
Flexible finite automata-based
algorithms for detecting
microsatellites in DNA

Corné de Ridder

Latex Press

C
d
e

R
id

d
er

F A
algorithm

s
detecting

m
icrosatellites

L

Finite automata can detect microsatellites effectively in DNA.
“Effectively” includes the ability to fine-tune the detection
process so that redundant data is avoided, and relevant data is
not missed during search.

In order to verify whether the hypothesis holds, three
theoretical related algorithms have been proposed based on
theorems from finite automaton theory. They are generically
referred to as the FireµSat algorithms. These algorithms have
been implemented, and the performance of FireµSat2 has been
investigated and compared to other software packages. From
the results obtained, it is clear that the performance of these
algorithms differ in terms of attributes such as speed, memory
consumption and extensibility. In respect of speed performance,
FireµSat outperformed rival software packages.

Flexible finite automata-based algorithms for
detecting microsatellites in DNA

Corné de Ridder
Department of Computer Science

University of Pretoria
Pretoria 0002
South Africa

July 24, 2010

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Wer nicht vorwärts geht, der kommt zurücke.

If you’re not going forward, you’re going backward.

— J.W. von Goethe

i

Abstract

Apart from contributing to Computer Science, this research also contributes to
Bioinformatics, a subset of the subject discipline Computational Biology. The
main focus of this dissertation is the development of a data-analytical and the-
oretical algorithm to contribute to the analysis of DNA, and in particular, to
detect microsatellites.

Microsatellites, considered in the context of this dissertation, refer to consecutive
patterns contained by genomic sequences. A perfect tandem repeat is defined
as a string of nucleotides which is repeated at least twice in a sequence. An
approximate tandem repeat is a string of nucleotides repeated consecutively at
least twice, with small differences between the instances.

The research presented in this dissertation was inspired by molecular biologists
who were discovered to be visually scanning genetic sequences in search of short
approximate tandem repeats or so called microsatellites.

The aim of this dissertation is to present three algorithms that search for short
approximate tandem repeats. The algorithms comprise the implementation of
finite automata.

Thus the hypothesis posed is as follows: Finite automata can detect microsatellites
effectively in DNA. “Effectively” includes the ability to fine-tune the detection
process so that redundant data is avoided, and relevant data is not missed during
search.

In order to verify whether the hypothesis holds, three theoretical related algo-
rithms have been proposed based on theorems from finite automaton theory.
They are generically referred to as the FireµSat algorithms. These algorithms
have been implemented, and the performance of FireµSat2 has been investigated
and compared to other software packages. From the results obtained, it is clear
that the performance of these algorithms differ in terms of attributes such as
speed, memory consumption and extensibility. In respect of speed performance,
FireµSat outperformed rival software packages.

It will be seen that the FireµSat algorithms have several parameters that can
be used to tune their search. It should be emphasized that these parameters
have been devised in consultation with the intended user community, in order
to enhance the usability of the software. It was found that the parameters of
FireµSat can be set to detect more tandem repeats than rival software packages,
but also tuned to limit the number of detected tandem repeats.

ii

Acknowledgements

Many people have been influential in my life and in my work and I would not
be who I am today without their loving support, my thanks to them for their
guidance and help. A special thanks to my supervisors, Prof Kourie you are
somebody who besides from being an academic supervisor can be considered a
supervisor of life — thank you for all the understanding, patience, support and
advice during the journey. A great thanks to my husband, Pieter, who supported
me in many ways while I was writing this dissertation.

To my sons Franco and Gustav.

Contents

1 Introduction 3

1.1 Research Context . 4

1.2 Biological Context . 5

1.3 Dissertation Layout . 8

2 Background 11

2.1 Introduction . 11

2.2 Terminology . 12

2.3 Data in FASTA Format . 14

2.4 Data Sources for Study . 15

2.5 TR Detection Algorithms . 18

2.5.1 Microsatellite Detection Algorithms 21

2.5.2 More General TR-Detection Algorithms 25

2.5.3 Other Algorithms . 27

2.5.4 Concluding Remarks . 34

2.6 Criteria for Tools to Detect Microsatellites 37

2.6.1 Competing Algorithms . 38

3 Competing Software 41

3.1 Tandem Repeats Finder . 42

3.1.1 Tandem Repeats Finder: Input 43

3.1.2 Tandem Repeats Finder: Output 47

3.1.3 Redundant Information . 53

3.2 STAR: Search for Tandem Approximate Repeats 54

iii

iv CONTENTS

3.2.1 STAR: Input . 55

3.2.2 STAR: Output . 56

3.2.3 Guidelines for Interpreting STAR Output 62

4 FireµSat 65

4.1 Introduction and Background . 65

4.2 Theoretical Background . 67

4.3 Formal Problem Statement . 75

4.3.1 Type of Mutations Tolerated 77

4.3.2 Additional Metrics and Threshold Values 78

4.4 Algorithm Construction . 82

4.4.1 A Brief Introduction to FireµSat 82

4.4.2 Theory Underlying FireµSat1 84

4.4.3 Theory Underlying FireµSat2 99

4.4.4 Theory Underlying FireµSat3 107

4.5 Conclusion . 108

5 FireµSat Software Specification 111

5.1 Developing the Software: FireµSat 112

5.2 The GUI Input of FireµSat . 112

5.3 The Commandline Input Specification of FireµSat 116

5.4 The Output of FireµSat . 117

5.5 Conclusion . 119

6 Comparing the Software 121

6.1 Data Sources for Study . 122

6.2 Tandem Repeats Finder . 124

6.2.1 Tandem Repeats Finder: Input 124

6.2.2 Tandem Repeats Finder: Output 125

6.3 STAR: Search for Tandem Approximate Repeats 129

6.4 FireµSat . 134

6.4.1 FireµSat: Input . 134

CONTENTS v

6.4.2 FireµSat: Output . 136

6.5 A Tabular Comparison Between Software 136

6.5.1 Comparing FireµSat to IMEx 138

6.5.2 Remarks . 140

6.6 Comparing the Tools . 142

6.7 Conclusion . 145

7 Conclusion 147

7.1 Future Research Initiatives . 148

Glossary, Abbreviations, Acronyms 150

References 154

vi CONTENTS

List of Tables

3.1 TRF Summary File Output . 49

3.2 Single symbol codes for substitutions 63

3.3 Single symbol codes for deletions 63

3.4 Single symbol codes for insertions 64

4.1 Transition table, FA3 . 71

4.2 TRE Types and Matcher functions 102

4.3 A runtime comparison between the three FireµSat implementations
on the swam50.txt file (9k) and on Fusarium Graminearum.txt
(33MB) . 109

5.1 Sample output generated by FireµSat2 117

6.1 Execution time comparison: results for Fusarium Graminearum.txt 137

6.2 Results for swam.txt . 137

6.3 Number of TRs detected : Results for Fusarium Graminearum.txt
(33MB) . 137

6.4 Results for Cylindrocladium Pauciramosum (WrightSEQ2.txt) . . 138

6.5 Execution time comparison: results for Fusarium Graminearum.txt 138

6.6 Data comparison: results for swam.txt 139

6.7 Data comparison: divided microsatellites 139

6.8 Data comparison: results for swam.txt 140

vii

viii LIST OF TABLES

List of Figures

1.1 An Illustration of the Dissertation Layout 9

2.1 The oracle for the word ACTGCACGTTGAC 26

2.2 A suffix tree for the word acgcgct 28

4.1 An FA accepting the PTRE or the motif ACG 68

4.2 An Illustration of FA addition — FA3 = FA1 + FA2 72

4.3 A Moore machine printing a 1 for each ACG substring 75

4.4 FAP (ACG) . 85

4.5 FAD(ACG, 1) . 85

4.6 FAM(ACG, 1) . 86

4.7 Three DFAs that accept ATREs that contain one mismatch . . . 99

4.8 A DFA accepting ATREs of length 3, length 4 and length 5 that
contains one mismatch . 100

4.9 A DFA accepting ATREs of length 4 and length 5 that contain one
insertion as well as one mismatch each. 101

5.1 The GUI of the FireµSat software 113

6.1 The GUI of the FireµSat software 135

6.2 A histogram comparing the TR-length distributions of FireµSat2
and IMEx respectively (for TRs longer than 15 base pairs) without
backward searching. 141

6.3 A histogram comparing the TR-length distributions of FireµSat2
and IMEx respectively after the both-way search has been imple-
mented. 141

1

2 LIST OF FIGURES

Chapter 1

Introduction

Chapter 1 starts in Section 1.1 with a discussion of the research approach followed
during the research presented in this dissertation. In Section 1.2 background to
the biological issues that gave rise to the research, is discussed. The chapter ends
with Section 1.3 which motivates the remainder of the dissertation lay out.

3

4 CHAPTER 1. INTRODUCTION

1.1 Research Context

Glas et al. (2004) distinguish between three disciplines within Computing. These
disciplines are Computer Science (CS), Software Engineering (SE) and Informa-
tion Systems (IS). It is mentioned that CS examines topics related to computer
concepts at technical levels of analysis by formulating processes or methods or
algorithms by using mathematically-based conceptual analysis. CS does usually
not rely on reference disciplines1 [Glas et al. (2004)].

Research conducted by Glas et al. (2004) shows that the research approach
adopted by 79,1% of computer scientists is formulative; and 89,33% of research
conducted by computer scientists is self-referenced and self-reflective. The pro-
posed research aims to contribute to the Computer Science knowledge framework,
it is self-reflective — it relies on theorems and definitions from the discipline of
Computer Theory. The conducted research is formulative in the sense that three
algorithms have been formulated. Thus the research approach followed in this
dissertation belongs typically to the research approach, followed most within the
Computer Science domain.

Details pertaining to these algorithms are to be found in Chapter 4. The pro-
posed algorithms have been implemented. Therefore, it is possible to measure the
effectiveness of the algorithms in a quantitative manner. Quantitative research
can be either experimental or quasi experimental [Goubil-Gambrell (1991)]. The
conducted research is experimental in the sense that it includes the manipulation
of variables and obtains various empirical2 data that are compared to data gen-
erated by similar algorithms. Chapter 3 reports on prominent, selected software
with similar objectives. Chapter 6 provides a comparison between the runtime
and data generated by different software packages that search for microsatellites.

Put more generally, this study adopts a positivistic stance. Positivists prefer re-
search methods that start with precise theories from which verifiable hypothesis
can be extracted and tested in isolation [Easterbrook et al. (2007)]. This research
has been conducted in a deductive manner. Deductive reasoning proceeds from
the more general to the more specific. Thus from theory to hypothesis to obser-
vation and hopefully to confirmation [Trochim (2006)]. The following research
methodology has been followed:

• Theory: Theoretical algorithms have been proposed based on theorems3

1Reference disciplines within the context of research analysis refers to other disciplines whose
theories formed a basis for the research. Within this context self-reference indicates reference
to theories or papers in the discipline under examination. Conducted research has shown that
economics is for example a reference discipline of IS [Glas et al. (2004)].

2Empiricism advocates the idea that observation and measurement is the core of the scientific
endeavour [Trochim (2006)].

3The applicable theorems are discussed in detail in Section 4.2.

1.2. BIOLOGICAL CONTEXT 5

from the field of Computer Theory4.

• Hypothesis: Finite automata (FAs)5 can detect microsatellites6 effectively7

in deoxyribonucleic acid (DNA).

• Observation: As mentioned the suggested algorithms have been imple-
mented and consequently, the data generated by them, as well as their
runtime, have been observed and reported on. These algorithms have been
implemented in high level programming languages. The implementation
details can be found in Chapter 5.

• Confirmation: From the observations in Chapter 5, reported on and com-
pared to other algorithms with similar objectives in Chapter 6, the author
has been able to confirm to what extent the original hypothesis is correct
and which shortcomings exist.

1.2 Biological Context

Although the theory and research methodology of this dissertation is embedded
in CS, the research was inspired by molecular biologists who were discovered to
be visually scanning genetic sequences in search of microsatellites. Therefore,
this research also contributes to Bioinformatics, a subset of the subject discipline
Computational Biology. Computational Biology is defined by BISTIC8 as the
development and application of data-analytical and theoretical methods, math-
ematical modeling and computational simulation techniques to the study of bi-
ological, social and behavioural systems. Bioinformatics is defined by Luscombe
et al. (2001) as the application of computational techniques to understand and
organize the information associated with biological macromolecules. Bergeron
(2003) mentions that Bioinformatics distinguishes itself from other scientific en-
deavors in the sense that it focuses on the information encoded in the genes and
how this information affects the universe of biological processes. In order to un-
derstand the biological context of microsatellites and other competitive software
packages, reflective research9 has been conducted. However, the main focus of

4Computer Theory constitutes mathematical models that describe with various degrees of
accuracy parts of computers, types of computers and similar machines [Cohen (1997)].

5FAs are defined in detail in Section 4.2.
6The term microsatellites is defined in detail in Section 2.2.
7The term effectively is discussed in Section 2.6.
8The Biomedical Information Science and Technology Initiative Consortium of the National

Institution of Health of the United States Of America [National Institute of Health of the United
States of America. BISTIC Definition Committee (2000)].

9Reflective research includes the systematic and persistent inquiry into already existing
knowledge [Kressel (1997)].

6 CHAPTER 1. INTRODUCTION

this dissertation is the development of a data-analytical and theoretical algorithm
to contribute to analyzing of deoxyribonucleic acid (DNA).

DNA is the polymer molecule10 that stores genetic information of organisms
[Paces (2001)]. An organism’s genetic information is encoded in DNA as a se-
quence of four different nitrogenous bases on a sugar-phosphate backbone. DNA
can adopt various conformations, including the double helix structure. The four
nitrogenous bases (nucleotides) are Adenine (A), Cytosine (C), Guanine (G) and
Thymine (T). The sequence of the four nitrogenous bases mirror each other, in
each strand of the double helix mirror, in a predefined manner: Adenine on
the one strand always binds with Thymine on the other, and Cytosine always
binds with Guanine [Bergeron (2003)]. Therefore, the sequence ATTGCA will
occur as TGCAAT on the complementary strand of the helix [Paces (2001)]. Ex-
amples of genetic databases that store nucleotide sequences include GenBank11,
DDBJ12, EMBL13, MGDB14, GSX15, NDB16 [Bergeron (2003)] and GeneCards
[Safran et al. (2002)]. These databases store the described single-letter symbols
— A, C, G and T concatenated.

DNA molecules are subject to numerous mutational events. One of the con-
sequences of these events that can be detected by computationally analyzing
genome sequences, is tandem duplication. In tandem duplication a stretch of
DNA, which we call a motif, is converted to one or more “copies”, each following
the preceding one in a contiguous fashion. These copies may or may not be exact.

A perfect tandem repeat (PTR) is a string of nucleotides in a genomic sequence
whose initial substring (of some arbitrary length), is followed by one or more
exact copies of that substring.

In contrast, an approximate tandem repeat (ATR) is a genomic sequence whose
introductory substring (or motif) is followed by one or more substrings, of which
at least one need not necessarily be an exact copy of the motif. The extent
to which these non-exact copies may vary from the motif is limited, as will be
discussed later in this dissertation.

Short tandem repeats or so called microsatellites (for a detailed definition see
Section 2.2) serve as markers in a variety of different genetic studies in plant and
animal species [Kim et al. (2000)]. Short tandem repeats occur less abundantly in
plant genomes than in mammalian or insect systems. Researchers are focussing on
the identification of short tandem repeats that occur on different plant genomes

10Polymer molecules are large molecules consisting of repeated chemical units joined together.
11One of the largest public sequence databases.
12DNA DataBank of Japan.
13European Molecular Biology Laboratory.
14Mouse Genome Database.
15Mouse Gene Expression Database.
16Nucleic Acid Database.

1.2. BIOLOGICAL CONTEXT 7

for various reasons. One of these reasons is to feed an overpopulated planet. At
the current birthrate the world population will grow to an estimated number of
12 billion people as the year 2050 is approaching. The consequence of the above
mentioned growth is that less and lower quality agricultural land will be available.
A highly sophisticated knowledge of plant Biology may allow the development of
agronomically important species suitable for producing more food in spite of less
available agricultural land [Theologis (2001)]. Better crops can also be assured
by breeding cultivars that are disease resistant. Kim et al. (2000) proposes in this
regard that rice blast disease is one of the most damaging crop diseases world
wide. Effective breeding for blast resistant rice cultivars is not easy to achieve
as a consequence of the frequent turnover of its pathogenecity 17. In order to
contribute to the breeding of blast resistant rice, molecular biologists have isolated
short tandem repeats (microsatellites) to obtain the genomic fingerprint of the
pathogenic fungus rice blast disease (Magnoporthe grisea) and their homologous18

sequences in other fungi, yeast and plant species [Kim et al. (2000)].

Given the importance of known and potential biological roles for short tandem
repeats (microsatellites) that have been briefly outlined above, it seems essential
to develop an efficient and sensitive algorithm to detect these repeats, so that
they may receive further study.

Although two of the FireµSat-algorithms19, that are proposed here, can in theory
be applied to search for TRs of any length, the focus at this stage is to introduce
algorithms that search specifically for microsatellites. The term microsatellites is
defined in Section 2.2. Note, the name allocated to the set of FireµSat-algorithms
is FireµSat. There will be referred to FireµSat if the intention is to refer to
FireµSat1, FireµSat2 and FireµSat3 at once.

It will be seen that FireµSat has several parameters that can be used to tune
its search. It should be emphasized that these parameters have been devised in
consultation with the intended user community, who have been unable to usefully
deploy existing software for TR detection, and who are consequently scanning
sequenced DNA by visual examination. The objective of this dissertation is to
develop an algorithm that can be fine-tuned so that redundant data is avoided,
and relevant data is not missed during microsatellite detection.

17A fungus or bacteria that has the ability to cause a disease.
18Protein or nucleotide sequences are homologous if they show a significant level of similarity.
19Three different algorithms FireµSat1, FireµSat2 and FireµSat3 are proposed. All these algo-

rithms rely on the implementation of FAs to search for microsatellites.

8 CHAPTER 1. INTRODUCTION

1.3 Dissertation Layout

The remainder of this dissertation is laid out as follows. In Chapter 2, various
background matters are explained and a literature overview of algorithms that
aim to detect tandem repeats in DNA is provided. In Chapter 3 two algorithms
that deal in an effective manner with the detection of microsatellites (as defined
in Section 2.2) in DNA are identified namely, Tandem Repeats Finder [Benson
(1999)] and STAR (Search for Tandem Approximate Repeats) [Delgrange & Ri-
vals (2004b)]. From literature overviews at the time this research commenced
STAR and TRF appeared to be the most prominent software within the domain
of software searching for microsatellites. These packages both detect PTRs as
well as ATRs. In 2007 the software package IMEx [Mudunuri & Nagarajaram
(2007)] has been released. Although IMExs is also considered to be a prominent
software package that detects microsatellites, allowing for mismatches, insertions
and deletions, it is not discussed at the same level of detail as TRF and STAR.
However, a comparison between the data IMEx generates and the data generated
by FireµSat can be found in Chapter 6 of this dissertation. “Effective” in the
context of this dissertation, firstly implies algorithms that detect microsatellites
containing substitutions and/or deletions and/or insertions. It also implies that
the relevant algorithms have a running time smaller or equal to O(np + nlogn),
where n is the length of the genetic sequence file under investigation and p is
the length of the motif to be detected. Similarly to FireµSat (the proposed algo-
rithm here), STAR detects microsatellites only, whereas Tandem Repeats Finder
detects microsatellites as well as minisatellites (defined in Section 2.2) and satel-
lites (defined in Section 2.2).

To illustrate the layout of the dissertation a diagram is provided in Figure 1.1.

The required input and output of Tandem Repeats Finder (Section 3.1) and of
STAR (Section 3.2) is not trivial. Therefore it is discussed in detail in Chapter
3. In Chapter 4, the theoretical background as well as the specifications of the
algorithm proposed in this dissertation, FireµSat, will be presented. Chapter
5 constitutes a discussion of the input and output of FireµSat. The input of
FireµSat is discussed in a similar manner to the discussion of that of Tandem
Repeats Finder and STAR in Chapter 3. In Chapter 6 the three algorithms
Tandem Repeats Finder (Section 3.1), STAR (Section 3.2) and FireµSat2 (one of
the algorithms proposed in this dissertation) are compared. The comparison of
the three algorithms is guided by the criteria introduced in Chapter 2, Section
2.6. Software tools should comply to these criteria, if they are to search effectively
for microsatellites. Chapter 7 concludes this dissertation and points to future
research possibilities.

Note further that a glossary is provided at the end of the dissertation.

1.3. DISSERTATION LAYOUT 9

Figure 1.1: An Illustration of the Dissertation Layout

10 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Introduction

The purpose of this chapter is to provide a literature overview of different algo-
rithms that directly or indirectly detect tandem repeats on DNA. However, before
doing so various background matters are explained.

11

12 CHAPTER 2. BACKGROUND

The first background matter relates to the fact that there is significant inconsis-
tency in regard to the terminology that researchers and software developers use
to describe tandem repeats. Therefore, in the interests of consistency, Section
2.2 defines some of the terminology that will henceforth be used. Note that the
section does not exhaustively cover all the terminology needed in this disserta-
tion. It is restricted to general terms. Other terminology will be defined when
appropriate.

Secondly, it will be seen that most of the algorithms to be investigated in Section
2.5 require that the data to be processed should be in the so-called FASTA format.
Section 2.3 explains this format.

It is followed by a discussion of the data that has been used to evaluate the
performance of the identified competing algorithms and FireµSat (Section 2.4).

Thereafter Section 2.5 outlines various algorithms that detect repeats, either di-
rectly or indirectly. These algorithms were identified after a search of the lit-
erature and Web sources. In this regard Van den Bergh (2006) mentions that
although most authors reference a selection of software, developed before the
software that they propose, there does not seem to be a comprehensive catalogue
of relevant software. The algorithms described include the most prominent in the
problem domain. An overview of these algorithms will therefore provide insight
into the various computational and algorithmic techniques used to address the
computational challenge of searching genetic sequences for TRs.

Finally in Section 2.6 criteria with which tools should comply, if they are to search
effectively for microsatellites (see Section 2.2 for a definition of microsatellites)
are introduced.

2.2 Terminology

In the literature a distinction is made between interspersed repeats and tandem
repeats [Pestronk (2005)]. Interspersed repeats are repeated DNA sequences lo-
cated at dispersed regions in a genome. These repeats are also known as mobile
elements or transposable elements. An interspersed repeat occurs if a stretch
of DNA (sequence of nucleotides) is copied to a different location through DNA
recombination [Lee (1996)].

In contrast with interspersed repeats, a tandem repeat (TR) in a genomic se-
quence is a string of nucleotides that is characterized by a certain motif which
introduces the string, followed by at least one “copy” of the motif. Consider the
motif ACG with motif length 3 (|motif | = 3). Then ACGACGACGACGACG is a TR. If
the copies of the motif are exact, this text will refer to the TR as a perfect tandem
repeat (PTR), as in the case of the above example; otherwise (in the case of the

2.2. TERMINOLOGY 13

inclusion of non-exact copies in the TR) this text will refer to an approximate
tandem repeat (ATR). An ATR is thus a string of nucleotides repeated consecu-
tively at least twice with small differences between the instances. An example of
an approximate tandem repeat is: ACGACTACGACGAC.

In the absence of further qualification, a reference to a TR should be construed
as a reference to either a PTR or an ATR. A TR element (TRE) that matches
the identified motif of the TR will be referred to as a PTR element (PTRE). A
TRE that does not match the motif is referred to as an ATR element (ATRE).

In the literature [Thurston & Field (2005); Myers & Sagot (1998); Delgrange &
Rivals (2004b); Lee (1996)] a distinction is made between TRs that constitute
microsatellites, minisatellites and satellites. However, terminology is not used
consistently in the literature. Castelo et al. (2002) coins the term Simple Sequence
Repeats (SSRs) for microsatellites; Tran et al. (2004) terms microsatellites short
tandem repeats. Delgrange & Rivals (2004b), Benson (1999) and Abajian (2003)
consider TRs characterized by motif lengths greater than or equal to two and
smaller than or equal to five (2 ≤ |motif | ≤ 5) to be microsatellites. Thurston &
Field (2005) and Lee (1996) consider TRs microsatellites if 2 ≤ |motif | ≤ 6.

Benson (1999) refers to all other TRs as variable number tandem repeats (VNTRs)
whereas Delgrange & Rivals (2004b) and Myers & Sagot (1998) also distinguish
between minisatellites and satellites. Delgrange & Rivals (2004b) define minsatel-
lites in terms of motif length such that (7 ≤ |motif | ≤ 100) and satellites such
that |motif | ≥ 101.

In this dissertation a microsatellite is considered to be a TR with a PTRE or motif
such that 2 ≤ |motif | ≤ 5. Microsatellites will include PTREs and ATREs. Thus
microsatellites should only be construed as PTRs if this is specifically stated.

However, TRs can only be detected after sequencing1 of a genome or fragment
of DNA has taken place. Sequences that are investigated in order to detect TRs
may either be stored in genetic data banks (Section 2.3) or may be generated by
various methods, such as the BAC-to-BAC method, shotgun method, Random
Amplified Microsatellites (RAMS) method or the Fast Isolation by AFLP2 of Se-
quences Containing Repeats (FIASCO) method [Zane et al. (2002), Trivedi (2000)
and Van der Nest et al. (2000)]. Sequencing involves complicated laboratory tech-
niques — an explanation of which is beyond the scope of this dissertation.

After sequencing, the generated data that is to be processed by software packages
should be converted to an internationally acceptable format. Most of the software

1Sequencing is the determination of the order of nucleotides in a DNA or RNA molecule or
the order of amino acids in a protein [Lefers (2004)].

2AFLP is an abbreviation for amplified fragment length polymorphism (the occurrence of
different forms of a gene in members of the same specie) [Ware et al. (2005)].

14 CHAPTER 2. BACKGROUND

that detects TRs on genomic sequences has been designed to process data in so-
called FASTA format. The two algorithms that we have investigated as competing
algorithms in Chapter 3 also require their genetic input sequences to be in FASTA
format.

So does the software implementation of the FireµSat algorithm proposed in Chap-
ter 4 of this dissertation.

Therefore, the next Section, Section 2.3, elaborates on FASTA format.

2.3 Data in FASTA Format

The FASTA format defines the file format used to store and exchange informa-
tion between genetic databases [Farlex Inc. (2005)]. FASTA is used by, amongst
others, the European Molecular Biology Open Software Suit (EMBOSS) [Rice &
Bleasby (2009)], the Norwegian Bioinformatics platform [Biology Online (2005)]
and the National Center of Biotechnology Information (NCBI) that is situated
in the United States of America.

The NCBI has developed the widely used Entrez Search System, which allows
for the retrieval of a wide range of molecular biology data and bibliographic
citations3.

The genetic database files that are accessed and delivered by this system include
nucleotide databases that are in FASTA format.

A sequence in FASTA format begins with a single line description, that is followed
by lines of sequence data. The description line is distinguished from the sequence
data by means of a greater-than symbol,“>”, in the first column of the first row.
It gives a name and/or a unique identifier to the sequence. The description line
may also give other relevant information.

For example, it may give an indication of the fragment of DNA that is represented
by the data.

FASTA format files often have extensions like .fa, .mpfa or .fsa. Other exten-
sions are, however, also allowed [Farlex Inc. (2005)]. Multiple genetic sequences,
all in the same file, each introduced by single description lines are also acceptable.

In general, sequence analysis programs require protein sequences and DNA se-
quences to be represented in the standard International Union of Biochemistry

3Some of the databases that can be searched and accessed via the system include: integrated
nucleotide databases (e.g. GenBank, DDBJ and EMBL); protein databases (e.g. SwissProt,
PIR, PRF and PDB); and various bibliographic databases (e.g. PubMed databases) [Google
(2005)]. A list of these abbreviations can be found in the Appendix.

2.4. DATA SOURCES FOR STUDY 15

(IUB) or the International Union of Pure and Applied Chemistry (IUPAC) amino
acid and nucleic acid codes.

FASTA format conforms to these codes. These codes prescribe the use of letters
over the alphabet Σ = {A,C,G, T}∪{N, X}. The IUB and the IUPAC allow two
exceptions pertaining to DNA: lower case letters are accepted, but are mapped to
the corresponding upper-case letters. Additionally, a single hyphen can be used
to represent a gap of length one4.

In general, a gap can be of indeterminate length. Before submitting a request
to sequence analysis programs, any numerical digits5 in a query sequence should
either be removed or replaced by appropriate letter codes (e.g., N for unknown
nucleic acid residue or X for unknown amino acid residue) [The Marine Biological
Laboratory (2003)]. An example of a genetic sequence in FASTA format is given
below.

