseven weighting on the inputs (table 4.2).Figures B.15 and B.16 show that both ontrollers have good referene following. Thenominal ontroller uses muh less oxygen than the robust ontroller, whih is evident inEletrial, Eletroni and Computer Engineering 163

 



Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.13: Nominal MPC - E�ienies at maximum with full state feedbak.
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Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.14: Dual-mode robust MPC - E�ienies at maximum with full state feedbak.
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Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.15: Nominal MPC - E�ienies at maximum with full state feedbak and refer-ene trajetory.
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Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.16: Dual-mode robust MPC - E�ienies at maximum with full state feedbakand referene trajetory.
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Appendix B Worst-ase senario: E�ienies at their maximumthe �nal values of the FeO ontent. The robust ontroller slightly overshoots the �nalvalue for the temperature but is still well within the desired ±100C interval.B.2.2 Worst-ase senario: E�ienies at their maximum withone plant measurementA more realisti feedbak senario is investigated, where only one temperature measure-ment is taken in the middle of the re�ning stage, the rest of the state data is produedby a preditor. The preditor uses the nominal plant parameters, while the real plantuses the worst-ase senario where the e�ienies (ηFeO and ηARC) are at their maximum.This senario should shed light on the e�et of model mismath between the preditorand real plant when ompared to the results of the previous setion.The �rst set of simulations uses a setpoint of 1650oC for temperature as well as evenweighting on the inputs (table 4.2).Figures B.17 and B.18 show that both ontrollers fail to steer the temperature towithin the ±100C margin. The ontrollers overshoot the setpoint, beause the e�ienies(ηFeO and ηARC) are higher than expeted and the ontrollers drive the temperature toohigh. The measurement shows the ontrollers that the temperature is too high, and theyrespond by turning o� all energy soures. The temperature is lowered, but is limited bythe tempo of natural heat loss, whih is too slow to reah the target by the end of there�ning stage. The proess ould be aelerated by opening the furnae roof, whih wouldaid heat loss. This situation an be prevented by taking a measurement earlier in there�ning stage to identify the problem sooner.The seond set of simulations uses a referene trajetory for temperature as well aseven weighting on the inputs (table 4.2).Figures B.19 and B.20 show that both ontrollers overshoot the �nal temperature withmore than the aepted margin of ±100C. By the time that the measurement is taken,the temperature is still below the desired value, but already higher than the referene.The ontrollers orret the problem by steering the temperature bak to the referene,but as soon as the error is orreted, the temperature is again steered faster than theEletrial, Eletroni and Computer Engineering 168

 



Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.17: Nominal MPC - E�ienies at maximum with one measurement.
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Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.18: Dual-mode robust MPC - E�ienies at maximum with one measurement.
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Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.19: Nominal MPC - E�ienies at maximum, one measurement and referenetrajetory.
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Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.20: Dual-mode robust MPC - E�ienies at maximum, one measurement andreferene trajetory.
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Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.21: Nominal MPC - E�ienies at maximum, one measurement, referene tra-jetory and redued oxygen usage.referene.The third set of simulations uses a referene trajetory for temperature as well ashigher weighting on oxygen injetion (table 4.2).These simulations (�gures B.21 and B.22) show muh the same trend as the previousset, with the exeption that both ontrollers use less oxygen, whih in turn produes less
FeO, but the robust ontroller uses signi�antly less oxygen ompared with the previoussimulation in �gure B.20.The model mismath between the preditor and the atual plant in this senario, ausesthe temperature to overshoot the desired value of 16500C. The e�et an be redued bytaking a sample earlier in the re�ning stage, whih will minimize the overshoot and givemore time for the bath to ool o�. The seond solution is to use the referene trajetory,but from the last two simulations it is lear that the preditor parameters should beEletrial, Eletroni and Computer Engineering 173

 



Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.22: Dual-mode robust MPC - E�ienies at maximum, one measurement, ref-erene trajetory and redued oxygen usage.
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Appendix B Worst-ase senario: E�ienies at their maximumupdated to prevent overshoot from ourring after the measurement.B.2.3 Worst-ase senario: E�ienies at their maximum withone plant measurement and preditor parameters updateIn the previous setion, the e�et that model mismath has on the performane of thesystem is apparent. To ombat the e�et, the parameters of the preditor are updatedeah time a measurement is taken, in an attempt to improve performane. In this senarioonly one measurement of temperature is taken in the middle of the re�ning stage, the restof the data is produed by the preditor. The preditor uses the nominal plant parametersfor the e�ienies (ηFeO and ηARC) until a measurement is taken, after whih the orretedparameters are employed. The �real plant� uses the worst-ase where the e�ienies (ηFeOand ηARC) are at their maximum.The �rst set of simulations uses a setpoint of 1650oC for temperature as well as evenweighting on the inputs (table 4.2).Figures B.23 and B.24 show muh the same results as in setion 4.4.2. The update inthe preditor does not aid in aelerating the ooling of the bath. The only solution herewould be to take a measurement earlier in the proess.The seond set of simulations uses a setpoint of 1650oC for temperature as well ashigher weighting on oxygen injetion (table 4.2).Figures B.25 and B.26 show muh the same result as the previous simulation wherethe preditor update does not solve the ooling limitation. The only di�erene is that,where energy is applied, less oxygen is used beause of the heavier weighting on the oxygeninjetion rate.A referene trajetory for temperature as well as even weighting on the inputs (table4.2) is used for the third set of simulations.Figures B.27 and B.28 show enouraging results. The referene trajetory ausesthe temperature to inrease muh slower than with the setpoint, so that by the timea measurement is taken, the temperature has not yet passed the desired �nal value of
16500C. The temperature does inrease above the referene, and after the measurement,Eletrial, Eletroni and Computer Engineering 175

 



Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.23: Nominal MPC - E�ienies at maximum with one measurement and pre-ditor update.
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Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.24: Dual-mode robust MPC - E�ienies at maximum with one measurementand preditor update.
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Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.25: Nominal MPC - E�ienies at maximum, one measurement and preditorupdate and redued oxygen usage.
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Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.26: Dual-mode robust MPC - E�ienies at maximum, one measurement andpreditor update and redued oxygen usage.
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Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.27: Nominal MPC - E�ienies at maximum, one measurement and preditorupdate and referene trajetory.
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Appendix B Worst-ase senario: E�ienies at their maximum
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(e) Graphite InjetionFigure B.28: Dual-mode robust MPC - E�ienies at maximum, one measurement andpreditor update and referene trajetory.
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Appendix B Worst-ase senario: E�ienies at their maximumthe ontroller orrets the problem and one it has reahed the referene, it follows itmore losely. There is still an underorretion, that auses the temperature to inreasefaster than expeted. The �nal value ends within the aepted ±100C margin. Thenominal ontroller uses less oxygen than the robust ontroller as evident from the �nal
FeO values.
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Appendix C
Measured bath and slag data
Tables C.1 and C.2 show measured bath and slag data for 18 taps. This data wereolleted by Rathaba (2004).
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AppendixCTableC.1:Measuredbathandslagdata(Rathaba,2004)part1.