>Cow
ATGGCATATCCCATACAACTAGGATTCCAAGATGCAACATCAC
CTTAAGCTTCGACTCCTACATAATTCCAACATCAGAATTAAAG
CCCGTCCAGGCTTATATTACGGTCAATGCTCAGAAATTTGCGG
GTCAAACCACAGTTTCATACCCATTGTCCTTGAGTTAGTCCCA
CTAAAGTACTTTGAAAAATGATCTGCGTCAATATTA-------
--------------TAA

This example was obtained from the web site of The Marine Biological Laboratory
[The Marine Biological Laboratory. Workshop on Molecular Evolution (2004)].
For the purposes of evaluating and comparing one of the proposed algorithms
(FireµSat2) with competing software, two sets of data in FASTA format are used.
Next the details of these sets of data are discussed.

2.4 Data Sources for Study

In later chapters the FireµSat algorithms for microsatellite detection will be ex-
plained and compared against two of the most prominent competing algorithms.
Two sets of data were used to compare these algorithms in terms of their practical
execution. They are the following:

4A gap of length one could occur within a DNA sequence if, for example, for a certain position
it is unclear which nucleotide is prominent during the final step of sequencing [National Institute
of Health of the United States of America. BISTIC Definition Committee (2000)].

5Numerical digits are generated during one of the final steps of sequencing to indicate the
prominence of a certain nucleotide in a specific DNA sequence position.

16 CHAPTER 2. BACKGROUND

1. Data of the fungus Fusarium Graminearum

Data of this fungus was made available by the Center of Genome Research.
It constitutes 33 930 392 bytes. The data is in FASTA format and thus
consists of concatenated characters over the alphabet Σ = {A,C, G, T}.
The base pairs of the Fusarium Graminearum genome has been divided in
different so called scaffolds or attached regions. The number of base pairs
varies for each scaffold. The second scaffold is labeled with the heading >
Fusarium graminearum 1.54 (scaffold 1).

2. Data of the Cylindrocladium Pauciramosum
The genomic data of the Cylindrocladium Pauciramosum was generated by
Dr. L.P. Wright, one of the molecular biologists who was visually scanning
DNA sequences with his eyes to detect microsatellites. Wright reports on his
findings based on the microsatellites he detected in Wright et al. (2007). The
Random Amplified Microsatellites (RAMS) method was applied in order to
obtain the generated data6. The format of the data obtained is relevant to
the present discussion.

In contrast to the fusarium genome that consists of an approximately 33
mega bytes of concatenated characters of the alphabet Σ = {A,C, G, T}
divided by scaffolds, the data generated by the RAMS method consists of
various short sequences, each containing data of different so called “librarie”
(explained in the itemized list below) and having different sequence headers.
The following gives examples of two of the genetic sequences generated by
Wright et al. (2007), these sequences are contained in the same file:

>BL141
CCACCACCACCACCAACACAATTGCACCGCTAGTGGCTATATTTGATGCC
CTCAAAATTCCCGCACCGTGGGCACCAGAGGCCAAGGATTTCGACTACGC
AAACACGACTTTGCTGATTATGGGTGGTGGATCCAGCACCGGCAAATTTG
GCGTACAATTAGCCAAGTTAGCAGGCATTGGCAAGATTGTTGTTGTTGTT
G
>BL204
ACAACAACAACAACAGTAGGAAGGAAATAATAACCATAGAAACCAGTTTT
TGAAATCTGTTCAGTTTAATTAATTTTGCAATTTTTATTCCCTATTTTTG
TCTAGAGCGTAGGAGTGTAAGTGGATCTCGCATCCTTCGAGAGCCCGCTG
CTCATTACGGAGACCCTCCCTCCACTCTTTGCTTGCTTCAACAAGGTTGA
ACTTTGTTGCGGCTGTCTCTCTCTAGTCTTTTGATGCCATCGCTCATTTT

6The RAMS method is a fairly complicated technique and the details thereof is, as mentioned
in Section 2.2, beyond the scope of this dissertation. A description of the technique can be found
in [Van der Nest et al. (2000)].

2.4. DATA SOURCES FOR STUDY 17

GGCCTTTCCCGCGGTCTGTTGCCGCCTTCTCCTTATCTCCTGTGTGTGTG
TGTGTG

The reason for the different sequences can briefly be explained as follows:

• During the enrichment of the genetic substance that contains frag-
ments of the organism of which genetic data is generated, the molec-
ular biologist obtains a whole mixture of different DNA fragments.
These different DNA fragments are referred to as a library.

• The RAMS method uses a cloning step in one of the final steps in order
to separate different DNA fragments. Cloning entails the incorporation
of the respective DNA fragments into respective plasmids7 by means
of a process called ligation8.

• Transformation is the next step and occurs when the respective plas-
mids are introduced into bacteria cells.

• With the growth of the bacteria cells the plasmids are also reproduced.
After 24 hours every single bacteria cell will have multiplied into bil-
lions of cells. Each of these cells will contain the various plasmids with
their respective DNA fragments.

• The plasmids are then isolated from the cells to be used in further DNA
manipulation work, inter alia for sequencing. Thus sequences created
by means of the RAMS method entails the generation of sequences of
different fragments of DNA.

It is in the interest of the molecular biologist that different relevant frag-
ments of genetic data in the original library should be distinguishable. The
sequenced fragments are relatively short DNA sequences in FASTA format.
It is not practical (and it is very time consuming) to create separate files for
each fragment of DNA. A more practical manner of storing the genetic data
of each of the original fragments is by compiling a large number of DNA
fragment sequences into one file. One should then distinguish between the
respective fragment sequences obtained by means of a single line descrip-
tion of the fragment followed by the fragment itself, as is allowed in FASTA
format.

Consequently, in terms of useability, software should make provision for the
processing of multiple genetic sequences, with their respective descriptions,
in one file.

7A plasmid is any replicating DNA element that can exist within the cell independently of
the chromosomes. Synthetic plasmids are used for DNA cloning [Bio-Synthesis, Inc (2007)].

8Ligation refers to the process of splicing two pieces of DNA together — details of the process
is not relevant to the current discussion.

18 CHAPTER 2. BACKGROUND

Now that the file format and the data to be investigated have been explained, var-
ious software applications that detect TRs directly or indirectly will be explored
in Section 2.5.

2.5 TR Detection Algorithms

There are a variety of software applications that meaningfully support intra-
and inter-genetic sequence analysis. Several of these software applications that
support Molecular Biology are freely available online. Organizations that provide
links or direct access to this software include:

• EMBOSS: The European Molecular Open Source Software Suite [Rice &
Bleasby (2009)].

• NCBI: National Center for Biotechnology Information [National Center for
Biotechnology Information (2005)].

• The BROAD institute [Broad Institute (2009)].

• BCCL: Bioinformatics Computational Core Laboratories [Bioinformatics
Computational Core Laboratories (2005)].

• TEXTCO [Hackett & Gross (2007)].

These web sites include various software packages that search for repeats on
genomic sequences.

As mentioned in Section 2.1, academics who publish their developments of TR-
detecting software usually reference other, already published, software. Some
of these criticisms will be mentioned below after the discussion of the selected
software. In this regard one should take note thereof that none of the existing
publications have been found to be exhaustive in the sense that the authors were
describing all the available tools [Van den Bergh (2006)].

Similarly, it is not the intention of this study to present an exhaustive literature
overview of all the available tools. To the best of the author’s knowledge, the
algorithms described include the most prominent in the problem domain. The
algorithms also contribute to the provision of an overview constituting the dif-
ferent needs within the knowledge framework of the detection of TRs on genetic
strings. In this study computational, algorithmic techniques by which academics
address the computational challenge of searching genetics sequences for TRs are
also addressed.

2.5. TR DETECTION ALGORITHMS 19

In general, this study did not involve a re-investigation of all the software already
referred to and criticized by other authors. Instead it was decided to focus on
algorithms that address some of the needs of the molecular biologists, described
in terms of various criteria in Section 2.6. However, if this investigation were to
be limited to existing software that fully addresses the particular needs of the
molecular biologist and that complies with the criteria stipulated in Section 2.6,
then it is doubtful whether anything would be found.

A number of software packages that detect tandem repeats, either directly or
indirectly, are investigated even though they are not fully compliant with the
features mentioned in Section 2.6.

In this regard STAR [Delgrange & Rivals (2004b)] was included, which searches
for microsatellites in particular, allowing for substitutions, deletions as well as
mismatches, although it has been criticized by Wexler et al. (2005). STAR also
provides its user with statistical relevant information.

Tandem Repeats Finder [Benson (1999)] has been compared with both ATR-
Hunter [Wexler et al. (2005)] and STAR [Delgrange & Rivals (2004b)], with the
authors of the latter two systems each claiming that their respective algorithm is
better than Tandem Repeats Finder in terms of accuracy. Nevertheless, Van den
Bergh (2006) mentions that Tandem Repeats Finder remains the most cited TR-
detecting software. For this reason, Tandem Repeats Finder has also been in-
cluded as part of this literature overview. It is also worth noting that Tandem
Repeats Finder can be used much more easily to execute computations on larger
files than either ATRHunter and STAR. (Details of this statement in relation to
ATRHunter can be found in Van den Bergh (2006); details regarding STAR are
to be found in Chapter 6 of this dissertation.)

For the purposes of this dissertation, a detailed discussion of each of the algo-
rithms classified below will not be given. Instead they will be discussed in terms
of:

• their computational technique used to detect microsatellites; and

• some of the shortcomings of the respective packages as identified from the
perspective of a molecular biologist.

A number of these software packages (including STAR, Tandem Repeats Finder
and ATRHunter, all of which are discussed below) implement alignment algo-
rithms in order to detect TRs. Thus before the different algorithms are discussed
the concept “alignment” as a string comparative technique will briefly be ex-
plained in terms of an example.

20 CHAPTER 2. BACKGROUND

Within the context of Molecular Biology, an alignment refers to the comparison of
two genetic strings. Camp et al. (1998) describes alignment as the loose position-
ing of one string relative to another string. An example of an alignment where
the top row represents the first genetic sequence and the second row represents
the second genetic sequence is:

T T C T T C T T C C T C T T
T T C T T C T T C T T C T T

Alignments can be evaluated quantitatively by means of an alignment score. For
example, suppose a scoring function is defined as follows:

Score = (number of matches×match score) + (number of mismatches×
mismatch penalty) + (number of indels× indel penalty)

Then, letting match score = 2 for each match; mismatch penalty = −2 for each
mismatch and the indel penalty = −3 for each indel (insertion or deletion) then
the score of the above alignment can be calculated as follows:

Score = (13× 2) + (1× (−2)) + (0× (−3))

= 26− 2 + 0

= 24

The determination of an alignment score of two strings is thus relatively simple.
However, it is very challenging to determine the optimal alignment of two se-
quences. The optimal alignment of two sequences implies the determination of
an alignment that will obtain the highest score from aligning two given sequences
in all possible manners [Van den Bergh (2006)].

Various software packages will be discussed below, some of which implement
alignment algorithms.

They are divisible into the following three categories.

1. Algorithms searching specifically for microsatellites:

• Sputnik (Section 2.5.1.1)

• TROLL: Tandem Repeat Occurrence Locator (Section 2.5.1.2)

2.5. TR DETECTION ALGORITHMS 21

• Msatminer (Section 2.5.1.3)

• STAR: Search for Tandem Approximate Repeats (Section 2.5.1.4)

• IMEx As mentioned IMEx has only been made available after most
of this study has been completed. A comparison between the data
generated by IMEx and FireµSat can be found in Chapter 6, Section
6.5.1.

2. Algorithms that detect microsatellites as a subset of tandem repeats of
various length:

• ATRHunter (Section 2.5.2.1)

• FORRepeats: detects repeats on entire chromosomes and between
genomes (Section 2.5.2.2)

• Tandem Repeats Finder (Section 2.5.2.3)

3. Algorithms that do not specifically aim to detect tandem repeats, but that
detect tandem repeats indirectly in some manner:

• REPuter: fast computation of maximal repeats in complete genomes
(Section 2.5.3.1)

• RepeatFinder (Section 2.5.3.2)

• BLAST: Basic Local Alignment Search Tool (Section 2.5.3.3)

• RepeatMasker (Section 2.5.3.4)

2.5.1 Microsatellite Detection Algorithms

In this section software packages detecting microsatellites per se are discussed.

2.5.1.1 Sputnik

Sputnik uses a recursive algorithm to search for repeated motifs of nucleotides
of length between 2 and 5. Sputnik reads through the entire submitted genetic
sequence, assumes the existence of a repeat at every position, compares subse-
quent nucleotides and applies a simple scoring rule. Mismatches and indels are
tolerated but affect the overall score. If the resulting score rises above a preset
threshold then the TR along with its threshold becomes part of the output. If the
threshold score falls below a cutoff threshold then the search is abandoned and
restarted at a next nucleotide. Each nucleotide that matches the value predicted
by assuming a repeat increases the score. Each error decreases the score. If an

22 CHAPTER 2. BACKGROUND

error is encountered then at least one of the three possible kinds of errors mis-
match, insertion and deletion is assumed and recursive calls to the comparison
routine are made. If the resulting score from one of these errors is above the
cutoff threshold, then it is returned and the best of three is pursued [Abajian
(2003)].

Besides the fact that Sputnik does not contribute to the statistical analysis of
detected TRs it does not detect all microsatellites. In contrast with the STAR
algorithm (Section 2.5.1.4), the developer cannot claim that Sputnik is an exact
algorithm. We have run Sputnik and found, for example, that both Tandem
Repeats Finder (Section 2.5.2.3) and STAR (Section 2.5.1.4) detected two TRs9

which Sputnik failed to detect. Consequently we decided not to further evaluate
Sputnik as a competing algorithm to FireµSat.

2.5.1.2 TROLL: Tandem Repeat Occurrence Locator

TROLL is a microsatellite finder based on the Aho Corasick Algorithm (ACA)
that was developed to solve the so-called dictionary problem i.e. to find all oc-
currences from a list of patterns in a text string. The ACA uses a keyword tree to
find all occurrences of any pattern from a set in a text string. The keyword tree
also stores information regarding pattern similarity by means of failure links. If
the algorithm encounters a partial match in the text, it uses the failure links to
continue the search without re-sampling characters in the text, thereby achieving
linear time complexity.

TROLL uses the ACA to detect pre-selected patterns in a text string and keeps
simultaneously track of tandem repetitions so that microsatellites can be detected.
In the context of Bioinformatics, patterns correspond to motifs and the text string
is a DNA sequence [Castelo et al. (2002)]. Castelo et al. (2002) mentions, that the
sole purpose of TROLL is to find perfect tandem repeats. This is in contrast to the
algorithm presented, which also detects approximate tandem repeats. Therefore
TROLL will not be evaluated as a competing algorithm to FireµSat.

2.5.1.3 Msatminer

Msatminer is a package of perl scripts10, released under GPL11. Msatminer com-
prises of four core scripts plus additional supporting scripts. The four core scripts

9with |motif | = 3 on scaffold 41 of the Fusarium Graminearum genome (Section 2.4).
10Perl is the abbreviation for Practical Extraction and Report Language. Perl is a program-

ming language especially designed for text processing [Webopedia (2004)].
11GPL is an abbreviation for the General Public License of GNU (GNU is a recursive acronym

for GNU’s Not UNIX) [Johns (2005)].

2.5. TR DETECTION ALGORITHMS 23

are:

• Msatfinder
Msatfinder is the main script in the Msatminer package. Msatfinder is
responsible for the detection of microsatellites and the generation of the
output file that can be used by other scripts or applications. Msatfinder
implements regular expression12 matching to locate perfect tandem repeats.

• Msataligner
Msataligner takes FASTA files (Section 2.3) that were generated by Msatfinder
containing microsatellites and their flanking regions and performs two func-
tions:

– Comparing all microsatellites against all relevant genomes (whether
a genome is considered relevant depends on the molecular biologist)
with bl2seq13.

– Blasting14 all detected microsatellites against all others with NCBI
blastall15 and generating alignments or trees that can be viewed using
an editor such as Jalview16.

• Msatannotator
Msatannotator is used to compare microsatellite polymorphism17 between
two closely related genomes and to generate bl2.seq. between the two sub-
mitted sequences [Gish (2009)]. of the two genomes. The user is also allowed
to annotate polymorphisms found. Additionally the script generates a table
summarizing the microsatellites and their degree of conversion18.

12Regular expressions are defined and explained in Chapter 4, Section 4.2.
13Bl2seq performs a comparison between two sequences using either the blastn (blast nu-

cleotides (Section 2.5.3.3)) or the blastp (blast peptides (Section 2.5.3.3)) algorithm in order
to generate a summary of the regions that are conserved (in the context of Molecular Biology
conserved microsatellites on genes refer to microsatellites that are to be found in corresponding
positions in different genomes [Chao et al. (1993)])between several genomes.

14Blasting, within the context of the BLAST-software package (Section 2.5.3.3) refers to the
comparison of genetic sequences. Typically, if a “query” genetic sequence is submitted then
BLAST searches genetic data banks (Section 2.3) for all sequences that are very similar to the
so-called, usually newly sequenced, “query” sequence [Gish (2009)].

15NCBI (National Center for Biotechnology Information) blastall should directly be obtained
from NCBI and is not part of the Washington University BLAST software package.

16Jalview is a multiple alignment editor, like Seaview, Cinema and Belvu but written entirely
in Java. It is widely used in a variety of web pages (e.g. the EBI Clustalw server and the Pfam
protein domain database). It is also available as a general purpose alignment editor [Clamp
(2009)].

17Polymorphism indicates the occurrence of different forms of a gene in members of the same
species [Ware et al. (2005)].

18Gene conversion is a process that is often associated with recombination a process during
which one allele is replicated at the expense of another.

24 CHAPTER 2. BACKGROUND

• Msatviewer
Msatviewer is used to provide online access to the databases that are created
as the output of Msatfinder [Thurston & Field (2005)].

Msatminer firstly detects perfect microsatellites by means of Msatfinder. There-
after Msatminer allows the user the possibility of performing various comparisons
on the data obtained. Msatminer detects PTRs whereas our proposed algorithm
detects ATRs and PTRs. Furthermore, the focus of our algorithm is not on car-
rying out inter-genetic comparisons but on effectively detecting microsatellites.
Therefore, Msatminer was not further evaluated as a competitor for FireµSat.
However, Msatminer reflects the need of the molecular biologist to detect corre-
spondence in terms of microsatellites between different genomic sequences, thus
inter-genetic comparison in terms of microsatellites. At present the software pro-
posed by this dissertation does not address the issue of inter-genetic comparison,
but the possibility of extending the proposed software is recognized as a challenge
for future research.

2.5.1.4 STAR: Search for Tandem Approximate Repeats

STAR is an exact algorithm that detects significant microsatellites of a selected
motif in a DNA sequence in FASTA format. (In the case of STAR significance
is assessed by a measure of local compressibility. The concept “compressibility”
in the manner STAR defines it, is explained in more detail in Chapter 3 (Section
3.2).)

STAR searches a genetic sequence for motifs that are entered by the user. For a
given motif, STAR returns a description of all the microsatellites. It also returns
the respective optimal alignments19 of the various detected microsatellites and
the selected motif [Delgrange & Rivals (2004b)].

STAR is one of the algorithms that has been selected to be evaluated as a com-
peting algorithm. STAR will receive further attention in Chapter 3, where it is
discussed in more detail. STAR focuses on the detection of microsatellites and
provides the user with some biological, statistically relevant data. An elaboration
on the selection of STAR is to be found in Section 2.6.

19If we assume a function that is implemented to calculate an alignment score then the
optimal alignment of two sequences implies the determination of an alignment that will obtain
the highest score from aligning two given sequences in all possible manners [Van den Bergh
(2006)].

2.5. TR DETECTION ALGORITHMS 25

2.5.2 More General TR-Detection Algorithms

The algorithms in this section detect tandem repeats of various length. Mi-
crosatellites are therefore detected as a subset of these, their length being in the
range 2 ≤ |motif | ≤ 5.

2.5.2.1 ATRHunter

The ATRHunter software constitutes two phases: a screening phase, followed by
a verification phase. The screening phase generates a list of candidate regions
that may contain TRs. Thus the screening phase identifies substrings which each
have an unusually high probability of being a TR. The candidate regions are sub-
sequently verified by, amongst others, aligning candidate approximate tandem
repeats and by making use of dynamic programming. Dynamic programming as
well as the type of dynamic programming that is implemented by the most align-
ment algorithms (including ATRHunter) is discussed in more detail in Chapter 3
(Section 3.1.1).

Flexibility in terms of approximation is achieved by using a variable size sliding
window along with a suitable similarity metric20. Details of the mapping of the
motif to the ATRE is beyond the scope of the present discussion, but can be
found in Wexler et al. (2005).

A novel statistical model captures the metric’s distribution, describing the prob-
ability that a given ATRE corresponds to a given motif [Wexler et al. (2005)].
From the results obtained by Wexler et al. (2005), ATRHunter seems to be one
of the most effective algorithms for detecting TRs at present. Van den Bergh
(2006) mentions, however, that she has run ATRHunter but that she could not
obtain any output. Van den Bergh (2006) considers that the file length consti-
tuting 17.9 megabytes may be problematic as the authors used only a file of 5.5
megabytes while they were comparing ATRHunter with Tandem Repeats Finder.
ATRHunter does not provide its user with relevant analyzed, biological statistical
data. It only addresses the computational problem of detecting TRs on genetic
sequences - ATRHunter will not be evaluated as a competing algorithm.

2.5.2.2 FORRepeats

FORRepeats detects ATRs on entire chromosomes and between genomes. In its
first step, it detects exact repeats in large sequences. In its second step, TRs
(allowing errors of the detected exact repeats) are computed during a pairwise
comparison between two extended exact repeats. The details of the extension of

20This metric quantifies the differences between the elements of two sets.

26 CHAPTER 2. BACKGROUND

0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13

a
 c
 t
 g
 c
 a
 c
 g
 t
 t
 g
 a
 c

0
 0
 0
 0
 1
 1
 2
 1
 1
 1
 2
 1
 2

Figure 2.1: The oracle for the word ACTGCACGTTGAC

exact repeats the comparison thereof are beyond the scope of this dissertation.
However, the interested reader can consult Lefebvre et al. (2003) in this regard.

FORRepeats uses a heuristic method that is based on a novel data structure
called a factor oracle. Factor oracle technology is an application of finite automata
technology. The factor oracle of a word p of length m, denoted by Oracle(p), is
a deterministic finite automaton (Q, q0, F, δ) where Q = 0, 1, ..., m is the set of
states, q0 = 0 is the starting state, F = Q is the set of terminal states and δ is the
transition function. The factor oracle of a word p of length m has the following
properties:

• it has exactly m + 1 states,

• its number of transitions is in the range [m, 2m− 1] and,

• it recognizes at least all the factors of p and more words (the exact set of
words recognized by the factor oracle is still being investigated).

There exist a bijection between the states of the oracle and the m + 1 prefixes
of p (including the empty one). Each transition leading to a state i is labeled by
p[i]. Two kinds of transitions are distinguished namely:

• Internal transitions: transitions from state i to state i + 1 and,

• External transitions: transitions from state j to state i where
(j − i) > 1.

For the above the following must hold: 0 ≤ i < j ≤ m. There are exactly m
internal transitions. To store the oracle one needs to store only the word p and
at most m − 1 external transitions without their labels. The factor oracle is a
structure that is economical in terms of memory and runtime. The memory used
is approximately 10.5 times the length of the sequence — the structure is linear
in terms of memory. The construction of the structure is also linear in terms of
runtime [Lefebvre et al. (2003)]. See, Figure 2.1.

2.5. TR DETECTION ALGORITHMS 27

Lefebvre et al. (2003) conducted experiments to determine the accuracy of FOR-
Repeats. These experiments indicated that FORRepeats performs better at de-
tecting repeats that are longer than 20 base pairs. The performance of FOR-
Repeats, in terms of the more accurate detection of longer repeats than shorter
repeats, is comprehensible if one consider the calculation technique which is im-
plemented by FORRepeats. Firstly exact repeats are found then these repeats
are extended to the left and to the right such that the repeats become approxi-
mate repeats for which certain threshold values hold. If the repeats are very short
then a large number of exact repeats will be found which will be time consuming
to extend and may result in overlapping.

This implies that FORRepeats is well-suited for the detection of minisatellites
or duplicated genes. FORRepeats does not detect microsatellites that effectively
[Lefebvre et al. (2003)].

Therefore, in spite of the good performance of FORRepeats, this study will not
explore the algorithm further.

2.5.2.3 Tandem Repeats Finder

Tandem Repeats Finder models tandem repeats by percent identity and frequency
of insertions and deletions (indels) between adjacent motif copies. The program
uses statistically based recognition criteria. Tandem Repeats Finder consists
of detection and analysis components. The detection component uses a set of
statistically based criteria to determine candidate tandem repeats. The analysis
component aims to produce an alignment for each candidate. If the analysis com-
ponent is successful then it gathers a number of statistics regarding the alignment
and the nucleotide sequence [Benson (2003b)]. Tandem Repeats Finder detects
microsatellites (|motif | < 6) as well as repeats with longer pattern lengths [Ben-
son (1999)]. Tandem Repeats Finder performs well in terms of runtime and
memory management. Tandem Repeats Finder also provides its user with rele-
vant biological and statistical data.

Tandem Repeats Finder is the second algorithm that has been identified for eval-
uation as a competing algorithm. This study’s choice of Tandem Repeats Finder
is justified in Section 2.6 and is elaborated on in Chapter 3.

2.5.3 Other Algorithms

The algorithms in this section are not specifically aimed at detecting tandem
repeats. However, they nevertheless detect tandem repeats indirectly, in some or
other manner.

28 CHAPTER 2. BACKGROUND

0

1

acgcgct

c

2

0

a
c
g
c
g
c
t

gc

2
 4

gct
 t

3

cg

5

t

1
 3

cgt
 t

4

t

Figure 2.2: A suffix tree for the word acgcgct

2.5.3.1 REPuter

REPuter is a software tool that efficiently computes exact repeats and palin-
dromes in a complete genome. The repeats computed are of maximal length.
REPuter implements suffix trees in order to detect repeated sequences [Kurtz &
Schleiermacher (1999)]. Suffix trees are data structures that are used to rapidly
solve certain computational problems pertaining to sequence processing. Such
problems include, for example, finding all occurrences of short sequences in DNA,
and finding common sequences in two different sequences [Hyde (2000)]. Figure
2.2 gives an example of a suffix tree for the sequence acgcgct.

The runtime and space requirement of REPuter can be represented as a linear
function of the length of the genetic input sequence and of the size of the output
[Volfovsky et al. (2001)]. REPuter consists of two programs, namely: a search en-
gine; and a visualizing component. The search engine processes a DNA sequence
in FASTA-format (Section 2.3) and returns a representation of all maximal per-
fect repeats in a simple ASCII format. The visualizing component processes
the output of the search engine and generates an overview of the number, the
length and the location of the repeated substrings. REPuter is a highly efficient
computational tool that can find all exact repeats in sequences that are as long
as complete eukaryotic chromosomes 21. Eukaryotic chromosomes may occupy

21The term eukaryotic cell refers to a cell that has a nucleus. Chromosomes are the self-
replicating genetic structures of cells containing the cellular DNA that bears in its nucleotide
sequence the linear array of genes. Eukaryotic chromosomes play an important role in mitosis
(cell division) and consist of various DNA sequence elements, including tandem repeats. [Herr

2.5. TR DETECTION ALGORITHMS 29

between ten and hundred mega bytes of memory space [Volfovsky et al. (2001)].

REPuter has been criticised by Volfovsky et al. (2001) for not providing a suf-
ficient overview of the repetitive structure within the genetic sequence where
repeats are detected. A repetitive structure will include the organization of de-
tected repeats into classes so that repeat databases can be created [Volfovsky
et al. (2001)]. However, Repeatfinder, the software to be discussed in more detail
below, utilizes the output of REPuter to provide such an overview of detected
repeats by assigning appropriate repeats to so-called similarity classes (discussed
simultaneously together with RepeatFinder). Since REPuter is limited to the
detection of perfect tandem repeats, it will not be treated as a competitor to the
FireµSat algorithm.

2.5.3.2 RepeatFinder

RepeatFinder is a computational system that analyzes the repetitive structure of
genomic sequences (complete genomes and partial genomes). Its authors propose
a clustering method for analyzing repeat data that has been captured in suffix
trees. RepeatFinder implements an algorithm that uses suffix trees to detect all
the exact repeats in a given genetic sequence. REPuter (Section 2.5.3.1) could be
the generator of such suffix trees. Detected repeats are then organized into classes
and repeat databases are created. The algorithm implemented by RepeatFinder
can be described at a high level as follows:

• Selection and pre-processing
The list of all the exact repeats (provided as output by, for example, RE-
Puter) is interpreted by RepeatFinder as a partition of the original genome
sequence. Each point of the partition has a reference to the applicable pair
of coordinates (A1, A2) as well as to the length l.

• Merging procedure
This procedure merges two exact repeats that either overlap or that occur
within a limited distance (gap) of one another. The new merged repeats
will always have the property that significant subsequences of the repeat
appear at least twice in the genome sequence.

• Classification
The various repeat classes are defined during this step. Each resultant
merged repeat (of the previous step) will be assigned to a specific class.
The following conventions are used in the classification:

(2008) and Biology Online (2005)]

30 CHAPTER 2. BACKGROUND

– If a repeat contains at least one repeat that already belongs to an
existing class then the merged repeat will be assigned to that class.

– If a merged repeat contains references that belong to multiple distinct
classes then those classes are combined into one class.

– If a merging repeat contains no references to an existing class then the
merged repeat forms its own class.

• BLAST searches and repeat class updates
The initial class classification is based on exact repeats. WU-BLAST (see
Section 2.5.3.3) is run in order to compare the different repeat classes, cre-
ated by the previous steps, with one another. The resultant matches be-
tween the various already existing classes, detected by WU-BLAST, serve
as input to a procedure of RepeatFinder that updates the appropriate re-
peat classes, creates new classes and/or eliminate old classes. If the already
constructed repeat set contains approximate repeats, then this step may be
omitted [Volfovsky et al. (2001)].

RepeatFinder does not focus on the detection of microsatellites per se. However,
it reflects the need to detect and classify TRs. RepeatFinder does not propose a
new algorithm, but makes use of existing algorithms and cannot be considered an
exact algorithm. RepeatFinder makes use of BLAST searches to update repeat
classes. BLAST is developed to report on subject sequences of query that have
a large number of exact matches. Typically, if a “query” genetic sequence (a
“query” sequence may be any genetic sequence, but is usually a newly sequenced
genetic sequence of which information is required in terms of comparisons with
other genetic sequences to be found in genetic databanks) is submitted then
BLAST searches relevant genetic data banks (Section 2.3) for all sequences that
are very similar to the so-called, usually newly sequenced, “query sequence”. In
the case of RepeatFinder the different created repeat classes are compared to each
other in order to determine matches between them that can result in the merger
of some of the existing classes. TRs detected by RepeatFinder will therefore also
be restricted to those that have a large number of exact matches. Consequently
RepeatFinder will not be evaluated as a competing algorithm to FireµSat.

2.5.3.3 BLAST: Basic Local Alignment Search Tool

BLAST does not detect TRs directly, but several other software applications im-
plement BLAST for this task. Some of the relevant software was discussed in
Section 2.5.1.3 and Section 2.5.3.2.

2.5. TR DETECTION ALGORITHMS 31

For this reason, the prominence of BLAST in Computational Biology (see below),
and the fact that finite automata form the theoretical underpinnings of BLAST,
it was decided to include some details pertaining to this classic algorithmic im-
plementation.

BLAST was introduced to the academic community in 1990 [Altschul et al. (1990);
Camp et al. (1998)]. The name of BLAST implies the objective of the software
tool, namely to find substrings of query and subject sequences that have a large
number of exact matches. BLAST rapidly identifies significant matches between,
amongst others:

• newly sequenced genetic material and existing databases of nucleotides and;

• newly sequenced proteins and databases of existing amino acid sequences
[Camp et al. (1998)].

Although BLAST performs well in determining almost exact matches, it is less
effective if the approximate matches to be determined are less exact. Herrmanns-
feldt (1998) and Camp et al. (1998) mention that BLAST is one of the most pop-
ular similarity search tools available in the field of Computational Biology. The
application BLAST enables researchers to draw meaningful conclusions about the
structure and function of sequenced genetic and protein material. The output of
BLAST also serves as an indication of worthwhile sequences to be searched by
more sensitive, computationally expensive software [Camp et al. (1998)].

The theoretical underpinnings of BLAST are realized in the implementation of
three steps:

• The compilation of a list of high scoring words.
The list of words is constructed from the query sequence and depends on
a calculated score that should be above a certain threshold value T. The
score depends on a matrix of similarity scores, where identities and conser-
vative replacements have positive scores while unlikely replacements have
negative scores. (The PAM-120 matrix22 is used for amino acid sequence
comparisons; for DNA sequence comparisons, the value of +5 is assigned
to identities and the value -4 is assigned to mismatches. It is possible to
change these scores.)

• The scanning of a database for hits.
The genetic sequences of the relevant database(s) are scanned for the com-
piled list of high scoring words. Thus the problem bounces down to the
detection of certain short sequences which may be contained within a long

22PAM-120 is a predefined scoring matrix for protein sequences. PAM is an abbreviation for
Point Accepted Mutations [Cowen (2002)].

32 CHAPTER 2. BACKGROUND

sequence. For the scanning phase, a deterministic finite automaton (DFA)
is used. Acceptance is signalled on transitions (Mealy paradigm - Mealy
machines are discussed in Section 4.2), as opposed to acceptance on states
(Moore paradigm - Moore machines are discussed in Section 4.2), the latter
being the approach followed by FireµSat.

• Extending hits.
In order to find a local maximal segment pair (MSP)23 a hit detected by
the constructed DFA has to be extended. The extension process in one
direction is simply terminated whenever a segment pair is reached whose
score falls below the best score for shorter extensions.

Since BLAST has been released, computing professionals have been improving
its functionality and have introduced new computing features. Washington Uni-
versity BLAST (WU BLAST), version 2, was the latest released at the time of
writing this dissertation. The feature list of WU BLAST is still in the process of
expanding [Gish (2009)]. The complete suite of search programs collectively re-
ferred to as AB-Blast — unified database search programs and their functionality
are as follows:

• blastp: compares peptide24 sequence queries to peptide sequence data-
bases;

• blastn: compares nucleotide sequence queries to nucleotide databases;

• blastx: compares nucleotide sequence queries dynamically translated in all
six reading frames. The six reading frames can be explained as follows.
Each amino acid constitutes three nucleotides. It is in general impossible
to determine the location of the boundaries between the sets of three nu-
cleotides within a genetic sequence. Therefore, three reading frames are
translated from a genetic sequence. Consider the genetic substring below:

Index: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
DNA sequence: T A C C T C T T G C T C A T C

If the reading frame starts in position 1 then amino acids constituting the
following set are deduced:

23A maximal segment pair (MSP) is the highest scoring pair of identical length segments
chosen from two sequences.

24A peptide is an organic compound composed of amino acids linked together by peptide
bonds. The peptide bond always involves a single covalent link between the α-carboxyl (oxygen-
bearing carbon) of the one amino acid and the amino nitrogen of the other amino acid [An-
swers.com (2003)].

2.5. TR DETECTION ALGORITHMS 33

Frame1 = {TAC, CTC, TTG, CTC, ATC}

If the reading frame starts in position 2 then the amino acids deduced
constitutes the set be low:

Frame2 = {ACC, TCT, TGC, TCA}

If index position 3 is considered as the starting position then the set of
amino acids will be as follows:

Frame3 = {CCT, CTT, GCT, CAT}

The reading frame that is used determines which amino acids will be en-
coded [Cooper (2008); Camp et al. (1998)]. Additionally the amino acids
constituting the complementary strand25 of the given genetic sequence should
also be encoded. Thus the complementary strand should likewise be trans-
lated into three reading frames. From the above explanation it is clear that
six reading frames should be translated from each genetic sequence in order
to encode all the possible peptide (amino acid) sequences within a given
genetic sequence.

• tblastn: compares peptide sequence queries to nucleotide sequence databases;

• tblastx: compares nucleotide sequence queries dynamically translated in
all 6 of the reading frames to nucleotide sequence databases dynamically
translated in all 6 reading frames as explained in the preceding item blastx.
The six different reading frames created for the query sequence should all
be compared to the six different reading frames created for each database
entry thus for one query sequence and one database entry 6 × 6 pairwise
comparisons of reading frames exist [Gish (2009)].

There are various other support programs in the WU BLAST package [Gish
(2009)]. However, it is beyond the scope of this dissertation to investigate these
programs.

25The sequence of the four nitrogenous bases or nucleotides (Adenine (A), Cytosine (C),
Guanine (G) and Thymine (T)) mirror each other, in each strand of the double helix mirror,
in a predefined manner: Adenine on the one strand always binds with Thymine on the other,
and Cytosine always binds with Guanine [Bergeron (2003)]. Therefore, the sequence ATTGCA
will occur as TGCAAT on the complementary strand of the helix [Paces (2001)].

34 CHAPTER 2. BACKGROUND

2.5.3.4 RepeatMasker

RepeatMasker is a program that searches DNA sequences for interspersed repeats
(Section 2.2) and low complexity DNA sequences26 [Smit et al. (2003)]. The
output of RepeatMasker is a detailed annotation of the repeats that are present
in the query sequence, together with a modified version of the query sequence
in which all the annotated repeats have been masked. Sequence comparisons
by RepeatMasker is performed by the program cross match. Cross match is an
efficient implementation of the Smith-Waterman-Gotoh algorithm developed by
Green [Smit et al. (2003)].

RepeatMasker effectively masks simple repeats to avoid spurious matches in
database searches, but is not written to detect and indicate all possible poly-
morphic simple repeat sequences [Smit et al. (2003)].

It is clear that, although RepeatMasker may detect some TRs, it is not a method
devoted to the detection of TRs in general, nor, in particular, to the detection
of microsatellites. For this reason, RepeatMasker will not be evaluated as an
competing algorithm.

2.5.4 Concluding Remarks

The algorithm proposed in this dissertation, FireµSat, is specifically intended
for the detection of microsatellites. For this reason Sputnik, (Section 2.5.1.1),
TROLL (Section 2.5.1.2), Msatminer (Section 2.5.1.3) and STAR (Section 2.5.1.4)
were included in the above literature overview.

However, it is apparent from our discussion that several algorithms detect TRs of
any length, and thus indirectly detect microsatellites as a subset of these. Algo-
rithms that we have discussed that belong to this category are ATRHunter (Sec-
tion 2.5.2.1), FORRepeats (Section 2.5.2.2) and Tandem Repeats Finder (Section
2.5.2.3).

Other algorithms that deal with repeats were included namely, REPuter (Section
2.5.3.1) and RepeatFinder (Section 2.5.3.2).

Finally BLAST (Section 2.5.3.3) was included since, on the one hand, it is con-
sidered to be a classic algorithm in biological and computational terms. On the
other it is also implemented by:

26Low complexity DNA sequences are sequences that contain biological information that is
considered to be biologically less relevant. If the low complexity DNA sequences are masked,
then the remaining sequence can be analyzed with software that is more expensive in terms of
memory and runtime utilization [Van den Bergh (2006)].

2.5. TR DETECTION ALGORITHMS 35

• Msatminer (Section 2.5.1.3) to compare the occurrences of microsatellites
of different genomes and by

• RepeatFinder (Section 2.5.3.2) to complete its classification of TRs.

RepeatMasker (Section 2.5.3.4) was included as an example of software that does
not have the objective of detecting TRs but that has the ability to detect some
of them.

There are numerous other software packages that also detect TRs, either directly
or indirectly. It is possible to classify this software in various ways. Benson (1999)
divided the algorithms that he investigated into three categories and mentions
their shortcomings as follows:

• Alignment algorithms
Alignment algorithms proposed by [Benson (1995), Kannan & Myers (1996)
and Schmidt (1998)] have an excessive running time — their running time
is exponential.

• Algorithms from the field of data compression
An algorithm proposed by Milosavljevic & Jurka (1993) detects simple se-
quences. Simple sequences may or may not contain TRs. This algorithm
makes no attempt to deduce a repeated pattern. Rivals et al. (1995) also
developed an algorithm belonging to this category that is based on the pres-
ence of preselected patterns with (1 ≤ |motif | ≤ 3). This algorithm suffers
from severe limitations in terms of the motif length that is allowed, and in
terms of the fact that the algorithm only searches for preselected motifs.

• Algorithms that aim to find TRs more directly.
Of these algorithms, the one developed by Landau & Schmidt (1993) is lim-
ited by its definition of approximate repeats. The algorithm requires that
two copies differ by k or fewer substitutions (Hamming distance) or by k or
fewer substitutions and indels (unit cost edit distance). The requirement
for a fixed number of differences rather than a percentage is regarded as un-
satisfactory. Similarly, the treatment of substitutions and indels as equals,
is regarded as unsatisfactory. The heuristic algorithm proposed by Karlin
et al. (1988) is hampered in the same manner by the use of matching blocks
separated by error blocks of fixed size. Sagot & Myers (1998) have proposed
an exact algorithm that requires that the approximate pattern size and a
range for the number of copies should be pre-specified. An earlier algorithm
of Benson (1995) only finds TRs if they have a pattern size that is specified
in advance.

36 CHAPTER 2. BACKGROUND

Delgrange & Rivals (2004b) argue that an exact algorithm that entails the sys-
tematic detection of significant TRs in a way that is independent of the motif
or of the sequence length is beyond the scope of present methods. In regard
to existing software, Delgrange & Rivals (2004b) also distinguish between three
different classes of algorithms and their shortcomings as follows:

• Fast algorithms from the field of Computer Science.
In the field of Computer Science there are several fast algorithms that search
for only two exact tandem repeats. Authors presenting these approaches
include Main & Lorentz (1984); Kolpakov & Kucherov (1999) and Stoye &
Gusfield (2002). Although these algorithms may be useful as filters to detect
possible duplicate motifs they do not comply with the needs of molecular
biologists [Delgrange & Rivals (2004b)].

• Algorithms that do not make provision for the detection of TRs containing
substitutions, deletions and insertions at once.
Algorithms in this category include those developed by Kolpakov & Kucherov
(2001), as well as the algorithms developed by Landau et al. (2001) and
Coward & Drablos (1998). These particular algorithms only make provi-
sion for substitutions.

• Algorithms that detect TRs and allow for substitutions,insertions and dele-
tions.
These algorithms include the work of Sagot & Myers (1998) who introduced
a combinatorially exhaustive approach that identifies several possible motifs
and alignments for each TR. The complexity of this approach depends ex-
ponentially on some parameters. The work of Rivals et al. (1997) is limited
to small motifs and allows only indels between two of the motifs within a
TR.

Wexler et al. (2005) also refer to the algorithms developed by Guan & Uberbacher
(1996), Kolpakov & Kucherov (2001), Krishan & Tang (2004), Kurtz et al. (2001),
Landau et al. (2001) and Rivals et al. (1995), noting that TRs detected by these
algorithms are limited by constraints on their input data, search parameters, the
type of mutations allowed and the number of such mutations. Wexler et al. (2005)
claim that the time requirements of the algorithm proposed by Kannan & Myers
(1996) is not suitable for the analysis of whole genomes that constitute millions
of base pairs.

In spite of all the software mentioned and or discussed, it would appear that
several researchers in the field of Molecular Biology do not use this software, but

2.6. CRITERIA FOR TOOLS TO DETECT MICROSATELLITES 37

instead, detect microsatellites by visually scanning genetic sequences27. Thus it
seems that there is still a need for effective software to assist in the detection of
microsatellites. From conversations with Dr. L.P. Wright at the University of
Pretoria, published literature and developed software, it is clear that the effective
detection of microsatellites confronts us with a twofold challenge. On the one
hand there is the challenge of solving a computationally difficult problem within
reasonable time and memory boundaries; and, on the other hand, there is the
challenge of developing software that is useable from the perspective of the biol-
ogist community, especially in terms of output data.

In Section 2.6 criteria will be considered to serve as guidelines for the development
of useable, computational tools to detect microsatellites.

2.6 Criteria for Tools to Detect Microsatellites

Below we have compiled a list of criteria that will contribute to the successful
development of software tools for the detection of microsatellites. Our list consti-
tutes criteria proposed by Benson (1999), a criterium suggested by Delgrange &
Rivals (2004b) and two of our own criteria. Benson (1999) suggests the following
criteria that should be pursued during the development of an effective (in terms
of runtime and memory complexity) TR detection algorithm:

1. The avoidance of full scale alignment matrix computations in the case of
alignment algorithms.

2. No a priori knowledge should be required pertaining to the pattern, pattern
size or number of copies of the TR.

3. No restrictions should exist regarding the size of the repeats that can be
detected.

4. Percentage differences between adjacent copies should be used and substi-
tutions and indels should be treated separately.

5. A consensus pattern for the smallest repetitive unit in the TR should be
determined.

Note in addition to Benson’s criteria, the criterium set suggested by Delgrange
& Rivals (2004b) is also endorsed, namely:

27In fact, the research carried out in this dissertation has been guided by feedback received
from two such molecular biologists.

38 CHAPTER 2. BACKGROUND

6. An exact algorithm should systematically detect significant TRs in a way
that is independent of the motif.

Finally, in an attempt to contribute to the knowledge framework we suggest two
of our own criteria:

7. An algorithm that detects microsatellites should be flexible in terms of
penalties awarded to indels and mismatches.

8. Software to detect microsatellites should be useable, specifically in terms
of output. By this we mean that analytically, biologically and statistically
relevant output should be provided to the user. Furthermore, we suggest
a hierarchical output that will enable the user easily to obtain the most
relevant data.

2.6.1 Competing Algorithms

The two algorithms that we have chosen to evaluate as competitors to FireµSat
are:

• Tandem Repeats Finder developed by Benson (1999) and,

• STAR: An algorithm to Search for Tandem Approximate Repeats, devel-
oped by Delgrange & Rivals (2004b).

Tandem Repeats Finder
Tandem Repeats Finder is a prominent algorithm throughout the literature on
the detection of TRs. Both Delgrange & Rivals (2004b) and Wexler et al. (2005)
compare the software implementations of their newly developed algorithms with
Tandem Repeats Finder. Tandem Repeats Finder does not solely search for
microsatellites and will detect TRs of length up to 2000 base pairs. Tandem
Repeats Finder complies with all the criteria set by Benson (1999) but it is not an
exact algorithm [Delgrange & Rivals (2004b)]. The output generated by Tandem
Repeats Finder is of statistical and biological relevance and will be discussed in
more detail in Chapter 3 and in Chapter 6. In Chapter 6 the emphasis will fall
on the previously mentioned criteria compiled for developing computational tools
to detect microsatellites effectively, as well as on the degree to which Tandem
Repeats Finder succeeds to fulfill these criteria.

Examples of output generated by Tandem Repeats Finder are included on the
CD that accompanies this dissertation.

2.6. CRITERIA FOR TOOLS TO DETECT MICROSATELLITES 39

STAR: an algorithm to Search for Tandem Approximate Repeats
STAR was developed to search specifically for microsatellites. Delgrange & Rivals
(2004b) claim to have designed an exact algorithm. In their algorithm a PTR
is obtained from the duplication of the motif (PTRE); an ATR can then be
encoded as a number of duplications of the motif together with a list of mutations.
Delgrange & Rivals (2004b) claim to have designed an algorithm that detects
all significant TRs of a given motif, where significance is assessed by using the
Minimum Description Length (MDL) criterion. Chapter 3, Section 3.2 provides
more detail regarding the MDL criterion. At the time of the publishing of their
paper, their algorithm required that one had to enter the motif whose TRs were
to be detected. Thus STAR does not comply with the second of the criteria set
for the development of computational tools to detect microsatellites effectively.
However, Delgrange & Rivals (2004b) propose that STAR should be run with all
possible Lyndon motifs28 such that 2 ≤ |motif | ≤ 6 in order to detect all TRs in
a genetic substring. Chapter 3, Section 3.2.1 will elaborate on this issue.

Although STAR does not comply with all the criteria set by Benson (1999) and
although the runtime of STAR is not as good as that of Tandem Repeats Finder
(see Chapter 3), Delgrange & Rivals (2004b) can legitimately claim that STAR
is an exact algorithm — a claim which Benson (1999) cannot make of Tandem
Repeats Finder. Delgrange & Rivals (2004b) also claim that for the default values
of Tandem Repeats Finder, STAR found more than 98 % of the TRs detected
by Tandem Repeats Finder, whereas Tandem Repeats Finder detected at most
55% of the TRs detected by STAR. STAR also generates statistical, biological
relevant data to which attention will be paid in Chapter 3, Section 3.2.2.

In Chapter 6, the focus will fall in more detail on the extent to which STAR
fulfills the previously mentioned criteria that was compiled for the development
of computational tools to detect microsatellites effectively. Examples of output
generated by STAR are also included on the CD that accompanies this disserta-
tion.

The proposed algorithm FireµSat
The algorithm, FireµSat, that is proposed in Chapter 4, was designed to comply
to the criteria compiled for the development of computational tools to detect
microsatellites effectively. Finite automata are applied, not alignment matrices.
Thus item 1, proposed by Benson (1999) is not applicable. The only restric-
tion is that our algorithm is only capable of detecting microsatellites, where
(2 ≤ |motif | ≤ 5). As Delgrange & Rivals (2004b) we can also claim that our

28The set of Lyndon motifs exclude motifs that are a rotation of another word (e.g. tac and
cta while act remains in the set). The set of Lyndon words also exclude words that are made
of the repetition of a shorter motif in that set (e.g. atat if at is an element of the set.)

40 CHAPTER 2. BACKGROUND

algorithm is an exact algorithm, although we provide our user with the option of
penalizing indels and substitutions separately. We aim thus to provide a lot of
flexibility so that molecular biologists may adapt parameters according to their
need. In contrast to the other algorithms, we will also provide the user with an
hierarchical output of test results (in the sense that more relevant TRs may be
investigated first) in an attempt to ease the task of the molecular biologist. In
Chapter 4 more detail pertaining to our algorithm is given. The input and output
of FireµSat are discussed in Chapter 5. FireµSat is, to the best of our knowledge,
the first of its kind. Thus far, we have only encountered one direct attempt to
detect approximate tandem repeats that occur on genomic sequences by means
of finite automata, namely FORRepeats [Lefebvre et al. (2003)]. FORrepeats has
been discussed in Section 2.5. In Chapter 6 FireµSat will be compared with Tan-
dem Repeats Finder and STAR in reference to the previously mentioned criteria
compiled for the development of computational tools to detect microsatellites ef-
fectively. Examples of output generated by FireµSat are included on the CD that
accompanies this dissertation.

Before we introduce the theoretical foundations of FireµSat in Chapter 4 we de-
scribe, in Chapter 3, the selected competing algorithms, Tandem Repeats Finder
and STAR, in terms of their input and output.

Chapter 3

Competing Software

In Chapter 2, a literature overview of algorithms that aim to detect tandem re-
peats on DNA was provided. Two algorithms that deal in an effective manner
with the detection of microsatellites (as defined in Section 2.2) on DNA were
identified namely, Tandem Repeats Finder [Benson (1999)] and STAR (Search
for Tandem Approximate Repeats) [Delgrange & Rivals (2004b)]. “Effective” in
the context of this dissertation, firstly implies algorithms that detect microsatel-
lites containing substitutions, deletions, as well as, insertions at once. It also
implies that the relevant algorithms have a running time smaller or equal to
O(np + nlog(n)), where n is the length of the genetic sequence file under investi-
gation and p is the length of the motif to be detected. Similar to FireµSat (the
proposed algorithm) STAR detects microsatellites only, whereas Tandem Repeats
Finder detects microsatellites as well as minisatellites (defined in Section 2.2) and
satellites (defined in Section 2.2).

41

42 CHAPTER 3. COMPETING SOFTWARE

The required input to Tandem Repeats Finder (Section 3.1) and to STAR (Section
3.2) is not trivial. In each case, a variety of parameters are required, and it may
not be clear to a first time user precisely what these mean and how they should be
chosen. The output of these algorithms is similarly complex. For these reasons,
it was decided to devote this current chapter to describing the input and output
of these two algorithms. This description will also convey some sense of the
nature of the algorithms in each respective case, without fully enumerating the
algorithmic details, the latter being regarded as outside the scope of this present
study.

In Chapter 4 the theoretical background, as well as the specifications of the
algorithms proposed in this dissertation, FireµSat, will be presented. In Chapter
5 the input and output of FireµSat are discussed. Chapters 3, 4 and 5 thus provide
a basis for Chapter 6, in which a comparison is made between Tandem Repeats
Finder, STAR and FireµSat in relation to the criteria presented in Section 2.6. At
that stage, the three algorithms will also be evaluated in terms of their run-time
performance.

3.1 Tandem Repeats Finder

Tandem Repeats Finder was developed by Gary Benson, an associate professor
in the Department of Biology and Computer Science at the Boston University
[Benson (2005a)]. Tandem Repeats Finder was published in 1999. At the time
of writing, the 2003 (fourth) version of Tandem Repeats Finder was the latest
online available version. This version provides the user with four different down-
loadable applications. The options provided to the user are as follows: Windows
9x/NT/Me/2000/XP; Windows/Linux Command Line versions; Linux (Graphi-
cal GTK version); and a Mac OS X version [Benson (2005b)].

Tandem Repeats Finder models tandem repeats by percent identity and frequency
of insertions and deletions (indels) between adjacent motif repeats. The program
uses statistically based recognition criteria. Tandem Repeats Finder consists
of detection and analysis components. The detection component uses a set of
statistically based criteria to determine candidate tandem repeats. The analysis
component aims to produce an alignment for each candidate. If the analysis com-
ponent is successful then it gathers a number of statistics regarding the alignment
and the nucleotide sequence [Benson (2003b)]. Tandem Repeats Finder detects
microsatellites (|motif | < 6) as well as repeats with long motif lengths [Benson
(1999)]. The time complexity of Tandem Repeats Finder is linear in the sequence
length.

The program can execute without specifying a motif or a motif length. However,
Tandem Repeats Finder is not an exact algorithm according to Delgrange & Ri-

3.1. TANDEM REPEATS FINDER 43

vals (2004b). In Section 3.1.1 the input of Tandem Repeats Finder is investigated
and in Section 3.1.2 the output of the program. Both of these sections discuss
the information presented in Benson (2003b) and Benson (2003c).

3.1.1 Tandem Repeats Finder: Input

Tandem Repeats Finder is installed as trf. After typing trf at the command line
the following output appears:

Please use: trf File Match Mismatch Delta PM PI MinScore MaxPeriod

Each word after trf in this message indicates an input parameter required by
Tandem Repeats Finder. Each of these parameters is now discussed in turn.

1. File: The input DNA sequence file in FASTA format.
The DNA sequence file contains the genomic sequence where intra-genomic
comparison, in terms of the detection of tandem repeats, should take place
[Benson (2003c)]. FASTA format is discussed in Section 2.3. Multiple
genomic sequences in the same file are acceptable as long as the data is in
FASTA format. The benefit thereof is that it enables the user to process a
large sequence file consisting of multiple genomic sequences without creating
very small files for each genetic sequence. The genetic data retrieved by
Wright and reported on in Wright et al. (2007) (discussed in Section 2.4),
is a practical example of data where the processing of multiple genomic
sequences in one file is beneficial and where there should be reported on
each new header of each short genomic sequence too. This type of data is
in contrast to the data of a whole genome, e.g. the fusarium genome.

2. Match, Mismatch, Delta: Alignment parameters that represent the weights
for matches, mismatches and indels respectively.
These parameters are used for Smith-Waterman style local alignment wraparound,
dynamic programming [Benson (2003b)]. Dynamic programming is a very
general algorithmic optimization technique. It is applicable when a large
search space can be structured into a succession of stages, in such a manner
that:

• the initial stage consists of trivial solutions to sub-problems,

• it is possible to calculate each partial solution in a later stage by re-
curring a fixed number of partial solutions in an earlier stage and,

• the final state contains the overall solution [Brown (1995)].

44 CHAPTER 3. COMPETING SOFTWARE

Dynamic programming is implemented by the Smith-Watermeyer algorithm
in such a manner that it takes alignments of any length, at any location, in
any sequence, and determines whether an optimal alignment1 can be found.
Scores or weights are assigned to each character-to-character comparison:
positive for exact matches and substitutions; and negative for indels [Brown
(2004)]. Dynamic programming determines the optimal alignment in rela-
tion to these weights.

Lower weights entered as the alignment parameters of Tandem Repeats
Finder allow alignments with more mismatches and indels. Match = 2 has
proven effective with Mismatch and Delta ranging between 3 and 7. Mis-
match and indel weights are interpreted as negative numbers. The values
allowed are 3, 5 and 7. In these types of alignment options, 3 is more per-
missive and 7 is less permissive (i.e. −3 > −7) [Benson (2003b)]. Benson
(2003c) recommends the values 2, 7 and 7 for Match, Mismatch and Delta,
respectively.

3. PM and PI: Detection Parameters
Detection parameters consist of a matching probability Pm and an indel
probability Pi. Pm = 0.8 and Pi = 0.1 by default and cannot be altered in
the revised, 2003 version of the program.

Pm is directly related to P (heads) in the interpretation of a specific align-
ment as a Bernoulli sequence and represents the average percentage identity
between the aligned copies. This is explained more fully in 4 below.

Pi represents the indel probability — i.e. the average percentage of inser-
tions and deletions between the copies allowed.

These detection parameters serve as a type of extremal bound — i.e. as a
quantitative description of the most divergent copies to be detected.

Thus, adjacent repeats (approximate or exact) of a motif will contain some
matching characters in corresponding positions and possibly some non-
matching characters. The proportion of matches and the proportion of
indels, are constrained by the fixed values of Pm and Pi respectively [Ben-
son (1999)].