Tap # Time % C % Si O2 [ppm℄ Time Temp0C Time % FeO % SiO2 % CaO % MgO % Al2O31 7.05 0.199 0.03 - 7.15 1619 7.04 17.70 18.2 50.53 3.53 5.107.15 0.125 - 219 7.16 1630 7.16 31.55 10.5 43.45 3.33 3.077.16 0.119 - 229 7.20 1678 7.20 36.53 9.08 37.57 3.47 2.737.20 0.043 - 6582 8.14 0.082 0.01 - 8.14 1598 8.11 27.04 13.7 43.74 5.08 3.698.16 0.060 - 448 8.16 1618 8.16 30.25 12.5 43.09 5.42 3.518.18 0.054 - 504 8.18 1638 8.18 39.20 10.3 34.41 5.43 3.018.21 0.039 - 704 8.21 16403 9.10 0.111 0.03 - 9.13 1597 9.10 31.50 13.4 40.13 5.04 4.139.14 0.053 - 514 9.15 1636 9.14 26.21 12.6 46.07 6.38 3.909.17 0.043 - 623 9.18 1631 9.17 31.82 11.4 40.48 6.14 3.484 10.14 0.078 0.02 - 10.14 1594 10.13 32.13 11.6 41.14 5.46 4.3210.20 0.043 - 648 10.20 1610 10.18 29.80 10.7 43.12 5.77 4.1310.21 1658 10.20 31.65 10.1 41.13 5.77 3.785 11.36 0.060 0.02 - 11.37 1586 11.33 37.80 9.85 36.39 5.14 3.4811.42 0.056 - 466 11.42 1602 11.43 38.25 7.58 36.15 5.11 2.7211.44 0.040 - 699 11.44 1658 11.45 38.12 8.10 39.83 5.69 2.916 12.51 0.060 0.03 - 12.53 1615 12.50 43.95 10.8 29.38 5.25 4.1412.55 0.048 0.03 - 12.55 1647 12.53 43.65 10.1 30.32 5.43 3.8412.55 0.026 - 1048 12.56 45.29 9.61 30.21 5.38 3.687 13.43 0.088 0.03 - 13.43 1571 13.40 34.52 11.7 37.95 5.41 5.0013.45 0.071 0.03 - 13.47 1546 13.44 34.81 11.6 37.65 5.49 5.0313.47 0.065 - 376 13.49 1601 13.48 36.35 9.41 32.00 5.71 3.9613.49 0.054 - 481 13.51 161513.55 0.046 - 5728 15.05 0.056 0.03 - 15.07 1630 15.04 37.33 8.96 38.27 8.07 3.8115.07 0.051 0.03 - 15.08 1643 15.06 35.64 9.24 37.74 7.81 3.9215.08 0.037 - 738 15.08 35.06 8.57 34.60 7.30 3.629 16.02 0.157 0.03 - 16.05 1540 15.56 26.96 11.7 40.20 7.23 4.5816.06 0.106 0.03 - 16.08 1615 16.06 26.57 10.6 43.41 7.05 4.2216.08 0.062 - 481 16.10 1636 16.09 27.05 10.2 39.16 6.34 4.0016.09 0.072 0.03 - 16.13 166016.10 0.093 - 29316.13 0.033 - 845
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AppendixCTableC.2:Measuredbathandslagdata(Rathaba,2004)part2.

Tap # Time % C % Si O2 [ppm℄ Time Temp0C Time % FeO % SiO2 % CaO % MgO % Al2O310 17.03 0.078 0.03 - 17.05 1579 17.02 24.57 14.8 42.47 5.31 4.3617.05 0.085 0.03 - 17.07 1614 17.05 23.91 15.0 44.46 5.98 4.5717.09 0.044 - 624 17.09 1647 17.09 25.08 15.2 43.29 6.50 4.6417.09 0.059 0.03 -11 10.37 0.112 0.02 - 10.36 1570 10.43 35.69 11.1 36.17 5.59 3.8310.39 0.034 - 760 10.39 160010.42 0.030 - 894 10.42 163810.44 0.045 - 604 10.44 163112 11.34 0.057 0.02 - 11.41 1566 11.47 36.34 11.6 34.72 6.96 3.8911.45 0.034 - 804 11.45 163111.47 0.031 - 920 11.47 167313 12.43 0.081 0.02 - 12.45 1585 12.50 34.91 10.2 37.55 5.68 3.5912.48 0.042 - 642 12.48 162312.50 0.039 - 678 12.50 162114 13.42 0.115 0.04 - 13.47 1594 14.10 36.18 10.8 34.39 5.48 3.7813.50 0.050 - 531 13.50 161014.08 0.033 - 823 14.05 165814.10 0.030 - 930 14.08 162114.10 165215 14.56 0.068 0.03 - 15.02 1589 15.09 41.95 10.2 34.43 6.04 3.5715.06 0.036 - 861 15.05 162615.09 0.035 - 757 15.06 164115.11 0.030 - 907 15.08 162615.10 165016 16.03 0.075 0.03 - 16.04 1624 16.05 37.33 10.2 37.51 5.83 3.4716.06 0.034 - 861 16.06 164517 16.54 0.080 0.03 - 17.00 1564 17.10 31.93 12.4 39.96 4.31 4.5317.06 0.036 - 356 17.04 156617.08 0.035 - 592 17.06 158817.08 163918 17.56 0.169 0.03 - 18.05 1582 17.10 31.93 11.2 39.96 6.76 4.2018.01 0.093 0.02 - 18.08 161818.09 0.060 - 592 18.09 1661
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