The UNIX version of Tandem Repeats Finder provides probabilistic data
for PM values of 80 and 75 and PI values of 10 and 20. The UNIX ver-
sion documentation, however, mentions that the best performance can be

1The optimal alignment of two sequences implies the determination of an alignment that
will obtain the highest score (the score is calculated by a function as specified by the developer)
from aligning two given sequences in all possible manners [Van den Bergh (2006)].

3.1. TANDEM REPEATS FINDER 45

achieved with values of PM = 80 and PI = 10. By using the values of PM
= 75 and PI = 20 Tandem Repeats Finder obtains results very similar to
those calculated when PM = 80 and PI = 10 but the processing time may
be 10 times longer [Benson (2003c)] .

4. Minscore: Minimum alignment score
The minimum alignment score indicates the alignment score that must be
met or that must be exceeded for a tandem repeat to be reported [Benson
(2003b)]. The alignment of two or more possibly approximate tandem re-
peats of a motif (referred to as a pattern by Benson) of which the length
of the repeated motif is n, is modelled by a sequence of n-independent
Bernoulli trials2. Below is an interpretation of a particular alignment as a
Bernoulli sequence. In this alignment, the motif is TTC, with motif length
3. The top row represents a substring of a genetic sequence constituting
14 nucleotides. The second row represents exact copies of the PTRE, TTC.
Benson refers to the second row as the consensus sequence. The bottom
row is the Bernoulli sequence that is construed as an interpretation of the
alignment. Each head (H) in the Bernoulli sequence is interpreted as a
match between aligned nucleotides. Each tail (T) represents a mismatch,
insertion or deletion [Benson (1999)]. In the example below the top row rep-
resents the actual genetic string; the middle row represents a PTR where
the PTRE or motif is equal to TTC; and the bottom row represents the
outcome of the Bernouli trials.

T T C T T C T T C C T C T T
T T C T T C T T C T T C T T
H H H H H H H H H T H H H H

In the example there are 42
3

repetitions of the motif TTC, and one mismatch
— a T is replaced by a C. Minscore can be used to ensure that a certain min-
imum number of repeats of motifs in tandem must occur before qualifying
for being reported. For example, suppose that the researcher only requires
a report on tandem repeats constituting 5 or more repeats of the identified
motif in tandem. Then one can set Match = 2 and Minscore = 30. This
weight and alignment score will result in the required number of repeats,
because if there is perfect alignment of a motif with length 3 and if at least
5 repeats occur, then there will be at least 15 exact matches, each with
a weight of 2. Since 15 × 2 = 30, five successive perfect repeats will be
reported, but not a TR consisting of only 3 successive perfect repeats.

2Bernoulli trials are associated with a succession of coin tosses. The probability of heads (or
a match, or a success) is a fixed value over the tosses or trials. In this sense, the tosses / trials
are independent of each other.

46 CHAPTER 3. COMPETING SOFTWARE

5. Maxperiod: Maximum period size
Benson (1999) defines period size as the most common distance between
corresponding characters in the alignment. In Tandem Repeats Finder,
period size is the program’s best guess at the length of the TREs that are
detected within an identified TR. Note that in exceptional cases, the length
of the PTRE, (termed the consensus pattern by Benson) may differ from
the period size. As a default, Tandem Repeats Finder will find all TRs
that constitute concatenated motif repeats with a period size between 1
and 2000.

However, the period size can be made smaller in length by setting Maxperiod
[Benson (2003b)].

Tandem Repeats Finder provides three additional options (-f, -m and -d), that
the user may specify as part of the command line input. These “switches” are
included to provide the user with additional options in terms of output. They are
merely added to the input sequence in the command line. Whether a particular
user will choose to utilize these “switches” will depend on the nature of the
analysis of the molecular biological problem at stake. A description of each of
these additional switches follows:

1. -f Flanking sequence
The flanking sequence of a tandem repeat consists of the 500 nucleotides on
each side of the repeat. If this switch is set, then the output file records the
flanking sequence. Information regarding the flanking size may be useful
for PCR3 primer4 detection.

2. -m: Masked sequence file
If this switch is set then a masked sequence file is generated. The masked
sequence file is in FASTA format (discussed in Section 2.3) and contains a
copy of the genetic sequence but every character contained within a TR is
converted to the letter ‘N’. (The masking of repeats and the reason for mask-
ing repeats have been discussed in Section 2.5.3.4.) The string > masked is
appended to the end of the sequence description line.

3PCR is the abbreviation for polymerase chain reaction, a molecular biological technique for
amplifying or copying a selected region of a DNA molecule, so that its sequence is multiplied
many times in a laboratory [Kahn (2005)].

4A primer is an oligonucleotide (a short, single stranded DNA molecule synthesized chemi-
cally under automated conditions generally 15 - 50 nucleotides in length) which is complemen-
tary to a specific region within a DNA or a RNA molecule. Primers are used to initiate synthesis
of a new strand of complementary DNA at that specific site, in a reaction or series of reactions
catalyzed by a DNA polymerase (an enzyme which catalyzes the addition of a nucleotide to a
nucleic acid molecule) [Lemon & Barbour (1993)].

3.1. TANDEM REPEATS FINDER 47

3. -d: Data file
The data file is a text file, containing the same information in the exact same
order, as the summary table file of repeats (discussed as part of the output
in Section 3.1.2), plus the detected motif, as well as consensus sequences -
a consensus sequence is a concatenation of motifs (PTREs) or in Benson’s
terminology consensus patterns. An example of a consensus sequence and
TRs referred to as repeat sequences by Benson is included below. The
top row represents the actual genetic sequence; the bottom row represents
a PTR generated by Tandem Repeat Finder to which the detected TR
within the genetic score can be compared.

T T C T T C T T C C T C T T
T T C T T C T T C T T C T T

The data file does not contain any labeling and is thus suitable for additional
processing, with, for example, a perl script, external to the program.

Below is an example of a data file obtained after the sequence BL157 has
been run by me. BL157 is data of the Cylindrocladium Pauciramosum
(Section 2.4):

>BL157
GACAGACAGACAGACAGGATCAGAACGGGCGGCAATGTGTTGTTCCTAAG
AATGGTTAGAATGAGACATCTAAGCAAAGCTATTTCATGACTCACTTTAG
TTTTCGCATGTAACTGGGCTTGTGCAGGAGATGGTAGGATTGGCCGTAGA
CATTATCAAAGAACACTTCTGCAAGATGTTCCTGTACATCCTTTGGGGGC
AAGGACTCAGAACCCTCGTGCAGTAACTTGTTTTCTTCTTCCTCTTGAAC
TTGAAGGGAATTTGGTCTATCATCGCCAACAATCTTCGGTTTTGAAGGAC
CTCTGGCCCAGGCCTCAAGATCCGGACCGAAAGCTTCATCAGCACCGCGC
TTCTTGGAACCACCCTTTGTTGTTGTTGTTG

3.1.2 Tandem Repeats Finder: Output

Tandem Repeats Finder generates a summary table of repeats as well as an
alignment explanation,s as output.

1. The summary table.
The summary table provides the following information:

• Indices of the detected TR relative to the start of the sequence.

• The period size of the TR. This is the most common matching dis-
tance between corresponding characters in the alignment and usually
corresponds to the motif length.

48 CHAPTER 3. COMPETING SOFTWARE

• The number of repeats aligned with repeats of the consensus motif.
Consider, for example, the following:

TTC TTC TTC CTC TT
TTC TTC TTC TTC TT

The top row constitutes a substring of a genetic sequence and the
bottom row consists of copies of the detected consensus motif or PTRE.
In this case the number of repeats aligned with repeats of the consensus
motif is 4.7.

• The length of the consensus motif (PTRE) (If the consensus motif
is TTC then the length of the consensus motif is 3.) This may differ
slightly from the period size.

• The overall percentage of matches between adjacent repeats in the TR.

Consider the tandem repeat: TTCTTCTTCCTCTT. The detected PTRE
or motif is TTC and the overall percentage of matches may be calculated
as 81, as shown below.

Let TRE1 = TTC, TRE2 = TTC, TRE3 = TTC, TRE4 = CTC and
TRE5 = TT and denote the three elements of TRE1 as TRE1,1, TRE1,2

and TRE1,3. Thus TRE1,1 = T, TRE1,2 = T and TRE1,3 = C. Using
the same notational conventions for TRE2 · · ·TRE5, the overall per-
centage of matches may be calculated as follows:
TRE1,1 = TRE2,1

TRE1,2 = TRE2,2

TRE1,3 = TRE2,3

TRE2,1 = TRE3,1

TRE2,2 = TRE3,2

TRE2,3 = TRE3,3

TRE3,1 6= TRE4,1

TRE3,2 = TRE4,2

TRE3,3 = TRE4,3

TRE4,1 6= TRE5,1

TRE4,2 = TRE5,2

The above gives 9 matches and 2 mismatches — 9 ÷ 11 × 100 =
81, 818181 ≈ 81.

• The alignment score. If the weight assigned to each matching character
is equal to 2 and if there are x matching characters in the alignment
then the alignment score will be 2x. The alignment score refers to
matches of the consensus sequence5 and the relevant TR, detected in
the genetic sequence.

5The consensus sequence is a sequence of adjacent PTREs, repeated as many times as there
are TREs in a string under consideration.

3.1. TANDEM REPEATS FINDER 49

Tabular Explanation of Sequence: BL157

In
d
ic

es

P
er

io
d

S
iz

e

C
op

y
N

u
m

b
er

C
on

se
n
su

s
S
iz

e

P
er

ce
n
t

M
at

ch
es

P
er

ce
n
t

In
d
el

s

S
co

re

A C G T E
n
tr

op
y

(0
-

2)

233 – 246 3 4.7 3 81 0 19 0 35 0 64 0.94
367 – 381 3 5.0 3 100 0 30 0 0 33 66 0.92

Table 3.1: TRF Summary File Output

• Percentage of composition of the four nucleotides (adenine (A), cytosine
(C), guanine (G) and thiamine (T)).

• The measure of entropy6 based on percent composition.

An example of a summary table created by TRF after run on BL157 is
provided in Table 3.1.

This summary table that is generated by Tandem Repeats Finder thus
provides an overview of detected TRs. In order to obtain more detailed
information about a specific TR, the user can click on the applicable index
range. This will result in an alignment explanation of the index range, as
explained below.

2. The alignment explanation.
The alignment explanation includes the actual genetic sequence stretching
throughout the TR (e.g. from indices 233 - 246 in the example below). It
corresponds to- and elaborates on the information presented in the above-
described summary table that was created by Tandem Repeats Finder.

The consensus sequence is provided below the TR.

Thus, multiple repeats of the detected PTRE are concatenated to each other
in the case of microsatellites.

To assist in the clarification of the additional information to be further
discussed below, two examples of alignment explanations of detected TRs
are given.

6The entropy estimation of a DNA sequence provides a measure of its complexity and ran-
domness level [Vinga & Almeida (2004)].

50 CHAPTER 3. COMPETING SOFTWARE

Example 1: Alignment explanation BL157, base pairs 233 - 246
Section 2.4

Indices: 233--246 Score: 19
Period size: 3 Copynumber: 4.7 Consensus size: 3

223 GTAACTTGTT

*
233 TTC TTC TTC CTC TT
1 TTC TTC TTC TTC TT

247 GAACTTGAAG

Statistics Matches: 9, Mismatches: 2, Indels: 0
0.82 0.18 0.00

Matches are distributed among these distances:
3 9 1.00

ACGTcount: A:0.00, C:0.36, G:0.00, T:0.64

Consensus pattern (3 bp): TTC

Found at i:375 original size:3 final size:3

Example 2: Alignment explanation fusarium genome, base pairs
6471 - 6483 (Section 2.4)

Indices: 6471--6483 Score: 19
Period size: 2 Copynumber: 7.0 Consensus size: 2

6461 TTTTAATGAC

6471 TA TA TA TA -A TA TA
1 TA TA TA TA TA TA TA

6484 GGGAAAAAAG

3.1. TANDEM REPEATS FINDER 51

Statistics Matches: 10, Mismatches: 0, Indels: 2
0.83 0.00 0.17

Matches are distributed among these distances:
1 1 0.10
2 9 0.90

ACGTcount: A:0.54, C:0.00, G:0.00, T:0.46

Consensus pattern (2 bp): TA

Found at i:6537 original size:1 final size:1

Additional information that accompanies the alignment explanation is as
follows:

• The 10 base pairs before and after a TR are shown by default. In the
case of example 1, GTAACTTGTT and GAACTTGAAG are the 10 base pairs
that occur before and after the detected TR, respectively. However, as
mentioned above, if the user so wishes, then 500 characters of flanking
sequence on each side of the TR can be shown by adding the character
-f to the input sequence.

• The symbol * appears above the pair of aligned lines to indicate a
mismatch. In example 1 a T has been replaced by a C. Thus, a *
appears above the C of the detected TR.

• The symbol - appears within the applicable sequence to indicate an
insertion or a deletion. If a deletion occurred then - will appear within
the detected TR. If an insertion occurred then - will appear within the
consensus sequence. In example 2 a deletion has occurred. Thus a -
appears within the detected TR, replacing the absent T.

• Statistics pertaining to matches, mismatches, insertions and deletions
accompany the alignment explanation. These statistics refer to overall
matches, mismatches, insertions and deletions between adjacent re-
peats (TREs) within the sequence and not between the sequence and
the consensus sequence (concatenation of PTREs). The calculation
of these statistics is done in a similar manner as described in Section
3.1.2. These statistics are included in both example 1 and example 2.

52 CHAPTER 3. COMPETING SOFTWARE

• Distances between matching characters at corresponding positions are
listed in the following order: distance (number of nucleotides between
matching nucleotides plus 1), number at that distance (number of
matching or corresponding nucleotides using the above- mentioned dis-
tance) and percentage of all matches. Consider the data generated in
example 1:

Matches are distributed among these distances:

3 9 1.00

Here 3 represents the distance. In the first example, 9 matches occur -
all the matching nucleotides have a matching distance of 3. Therefore
the percentage of all matches occurring at distance 3 is 100% output
as 1.00 by Tandem Repeats Finder.

Consider the output of the second example. Here two distances are
provided in the distance description as shown below:

Matches are distributed among these distances:

1 1 0.10

2 9 0.90

To clarify the meaning of the above distance description, a copy of the
TR under consideration is reproduced below (in the second line), as
well as the consensus sequence (in the third line). The indices of the
genomic sequence are given on the first line.

6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483
T A T A T A T A -A T A T A
T A T A T A T A TA T A T A

If there is referred to the indices where the base pairs occur then it
is possible to explain the number of nucleotides at a distance and the
percentage of all matches as follows:

Distance 1 represents the two consecutive A’s occurring at index po-
sition 6478 and index position 6479. There is only 1 occurrence of
matching nucleotides with a distance of 1. This is indicated by the
second 1 in the top row of the distance distribution output.

The 0.10 in the top row of the distance distribution output indicates
this fact and represents 10%.

For distance 2 in the distance distribution output, matches are as fol-
lows:

Index 6471 (T) matches index 6473 (T).
Index 6472 (A) matches index 6474 (A).

3.1. TANDEM REPEATS FINDER 53

Index 6473 (T) matches index 6475 (T).
Index 6474 (A) matches index 6476 (A).
Index 6475 (A) matches index 6477 (A).
Index 6476 (A) matches index 6478 (A).
Index 6480 (T) matches index 6482 (T).
Index 6481 (A) matches index 6483 (A).

Thus 9 matches occur at distance 2 — hence the 9 in the second row
of distance distribution output. In total throughout the detected TR
ranging from index 6471 to index 6483, 10 matches occurred, 9 of
these matches have a matching distance of 2. This explains the entry
of 0.9 (i.e. of 90%) as the third entry of the second row of the distance
distribution output.

• The ACGT count reflects the percentage of each nucleotide (adenine
(A), cytosine (C), guanine (G) and thiamine (T)) in the TR under in-
vestigation.

• The motif, termed the consensus pattern by Benson that constitutes
3 nucleotides or base pairs (bp abbreviated) [Benson (2003b)].

• There is a little additional output provided as well, but not of impor-
tance for the current discussion.

3. Additional files.
Finally, recall that the user has the option to specify whether Tandem
Repeats Finder should generate a masked sequence -m file and a data file
-d. The formats of these files are discussed in Section 3.1.1.

3.1.3 Redundant Information

It should also be noted that Tandem Repeats Finder detects repeats of motif
lengths ranging from 1 to 2000 nucleotides. Thus, if a TR contains numerous re-
peats then the same repeat will be detected at various period sizes (motif lengths).
However, this is restricted to the three best scoring motif lengths. Consider for
example a TR consisting of 30 TR-elements with period size 3. Then the TR will
most likely also be detected at motif length (period size) 6 with 15 TR-elements
and motif length (period size) 9 with 7.5 TR-elements. It is also possible that the
same period size or motif length may be detected more than once with different
scores and slightly different instances [Benson (2003a)].

54 CHAPTER 3. COMPETING SOFTWARE

3.2 STAR: Search for Tandem Approximate Re-

peats

Delgrange & Rivals (2004b) introduced STAR formally (by means of a peer-
reviewed publication) in 2004. One of its authors, Delgrange, is in the Department
of Theoretical Computer Science at the Wallonie-Academy of Brussels [Delgrange
(2005)]. The other, Rivals, is a researcher in Computer Science and Bioinformat-
ics at the CNRS (Centre National de la Recherche Scientifique), where he is a
member of the Methods and Algorithms for Bioinformatics team.

STAR is an algorithm that detects “significant” TRs of a selected motif in a DNA
sequence in FASTA format. Significance is assessed in terms of a measure that
has to do with the extent to which substrings can be subjected to compression.
Although full details are beyond the scope of the current discussion, a little more
is said about this matter below.

STAR searches a genetic sequence for motifs entered by the user. For a selected
motif, it returns a description of all the TRs of that motif, as well as optimal
alignments of the various detected TRs and the selected motif [Delgrange &
Rivals (2004b)].

The package uses the so-called Minimum Description Length (MDL criterion) to
distinguish between significant TRs and random TRs. The MDL Principle was
originally proposed by J. Rissanen in 1978 as a computable approximation of
the so-called Kolmogorov complexity. Both the MDL Principle and Kolmogorov
complexity are two well researched topics. An overview of these two topics will
be provided but the details of these are beyond the scope of this dissertation.

The MDL is based on the insight that any regularity in data can be used to
compress the data i.e. to describe the data using fewer symbols than the number
of symbols needed to describe the data literally. The general choice of researchers
in the field for carrying out the compression is to write a program in a so-called
general-purpose computer language such as C, C++ or PASCAL.

The choice leads to the definition of Kolmogorov complexity. The Kolmogorov
complexity of a sequence s, denoted by K(s), is defined as the shortest program
(for a fixed computer) that prints s. This definition is invariant within a constant
if one alters the universal Turing Machine or the programming language. There-
fore, K(s) is considered as the absolute measure of the information content of s.
However, it can be shown that there does not exist a computer program that, for
every set of data s, when given s as input it will return the shortest program that
outputs s.Therefore, Kolmogorov complexity is not computable [Grunwald et al.
(2001)]. But every compression algorithm provides an approximation of K(s):
the length KCs of the compressed sequence of s by a compression algorithm C is
an upper bound of K(s) and can therefore, be considered as a tentative measure

3.2. STAR: SEARCH FOR TANDEM APPROXIMATE REPEATS 55

of the information content of s. (If the compression algorithm C is improved,
then the measure KCs converges to K(s)) [Rivals et al. (1995)].

In the next subsections, STAR will be discussed in a similar manner to the dis-
cussion of Tandem Repeats Finder.

3.2.1 STAR: Input

In order to be able to run STAR the user has to have access to either a Windows
or a Linux system. A Linux operating system has been used to run the data
presented on the CD that accompanies this dissertation. At the command line
STAR.linux should be entered. The following will appear on the screen:

-i SeqFile -m Motif | -M MotifFile

[-na -po PositionOffset -help]

SeqFile: file containing the sequence in Fasta, Genbank

or Embl format

Motif: the motif to search for is a string over

alphabet [ACGT]

MotifFile: a file with one motif per line, each motif

is searched independently, this option

excludes option -m

-na: option without the output of alignments of

tandem repeats;

default is with alignments

-po PositionOffset: set a position offset that is

added to output positions;

Thus, STAR prompts the user for input in terms of the following parameters and
output control options:

1. Parameter options.

• A DNA sequence file (-i SeqFile) in FASTA format (Section 2.3)
has to be specified. It will be searched for significant tandem repeats.
The DNA sequence file may be in upper case or lower case. Only
strings over the alphabet Σ = {A,C,G, T} are allowed in the genetic
sequence input file. In contrast to Tandem Repeats Finder, STAR
does not allow multiple genomic sequences in the same file. Thus,
if the genetic data to be examined consists of several short genetic
sequences, then a separate file has to be created for each of these
genetic sequences. Unfortunately, this process is very time consuming

56 CHAPTER 3. COMPETING SOFTWARE

for the user, especially if data similar to that of Wright et al. (2007)
has been generated.

• A DNA motif (-m Motif) over the alphabet Σ = {A,C, G, T} is re-
quired. The motif may for example, be TTG. The motif or PTRE may
be a microsatellite of any length in upper case or lower case. All zones
containing the selected motif will be identified by STAR.

• The DNA motif file (-M MotifFile) is an alternative for the -m Motif

option. The DNA motif file consists of various motifs arranged one per
line. STAR is intended to execute successively on each one of them,
one at a time [Delgrange & Rivals (2004a)].

2. Output control options.

• The user may select whether alignments should be included in the
output file or not. The output control option (na) appears on the
screen. If the user enters n next to (na) then alignments will be omitted
from the output. However, alignments are created by default as part
of the output [Delgrange & Rivals (2004a)].

• A position offset (-po PositionOffset) is entered as an integer and is
added to the positions of the TR base pairs found by STAR in order to
determine the exact stretch of the detected TR. An entered sequence
is often a portion of, for example, a chromosome. Therefore, to obtain
the position of the TR in your sequence relative to the complete chro-
mosome, it is necessary to enter the offset position of the sequence in
the chromosome. If the position offset option is activated then STAR
adds the offset to all positions before printing. The default value of
the position offset is zero [Delgrange & Rivals (2004a)].

3.2.2 STAR: Output

If only one motif was entered to search for, then the output of STAR is one output
file. If the input option -M MotifFile has been selected, then various files are
produced. For each motif, if the genetic sequence contains at least one tandem
repeat of that motif, then the results are written in a file named SeqF ile.motif .

Consider for example the file BL153.seq used as DNA sequence input file. If the
entered motif to search for is CCA and the motif is detected within BL153.seq,
then an output file BL153.CCA will be created. If multiple zones of the same
motif are found within the genetic sequence file, then all the different zones will
be listed, the first as ZONE 1, the second as ZONE 2, etc. in the order of their
appearance in the genetic sequence file. The different zones are thus all listed in

3.2. STAR: SEARCH FOR TANDEM APPROXIMATE REPEATS 57

the same output file.

The authors claim that the output provides detailed information pertaining to
each zone in a structured manner that enhances postprocessing of the results.
This claim will be contested in Chapter 6. The output file can also easily be
parsed [Delgrange & Rivals (2004a)].

To further clarify the output format of files generated by STAR, examples of
the contents of two output files are provided below. The first example output
file, BL141.ttg, was generated from a file, BL141, containing one of the sequences
generated by Wright et al. (2007). The second example output file, BL141ins.cca,
was generated after the original input file, BL141, had been modified to BL141ins.

Genetic input file: BL141.txt

>BL141
CCACCACCACCACCAACACAATTGCACCGCTAGTGGCTATATTTGATGCC
CTCAAAATTCCCGCACCGTGGGCACCAGAGGCCAAGGATTTCGACTACGC
AAACACGACTTTGCTGATTATGGGTGGTGGATCCAGCACCGGCAAATTTG
GCGTACAATTAGCCAAGTTAGCAGGCATTGGCAAGATTGTTGTTGTTGTT
G

58 CHAPTER 3. COMPETING SOFTWARE

Example 1, output file: BL141.ttg

ZONE 1 BEGIN_POS 187 END_POS 201 LG 15 GAIN 23

A 0 C 0 G 5 T 10 N 0 %AT 66 %GC 33 Biais GC 1.00

Phase 0

Consensus columns, counts of matches, substitutions, and deletions

Position 1 2 3

Nb_Match 5 5 5

Nb_Subst 0 0 0

Nb_Del 0 0 0

Insertion columns number: 0 and list of positions and counts

Match Sub Del Ins

Totals 15 0 0 0

Percents 100.0 0.0 0.0 0.0

Nb_Motifs 5.00 Percent_of_exact_motifs 100.00 Consensus 1 ttg

Pat ttgttgttgttgttg

Seq 187 ttgttgttgttgttg

Nb_mutations 0

FILE BL141.txt LG 201 MOTIF_LG 3 MOTIF ttg NB_ZONES 1

Modified genetic input file: BL141ins

>BL141
CCACCACCTACCACCAACACAATTGCACCGCTAGTGGCTATATTTGATGC
CCTCAAAATTCCCGCACCGTGGGCACCAGAGGCCAAGGATTTCGACTACG
CAAACACGACTTTGCTGATTATGGGTGGTGGATCCAGCACCGGCAAATTT
GGCGTACAATTAGCCAAGTTAGCAGGCATTGGCAAGATTGTTGTTGTTGT
TG

Example 2, output file: BL141ins.cca

ZONE 1 BEGIN_POS 1 END_POS 20 LG 20 GAIN 18

A 7 C 12 G 0 T 1 N 0 %AT 40 %GC 60 Biais GC 1.00

Phase 0

Consensus columns, counts of matches, substitutions, and deletions

Position 1 2 3

Nb_Match 6 6 6

Nb_Subst 1 0 0

Nb_Del 0 0 0

Insertion columns number: 1 and list of positions and counts

Position 2

Nb_Ins 1

Match Sub Del Ins

Totals 18 1 0 1

Percents 90.0 5.0 0.0 5.0

Nb_Motifs 6.33 Percent_of_exact_motifs 68.42 Consensus 1 cca

Pat ccaccacc-accaccaCcac

Seq 1 ccaccaccTaccaccaAcac

^ ^

Nb_mutations 2

Mutations_list 9,t, 17,d,

FILE BL141ins.txt LG 202 MOTIF_LG 3 MOTIF cca NB_ZONES 1

The following information is distinguished for each detected TR:

3.2. STAR: SEARCH FOR TANDEM APPROXIMATE REPEATS 59

1. General information.
The general information is written in the first two lines of the output as
follows:

• ZONE (Line 1), All the TRs listed in the same output file have the
same consensus motif (identified PTRE). Thus the zone number in-
dicates whether it is the first, second, third, etc. occurrence of a TR
with the specific consensus motif, within the genetic sequence file.

• BEGIN POS (Line 1), the start position of a particular TR.

• END POS (Line 1), the end position of a particular TR.

• LG (Line 1), the length of the detected TR.

• GAIN (Line 1), reflects the local compression gain.

• A, the number of occurrences of adenine.

• C, the number of occurrences of cytosine.

• G, the number of occurrences of guanine.

• T, the number of occurrences of thiamine.

• N, the number of occurrences of undetermined nucleotides.

• %AT, percentage of AT (AT represents the percentage of weak hydrogen
bonds [Strachan & Read (2004)]).

• %GC, percentage of GC (GC represents the percentage of strong hydrogen
bonds [Strachan & Read (2004)]).

• Biais GC, representing the GC bias.

• Phase, indicates the pattern phase at the beginning of the TR. A TR
may start at any position of the motif. For example, if the motif is TTG
then phase 0 = T; phase 1 = T and phase 2 = G. The Phase contributes
towards the positioning of the alignment [Delgrange & Rivals (2004a)].

2. Consensus description.
STAR computes alignment in such a manner that it is clear where the
position of a new copy of a motif starts. The TR is divided into successive
repeats. STAR then counts, for each position in the motif, the nucleotides
that occur at those positions respectively. The consensus description of
STAR in relation to a detected TR and an identified motif consists of the
following output:

• A table in which the columns represent the respective positions in the
motif.
The entry in the first row (Nb Match) at a given column (i) is the
number of exact matches for motif position i. In the first example

60 CHAPTER 3. COMPETING SOFTWARE

(BL141.ttg), 5 matches occurred in each of the motif positions 1, 2
and 3. Similarly, the second and third rows contain the number of
mismatches (substitutions) (Nb Subst) and deletions (Nb Del) in each
of the motif positions, respectively. Note that there are neither dele-
tions nor mismatches in the first example(BL141.ttg).

The values of Nb Match, Nb Subst and Nb Del are calculated relative
to a position i within the motif, where 1 ≤ i ≤ |motif |. Thus, if
the computed consensus motif is, for example TTG, then Position 1
= T, Position 2 = T and Position 3 = G. Thus Nb Match = 5 for
Position 1, if there are five occurrences of T in Position 1 throughout
the detected TR. Similarly, if a C is in Position 1 and is the only
mismatch (substitution) in Position 1, then Nb Subst = 1 for Position
1. Note, there is one mismatch in the second example (BL141ins.cca).
The mismatch occurred in the first position and is indicated as such.

• The number of insertion columns detected within the specific TR.
If there were 4 insertion positions within a consensus alignment of a
TR, then STAR would output:Insertion column number: 4 and list
of positions and counts. Consider the output file BL141ins.cca. One
insertion was detected by STAR. Thus STAR output Insertion column
number: 1 and list of positions and counts. The list of positions and
counts is discussed in the next item below.

• The list of positions and counts
consists of a table in which column entries indicate where insertions
occurred, in relation to the consensus motif for the TR under explo-
ration. Consider a motif u = u1u2 · · · up.

If an insertion is detected between ui and ui+1, then this is indicated by
allocating the number ui to the value Position. Underneath position
is a row Nb Ins, if there have occurred X insertions between the ui

and ui+1, then X is output next to Nb Ins.

As evident in the output file BL141.ttg shown above, no insertions
occurred in the sequence BL141. However, in the second example
data BL141ins.txt, there was one insertion and it occurred after the
second character of the third repeat TRE relative to the start of the
detected TR, so that Position = 2 and Nb Ins = 1.

3. Distribution of matches, substitutions and indels.
The 4 columns of the table that represent the distribution of matches, sub-
stitutions, deletions and insertions contain the headings Match, Sub, Del
and Ins respectively. The entries in the first row, labeled Totals, indicate
the exact number of matching, substituted, deleted or inserted nucleotides

3.2. STAR: SEARCH FOR TANDEM APPROXIMATE REPEATS 61

that were detected. The entries in the second row, labeled Percents, pro-
vide the same information in percentage terms.

In the case of the output BL141.ttg file (example 1) shown above, no mis-
matches (substitutions), deletions or insertions occurred. Therefore, Match
has been allocated the output value 100.0.

Consider the output file, BL141.ins.cca, of example 2. For the detected
PTRE = cca, the following is given:
Match = 18, Sub = 1, Del = 0, Ins = 1, Percents Match = 90.0, Percents
Sub = 5.0, Percents Del = 0.0 and Percents Ins = 5.0.

4. Number of repeats and consensus pattern.
An output line that contains the following information is provided:

• Nb motifs : the number of motif repeats that occurred in a specific
zone. In the case of the first output example (BL141.ttg) of STAR,
STAR counted 5 repeats. In the case of BL141ins.cca STAR counted
6.33 repeats. We note that strictly speaking, Nb motifs should be a
rational number (in the present example 61

3
), should be output rather

than the real number (6.33) that is provided.

• Percent of exact motifs : The ratio between the number of exact matches
and the number of mutations is provided. In the case of the example
(BL141.ttg), the ratio of exact matches is shown to be 100%.

• Consensus : This serves as a boolean flag that indicates whether a
particular motif entered as parameter, was detected or not. In the
former cases Consensus = 1, else Consensus = 0. The motif under
consideration is output alongside the consensus flag. Note that in some
cases STAR does not detect a TR of the motif entered as parameter.
Instead, it may find a TR that has a similar motif (pattern).

In the first example, the motif that was entered was ttg. STAR has
detected a TR where repeats of ttg occur. Therefore Consensus =
1 is printed out. In the second example the motif cca was entered,
STAR detected a TR where TREs of cca occurred.

5. Alignment.

The detected TR is aligned against a concatenation of consensus motifs
(concatenated repeats of the detected PTRE — i.e. a PTR). An example
of the described alignment is included below.

Pat ccaccacc-accaccaCcac

Seq ccaccaccTaccaccaAcac

^ ^

62 CHAPTER 3. COMPETING SOFTWARE

The alignment is computed by Wrap Around Dynamic Programming (Sec-
tion 3.2). The output is written in four separate lines for each TR. There
is a maximum of 60 characters in each line. The first output line is labeled
as Pat. This line contains concatenated copies of the consensus motif. The
second output line is labeled as Seq. Seq contains the actual detected TR.
In the third line, each mutation is marked with a ∧. Furthermore, irrespec-
tive of whether the input format of the genetic sequence was upper or lower
case, upper case is used to indicate mutations in Pat and Seq, while all the
other nucleotides are output in lowercase. The fourth line is empty.

6. Mutations list.
The mutation list consists of the list of mutations that occurred within
a TR. The first line of output contains the total number of mutations
(Nb mutations) that occurred within the detected TR. In the case of the
first output example, BL141.ttg, the number of mutations is 0 while the
number of mutations of the second example, BL141ins.cca, is 2.

Delgrange & Rivals (2004a) developed single symbol codes to represent the
entire spectrum of possible mutations. These codes are provided in Tables
3.2, 3.3 and 3.4.

The codes represented in the tables are used to list the occurrences of the
different mutations that were identified within the detected TR. The list
of mutations are preceded by the word Mutations list. Each entry within
the mutation list consists of a numerical value, followed by an alphabetical
value, separated by a comma. The numeric value represents the relative
position of the mutation in the detected TR pertaining to the alignment.
The alphabetical character represents the one of the mutations listed in
the tables above. STAR outputs 9, t to indicate the insertion of t at index
position 9 relative to the start of the detected TR in the second exam-
ple, BL141ins.cca. Also for example 2 STAR outputs 17, d to indicate the
replacement of c with a at index position 17 relative to the start of the
detected TR.

The final line provides the sequence filename and length, the length of
the detected motif, the motif itself, and the total number of detected TRs
containing the particular motif. This final line starts with the word FILE.

3.2.3 Guidelines for Interpreting STAR Output

1. The absence of an output file.
If the execution of STAR terminates properly, but an output file has not
been created, then it implies that a TR of the selected or very similar to
the selective motif has not been found.

3.2. STAR: SEARCH FOR TANDEM APPROXIMATE REPEATS 63

Substitution Substitution by Code
of
a c a
a g b
a t c
c a d
c g e
c t f
g a g
g c h
g t i
t a j
t c k
t g l
n a u
n c u
n g u
n t u
a n v
c n v
g n v
t n v

Table 3.2: Single symbol codes for substitutions

Deletion Code
of
a m
c n
g o
t p
n w

Table 3.3: Single symbol codes for deletions

64 CHAPTER 3. COMPETING SOFTWARE

Insertion Code
of
a q
c r
g s
t t
n x

Table 3.4: Single symbol codes for insertions

2. Consensus pattern differs from the motif input parameter.
In this case the detected TR is a TR of a motif very similar to the motif
used as input parameter, or the detected TR is a complex TR, not obviously
corresponding to the motif, consisting of several patterns. These types of
TRs usually suggest other potential patterns for the search.

3. Redundancy.
The file that is output by STAR reports on one or more detected TRs
associated with a given motif. It is possible that another run of STAR on
the same input sequence, but using a slightly different motif, would produce
TRs that overlap with those in the first run. In the sense that the same
TR may be reported on twice, there is some redundant data generated.
Delgrange & Rivals (2004b) mentions that such ambiguity is inherent to
the tandem repeats search problem. Earlier in this Chapter (Section 3.1.2)
it was noted that Tandem Repeats Finder suffers from a similar type of
drawback.

The required input to Tandem Repeats Finder (Section 3.1) and to STAR (Section
3.2) has been discussed. In Chapter 4, the theoretical background as well as the
specifications of the algorithms proposed in this dissertation, FireµSat, will be
presented. In Chapter 5 the input and output of FireµSat are discussed in a
similar manner to the discussion of that of Tandem Repeats Finder and STAR
in this Chapter. Chapter 6 is a comparison of the three different algorithms:
Tandem Repeats Finder, STAR and FireµSat at the hand of the criteria proposed
in Chapter 2 (Section 2.6).

Chapter 4

FireµSat

4.1 Introduction and Background

FireµSat inspired three algorithmic implementations for TR detection that rely
on finite automata theory and that produce similar output. Each implementation
has a slightly different theoretical foundation with regards to the manner in which
finite automata have been implemented. The 3 implementations — FireµSat1,
FireµSat2 and FireµSat3 realise the same specification. However, it is possible to
distinguish between three layers of abstraction — FA theory forms the basis for
the specifications, which are realised in the three implementations.

65

66 CHAPTER 4. FIREµSAT

The actual implementation of the different FireµSat versions were undertaken by:

• A.P.F. Marais (FireµSat1), and

• T.R. Fourie (FireµSat2) under the supervision of the author, in partial ful-
filment of their respective B.Sc. (Hons) degrees at UNISA.

• Additionally P.V. Reyneke implemented FireµSat3 in accordance with the
author’s specifications.

The details of the algorithm’s input requirements and of its output are presented
in Chapter 5, in a similar manner to the implementation details of Tandem Re-
peats Finder and STAR in Chapter 3. The input parameters of FireµSat1 and
FireµSat2 are similar. FireµSat3 has only been implemented to search for mi-
crosatellites with a motif length of three. The objective of the implementation of
FireµSat3 is threefold:

• Firstly it is of theoretical and practical relevance in the sense that it shows
that it is possible to implement FireµSat3.

• Secondly the opportunity is provided to compare the data generated by
FireµSat3 to the data generated by FireµSat1 and FireµSat2. The generated
output data is equivalent. Note, FireµSat3 only reports any detected TR
once, whereas FireµSat1 and FireµSat2 generate duplicate data that can be
eliminated during post-processing.

• Thirdly the runtime of FireµSat1 and FireµSat2 can be compared to the
runtime of FireµSat3.

The results of the three implementations (Tandem Repeats Finder, STAR and
FireµSat2) are compared in Chapter 6 in terms of the criteria presented in Chapter
2, Section 2.6. As mentioned in Chapter 1, a brief comparison between FireµSat2

and IMEx [Mudunuri & Nagarajaram (2007)] will also be included.

The remainder of this Chapter is laid out as follows:

• Section 4.2 explains the automata technology used in the development of
FireµSat.

• Section 4.3 defines the problem of detecting microsatellites in genetic sub-
strings in a formal manner that facilitates the subsequent explanation of
FireµSat.

• In Section 4.4 three outlines are provided of how automata technology can
be used to detect TRs in a DNA string, culminating in pseudo-code for the
three different FireµSat algorithms.

• Section 4.5 concludes this chapter.

4.2. THEORETICAL BACKGROUND 67

4.2 Theoretical Background

FireµSat1, FireµSat2 and FireµSat3 are DFA-based algorithms. It therefore seems
appropriate to review relevant automata terminology before exploring the con-
struction of the three FireµSat-algorithms. Cohen (1997) defines an FA informally
as a collection of three things:

1. a finite set of states of which one is designated to be the start state (the
initial state), and some (possibly none) designated final states;

2. a finite alphabet of possible input letters; and

3. a finite set of transitions that indicates for each state and for each letter of
the input alphabet which state to go to next.

More formally an FA is defined as:

1. A finite set of states Q = {q0, q1, q2...qn}, of which q0 is designated to be
the start state.

2. A subset of Q called the final states (F).

3. A finite alphabet Σ = {x1, x2, x3...xs}. In our case Σ = {A,C,G, T}.
4. A transition function δ : Q×Σ → Q, which is total and complete [Hopcroft

& Ullman (1979) and Cohen (1997)].

A string or word from the alphabet that matches a path from the start state to
a final state is said to be accepted by the FA. If Σ = {A,C, G, T}, then it is
possible to draw a deterministic FA that accepts only the word ACG as in Figure
4.1.

This FA called, say FAACG, can also formally be defined as follows:
FAACG = (Q, Σ, δ, q0, F) where:
Q = {q1, q2, q3, q4}
Σ = {A,C, G, T}
F = {q3}, and δ is shown below:

States A C G T
q−0 q1 q4 q4 q4

q1 q4 q2 q4 q4

q2 q4 q4 q+
3 q4

q+
3 q4 q4 q4 q4

q4 q4 q4 q4 q4

68 CHAPTER 4. FIREµSAT

q
0
 q
1
 q
2
a
 c
 g
-
 q
3+

c,g,t

a,c,g,t

q
4

a,g,t
 a,c,t

a,g,c,t

Figure 4.1: An FA accepting the PTRE or the motif ACG

It should be noted that this FA is also referred to as a deterministic FA (DFA),
where “→” and “-” are used to indicate the start state, while double circles and
“+” are used to indicate final states. These conventions will be followed in the
remainder of this dissertation.

A state such as q4 is called a sink state, because for all the possible input characters
from the alphabet Σ = {A,C, G, T} it is impossible to leave state q4 — all the
transitions loop back into state q4. An FA can therefore have transitions which
do not lead to strings being accepted, and can have states which do not play a
role in accepting strings. In fact, all the edges leading to the sink state do not
contribute to the acceptance of strings, and sink states play no role in accepting
strings.

The sole function of FAs are to accept certain input strings and to reject other in-
put strings. Consequently, some people also call FAs finite acceptors. Languages
accepted by FAs are regular languages [Cohen (1997)]. Regular languages can be
defined by regular expressions. Regular expressions can more formally be defined
by the following rules [Cohen (1997)]:

• Rule 1: Every word consisting of a single letter that belongs to the alphabet
Σ is a regular expression. Also Λ, which represents the empty word or the
word with no length, is a regular expression.

• Rule 2: If r1 and r2 are regular expressions, then so are the following regular
expressions:

1. r1r2 where r1r2 is the concatenation of the regular expression r1 to the
regular expression r2 in this order (r1r2 is not equivalent to r2r1).

4.2. THEORETICAL BACKGROUND 69

2. r1 + r2 where r1 + r2 is the sum of the two regular expressions.

3. (r1)
∗, the Kleene closure of r1. If r1 = A then

(r1)
∗ = {Λ, A, AA, AAA, AAAA, · · ·}. (r1)

∗ is thus the set of each word in
r1 concatenated n times with itself and the other words in r1 as well
as the words constructed in (r1)

∗, where 0 ≤ n < ∞ and where Λ
is taken to be the result of concatenating a word 0 times with itself.
Note, (r1)

∗ is equivalent to r∗1.

• Rule 3: Nothing else is a regular expression.

Languages associated with regular expressions are regular languages. Regular
languages are type 3 languages of the Chomsky hierarchy of grammars.1 The
following rules define languages that are associated with regular expressions:

• Rule 1: The language associated with the regular expression that consists
only of a single letter of the alphabet, is the set consisting of that one letter
alone. The language associated with Λ is the set {Λ}, a one-word language.

• Rule 2: Let r1 be a regular expression associated with the language L1 and
let r2 be a regular expression associated with the language L2, then:

1. The regular expression r1r2 is associated with the product, L1L2 lan-
guage. Thus, if L1 = {AC} and L2 = {G} then L3 = L1L2 = {ACG}.
Notice that in this case L1, L2 and L3 are all one word languages. If
r1 = A(A)∗ and r2 = C(C)∗ then
L1L2 = {AC, AAC, ACC, AACC, AAAC, AACC, ACCC, · · ·}.

2. The regular expression r1 + r2 is associated with the union of the
sets L1 + L2. If L1 = {AC, GT, TT} and L2 = {AA, CC, GT, TA}, then
L1 + L2 = {AA, AC, CC, GT, TA, TT}. If r1 = (A)∗ and r2 = (C)∗, then
L1 + L2 = {Λ, A, C, AA, CC, AAA, CCC, · · ·}.

3. The language that is associated with the regular expression r∗1 is L∗1
— i.e. the Kleene closure of the set of words, L1. If L1 = {A} then
L∗1 = {Λ, A, AA, AAA, · · ·}.

From these rules it is clear that there is a regular language associated with ev-
ery regular expression. FAs are acceptors of regular languages. Kleene proved
in 1956 that any language that can be defined by a regular expression can also
be defined by an FA [Cohen (1997)]. It is beyond the scope of this disserta-
tion to go into the details of the proof; details thereof can be found in Cohen
(1997). However, attention will be paid to Part 3, Rule 2 of the proof, because

1Noam Chomsky, a linguist, gave several mathematical models for languages [Cohen (1997)].

70 CHAPTER 4. FIREµSAT

it provides the systematic way of constructing FAs that was used in Section 4.4.2.

Part 3 of Kleene’s theorem states:

“Every language that can be defined by a regular expression can also
be defined by an FA.”

Rule 2 of part 3 of Kleene’s theorem states:

“If there is an FA called FA1 that accepts the language defined by
the regular expression r1 and there is an FA called FA2 that accepts
the language defined by the regular expression r2, then there is an
FA that shall be called FA3 that accepts the language defined by the
regular expression r1 + r2.”

The proof that FA3 exists can be given in terms of a constructive algorithm. The
general principles underlying the construction of FA3 are as follows: Starting with
two machines FA1 consisting of states x1, x2, x3, · · · and FA2 consisting of states
y1, y2, y3, · · ·, build a new machine FA3 with states z1, z2, z3, · · ·. Each state zi in
FA3 can be viewed as combining two states: one from FA1, say xj, and another
from FA2, say yk. This will be expressed by saying that zi is “xj or yk”.

The start state of FA3 is then “xstart or ystart”. If either the x part or the y part
of the z state is a final state in its respective FA, then the z state is a final state
of FA3.

In moving from one z state to another when reading a letter from the input string,
we investigate what happens to the x and y parts of z and go to the corresponding
new z part. Letting δ1, δ2 and δ3 denote the transition functions of FA1, FA2 and
FA3, it is possible to express the relationship as follows:

Suppose zi = xj or yk. Suppose too that δ1(xj, p) = xnew, δ2(yk, p) =
ynew and δ3(zi, p) = znew. Then:
znew = xnew or ynew.

As there are only finitely many x’s and finitely many y’s, there can be only
finitely many z’s. Note that not every combination of x and y state necessarily
produces a reachable z state in FA3 — a z state will only be defined in FA3 if it
is possible for a string over the relevant alphabet to exist in such a manner, that
the particular state can be reached if the string is input. (For a z state to be
included within an FA generated by FireµSat there must exist a path that leads
from the start state to the corresponding x and y state.)

4.2. THEORETICAL BACKGROUND 71

States A C G T

z1 = x1 or y1 x2 or y2 = z2 x4 or y5 = z3 x4 or y5 = z3 x4 or y5 = z3

z2 = x2 or y2 x4 or y5 = z3 x+
3 or y3 = z+

4 x4 or y5 = z3 x4 or y5 = z3

z3 = x4 or y5 x4 or y5 = z3 x4 or y5 = z3 x4 or y5 = z3 x4 or y5 = z3

z+
4 = x+

3 or y3 x4 or y5 = z3 x4 or y5 = z3 x4 or y+
4 = z+

5 x4 or y5 = z3

z+
5 = x4 or y+

4 x4 or y5 = z3 x4 or y5 = z3 x4 or y5 = z3 x4 or y5 = z3

Table 4.1: Transition table, FA3

In this manner it is possible to construct a machine that can accept the sum of
two regular expressions if the machines that accept the component regular ex-
pressions are already separately known to us.
(End of proof by means of constructive algorithm,[Cohen (1997)].)

To illustrate briefly the construction of FA3 = FA1 + FA2 consider the following
example:

Let FA1 be the FA that accepts only the word ACG, represented in Figure 4.2(a),
and FA2 be the FA that accepts only the word AC, represented in Figure 4.2(b).

FA3 is to accept the language L = {AC, ACG}. The pictorial presentation of FA3

accepting L is represented in Figure 4.2.

FA1 and FA2 can be used to construct the transition table of FA3 that accepts
L. More formally FA3 = (Q, Σ, δ, q0, F), where:
Q = {z1, z2, z3, z4, z5}
Σ = {A,C, G, T}
F = {z4, z5} and
δ is represented by the transition table of FA3, Figure 4.1.

Suppose that AC is input to FA3. Then, from the table it follows that δ(z1, A) = z2

and δ(z2, C) = z+
4 . As a consequence, the conclusion is drawn that AC is in the

language defined by FA1+FA2. Using functional notation somewhat more loosely,
the foregoing is expressed by the following sequence of equalities:
δ(z1, AC) = δ(δ(z1, A), C) = δ(z2, C) = z+

4 .

It can be seen from the above transition table that one is able to determine
whether a final state of FA3 is designated as final, because it includes a final
state of FA1, because it includes a final state of FA2 or because it includes final
states of both FA1 and FA2.

Thus, z4 is a final state of FA3, because it includes x+
3 which is a final state

of FA1. On the other hand z+
5 is a final state of FA3, because it includes y4

which is a final state of FA2. In general, a final state of FA3 could include final
states of both FA1 and FA2. However, there is no such final FA3 state in the

72 CHAPTER 4. FIREµSAT

q
0
 q
1
 q
2
a
 c
 g
-
 q
3+

c,g,t

a,c,g,t

q
4

a,g,t
 a,c,t

a,g,c,t

(a) FA1 — An FA accepting ACG

x
0
 x
1
a
 c
-
 x
3+

c,g,t

a,c,g,t

x
2

a,
c
,t

a,g,c,t

(b) FA2 — An FA accepting AC

z
1

z
2

z
3

a

c,g,t

-

c

a,c,t

g

a,g,t

a,c,g,t

a,c,g,t

z
4+
 z
5+

(c) FA3 = FA1 + FA2

Figure 4.2: An Illustration of FA addition — FA3 = FA1 + FA2

4.2. THEORETICAL BACKGROUND 73

current example. Note that state z3 is a sink state. For all the input letters of
the alphabet Σ = {A, C, G, T} FA3 will remain in state z3.

In general, it is always apparent which “old” final states are included in a “newly”
constructed finite state — i.e. which “old” final state(s) cause the “new” final
state to be final. In principle it is possible to make a partition between the
respective final states of FA3 based on the origin of the component final states of
the original FAs — FA1 and FA2 in this case.

Exactly the same principle would hold, pari passu, if more than two FAs were
added together. This observation is important for the development of FireµSat.

However, there are also FAs that do more than simply accept a regular language.
Certain FAs generate output. In this regard Mealy and Moore machines are to
be distinguished.

Hopcroft & Ullman (1979) defines a Mealy machine more formally as a six tuple
Me = (Q, Σ, ∆, δ, λ, q0) where Q, Σ, δ and q0 are defined similarly to the formal
definition of the FA. ∆ is the output alphabet and λ maps Q×Σ to ∆ , thus λ(q, a)
gives the output associated with the transition from state q on input a. The out-
put of Me in response to input a1, a2, · · · , an is λ(q0, a1), λ(q1, a2), · · · , λ(qn−1, an),
where q0, q1, · · · , qn are states such that δ(qi−1, ai) = qi for 1 ≤ i ≤ n. If the input
sequence is of length n, then the output sequence is also of length n.

The algorithm, FORRepeats discussed in Section 2.5, implements FAs that orig-
inate from the Mealy paradigm.

In contrast to Mealy machines whose output is determined by the arc followed
when making a transition from one state to the next, Moore machines print
output only in relation to the state that is reached — irrespective of which arc
was followed to get to that state. Cohen (1997) defines a Moore machine as
follows:

1. A finite set of states Q = {q0, q1, q2, · · · qn} where q0 is determined to be the
start state.

2. A finite alphabet of letters Σ = {a, b...} for the construction of input strings.

3. A finite alphabet of output characters ∆ = {x, y, z...}.

4. A transition table that shows for each state and each input letter, which
state will be reached next.

5. An output table that displays what character from ∆ is printed by each
state as it is entered.

74 CHAPTER 4. FIREµSAT

It is also possible to define a Moore machine in a more formal manner as a six
tuple: Mo = {Q, Σ, ∆, δ, λ, q0} where: Q, Σ, δ, and q0 are the same as in the
FA. ∆ is the output alphabet and, λ is a mapping from each state in Q to ∆,
representing the output associated with each state. The output of Mo in response
to input a1, a2, · · · , an, n ≥ 0, is λ(q0), λ(q1) · · ·λ(qn), where q0, q1, · · · , qn represent
the sequence of states such that δ(qi−1, ai) = qi for 1 ≤ i ≤ n. Notice that the
Moore machine will give output of length n + 1 if n is the length of the input
sequence [Hopcroft & Ullman (1979)].

The input alphabet Σ need not be the same as the output alphabet ∆. Notice
that a Moore machine does not define a language of accepted words as an FA
does. The notion of a set of final states is not defined.

Thus, every possible string of a Moore machine creates an output string. The
reading process is terminated when the last input letter is read and the last output
letter is printed. There are, however, several ways to convert Moore machines
into language-definers. The pictorial representations of Moore machines are very
similar to those of FAs. Instead of only having the name of the state inside the
circle representing the state, the output character printed by the state is also
specified.

The two symbols inside the state (circle) are separated by a “\”. On the left side
of the “\” is the name of the state and on the right side is the output from that
state.

Following the less formal conventions of Cohen (1997), we can represent a Moore
machine that will determine exactly how many times the substring ACG occurs in
a genetic input string as follows:

Input alphabet: Σ = {A,C, G, T}
Output alphabet: ∆ = {0, 1}
Names of states: q0, q1, q2, q3 where q0 is the start state.

Moore Machine Transition Table: counting ACG occurrences

Old Output by New State New State New State New State
State old State after after after after

input A input C input G input T
q0 0 q1 q0 q0 q0

q1 0 q1 q2 q0 q0

q2 0 q1 q0 q3 q0

q3 1 q1 q0 q0 q0

The graphical representation of the above Moore Machine is as represented in
Figure 4.3.

4.3. FORMAL PROBLEM STATEMENT 75

q
0
/0
 q
1
/0
 q
2
/0
 q
3
/1

c,g,t
 a

c,t

a
 c
 g

a
g,t

c,g,t

a

Figure 4.3: A Moore machine printing a 1 for each ACG substring

It is clear that every state of this machine outputs the character 0, except for
state q3 which outputs 1. The only way of reaching state q3 is by reading an ACG

substring. For example, consider the input string CGTTTACGACGT. The number of
ACG substrings is equal to the number of 1’s in the output string, which is shown
in the last row below:

Sequence: CGTTTACGACGT
Input C G T T T A C G A C G T

State q0 q0 q0 q0 q0 q0 q1 q2 q3 q1 q2 q3 q0

Output 0 0 0 0 0 0 0 0 1 0 0 1 0

Now that the relevant theoretical concepts of FAs have been surveyed, the algo-
rithmic development of FireµSat will be discussed in terms of this theory. The
problem statement will be formally stated in a way that facilitates the explanation
of the algorithm FireµSat in the next section.

4.3 Formal Problem Statement

Frequent use will be made of the core terminology introduced in Chapter 2.
Therefore some of the relevant definitions will be recapitulated briefly.

In Chapter 2 a TR in a genomic sequence, is defined as a string of nucleotides
that is characterized by a certain motif that introduces the string followed by at
least two “copies” of the motif. If the motif ACG with motif length 3 (|motif | = 3)
is considered, then ACGACGACGACGACG is a TR. Exact copies of the motif (as in
the case of the above example) are called PTRs; otherwise (in the case of the

76 CHAPTER 4. FIREµSAT

inclusion of non-exact copies in the TR) they are referred to as ATRs. An ATR
is thus a string of nucleotides repeated consecutively at least twice, with a limited
number of small differences between the instances being tolerated. An example
of an ATR is: ACGACTACGACGAC. In the absence of further qualification, reference
to a TR should be construed as a reference to either a PTR or an ATR.

A TR element (TRE) that matches the identified motif of the TR will be referred
to as a PTR element (PTRE). A TRE that does not match the motif is referred
to as an ATR element (ATRE). We have also defined microsatellites to be TRs
with a motif (PTRE) length such that 2 ≤ |motif | ≤ 5. It has been made clear
that the term microsatellite is used to refer to a TR that contains PTREs and
that may also contain ATREs.

ATRs on genetic sequences are defined in terms of the following more formal
conventions. A PTR whose motif ρ is repeated p times where p ≥ 1, is denoted
by ρp. An ATR u that is derived from this PTR ρp, must also have the motif (ρ) as
its prefix. It therefore has the form ρu2 · · · up where each ATRE, uk(k = 2 · · · p),
is the result of at most ε mutations on ρ. Here ε is called the motif error. In
theory, ε could be anywhere in the range 0 ≤ ε ≤ |ρ|.
However, when running FireµSat, the user is required to choose a maximum value
for ε that complies with certain practical considerations. In determining whether
the string ρu2 · · · up is to be construed as an ATR, this value of ε represents the
maximum number of mutations (or errors) that are tolerated in deciding whether
or not, for each k = 2 · · · p, uk represents an acceptable ATRE. In the next section
the types of mutations that are tolerated are discussed. Here it is emphasized
that the following toleration limits on ε apply for a given ρ.

1. If |ρ| = 2 or |ρ| = 3 then only zero or one error is tolerated; i.e. ε may be
chosen as either 0 or 1. (The default is 1.)

2. If |ρ| = 4 or |ρ| = 5 then zero, one or two errors are allowed, i.e. ε may be
chosen as either 0, 1 or 2. (The default is 2.)

Recall that the interest is in detecting microsatellites, which means that 2 ≤ |ρ| ≤
5.

Consider an example where ρ = ACGTT. Then |ρ| = 5 and the user may conse-
quently select the maximum number of errors to be either 0 or 1 or 2. If the user
selects “2”, then ACT would be regarded as an ATRE, since it may be construed
as the motif in which two deletions (see Section 4.3.1) have occurred. Likewise
ACGT could be regarded as an ATRE, since it may be seen as the motif in which
one deletion has occurred. (See Section 4.3.1.) However, AC will not be regarded
as an ATRE.

4.3. FORMAL PROBLEM STATEMENT 77

4.3.1 Type of Mutations Tolerated

A substring u is considered similar to the substring ρp if it can be written as u =
u1u2 · · ·up where each word uk (k = 1 · · · p) is obtained by at most ε mutations
on ρ and where ε is some pre-specified limit in the range 0 ≤ r ≤ |ρ|. This was
explained in the previous paragraph (Section 4.3). (Note that in running FireµSat,
the user has further options for constraining the search for ATRs. These options
are discussed in Section 4.3.2. They are concerned with constraining the ratio
of ATREs to PTREs in a string and/or constraining the number of consecutive
ATREs in the string.)

To further illustrate the above, consider an example based on the three letter
PTRE ρ = ACG, where ε = 1 has been selected. This means that at most 1
mutation is allowed. The authorized forms of each ATRE, uk, are therefore as
follows:

1. The word ρ itself: uk = ACG and |uk| = 3.

2. The word ρ with the mismatch of one base: uk ∈ {XCG|X : {C,G,T}} ∪
{AXG|X : {A,G,T}} ∪ {ACX|X : {A,C,T}}. In all these cases |uk| = 3.

3. The word ρ with the deletion of one base: uk ∈ {CG, AG, AC}. Thus, in all
these cases |uk| = 2.

4. The word ρ with an insertion in front of any position ρi of ρ. uk ∈ {ACGX|X :
{A,C,G,T}} ∪ {ACXG|X : {A,C,G,T}} ∪ {AXCG|X : {A,C,G,T}} ∪ {XACG|X :
{A,C,G,T}}. In all these cases |uk| = 4.

This manner of defining authorized forms of mismatches and deletions of uk

derives from experimental observations cited by Rivals et al. (1995). It has been
endorsed by Benson (1999) as providing statistically relevant information.

It should be noted that all these words keep at least 2 bases from the original
word ρ.

The definition of insertions given above does not fully correspond to that of Rivals
et al. (1995). The latter would consider any element of the following set to be
insertions for the motif ACG:

{ACGX|X : {A,C,G,T}} ∪ {ACX|X : {A,C,G,T}} ∪ {AGX|X : {A,C,G,T}} ∪ {CGX|X :
{A,C,G,T}}∪{XCGY|X : {C,G,T}; Y : {A,C,G,T}}∪{AXGY|X : {A,G,T}; Y : {A,C,G,T}}∪
{ACXY|X : {A,C,T}; Y : {A,C,G,T}}.

Thus, Rivals et al. (1995) consider an insertion to be any word derived by con-
catenating a base to the end of a PTRE, or to the end of an ATRE that is either
a deletion or a mismatch in the sense defined above.

78 CHAPTER 4. FIREµSAT

It should be noted that the decision to part company with Rivals et al. (1995)
on the matter, of how to handle insertions was not taken lightly. Indeed, the
approach was discussed with two molecular biologists who were positive about the
statistical relevance of the information that would be generated by the proposed
algorithm.

In all the above motif error cases 3 ≤ |uk| ≤ 4. It is clear that in some cases (e.g.
a character concatenated after a mismatch has occurred), that if the motif length
is three, then Rivals et al. (1995) allows for a motif error of two. However, our
convention (to be further discussed in Section 4.3.2) only allows one motif error
per motif when the motif length is 3.

As it stands, the foregoing could lead to ambiguity in determining the mutational
origin of a string. For example, ACG could be construed as some intended PTRE,
ρ, or as a deletion of the last nucleotide, G, of the PTRE ρ, followed by the
insertion of G.

To resolve such ambiguities, the following rules will be applied wherever possible:

1. A string will be interpreted as a PTRE rather than as an ATRE with
mutations.

2. A string will always be regarded as an ATRE that results from mismatches,
rather than from insertions or deletions.

3. An ATRE will be regarded as originating from a deletion rather than from
an insertion.

The algorithm proposed also allows for other types of errors that can be adjusted
by the user. More details pertaining to this matter are to be found in Section
4.3.2.

In principle then, an algorithm seeking TRs could rely on the motif error (ε) alone
to determine, when the end of a candidate string has been found. However, in
practice it is useful to rely on additional metrics. Section 4.3.2 introduces three
such metrics. The section indicates how to determine whether a string that has
been found to be a possible TR at some point in the algorithm, should be output
as such, or whether further processing should occur to see if the string can be
further extended to produce a longer TR.

4.3.2 Additional Metrics and Threshold Values

In addition to considering ε (the maximum motif error that may occur within a
TR), FireµSat also computes three additional metrics. These are σ, the so-called

4.3. FORMAL PROBLEM STATEMENT 79

substring error, α, the maximum number of ATREs that may occur consecutively,
and β, the minimum number of TREs to flag reporting.

In each case, the user can specify maximum values for these thresholds, which
FireµSat will use as a threshold value in determining when a given substring can
be regarded as a TR. The details of these thresholds will now be provided.

1. The substring error : σ
This is a measure that provides additional useability and flexibility to the
user. The FireµSat software provides the user with the option to either
calculate the relative substring error or the absolute substring error. These
measures are computed at appropriate points by FireµSat and then com-
pared against a user-specified threshold value of the maximum substring
error allowed, τ . During processing σ ≤ τ should always hold.

In line with the guidelines suggested by Benson (1999), the value of σ
depends, inter alia on penalties (or weights) allocated by the user to mis-
matches (pm), deletions (pd) and insertions (pi). A definition and a descrip-
tion of the two substring errors follows:

• The absolute substring error : σ
For a given motif, ρ, and a given substring that has been partitioned
into the form u = ρu2 · · · up, σ on u is computed as:

σ = (nd ∗ pd) + (ni ∗ pi) + (nm ∗ pm)

where nd is the number of deletions in u; ni is the number of insertions
in u and nm is the number of mismatches in u. σ is calculated after each
detection of a TRE. After σ has been calculated it is compared against
a user specified threshold value, τ . During execution for each TR,s if
σ ≤ τ does not hold, then execution is terminated and the detected TR
is reported on, provided that the other conditions discussed hereafter,
hold. The user may rely on system default values for the penalties.
These are pi = 1.0, pd = 1.0 and pm = 0.5 respectively. A penalty
weight of 0 may be chosen for one or more of the mutation types,
in which case no penalty is assigned to ATREs that derive from that
mutation type.

The absolute substring error enables the user to assign values to penal-
ties in such a manner that it is possible for FireµSat2 to output for ex-
ample only TRs that consist of PTREs and ATREs with mismatches.
If sufficient TRs are not detected, then the deletion penalty values
and/or insertion penalty values can be adjusted, such that TRs con-
taining mismatches, deletions and/or insertions will be detected and
reported on.

80 CHAPTER 4. FIREµSAT

• The relative substring error : σ
This is a measure of the extent to which the number (weighted as
described below) of ATREs in the candidate TR exceeds the number
of PTREs. The measure is computed after each detection of a TRE by
FireµSat2 and then compared against a user-specified threshold value
of the maximum relative substring error allowed, τ . During processing
σ ≤ τ should always hold.

Similarly to the absolute substring error, the value of σ of the rela-
tive substring error also depends, inter alia on penalties (or weights)
allocated by the user to mismatches (pm), deletions (pd) and inser-
tions (pi). For a given motif, ρ, and a given substring that has been
partitioned into the form u = ρu2 · · · up, σ on u is computed as:

σ = (nd ∗ pd) + (ni ∗ pi) + (nm ∗ pm)− nptre

where nd is the number of deletions in u; ni is the number of insertions
in u; nm is the number of mismatches in u; and nptre is the number of
PTREs in u.

The user may rely on the same system default values as in the case of
the absolute substring error.

In the case of the relative substring error the value of σ therefore re-
flects the extent to which the number of ATREs exceeds the number
of PTREs, weighted in terms of penalty values associated with mis-
matches, deletions and insertions. A restrictive default value has not
been allocated to τ . If the user does not enter a value for τ then the
substring error, σ, may be considered to be able to evaluate to infinity.
Note, the relative substring error is similar to the original substring
error defined for FireµSat, in De Ridder et al. (2006a) and De Ridder
et al. (2006b)

The foregoing implies that FireµSat has to keep a count of the number of the
various types of mutations. As will be seen in Section 4.4.2, FireµSat1 makes
use of an FA denoted by FAρ, which is the sum (in the sense of Kleene’s
theorem discussed in Section 4.2) of four other FAs: one for recognizing
PTREs, and one each for recognizing insertions, deletions and mismatches.
In general the substring error σ is calculated every time a final state is
reached in FAρ. Each such final state is associated with a unit increment
in either the number of PTREs, or the number of insertions, or the number
of deletions or the number of mismatches. It is these final states, therefore,
that enable the counting of the various types of mutations.

For as long as σ ≤ τ holds, the scan of the input string continues in an
effort to increase the length of the TR found to date. If the condition is

4.3. FORMAL PROBLEM STATEMENT 81

not met, then the TR found to date is output and the next TR in the input
string is sought.

Of course, whenever a sink state (see Section 4.2) of FAρ is reached, then
the TR is also output and the search for the next TR resumed.

2. The maximum number of consecutive ATREs : α
The user has the option of entering a value denoted by α. This value
indicates the maximum number of ATREs that may occur consecutively.
Thus α serves as a second threshold value.

If the user specifies a value for α, then the counter tnatreC is maintained to
record the total number of consecutive ATREs since the last PTRE.

The counter is incremented whenever an ATRE has been read (indicated by
a transition to a final state of FAρ) irrespective of the type of elements —
whether it be an insertion, deletion or mismatch. However, when a PTRE
is read, then the value of tnatreC is again set to zero. The processing of a
string will only proceed if tnatreC ≤ α.

Note that a value for α is not activated by default. Thus, if the user does
not enter a value for α, then there is no limit to the number of ATREs that
may occur consecutively. (Alternatively, one might say that the default
value of α is ∞.)

3. The minimum number of tandem repeat elements : β
To avoid the output of unwanted data, the user may indicate the minimum
number of TREs that has to occur before a TR is output, denoted by β. To
this end, a count tntre, is kept of the total number of TREs encountered to
date in the current candidate TR. In fact, a count is also kept of the total
number of PTREs encountered to date, tnptre and of the total number of
ATREs encountered to date, tnatre. Clearly tntre = tnptre + tnatre.

The current candidate TR will only be reported as a TR if one of the
previously mentioned thresholds or terminating conditions is encountered
and if tntre ≥ β. The default value for β is two.

To illustrate these concepts, consider the genetic substring:
ACGCGCGCGACGACTACGACT.
Let the motif be ACG. The values for nd, ni, nm, tnptre, tnatre and tnatreC are as
follows at different processing intervals of the substring.

82 CHAPTER 4. FIREµSAT

0. ACGCGCGCGACGACTACGACT nd ni nm tnptre tnatre tnatreC

1. ACG 0 0 0 1 0 0
2. ACGCG 1 0 0 1 1 1
3. ACGCGCG 2 0 0 1 2 2
4. ACGCGCGCG 3 0 0 1 3 3
5. ACGCGCGCGACG 3 0 0 2 3 0
6. ACGACACACACGCGC 3 0 1 2 4 1
7. ACGCGCGCGACGACTACG 3 0 1 3 4 0
8. ACGCGCGCGACGACTACGACT 3 0 2 3 5 3

Suppose that τ was specified by the user as 5; ε and that the default values for
the penalties are used, namely pi = 1.0, pd = 1.0, pm = 0.5. Then:

1. the absolute substring error will be calculated as follows:

σ = (nd ∗ pd) + (ni ∗ pi) + (nm ∗ pm)

= (3 ∗ 1) + (0 ∗ 1) + (2 ∗ 0.5)

= 4

2. the relative substring error will be calculated as follows:

σ = (nd ∗ pd) + (ni ∗ pi) + (nm ∗ pm)− nptre

= (3 ∗ 1) + (0 ∗ 1) + (2 ∗ 0.5)− 3

= 1

and since this is less than the specified value for τ , FireµSat would attempt to
explore elements beyond the given genetic substring before deciding at which
stage the substring should be reported as a TR.

4.4 Algorithm Construction

Section 4.4 introduces the three different FireµSat algorithms by providing al-
gorithmic details in Dijkstra’s guarded command language (GCL). Section 4.4.1
provides GCL background knowledge and includes pointers to the lay out of the
remainder of Section 4.4.

4.4.1 A Brief Introduction to FireµSat

The theory underlying FireµSat is a combination of straightforward FA tech-
nology, combined with a flavour of Moore machine technology. Three different

4.4. ALGORITHM CONSTRUCTION 83

algorithms that detect TRs in DNA are presented in Dijkstra’s guarded command
language (GCL).

In the presented GCL the semantics of the if-statement specifies that non-deterministic
selection of the guards takes place if more than one guard evaluates to true.
Therefore to avoid ambiguity, guards have to be designed to be mutually exclu-
sive. Guidelines for the development of GCL have been obtained from [Kourie
(2009); Vide et al. (2003) and Dahl et al. (1972)].

FireµSat1 is explained in Section, 4.4.2. A discussion of FireµSat2 follows in Sec-
tion, 4.4.3. Finally FireµSat3 is introduced in Section, 4.4.4. The number of
traversals of the input string of both FireµSat1 and FireµSat2 depend on the num-
ber of motifs or PTREs for which the genetic input string should be scanned.
There is exactly one traversal for each motif. Several different TRs may be iden-
tified within the same substring of the input string. Consider for example the
TR sub string:
ACGACGACGACGACGACGACG
This TR will be reported on three times with three different introductory PTREs
namely ACG, CGA and GAC respectively. In contrast to FireµSat1 and FireµSat2,
FireµSat3 traverses the genetic input string only once for each relevant motif
length, as indicated by the user. The user input for the three algorithms is
similar and as follows:

• The lower and upper bound of motif lengths to be considered (lmin and lmax

respectively);

• the maximum allowable motif error (ε — discussed in Section 4.3.1);

• the maximum allowable substring error (τ — discussed in Section 4.3.2);

• the penalty values used to calculate the substring error (pm, pd and pi, all
explained in Section 4.3.2);

• the maximum allowable number of ATREs that may occur consecutively (α
— discussed in Section 4.3.2);

• the minimum number of TREs that should occur before a string is output
as a TR (β — explained in Section 4.3.2); and

• the set (S) containing the genomic sequences (s) in FASTA format.

The algorithms return a set of tuples. Each tuple contains the following informa-
tion about a detected TR in s:

• the start index of the the TR in s (pos);

84 CHAPTER 4. FIREµSAT

• the length of the TR detected (len);

• the number of PTRE elements in the TR (nptre); and

• the number of mutations, deletions and insertions in the TR (nm, nd and ni

respectively).

Below the theoretical underpinning of FireµSat1 is introduced. An indication is
also given of how the theory has been applied.

4.4.2 Theory Underlying FireµSat1

For illustrative purposes, the use of ACG as the motif string is continued. In
addition, to facilitate the explanation of the algorithm, the following FAs are
introduced. In each case, a description is given of how the given FA scans a
string of the form u = ρu2u3 · · · up

• FAP (ρ) is an FA that reaches a final state after scanning the first occurrence
of ρ in u. In fact it reaches the final state again if u2 = ρ is encountered in
u, and again if u3 = ρ is encountered in u, etc. However, FAP (ρ) goes to a
sink state (see Section 4.2) as soon as a character in u is encountered that
indicates that u is not a PTR. Thus FAP (ρ) accepts a PTR of arbitrary
length with motif ρ, entering the final states as many times as there are
PTREs in the PTR. A diagrammatic representation of FAP (ACG) is given
in Figure 4.4.

• FAD(ρ, ε) is an FA that, upon scanning u, reaches its first final state once
the substring ρ has been read. FAD(ρ, ε) continues to reach final states
after scanning each word, ui (where i = 2 · · · p) provided that one of the
following conditions hold: a) either ui = ρ or b) ui is a word deduced from
ρ that contains a maximum of ε deletions. However, FAD(ρ, ε) will move
to a sink state as soon as it is apparent that neither of these two conditions
hold. A diagrammatic representation of FAD(ACG, 1) is given in Figure 4.5.

• FAM(ρ, ε) is an FA that functions analogously to FAD(ρ, ε), except that it
functions in terms of mismatches rather than deletions. A graphical repre-
sentation of FAM(ACG, 1) is given in Figure 4.6.

• FAI(ρ, ε) is an FA that functions analogously to FAD(ρ, ε), except that it
functions in terms of insertions rather than deletions.

4.4. ALGORITHM CONSTRUCTION 85

q
0
 q
1
 q
2
a
 c
 g
-
 q
3+

c,g,t

a,c,g,t

q
4

a,g,t
 a,c,t

g,c,t

a

Figure 4.4: FAP (ACG)

D
3

t

PTR final state

ATR final state

Sink state

d
1
-

c,g,t

d
2

g,t

a

c,t

c
 d
3

a

a

g

d
4+

g,t

d
9

a,c,g,t

a,c,t

g,t

a,t

c

g

g

a

c

c

a

a
 g

c

d
8

d
7+

d
5

d
6+

Figure 4.5: FAD(ACG, 1)

86 CHAPTER 4. FIREµSAT

-

m
0

m
1
 m
2

+

m
3

c,g,t
 a

c,t

a
 c
 g

a
g,t

m
5
 m
4

c,g,t

m
6

c
 a,t,g

a

+

m
8

m
7

a,c,t
a,g,t

m
9

c
a
g

g

a,c,t

PTR final state

ATR final state

Sink state

a,c,g,t

Figure 4.6: FAM(ACG, 1)

4.4. ALGORITHM CONSTRUCTION 87

• FAρ(l,ε) is an FA obtained from the sum of all the previously defined FAs.
Thus:

FAρ(l,ε) = FAP (ρ) + FAD(ρ, ε) +

FAM(ρ, ε) + FAI(ρ, ε) (4.1)

where l is the motif length and ε indicates the number of motif errors
allowed. In the interest of simplicity l as well as ε will be omitted in the
remainder of the text. Thus for future reference l and ε are considered to
be inherent to the intended motif, ρ. Equation 4.1 consequently reduces to:

FAρ = FAP (ρ) + FAD(ρ, ε) +

FAM(ρ, ε) + FAI(ρ, ε) (4.2)

For a given motif, it is relatively easy to specify the regular expressions that
correspond to the various FAs just mentioned above. Although software packages
are available to construct FAs from given regexs and to add these FAs, (for
example, Fire Station [Watson (1994)]) it was considered more convenient to
implement purpose-built software for the present purposes.

For example, the language accepted by FAP (ACG) can be defined by the regex
(ACG)(ACG)∗. Similarly, the languages accepted by FAD(ACG, 1), FAM(ACG, 1) and
FAI(ACG, 1) may be defined by means of regexs, respectively, as follows:

• FAD(ACG, 1) accepts the language defined by the regex
(ACG)(ACG + AC + AG + CG)∗.

• FAM(ACG, 1) accepts the language defined by the regex
(ACG)(ACG + CCG + GCG + TCG + AAG + AGG + ATG + ACA + ACC + ACT)∗.

• FAI(ACG, 1) accepts the language defined by the regex
(ACG)(ACG + AACG + CACG + GACG + TACG + ACCG + AGCG + ATCG+
ACAG + ACGG + ACTG + ACGA + ACGC + ACGT)∗.

In general, then, an FA can be set up along the lines indicated above for an
arbitrary motif, ρ. A trace through such an FA will confirm that strings of the
form pρu1 · · ·uq are recognized, where:

• p is some arbitrary non-motif prefix preceding a TR,

• ρ is the motif (in the present example, ACG) of the TR,

88 CHAPTER 4. FIREµSAT

• each ui, i = 1 · · · q is an ATRE based on ρ, allowing for an error of maximally
ε. Note that in the present example, ρ = ACG and thus |ρ| = 3. Therefore,
as previously discussed, ε is only allowed to assume the value of 1 or 0.
Thus only 1 or 0 deletion or mismatch may occur in each respective TRE
of each figure, and

• q ≥ 1 is the number of ATREs that follow on from the motif or PTRE in
the TR.

It will also be seen that if any additional element that does not belong to the
TR identified up to that point is encountered in the input string, then the FA
transits to a sink state in each respective case. State q4 in Figure 4.4, state d9 in
Figure 4.5 and state m7 in Figure 4.6 are sink states.

In Figures 4.5 and 4.6, there are also two kinds of final states: those which signal
that a motif (PTRE) has been scanned and those which indicate that a deletion
(or mismatch) has been scanned. These states will be referred to as PTR- and
ATR-final states, respectively. As explained below, the number of transitions into
these states have to be counted, and the respective values of σ, tnatreC and tntre

have to be correspondingly updated, so as to ensure that the strings designated
as TRs are consistent with thresholds τ , α and β respectively, as explained in
Section 4.3.2 above.

In order to construct FAρ(|ρ|,1) we first construct the respective constituent ma-
chines and then apply the constructive algorithm which forms part of the proof
of Rule 2, Part 3 of Kleene’s theorem discussed in Section 4.2.
FAACG = FAP (ACG) + FAD(ACG, 1) + FAM(ACG, 1) + FAI(ACG, 1).

This can be done by using the Fire Engine software [Watson (1994)] that provides
a toolkit for generating and adding FAs. FA toolkits in general are discussed in
more detail in Watson (1995), Watson (1996), Watson (2001) and Watson (2002).

The discussion to date can be generalized: FAXYZ is an FA for recognizing the
parameterized motif XYZ of length 3. The parameters are X, Y and Z and each
of these parameters can be instantiated to any one of the nucleotides {A, C, G, T}.
This parameterized FA is, as before, the sum of four other FAs, each of which are
also parameterized.

Thus the regex associated with FAP (XYZ) can be defined as (XYZ)(XYZ)∗. Further-
more FAD(XYZ, 1), FAM(XYZ, 1) and FAI(XYZ, 1) can also be defined as follows:

• FAD(XYZ, 1) accepts the language defined by the regex
(XYZ)(XYZ + XY + XZ + YZ)∗.

• FAM(XYZ, 1) accepts the language defined by the regex
(XYZ)(XYZ + YYZ + ZYZ + RYZ + XXZ + XZZ + XRZ + XYX + XYY + XYR)∗.

4.4. ALGORITHM CONSTRUCTION 89

• FAI(XYZ, 1) accepts the language defined by the regex
(XYZ)(XYZ + XXYZ + YXYZ + ZXYZ + RXYZ + XYYZ + XZYZ + XRYZ+
XYXZ + XYZZ + XYRZ + XYZX + XYZY + XYZR)∗.

Thus, in principle, any FAρ of motif length 3 can be algorithmically constructed.
Similarly parameterized versions for FAρ can be constructed for |ρ| = 2, 3, 4, 5
and for permissible values of ε. In each case the regexs relating to the constituent
FAs have to be determined, the corresponding FAs are then derived using tools,
programmed by Mr. A.P.F. Marais (an honours project student of the author),
similar to the Fire Engine toolkit and these derived FAs are then summed, also
using the toolkit, to provide FAρ. Algorithm 4.4.1 illustrates how the respective
regular expressions, ζ, needed to construct the FAρ’s are generated. FAρ’s are
required during the run of FireµSat1.

An explanation of some of the functions of Algorithm 4.4.1 is as follows:

• the function rep(s, p, c) replaces the character at position p, in string s, with
character c and returns the resultant string;

• the function del(s, p) deletes the character at position p, in string s and
returns the resultant string; and finally

• the function ins(s, p, c) inserts the character c at position p, into string s
and returns the resultant string.

After the completion of each of the regex construction loops, it is necessary to
delete the last added + sign and to close the opening brackets of the current
type. From the code it is apparent that the + sign is added to make provision
for expansion after each element.

Note, the example function, genRegEx(ρ, Σ) : string returns a regex in the form
of a string as indicated. The author is aware thereof that this algorithm can also
be implemented recursively.

Algorithm 4.4.1
Σ := ”acgt”
func genRegEx(ρ, Σ) : string
var ζ, i, j

i = |ρ|
; ζ := ”(” + ρ + ”)(”

{Mismatches}
; i = |ρ|

90 CHAPTER 4. FIREµSAT

;do (i > 0) →
j = |Σ|
;do (j > 0) →

if (ρ[i] 6= Σ[j]) →
ζ := ζ + rep(ρ, i, Σ(j)) + ” + ”

[] (ρ[i] = Σ[j]) → skip
f i
; j := j − 1

od
; i := i− 1

od
; ζ := del(ζ, |ζ|) + ”) + (”

{Deletions}
; i = |ρ|
;do (i > 0) →

ζ := ζ + del(ρ, i)
; i := i− 1

od
; ζ := del(ζ, |ζ|) + ”) + (”

{Insertions}
; i = |ρ|
;do (i > 0) →

j = |Σ|
do (j > 0) →

ζ := ζ + ins(ρ, i, Σ(j)) + ” + ”
; j := j − 1

od
; i := i− 1

od
; ζ := del(ζ, length(ζ)) + ”)”
; return ζ
cnuf

Once FAρ has been constructed, certain adaptations to the conventional FA lan-
guage recognition algorithm are required, when scanning through a genomic se-
quence in search of the next TR. Some of the details relating to these adaptations
will be discussed later. For the present, consider the high-level description of
FireµSat1 given in Algorithm 4.4.2. The input as well as the output parameters
were discussed in Section 4.4.1.

4.4. ALGORITHM CONSTRUCTION 91

The following functions are assumed:

• genMotifs(l) generates a set of all words from the alphabet Σ = {A,C,G,T}
of the length (l) specified by the user.

• genFA(l, ε), genFA(genRegEx(l, ε)) returns FA, where l indicates the mo-
tif length and ε indicates the number of motif errors allowed. Note, in the
case of FireµSat1 genRegEx, Algorithm 4.4.1, is used to obtain a regex be-
fore generating the required FA. In the case of FireµSat2 and FireµSat3 the
machines are directly generated in line with the user specified ρ and ε.

• decorate(FA, ρ) decorates the generated FA with the motif ρ.

• find(s, pos, ρ) returns the index of the start of the next candidate, TR of
motif ρ, in the suffix of sequence s that starts at pos. It returns -1 if no
match is found.

• computeTR1(s, pos, FAρ, τ, α, β, pm, pd, pi). computeTR1 returns a tuple
of information about the next TR that is recognised by FAρ within the
constraints specified by τ , α and β as explained in Section 4.3.2. The tuple
contains the start position of the TR (pos), its length (trlen) and the count
of the numbers of PTREs, mismatches, deletions and insertions (nptre, nm,
nd and ni). A detailed discussion of computeTR1 will follow before its
GCL-code is introduced. computeTR1 calls the function isEnd.

• isEnd(Q, τ, α, β, pm, pd, pi, nm, nd, ni, tnptre, tnatre, tnatreC , back). The pur-
pose of the function isEnd is threefold:

– isEnd determines if computeTR1 should continue to process the next
character of a detected TR.

– The function isEnd determines if a detected TR should be reported
on or not.

– Finally, isEnd indicates if the last detected TRE should be added to
the currently detected TR or not.

A detailed discussion of isEnd will precede its GCL-code in Section 4.4.2.2.

Algorithm 4.4.2
func FireµSat1(lmin, lmax, ε, τ, α, β, pm, pd, pi, S) : tuples
Pre : {(0 < lmin ≤ lmax) ∧ (0 ≤ ε) ∧ (σ ≤ τ) ∧ (0 ≤ tnatreC ≤ α)

∧ (∀s ∈ S : length(s) > l) ∧ (0 ≤ β ≤ tntre) ∧ (S ∈ Σ∗)}
Post : {(pos, len) ∈ tuples ≡ ∃ρ : Σ∗ · |ρ| ∈ [lmin, lmax]

∧ ∀s ∈ S : (∀i ∈ [pos, pos + len) : ¬isEnd(s[i], ε, τ, α, β, pm, pd, pi, ρ))

92 CHAPTER 4. FIREµSAT

∧ ∀s ∈ S : (¬isEnd(s[pos + len], ε, τ, α, β, pm, pd, pi, ρ))}
var i, ρ, pos, len, s

tuples := ∅
; for l ∈ [lmin, lmax] →

FA := genFA(genRegEx(l, ε))
; W := genMotifs(l)
for s ∈ S →

for ρ ∈ W →
FAρ := decorate(FA, ρ)
; pos := find(s, 0, ρ)
; do (pos 6= −1) →

<pos, len, nptre, nm, nd, ni > :=
computeTR1(s, pos, FAρ, τ, α, β, pm, pd, pi)

; if (len > |ρ|) →
tuples := tuples ∪ {<pos, len, nptre, nm, nd, ni >}

[] (len ≤ |ρ|) →
len := 0

f i
; pos := find(s, pos + len + 1, ρ)

od
rof

rof
rof
; return tuples
cnuf

4.4.2.1 Explanation of computeTR1

computeTR1 updates various counters, initially at 0, after a motif has been en-
countered as we scan through a string. The GCL of computeTR1 is presented in
Algorithm 4.4.3.

Note that in order to use FAρ appropriately in FireµSat1, it is required that the
final states of the original component FAs be identifiable in it. It was pointed
out previously that one of the features of the constructive algorithm introduced
in the proof of Rule 2, Part 3 of Kleene’s algorithm (Section 4.2) is, that if it
is used to compute say FAX = FAY + FAZ , then every final state in FAY can
be mapped to a final state in FAX . The same holds true for every final state in
FAZ . Moreover, every final state in FAX will either map to a final state in FAY ,
or to a final state in FAZ , or to a final state in both FAY and FAZ .

4.4. ALGORITHM CONSTRUCTION 93

To determine whether the conditions on the threshold values, τ (representing the
maximum allowable substring error), α (representing the maximum number of
ATREs that may occur consecutively) and β (the minimum allowable number of
TREs that have to occur before a TR is reported) have been met, when scanning
through a TR, various counters initially at 0, have to be updated once a motif is
encountered as we scan through a string. To this end, let the variables tnptre and
tnatre store the number of PTR-final states and ATR-final states encountered to
date, respectively. Additionally, the variables nd, nm and ni store the number of
deletions, mismatches and insertions encountered to date, respectively.

The logic of how these counters are to be updated whenever a state, R, of an FAρ

is applied in computeTR1 as given in Algorithm 4.4.3 below.

Note specifically, that more than one of these conditions may hold for a final
state, as discussed in Section 4.2.

It will be seen that if a final state is of multiple types, then the PTRE counter
(tnptre) takes precedence, followed by the mismatch counter (nm), followed by the
deletions counter (nd), followed by the insertion counter (ni). By this is meant
that if a state is encountered that is final for both PTREs and mismatches, then
the PTRE counter is incremented rather than the mismatch counter. Similarly,
mismatches are incremented rather than deletions, etc. More details regarding
the practical implementation of the precedence rules follows after the GCL-code
of a simplified version of computeTR1.

Note in passing that the semantics of GCL dictates that if a condition arises
that does not fire a guard in an if-statement, then the if-statement will abort,
indicating that such a condition constitutes an error. Thus, for example in the
code below, there is no guard to deal with a condition where a state is designated
as final, but it is not associated with a PTRE, nor with a mismatch, nor with a
deletion, nor with an insertion. Such a condition ought not to arise, and would
indeed constitute an error if it did.

computeTR1 as presented below, in somewhat simplified form, is called by both
FireµSat1 and FireµSat3. The purpose of computeTR1 is to detect a TR and
return its length, number of PTREs and number of mismatches, deletions and
insertions. In this context the processing of a TR includes the incrementing of the
applicable counters. The procedure computeTR1 will continue to execute until
the end of a TR is reported by isEnd (presented in Algorithm 4.4.3) or until the
end of the input set S is reached. The input/output parameter back is passed to
isEnd. Note that back is the offset by which the length of the TR found to date
should be decreased if isEnd reports that the end of the TR has been reached.

Algorithm 4.4.3
func computeTR1(s, pos, FAρ, τ, α, β, pm, pd, pi) : tuple

94 CHAPTER 4. FIREµSAT

pos,R := pos + 1, nextState(FAρ, R, s[pos])
; nm, nd, ni, tnptre, tnatre, tnatreC , back := 0, 0, 0, 0, 1, 0, 0
; do (¬isEnd(R, τ, α, β, pm, pd, pi, nm, nd, ni, tnptre, β, α, back) ∧ ¬s(EOF)) →

if (R ∈ PTRE) →
tnptre, tnatreC := tnptre + 1, 0

[] (R /∈ PTRE ∧R ∈ Mis) →
tnatre, tnatreC , nm := tnatre + 1, tnatreC + 1, nm + 1

[] (R /∈ (PTRE ∪Mis) ∧R ∈ Del) →
tnatre, tnatreC , nd, := tnatre + 1, tnatreC + 1, nd + 1

[] (R /∈ (PTRE ∪Mis ∪Del) ∧R ∈ Ins) →
tnatre, tnatreC , ni, := tnatre + 1, tnatreC + 1, ni + 1

[] (R /∈ (PTRE ∪Mis ∪Del ∪ Ins) ∧R ∈ MisMis) →
tnatre, tnatreC , nm, := tnatre + 1, tnatreC + 1, nm + 2

[] (R /∈ (PTRE ∪Mis ∪Del ∪ Ins ∪MisMis) ∧R ∈ MisDel) →
tnatre, tnatreC , nd, nm := tnatre + 1, tnatreC + 1, nd + 1nm + 1

[] (R /∈ (PTRE ∪Mis ∪Del ∪ Ins ∪MisMis ∪MisDel) ∧R ∈ MisIns) →
tnatre, tnatreC , ni, nm := tnatre + 1, tnatreC + 1, ni + 1nm + 1

[] (R /∈ (PTRE ∪Mis ∪Del ∪ Ins ∪MisMis ∪MisDel ∪MisIns)
∧R ∈ DelDel) →

tnatre, tnatreC , nd := tnatre + 1, tnatreC + 1, nd + 2
[] (R /∈ (PTRE ∪Mis ∪Del ∪ Ins ∪MisMis ∪MisDel ∪MisIns ∪DelDel)
∧R ∈ DelIns) →

tnatre, tnatreC , nd, ni := tnatre + 1, tnatreC + 1, nd + 1, ni + 1
[] (R /∈ (PTRE ∪Mis ∪Del ∪ Ins ∪MisMis ∪MisDel ∪MisIns ∪DelDel
∪DelIns) ∧R ∈ InsIns) →

tnatre, tnatreC , ni, nm := tnatre + 1, tnatreC + 1, ni + 1, nm + 1
[] (R /∈ (PTRE ∪Mis ∪Del ∪ Ins ∪MisMis ∪MisDel ∪MisIns ∪DelDel
∪DelIns ∪ InsIns) → skip

f i
; pos,R := pos + 1, nextState(FAρ, R, s[pos])

od
; len := pos− pos− back
; return <pos, len, nptre, nm, nd, ni >
cnuf

Note that the function isEnd, called by computeTR1 is explained in detail in
Section 4.4.2.2.

Furthermore, for the sake of simplicity the subsequent details regarding the anal-
ysis and incrementing of the final states have been omitted from Algorithm 4.4.3:

• The logic of the counter updates of the following state sets in Algorithm

4.4. ALGORITHM CONSTRUCTION 95

4.4.3 are the same:

R ∈ MisDel ≡ (R ∈ (MisDel ∪DelMis))
R ∈ InsDel ≡ (R ∈ (InsDel ∪DelIns))
R ∈ MisIns ≡ (R ∈ (MisIns ∪ InsMis))

Therefore the set names are equivalent to the respective unions as indicated
above.

• Forward looking states in Algorithm 4.4.3 are required, if a longer length
ATRE has a higher priority than the previously detected ATRE. For ex-
ample, an ATRE containing a deletion will always be detected before the
corresponding PTRE. The matter becomes more complex if the motif error
ε = 2, is selected. If ε = 2 then MisDel, DelMis and DelDel should be
implemented with forward looking states.

To illustrate the three different instances where forward looking states are
required:

1. Consider the following guarded command in Algorithm 4.4.3:

if · · ·
[] R /∈ (PTRE ∪Mis) ∧R ∈ Del) →

tnatre, tnatreC , nd, := tnatre + 1, tnatreC + 1, nd + 1
[] · · ·
f i

The deletion final state will be reached before a PTRE final state or a
mismatch final state. Therefore, it is necessary to verify that the next
character of the TRE under consideration is not a PTRE or an ATRE
that can be considered to have a mismatch.

Example: [Consider the PTRE ACG and the ATRE ACT a “copy”
of “ACG”. In FAACG the final state of the ATRE AC (an ATRE with
a deletion) will be reached before the final state of the ATRE ACT (an
ATRE containing a mismatch). Therefore, before the counter of the
number of deletions is incremented, there should be “looked forward”
to determine if the ATRE ACT is a mismatch or not. If the ATRE is
a mismatch as in the case of ACT then the number of mismatches is
incremented, else the number of deletions is incremented.]

Similar examples could also be constructed for the remaining two cases.

To make provision for the foregoing, the following logic is used:

if · · ·
[] R /∈ (PTRE ∪Mis) ∧R ∈ Del) →

96 CHAPTER 4. FIREµSAT

T := nextstate(FAρ, R, s[pos + 1])
if (T ∈ (PTRE ∪Mis) → skip
[] (T /∈ (PTRE ∪Mis) →

tnatre, tnatreC , nd, := tnatre + 1, tnatreC + 1, nd + 1
f i

[] · · ·
f i

2. In a similar manner as explained in the previous item, forward looking
states are also used to evaluate the equivalent states in MisDel and
DelMis.

The implementation logic is as follows:

if · · ·
[] (R /∈ (PTRE ∪Mis ∪Del ∪ Ins ∪MisMis)
∧ (R ∈ (MisDel ∪DelMis))) →
T := nextstate(FAρ, R, s[pos + 1])
; if (T ∈ (PTRE ∪Mis ∪MisMis) → skip
[] (T /∈ (PTRE ∪Mis ∪MisMis) →

tnatre, tnatreC , nd, nm := tnatre + 1, tnatreC + 1, nd + 1, nm + 1
f i

[] · · ·
f i

3. Finally, forward looking into two future states is required in the the
case of DelDel. The implementation logic is as follows:

if · · ·
[] (R /∈ (PTRE ∪Mis ∪Del ∪ Ins ∪MisMis ∪MisDel
∪DelMis ∪MisIns ∪ InsMis) ∧ (R ∈ DelDel)) →
T := nextstate(FAρ, R, s[pos + 1])
; U := nextstate(FAρ, T, s[pos + 2])
if (U ∈ (PTRE ∪Mis ∪MisMis)) → skip
[] (U /∈ (PTRE ∪Mis ∪MisMis)) →

if (T ∈ (DelMis ∪MisDel) → skip
[] (T /∈ (DelMis ∪MisDel) →

tnatre, tnatreC , nd := tnatre + 1, tnatreC + 1, nd + 2
f i
· · ·

f i

4.4. ALGORITHM CONSTRUCTION 97

In the case of FireµSat1 computeTR1 traverses the genetic input string, update
the relevant counters and calls the function isEnd, presented by Algorithm 4.4.4,
which indicates whether the end of a TR is reached or not.

4.4.2.2 Explanation of isEnd

isEnd is called by computeTR1 as follows:
isEnd(Q, τ, α, β, pm, pd, pi, nm, nd, ni, tnptre, tnatre, tnatreC , back).
Note that the input/output parameter back is the offset by which the length of
the TR found to date should be decreased, if isEnd reports that the end of the
TR has been reached. The purpose of the function isEnd, is threefold:

• isEnd determines if computeTR1 should continue to process the next char-
acter of a detected TR. If the next character of s should be processed as
part of a current TR, then isEnd returns the value false to computeTR1,
else isEnd returns the value true to computeTR1.

• The function isEnd determines if a detected TR should be reported or
not. This is done by evaluating the conditions set by the different threshold
values. If one or more of the conditions set by the threshold values are
not met, then isEnd resets the counters accordingly and returns before
returning true to computeTR1.

• Finally, isEnd indicates if the last detected TRE should be added to the
currently detected TR or not. If a TR has been detected then isEnd cal-
culates if the ratios of the different threshold values will still hold after the
most recently detected TRE is added to the particular TR. If the ratios
indicated by the user entered threshold values are not met, then the last
TRE should be removed from the currently detected TR, and the value
of pos in computeTR1 should be adjusted accordingly. The adjustment is
accomplished by assigning the most recent TRE length to the output pa-
rameter back. It should be clear that isEnd will always return the value
true to computeTR1 if a non-zero value has been allocated to back.

If back is assigned the value of the constant len, then that effectively indicates
to computeTR1 that the current TR should be discarded, since the computeTR1
will compute the length of the most recently discovered TR to be len − back.
This state of affairs is only attained when the end of a TR is reached, but the
number of TREs is less than the prespecified minimum of β.

On the other hand, if isEnd is to report that the end of a TR has been reached,
because one of the threshold values has been exceeded, then back is assigned the
length of the last identified ATRE. deadSet is the set of sink states as defined in
Section 4.2. The GCL of isEnd is provided in Algorithm 4.4.4.

98 CHAPTER 4. FIREµSAT

Algorithm 4.4.4
func isEnd(R, τ, α, β, pm, pd, pi, nm, nd, ni, tnptre, tnatre, tnatreC , |ρ|, back) : bool
vartrEnd := false
back := 0
; σ := (pm × nm) + (pd × nd) + (pi × ni)
if (R ∈ deadSet) →

trEnd := true
; if (tntre < β) →

nm, nd, ni, tnptre, tnatre, tnatreC , back := 0, 0, 0, 0, 0, len
[] (tntre ≥ β) → skip
f i

[] ((R /∈ deadSet) ∧ (σ ≤ τ) ∧ (tnatreC ≤ α)) →
trEnd := false

[] ((R /∈ deadSet) ∧ ((σ > τ) ∨ (tnatreC ≤ α))) →
trEnd := true
; if (tntre < β) →

nm, nd, ni, tnptre, tnatre, tnatreC , back := 0, 0, 0, 0, 0, len
[] (tntre ≥ β) →

if (R ∈ PTRE) → skip
[] (R ∈ Mis) →

nm, tnatre, tnatreC , back :=
nm − 1, tnatre − 1, tnatreC − 1, |ρ|

[] (R ∈ Del) →
nd, tnatre, tnatreC , back :=

nd − 1, tnatre − 1, tnatreC − 1, |ρ| − 1
[] (R ∈ Ins) →

ni, tnatre, tnatreC , back :=
ni − 1, tnatre − 1, tnatreC − 1, |ρ|+ 1

f i
f i

f i
return trEnd
cnuf

Thus in summary, isEnd returns the boolean value true if one or more of the
threshold values do not hold or if R is a sink state. Upon receiving the boolean
value true, the loop in computeTR1 terminates. While R is not a sink state
and all the threshold values hold, then the boolean value false is returned to
computeTR1.

In the next section, Section 4.4.3, FireµSat2 will be introduced. The key difference
between FireµSat1 and FireµSat2 is that FireµSat1 relies on various merged DFAs

4.4. ALGORITHM CONSTRUCTION 99

a,g,t

2
 2

c

a

M

M
1

-

c,g,t

a,c,t
 g
 g

c

M+
 3+

(a) A DFA for length 3

a,g,t

2
 2

c

g

a

M

M
1

-

c,g,t

a,c,t
 g
 g

M

t

3

c

t

3

a,c,g

M+
 4+

(b) A DFA for length 4

a,g,t

2
 2

c

g

a

M

M
1

-

c,g,t

a,c,t
 g
 g

M
 4

M

t

3

c

t

c,g,t

3

4

t

a
 a

a,c,g

M+
 5+

(c) A DFA for length 5

Figure 4.7: Three DFAs that accept ATREs that contain one mismatch

and incorporates notions of counting states where as FireµSat2 decorates several
relatively small DFAs as will be seen in the next section.

4.4.3 Theory Underlying FireµSat2

FireµSat2 also relies on DFA technology. This theory will be elaborated on in
the process of introducing the theoretical underpinnings of FireµSat2. The DFAs
used as running examples in this section cater for the detection of TRs that
are introduced by any of the three motifs ACG, ACGT and ACGTA. In addition,
to facilitate the explanation of FireµSat2, the following DFAs are considered:
Mis(ACG), Mis(ACGT) and Mis(ACGTA). The graphical representation of
these FAs can be found in Figures 4.7(a), 4.7(b) and 4.7(c).

These DFAs can be merged together to construct one single DFA, that accepts
the same languages accepted by the three different DFAs. The distinction made
between the different languages is made by the depth of the level of traversal.

Figure 4.8 shows an DFA that accepts ATREs of length 3, length 4 and length 5
respectively. The ATREs accepted, contain exactly one mismatch. If an edge is
labeled by a mismatch character then the state it enters is labeled by M.

It is apparent from Figure 4.8 that if any tj, a candidate TRE of the motif
ACG, is submitted that contains exactly one mismatch, then an accept state
is reached on level 3 of Mis(ACG). Thus if the motif, ρ = ACG and tj ∈

100 CHAPTER 4. FIREµSAT

-

M
1

2
 M
 2

3
 M+
 3+

4
 M+
 4+

c
,
g
,
t
a

c

g

t

a
,
g
,
t

g

c

g

t

a

a
,
c
,
t

c
,
g
,
t

a
,
c
,
g

a

t

5+
M+

Figure 4.8: A DFA accepting ATREs of length 3, length 4 and length 5 that
contains one mismatch

{AAG,AGG,ATG, ACT,ACA, ACC, CCG, GCG, TCG} then only the solid edges
of Mis(ACG) will be followed to reach a final state on level 3 of Mis(ACG).

However, the DFA in Figure 4.8 also accepts ATREs of length 4, as well as ATREs
of length 5 that contain exactly one mismatch. In the case of candidate TREs of
length 4 the applicable solid edges and nodes are followed up to depth 3. From
depth 3 the dotted lines are followed until a final state is reached on level 4. Thus
it is clear that if Mis(ACGT) and
tj ∈ {ACGA, ACGC, ACGG,ACCT,ACAT,ACTT,AGGT, ATGT,
AAGT, CCGT, GCGT, TCGT}
then an accept stage will be reached on level 4. Candidate ATREs of length 5
that contain exactly one mismatch will be accepted by following the applicable
solid edges up to level 3, the dotted edges to level 4, and finally the applicable
dashed edges that lead to a final state on level 5.

In a similar manner DFAs that accept
Del(ACG),
Del(ACGT),
Del(ACGTA),
Ins(ACG),
Ins(ACGT), and
Ins(ACGTA)
can be constructed.

DFAs very similar to the DFA in Figure 4.8 can be constructed to accept TREs
that contain both two mismatches or any other two allowed motif errors. These

4.4. ALGORITHM CONSTRUCTION 101

M
2

3
I

I

4

M
5

3

M
4
I

2

I

I+
4

M
3

1
 I

M
2
2

3

M
1
 2
 2

M
3
I

-

I
 M
1
 1

3
 4

4+
 M
4
+
 I
 5

M
5
+
5+
 I+

Figure 4.9: A DFA accepting ATREs of length 4 and length 5 that contain one
insertion as well as one mismatch each.

DFAs are referred to as:
MisMis(ACGT),
MisDel(ACGT),
DelDel(ACGT),
DelIns(ACGT), and
InsIns(ACGT).
For illustrative purposes, the structure of MisIns(ρ) for some unspecified ρ, is
shown in Figure 4.9.

For each loop of the program, the corresponding DFAs are constructed only
once, and then subsequently decorated every time that TRs with a new motif
are sought. FA(ρ) has been explained as part of the presentation of FireµSat1.
However, in the case of FireµSat2 FA(ρ) is replaced by a set of DFAs, referred
to as FASetρ. Each DFA in FASetρ can be associated with a matcher func-
tion. The respective DFAs and matcher functions associated with these DFAs
are represented in Table 4.2.

The original principles as explained for FA(ρ) also hold for each element of this
set. Note also that in order to meet the conditions regarding the order of prece-
dence, the DFAs and their associated matcher functions are called in the order
given in Section 4.3.1. The order of precedence is reflected in Table 4.2.

Moreover, the overall structure of the combined DFAs remains the same, irre-
spective of the motif that is used. Thus, the same structure as Figure 4.8 could

102 CHAPTER 4. FIREµSAT

Types of TREs Matcher function
PTRE ptre()

1 mismatch mis()

1 deletion del()

1 insertion ins()

2 mismatches mis2()

1 mismatch & 1 deletion misDel()

1 mismatch & 1 insertion misIns()

2 deletions del2()

1 deletion & 1 insertion delIns()

2 insertions ins2()

Table 4.2: TRE Types and Matcher functions

be used for motifs of say TGA,TGAG,TGAGC, etc.

In a similar manner, a single DFA structure that jointly represents three deletion
DFAs, say
DFA(Del(ACG)),
DFA(Del(ACGT)), and
DFA(Del(ACGTA))
could be set up. This could also be done for three insertion DFAs, say
DFA(Ins(ACG)),
DFA(Ins(ACGT)), and
DFA(Ins(ACGTA)).
Once more, it can easily be verified that the overall structure is independent of
the actual motif content.

Indeed, these observations hold for each of the 10 cases in Table 4.2, namely:

• The overall structure of a DFA matcher for a given error (or error combi-
nation), is independent of the actual content of the motif to be examined.

• The structure needed for the longest motifs embeds the structure for motifs
of shorter length.

As a consequence, FireµSat2 relies on this collection of ten pre-computed data
structures corresponding to the ten TRE types in Table 4.2. Given a motif, ρ,
the algorithm appropriately decorates all the data structures in this collection,
and then uses the corresponding matcher functions listed in the table to identify
TREs.

FireµSat2 requires input parameters similar to that of FireµSat1 described in Sec-
tion 4.4.2.

4.4. ALGORITHM CONSTRUCTION 103

In this outline the following functions are assumed:

• build(l, ε) retrieves FASet, the set of pre-computed unlabeled DFA pattern
matching structures, where l indicates the motif length and ε indicates the
number of motif errors allowed. The build function is similar to genFA(l, ε)
of FireµSat1.

• genMotifs(l) generates a set of all words from the alphabet Σ = {A,C,G,T}
of the length, (l), specified by the user.

• decorate(FASet, ρ) returns FASetρ, a set of decorated pattern matching
DFAs — i.e. all elements of FASet are now labeled according to the current
motif ρ under examination.

• find(s, pos, ρ) returns the index of the start of the next candidate TR of
motif ρ in the suffix of sequence s that starts at pos. It returns -1 if no
match is found.

An outline of the FireµSat2 algorithm is given below. The algorithm returns a set
of tuples in the GCL below. Identical to FireµSat1, the first component of each
tuple denotes the start of a TR, the second denotes its length and the remaining
components denote the number of PTREs, mismatches, deletions and insertions
respectively.

Algorithm 4.4.5
func FireµSat2(lmin, lmax, ε, τ, α, β, pm, pd, pi, S) : tuples
Pre : {(0 < lmin ≤ lmax) ∧ (0 ≤ ε) ∧ (σ ≤ τ) ∧ (0 ≤ tnatreC ≤ α)

∧ (∀s ∈ S : length(s) > l) ∧ (0 ≤ β ≤ tntre) ∧ (S ∈ Σ∗)}
Post : {(pos, len) ∈ tuples ≡ ∃ρ : Σ∗ · |ρ| ∈ [lmin, lmax]

∧ ∀s ∈ S : (∀i ∈ [pos, pos + len) : ¬isEnd(s[i], ε, τ, α, β, pm, pd, pi, ρ))
∧ ∀s ∈ S : (¬isEnd(s[pos + len], ε, τ, α, β, pm, pd, pi, ρ))}

var i, ρ, pos, len, s

tuples := ∅
; for l ∈ [lmin, lmax] →

FASet := build(l, ε)
; W := genMotifs(l)
for s ∈ S →

for ρ ∈ W →
FASetρ := decorate(FASet, ρ)
; pos := find(s, 0, ρ)
; do (pos 6= −1) →

<pos, len, nptre, nm, nd, ni > :=

104 CHAPTER 4. FIREµSAT

computeTR2(s, pos, FASetρ, τ, α, β, pm, pd, pi)
; if (len > |ρ|) →

tuples := tuples ∪ {<pos, len, nptre, nm, nd, ni >}
[] (len ≤ |ρ|) →

len := 0
f i
; pos := find(s, pos + len + 1, ρ)

od
rof

rof
rof
; return tuples
cnuf

The algorithm computeTR2 (4.4.6) is called by FireµSat2 with pos indicating
the starting position in s where a motif ρ has been found. The purpose of this
function is to identify a single TR that has this motif, as well as its associated
counters. The function uses FASetρ to do this, as well as the specified threshold
values τ , α and β and the penalty values pm, pd and pi. It returns a five-tuple
giving the length of the TR commencing at pos, as well as counts of the number
of PTREs, mismatches, insertions and deletions, respectively.

An outline of the logic which computeTR2 follows is provided below in Algorithm
4.4.6. The following assumptions and conventions apply:

• The formal parameters of the function include a reference to the set of
decorated pattern matching DFAs, FASetρ. This is to highlight the fact
that all pattern matcher functions invoked in this function have access to
the collection, even though this is not explicitly shown.

• The pattern matcher functions of Table 4.2 are invoked to determine whether
the next TRE is of a given type. Because the logic of the function is given in
GCL, and because the if -command in GCL is non-determinstic, each con-
dition in the associated guarded command has to reflect the precedences
relationship present in the ordering of Table 4.2.

• Each guarded command in the if -command appropriately updates the var-
ious counters. In addition, a variable c, is set to reflect the offset from |ρ|
that has to be used in order to compute the next starting position in s,
from which to do the next TRE search.

• Additionally, if no TRE is found, a flag, end is set to terminate the search
loop.

4.4. ALGORITHM CONSTRUCTION 105

• A boolean function, threshold(), is assumed in the condition of the search
loop. It determines whether the current value of the counters relative to
the various threshold parameters indicate that the search should terminate.
For simplicity its various parameters are not listed.

• the parameter tj represents any candidate TRE relevant to the current
motif ρ. Thus tj represents a number of substrings of s. The length and
the extraction of the substring tj can be manipulated as follows:

– tj − 2: |tj − 2| = |ρ| − 2,

– tj − 1: |tj − 1| = |ρ| − 1,

– tj: |tj| = |ρ|,
– tj + 1: |tj + 1| = |ρ|+ 1, and

– tj + 2: |tj + 1| = |ρ| + 2 in order to obtain the substring of s of the
correct length.

The function ComputeTR2 is partially specified in Algorithm 4.4.6.

Algorithm 4.4.6
func computeTR2(s, pos, FASetρ, τ, α, β, pm, pd, pi) : tuple
; nm, nd, ni, tnptre, tnatre, tnatreC , := 0, 0, 0, 0, 1, 0
; trpos, pos, back := pos, pos + |ρ|, |ρ|
; tj := nextCandidateTRE(s, pos)
; do (¬isEnd(FASetρ, tj, τ, α, β, pm, pd, pi, nm, nd, ni, tnptre, β, α, back)∧

¬s(EOS)) →
if isPTRE(FASetρ, tj) →

tnptre, tnatreC := tnptre + 1, 0
[] (¬isPTRE(FASetρ, tj) ∧ isMis(FASetρ, tj)) →

tnatre, tnatreC , nm := tnatre + 1, tnatreC + 1, nm + 1
[] (¬isPTRE(FASetρ, tj) ∧ ¬isMis(FASetρ, tj)∧

isDel(FASetρ, tj − 1)) →
tnatre, tnatreC , nd, := tnatre + 1, tnatreC + 1, nd + 1

[] (¬isPTRE(FASetρ, tj) ∧ ¬isMis(FASetρ, tj)∧
¬isDel(FASetρ, tj − 1) ∧ isIns(FASetρ, tj + 1)) →
tnatre, tnatreC , ni, := tnatre + 1, tnatreC + 1, ni + 1

[] (¬isPTRE(FASetρ, tj) ∧ ¬isMis(FASetρ, tj)∧
¬isDel(FASetρ, tj − 1) ∧ ¬isIns(FASetρ, tj + 1)∧
isMisMis(FASetρ, tj)) →
tnatre, tnatreC , nm, := tnatre + 1, tnatreC + 1, nm + 2

[] (¬isPTRE(FASetρ, tj) ∧ ¬isMis(FASetρ, tj)∧
¬isDel(FASetρ, tj − 1) ∧ ¬isIns(FASetρ, tj + 1)∧

106 CHAPTER 4. FIREµSAT

¬isMisMis(FASetρ, tj) ∧ isMisDel(FASetρ, tj − 1)) →
tnatre, tnatreC , nd, nm := tnatre + 1, tnatreC + 1, nd + 1, nm + 1

[] (¬isPTRE(FASetρ, tj) ∧ ¬isMis(FASetρ, tj)∧
¬isDel(FASetρ, tj − 1) ∧ ¬isIns(FASetρ, tj + 1)∧
¬isMisMis(FASetρ, tj) ∧ ¬isMisDel(FASetρ, tj − 1)∧
isMisIns(FASetρ, tj + 1)) →
tnatre, tnatreC , ni, nm := tnatre + 1, tnatreC + 1, ni + 1, nm + 1

[] (¬isPTRE(FASetρ, tj) ∧ ¬isMis(FASetρ, tj)∧
¬isDel(FASetρ, tj − 1) ∧ ¬isIns(FASetρ, tj + 1)∧
¬isMisMis(FASetρ, tj) ∧ ¬isMisDel(FASetρ, tj − 1)∧
¬isMisIns(FASetρ, tj + 1) ∧ isDelDel(FASetρ, tj − 2)) →
tnatre, tnatreC , nd := tnatre + 1, tnatreC + 1, nd + 2

[] (¬isPTRE(FASetρ, tj) ∧ ¬isMis(FASetρ, tj)∧
¬isDel(FASetρ, tj − 1) ∧ ¬isIns(FASetρ, tj + 1)∧
¬isMisMis(FASetρ, tj) ∧ ¬isMisDel(FASetρ, tj − 1)∧
¬isMisIns(FASetρ, tj + 1) ∧ ¬isDelDel(FASetρ, tj − 2)∧
isDelIns(FASetρ, tj)) →
tnatre, tnatreC , nd, ni := tnatre + 1, tnatreC + 1, nd + 1, ni + 1

[] (¬isPTRE(FASetρ, tj) ∧ ¬isMis(FASetρ, tj)∧
¬isDel(FASetρ, tj − 1) ∧ ¬isIns(FASetρ, tj + 1)∧
¬isMisMis(FASetρ, tj) ∧ ¬isMisDel(FASetρ, tj − 1)∧
¬isMisIns(FASetρ, tj + 1) ∧ ¬isDelDel(FASetρ, tj − 2)∧
¬isDelIns(FASetρ, tj) ∧ isInsIns(FASetρ, tj + 2)) →
tnatre, tnatreC , ni, nm := tnatre + 1, tnatreC + 1, ni + 1, nm + 1

[] (¬isPTRE(FASetρ, tj) ∧ ¬isMis(FASetρ, tj)∧
¬isDel(FASetρ, tj − 1) ∧ ¬isIns(FASetρ, tj + 1)∧
¬isMisMis(FASetρ, tj) ∧ ¬isMisDel(FASetρ, tj − 1)∧
¬isMisIns(FASetρ, tj + 1) ∧ ¬isDelDel(FASetρ, tj − 2)∧
¬isDelIns(FASetρ, tj) ∧ ¬isInsIns(FASetρ, tj + 2)) → skip

f i
; pos := pos + |tj|
; tj := nextCandidateTRE(s, pos)

od
; len := pos− trpos− back
; return <trpos, len, nptre, nm, nd, ni >
cnuf

4.4. ALGORITHM CONSTRUCTION 107

4.4.4 Theory Underlying FireµSat3

FireµSat3 is distinct from both FireµSat1 and FireµSat2 in the sense that it tra-
verses the input string only once for all introductory motifs of a certain length.
Thus if 3 has been allocated to lmin and 5 to lmax

2 then there will only be three
traversals of the genetic input string.

If lmin = 3 and lmax = 5 then FireµSat3 constructs three generic FAs — one for
each PTRE of length 3, 4 and 5 respectively. For each traversal (thus for each
selected motif length), the parameter pos is set equal to the first character of the
input string during the first decoration of a DFA of a certain length. Consider
FAρ of FireµSat3 where |ρ| = 3. The generic FAρ reads the genetic input string
and uses three consecutive characters, starting at pos as the introductory motif,
ρ. Thereafter pos becomes either the position after the last detected TR or if no
TR is found, then pos is incremented by 1 until it becomes the starting position
of a TR.

From section 4.4.1 it will be recalled that the output of FireµSat3 differs from
that of both FireµSat1 and FireµSat2, in the sense that each TR per motif length
is only reported on once and duplicate data is avoided.

Consider the TR ACTACTACTA within a genetic input string. This TR will be de-
tected only once by FireµSat3 as a TR where the PTRE is equal to ACT. However,
FireµSat1 and FireµSat2 will detect and report on the three different TRs in the
case of motif length 3. These three different TRs will be identified, namely as
having ACT, CTA and TAC as PTREs and will be found during three respective
traversals.

Algorithm 4.4.7
func FireµSat3(lmin, lmax, ε, τ, α, β, pm, pd, pi, S) : tuples
Pre : {(0 < lmin ≤ lmax) ∧ (0 ≤ ε) ∧ (σ ≤ τ) ∧ (0 ≤ tnatreC ≤ α)

∧ (∀s ∈ S : length(s) > l) ∧ (0 ≤ β ≤ tntre) ∧ (S ∈ Σ∗)}
Post : {(pos, len) ∈ tuples ≡ ∃ρ : Σ∗ · |ρ| ∈ [lmin, lmax]

∧ ∀s ∈ S : (∀i ∈ [pos, pos + len) : ¬isEnd(s[i], ε, τ, α, β, pm, pd, pi, ρ))
∧ ∀s ∈ S : (¬isEnd(s[pos + len], ε, τ, α, β, pm, pd, pi, ρ))}

var i, ρ, pos, len, s

tuples := ∅
; for l ∈ [lmin, lmax] →

FA := genFA(l, ε)
{ W, the set of motifs is not necessary to generate because the
algorithm discovers the motifs directly from genetic sequence set S }

2These parameters are described in Section 4.4.2.

108 CHAPTER 4. FIREµSAT

for s ∈ S →
pos, ρ := 0, s[0, l)
; FAρ := decorate(FA, ρ)
; do (pos 6= −1) →

<pos, len, nptre, nm, nd, ni > :=
computeTR1(s, pos, FA(ρ), τ, α, β, pm, pd, pi)

; if (len > |ρ|) →
tuples := tuples ∪ {<pos, len, nptre, nm, nd, ni >}

[] (len ≤ |ρ|) →
len := 0

f i
; pos, ρ := pos + len + 1, s[pos, pos + l)
; FAρ := decorate(FA, ρ)

od
rof

rof
; return tuples
cnuf

4.5 Conclusion

Before Chapter 4 introduced the three FireµSat algorithms, the underlying FA
theory which forms the basis for the specifications of the 3 implementations —
FireµSat1, FireµSat2 and FireµSat3 have been provided in this chapter. The in-
put parameters of FireµSat1 and FireµSat2 are similar. FireµSat3 has only been
implemented to search for microsatellites with a motif length of three. The ob-
jective of the implementation of FireµSat3 is threefold. Firstly it is of theoretical
and practical relevance in the sense that it shows that it is possible to implement
FireµSat3. Secondly the opportunity is provided to compare the data generated by
FireµSat3 to the data generated by FireµSat1 and FireµSat2. Thirdly the runtime
of FireµSat1 and FireµSat2 can be compared to the runtime of FireµSat3. GCL
has been used to give the algorithmic details of each of the three algorithms. A
comparison of the runtime of the different FireµSat algorithms is presented in
Table 4.3. These data files are discussed in detail in Chapter 2 and Chapter 6.
Details of the hardware used during the trial runs can be found in Chapter 6.
From Table 4.3 it is evident that the FA construction of FireµSat1 takes 334.9s
while the duration for the actual traversing of the 9kB file is a fraction of a second.

The runtime of FireµSat1 is slower than that of FireµSat2 and FireµSat3. Mainly
because the construction of the different FAs is time consuming. If the general

4.5. CONCLUSION 109

Software Swam.txt (9kB) Fusarium Graminearum.txt (33MB)
FireµSat1 335s < 360s
FireµSat2 < 1s 90s
FireµSat3 < 1s 20s

Table 4.3: A runtime comparison between the three FireµSat implementations on
the swam50.txt file (9k) and on Fusarium Graminearum.txt (33MB)

FAs can be constructed and stored in memory then the runtime of FireµSat1 will
definitely be reduced. FireµSat1 is easily extendible. Future research will entail
the extension of FireµSat1 to search for minisatellites too. FireµSat2 is fast but
not easy to extend. FireµSat3 is faster than both FireµSat1 and FireµSat2. Future
research initiatives will also include to investigate how to merge the theoretical
approaches of FireµSat1 and FireµSat3. FireµSat1 and FireµSat2 generate duplicate
data that is not generated by FireµSat3. The developments of FireµSat1, FireµSat2
and FireµSat3 were independent. The three algorithms generate the same results.
This independent cross validating development confirms the accuracy for all three
algorithms.

The details of the input requirements and of the output of FireµSat are presented
in Chapter 5, in a similar manner to the implementation details of Tandem Re-
peats Finder and STAR in Chapter 3. The results of the three implementations
(Tandem Repeats Finder, STAR and FireµSat2) are compared in Chapter 6 in
terms of the criteria presented in Chapter 2, Section 2.6. As mentioned in Chap-
ter 1, a brief comparison between these implementations and IMEx [Mudunuri &
Nagarajaram (2007)] will also be included.

Chapter 5 will elaborate on the input and output details of FireµSat. The ways
in which the criteria listed in Section 2.6 have been met by Tandem Repeats
Finder, STAR and FireµSat will be discussed in Chapter 6. The FireµSat software
is included on the compact disc that accompanies this dissertation.

110 CHAPTER 4. FIREµSAT

Chapter 5

FireµSat Software Specification

In Chapter 2, a literature overview of algorithms that aim to detect tandem
repeats on DNA was provided. Two algorithms that deal in an effective man-
ner with the detection of microsatellites (as defined in Chapter 2, Section 2.2)
on DNA were identified, namely Tandem Repeats Finder [Benson (1999)] and
STAR (Search for Tandem Approximate Repeats) [Delgrange & Rivals (2004b)].
“Effective” in the context of this dissertation, firstly implies an algorithm that
detects, in a single run, microsatellites that contain substitutions, deletions, as
well as insertions. It also implies that the relevant algorithm has a running time
smaller or equal to O(np + nlogn), where n is the length of the genetic sequence

111

112 CHAPTER 5. FIREµSAT SOFTWARE SPECIFICATION

file under investigation and p is the length of the motif to be detected. Simi-
larly to FireµSat (the proposed algorithms), STAR detects microsatellites only,
whereas Tandem Repeats Finder detects microsatellites, as well as minisatellites
(defined in Chapter 2, Section 2.2) and satellites (defined in Chapter 2, Section
2.2).

Because the required inputs to both Tandem Repeats Finder (see Chapter 3, Sec-
tion 3.1) and to STAR (see Chapter 3, Section 3.2) are not trivial, the matter was
given detailed attention in Chapter 3. In Chapter 4 the theoretical background as
well as the specifications of the algorithm proposed in this dissertation, FireµSat,
has been presented. In Chapter 5 the input and output of FireµSat are discussed
in a similar manner to the discussion of that of Tandem Repeats Finder and
STAR in Chapter 3.

5.1 Developing the Software: FireµSat

FireµSat has inter alia been implemented by Mr T.R. Fourie (FireµSat2) and Mr
A.P.F. Marais (FireµSat1) as partial fulfillment of their B.Sc. honours degrees.
Mr T.R. Fourie implemented FireµSat2 in C++. Mr A.P.F. Marais implemented
FireµSat1 by writing some of the code in Python and some of the code in C++.

Additionally for the sake of theoretical interest Mr P.V. Reyneke implemented
FireµSat3.

The FireµSat software included on the compact disc, that accompanies this dis-
sertation runs from the DOS shell under a Windows operating system. Devel-
opment is in progress to create a full GUI (graphical user interface) for FireµSat
that complies to human computer interaction (HCI) prescriptions. At present a
simple implementation of the GUI is implemented for FireµSat2. FireµSat2 along
with its GUI shell can be accessed/downloaded online at www.dna-algo.co.za.

The mentioned simple GUI presented in Figure 5.1 complies to minimum spec-
ifications of the author of this dissertation. The current GUI is created in such
a manner that it illustrates the unique computability features of the FireµSat
software that contribute to its useability.

5.2 The GUI Input of FireµSat

After the user has double clicked on the FireµSat icon that represents the installed
FireµSat software, the Windows GUI included in Figure 5.1 will appear.

The GUI contains different edit boxes labeled with appropriate names.

A description of the different edit boxes follows:

5.2. THE GUI INPUT OF FIREµSAT 113

Figure 5.1: The GUI of the FireµSat software

• Source File
The user should enter in this edit box the path to the genetic file (in FASTA
format), which is to be scanned for TRs. If the user enters an incorrect path
and/or file name, then FireµSat will display the following error message:

Source file not found!

• Output File
The user should specify the path to a directory,s where the output file is
to be created. The output file can be specified to be written in either a
.txt (text) format or a .csv (comma-separated value) format. In order to
enhance the useability of the output results, it is recommended that the
user specifies output to be written in .csv format rather than .txt format.
The .txt files can be opened by either Wordpad or Notepad while the .csv
files can also easily be opened by any spreadsheet program — for example
in Open Office, Excel, or Borland’s Quattro.

The path name to indicate where FireµSat should write the output file
should be specified. If an invalid path name is specified, then FireµSat will
display an error message. For example if the faulty path has been entered
as:

C:\FireMuSatX\Result.txt.

Could not create output file:C:\FireMuSatX\Result.txt.

114 CHAPTER 5. FIREµSAT SOFTWARE SPECIFICATION

• Flanking Sequence
The flanking sequence the user requires, should be specified in this edit
box. Recall from Chapter 3 that the flanking sequence is a certain number
of nucleotides that are output before and after a detected TR. The contents
of the flanking sequence edit box, can be adjusted by means of a spin control
on the right of the edit box. FireµSat displays an error message:

Value "-5" supplied to argument "-padding"
is invalid.

if the negative number ”-5” has been input. The Flanking Sequence edit
box has been selected as a numerical edit box — only numerical characters
can be typed in it.

• Motif Length
Thus in the edit box Motif Length the length of the motif or PTRE, of which
TRs should be found should be specified. The value of the Motif Length
edit box can be manipulated by the combo box on the right of the Motif
Length edit box. The combo box presents a selection of valid parameters.
Therefore no error messages are needed regarding the Motif Length edit
box.

• Max Motif Error
Thus the motif error indicates the number of mutations the user chooses to
allow on a motif of a preselected length. The number of mutations allowed
can be manipulated by clicking on the combo box on the right of the edit box
Max Motif Error. The type of mutations, as well as the limit on the number
of mutations allowed, are discussed in detail in Chapter 4, Section 4.3. The
combo box presents a selection of valid parameters, corresponding to the
selected motif length. Therefore, no error messages are needed regarding
the Max Motif Error edit box.

• Max adjacent ATR elements
The edit box Max adjacent ATR elements provides to the users the option
of entering a value that indicates the maximum number of ATREs (approxi-
mate tandem repeat elements) that are allowed to occur next to each other.
The user can manipulate the number of ATREs that occur adjacently by
the spin control on the right of the edit box Max adjacent ATR elements.
Chapter 4, Section4.3.2 provides the theoretical detail regarding the maxi-
mum number of consecutive ATR elements that are allowed. If a negative
number is entered by the user in the Max adjacent ATR elements edit box,
then the number entered is by default converted to zero.

5.2. THE GUI INPUT OF FIREµSAT 115

• Motif range option
The motif range option can be activated by clicking on the check box that
appears beneath the correspondingly labeled text box.

If this option is activated then the Start motif and End motif turns to black
instead of grey as it was before the option had been activated. The motif
range option provides the possibility to specify a range of motifs FireµSat
should search for.

However, the motifs should all be of the same length that corresponds to
the length specified in the edit box Motif Length. If for example only TRs
of one certain introductory PTRE or motif is required, then the start and
end motif should be specified as the same.

The start motif should always be lexicographically smaller or equal to the
end motif. If the start motif is not lexicographically smaller or equal than
the end motif, then FireµSat will display an error message:

End motif "AAA" is lexicographically smaller than
the start motif "AAC".

• Min required TR elements
To avoid the output of unwanted data, the minimum number of TREs that
have to be detected before a TR is output,s may be indicated.

The edit box Min required TR elements can be set by using the spin control
on the right of it.

• Substring Error Options
It can be recalled from Chapter 4 that the substring error is a measure of the
extent to which the number (weighted as described below) of ATREs in the
candidate TR, exceeds the number of PTREs. The measure is computed at
appropriate points by FireµSat and then compared against a user-specified
threshold value indicated by the user in the edit box Max substring error.
Currently there are two versions of FireµSat2 available. The one allows the
calculating of the relative substring error; the other the calculating of the
absolute substring error. During processing, the calculated substring error,
should always be smaller than the substring error indicated by the user in
the edit box Max substring error. The value of the maximum substring
error allowed, can be modified by using the spin control on the right of
the edit box Max substring error. Error control is done by FireµSat. If a
negative value is entered as the maximum substring error, then FireµSat
automatically converts the value to zero.

In line with the guidelines suggested by Benson (1999), the value of the
substring error depends, inter alia on penalties (or weights) allocated by

116 CHAPTER 5. FIREµSAT SOFTWARE SPECIFICATION

the user to mismatches, deletions and insertions respectively. Underneath
the edit box Max substring error are three additional edit boxes, where the
values of the different penalties can be adjusted according to the require-
ments of the user. The Mismatch penalty edit box, the Deletion penalty
edit box, as well as the Insertion penalty edit box have combo boxes on
their right that serve to modify the three different penalties respectively.

There may be relied on system default values for the penalties. The system
default values appear automatically in the three penalty edit boxes. The
default values in the respective edit boxes are as follows:

– Mismatch penalty: 0.5.

– Delete penalty: 1.0.

– Insert penalty: 1.0.

A penalty weight of 0 may be chosen for one or more of the mutation
types, in which case no penalty is assigned to ATREs that derive from that
mutation type. The range of the penalty values is ≥ 0 and ≤ 1 If an invalid
value is entered as a penalty value, for example 1.45, then FireµSat displays:

Value:"01.45" supplied to argument "p_m" is out of range.

• Execute
Finally, the Execute button appear at the bottom of the window. After the
Execute button has been clicked on, FireµSat will create an output file of
either type .txt or type .csv in the specified directory. The output generated
by FireµSat will be discussed in the Section 5.4 of this chapter.

5.3 The Commandline Input Specification of FireµSat

All the functionality mentioned for the GUI (and more) can be accessed when
running FireµSat from the commandline. The commandline specification, terms
and ranges are defined in Section 5.2, for FireµSat is:

FireMuSat.exe
-source-file=file_in.fasta.txt
-output-file=file_out.csv.txt
-motif-len=3
[-start-motif=AAA]
[-end-motif=AAA]
[-max-motif-err(=inf)]

5.4. THE OUTPUT OF FIREµSAT 117

motif pos len TR n ptre n atre n m n d n i
GAT 6495 15 GATAATTATAATTAT 1 4 4 0 0
GCT 4507 15 GCTCCTGCAGCTGCG 2 3 3 0 0
GGT 7921 18 GGTGCTGGTGCTGGTAGT 3 3 3 0 0
GTA 6138 29 GTAGGTAGTATTATACTAGGTAAGTAGGA 2 7 3 1 3
GTA 6142 25 GTAGTATTATACTAGGTAAGTAGGA 2 6 3 1 2

Table 5.1: Sample output generated by FireµSat2

[-max-substr-err(=inf)]
[-p-m(=0.5)]
[-p-i(=1.0)]
[-p-d(=1.0)]
[-max-adj-atres(=inf)]
[-min-req-tres(=0)]
[-padding(=0)]
[-use-relative-substr-error(off)]

- if this flag is set then relative error is used
[-max-gaplength(=0)]

- join TR with gap as specified
[-alt-precedence(off)]

- if this flag is set then deletions precedes mismatches
[-no-backward-search(off)]

- if this flag is set then no backward search is done

The parameters in square brackets [] are optional. The default values, shown in
round brackets (), are the preferred values.

Note, the last three optional parameters are undocumented and touch upon in
Section 6.5). These parameters were added for testing and comparison purposes.

5.4 The Output of FireµSat

The output of FireµSat is a text file in comma separated value (.csv) file format.
This implies that each data object is separated by an eoln character(s)(line feed
and a carriage return character). The data fields within each data object are
separated by commas. The file format as described corresponds to prerequisites
of .csv extension files.

Therefore, if the user indicates the output file should be a .csv file, then the
output file created by FireµSat will automatically open in a spreadsheet program
if double clicked on the icon that represents the file.

In Table 5.1 is an example of five lines of output generated by FireµSat in .csv
file format.

118 CHAPTER 5. FIREµSAT SOFTWARE SPECIFICATION

FireµSat generates nine different columns as output. The nine different columns
have appropriate headers. The headers and a brief explanation of the column
contents follow below:

• Column 1: motif
The header of the first column is motif. In the context of the output of
FireµSat the header motif indicates the introductory motif or PTRE of
which “copies” are detected and reported on.

• Column 2: pos
The header of the second column is pos. The second column stores the
offset index position of the respective detected TRs as an integer. Within
the context of the FireµSat output, offset refers to the number of nucleotides
that precedes a TR, relative from the start of the input file.

• Column 3: len
The header, len, of the third column refers to the word length; the third
column displays the lengths of the respective, detected TRs as integer val-
ues. The length of a TR is equal to the number of nucleotides it consists
of.

• Column 4: TR
The fourth column has the header TR. In column 4 the different TRs that
were detected are written out as a concatenation of alphabetical characters.

• Column 5: n ptre

The header of the fifth column n ptre refers to the number (an integer) of
TREs that are exact copies of the introductory motif within the respective
detected TRs.

• Column 6: n atre

The sixth column output the number of ATREs that were counted within
the respective detected TRs. Recall from Chapter 4, Section 4.3 that
ATREs refer to TREs that are not exact copies of the introductory mo-
tif, but that ATREs are TREs with allowed mutations. The output is an
integer value that represents the number of ATREs, that occur within the
detected TR.

• Column 7: n m

The seventh column contains the number of mismatches that occurred
within the respective detected TRs. A mismatch is one of the types of
allowed mutations. Mutations including mismatches have been discussed in
detail in Chapter 4, Section 4.3.

5.5. CONCLUSION 119

• Column 8: n d

The eighth column contains the number of TREs where deletions have oc-
curred of the respective detected TRs. Allowed mutations are discussed in
detail in Chapter 4, Section 4.3.

• Column 9: n i

The last column, column 9 indicates the number of TREs that contain
insertions. An insertion is an allowed mutation type, discussed in detail in
Chapter 4, Section 4.3.

5.5 Conclusion

The input and output of FireµSat have been discussed in this chapter. Chapter
6 is a comparison of the three different algorithms: Tandem Repeats Finder (dis-
cussed in Chapter 3), STAR (presented in Chapter 3) and FireµSat (introduced in
Chapters 4 and 5). The discussion in Chapter 6 will refer to the criteria proposed
in Chapter 2, Section 2.6.

120 CHAPTER 5. FIREµSAT SOFTWARE SPECIFICATION

Chapter 6

Comparing the Software

In Chapter 2, a literature overview of algorithms that aim to detect TRs on DNA
was provided. Two algorithms that deal in an effective manner with the detec-
tion of microsatellites (as defined in Section 2.2) on DNA were identified namely,
Tandem Repeats Finder [Benson (1999)] and STAR (Search for Tandem Approx-
imate Repeats) [Delgrange & Rivals (2004b)]. “Effective” in the context of this
dissertation, firstly implies algorithms that detect microsatellites containing sub-
stitutions, deletions, as well as insertions at once. It also implies that the relevant
algorithms have a running time smaller or equal to O(np + nlog(n)), where n is

121

122 CHAPTER 6. COMPARING THE SOFTWARE

the length of the genetic sequence file under investigation and p is the length of
the motif to be detected. Similar to FireµSat (the proposed algorithm) STAR
detects microsatellites only, whereas Tandem Repeats Finder detects microsatel-
lites, as well as minisatellites (defined in Section 2.2) and satellites (defined in
Section 2.2).

The required input to Tandem Repeats Finder (Section 3.1) and to STAR (Sec-
tion 3.2) is not trivial, therefore it was discussed in detail in Chapter 3. In
Chapter 4 the theoretical background, as well as the specifications of the algo-
rithm proposed in this dissertation, FireµSat, has been presented. In Chapter 5
the input and output of FireµSat are discussed in a similar manner to the discus-
sion of that of Tandem Repeats Finder and STAR in Chapter 3. Chapters 3, 4
and 5, thus provide a basis for Chapter 6, in which a comparison is made among
Tandem Repeats Finder, STAR and FireµSat in relation to the criteria presented
in Chapter 2, Section 2.6. In Section 6.1 a brief overview of the data used for the
comparative study is presented. Sections 6.2, 6.3 and 6.4 report on the perfor-
mance of Tandem Repeats Finder, STAR and FireµSat respectively. Section 6.5
presents a tabular comparison followed by a comparison between FireµSat and
IMEx specifically. Section 6.6 shows in which manner FireµSat complies to the
criteria compiled in Chapter 2, Section 2.6. Section 6.7 concludes this chapter.

6.1 Data Sources for Study

As discussed in Section 2.4 two sets of data were used to compare these algorithms
in terms of their practical execution. They are the following:

1. Data of the fungus Fusarium Graminearum
Data of this fungus was made available by the Center of Genome Research.
It constitutes 33 930 392 bytes. The data is in FASTA format and thus con-
sists of concatenated characters over the alphabet Σ = {A,C,G, T}. For the
purposes of the first comparative study only the first 8400 base pairs were
extracted. The extracted base pairs are stored in a file swam.txt. swam.txt
can be found on the CD that accompanies this dissertation. In terms of run
time performance the run time of the different algorithms were compared
on both the extracted file of 8400 characters, as well as the complete se-
quenced Fusarium Graminearum genome. The base pairs of the Fusarium
Graminearum genome has been divided in different so called scaffolds or
attached regions. The number of base pairs varies for each scaffold. The
second scaffold is labeled with the heading > Fusarium graminearum 1.54
(scaffold 1). The data of the Fusarium graminearum genome is included on
the CD that accompanies this dissertation.

6.1. DATA SOURCES FOR STUDY 123

2. Data of the Cylindrocladium Pauciramosum
The genomic data of the Cylindrocladium Pauciramosum was generated by
Dr.Wright, a molecular biologist of the University of Pretoria. The Random
Amplified Microsatellites (RAMS) method was applied in order to obtain
the generated data1. The format of the data obtained is relevant to the
present discussion. The data generated by the RAMS method consists of
various sequences, each containing data of different so called “libraries” (ex-
plained in Chapter 2 (Section 2.4)) and having different sequence headers.
The following gives examples of two of the genetic sequences generated by
Wright reported on in Wright et al. (2007), these sequences are contained
in the same file:

>BL141
CCACCACCACCACCAACACAATTGCACCGCTAGTGGCTATATTTGATGCC
CTCAAAATTCCCGCACCGTGGGCACCAGAGGCCAAGGATTTCGACTACGC
AAACACGACTTTGCTGATTATGGGTGGTGGATCCAGCACCGGCAAATTTG
GCGTACAATTAGCCAAGTTAGCAGGCATTGGCAAGATTGTTGTTGTTGTT
G
>BL204
ACAACAACAACAACAGTAGGAAGGAAATAATAACCATAGAAACCAGTTTT
TGAAATCTGTTCAGTTTAATTAATTTTGCAATTTTTATTCCCTATTTTTG
TCTAGAGCGTAGGAGTGTAAGTGGATCTCGCATCCTTCGAGAGCCCGCTG
CTCATTACGGAGACCCTCCCTCCACTCTTTGCTTGCTTCAACAAGGTTGA
ACTTTGTTGCGGCTGTCTCTCTCTAGTCTTTTGATGCCATCGCTCATTTT
GGCCTTTCCCGCGGTCTGTTGCCGCCTTCTCCTTATCTCCTGTGTGTGTG
TGTGTG

For the purposes of the data comparison there will also be reported on the
data file WrightSEQ2.txt. However, in the interest of avoiding duplication
of information there will only be reported on the number of TRs detected
during the trial run of WrightSEQ2.txt. The complete data file can be
found on the CD that accompanies this dissertation.

In the following sections the outcome of trial runs using swam.txt will be dis-
cussed.

1The RAMS method is a fairly complicated technique and the details thereof is, as mentioned
in Section 2.2, beyond the scope of this dissertation. A description of the technique can be found
in Van der Nest et al. (2000).

124 CHAPTER 6. COMPARING THE SOFTWARE

6.2 Tandem Repeats Finder

6.2.1 Tandem Repeats Finder: Input

Tandem Repeats Finder is installed as trf. After typing trf at the command line
the following output appears:

Please use: trf File Match Mismatch Delta PM PI MinScore MaxPeriod

Each word after trf in this message indicates an input parameter required by
Tandem Repeats Finder. Each of these parameters were discussed in detail in
Chapter 3. Forthcoming,s a brief overview is provided of the different parameters,
as well as of the values assigned to them during the trial run of swam.txt.

1. File: The input DNA sequence file in FASTA format, swam.txt

It is possible to recall from Chapter 3 that multiple genomic sequences with
different headings in the same file are acceptable as long as the data is in
FASTA format. The benefit thereof is that it enables the user to process a
large sequence file consisting of multiple genomic sequences without creating
very small files for each genetic sequence with their different headings.

2. Match, Mismatch, Delta: Alignment parameters that represent the weights
for matches, mismatches and indels respectively

These parameters are used for Smith-Waterman style local alignment wraparound
dynamic programming [Benson (2003b)] as discussed in Chapter 3. Lower
weights entered as the alignment parameters of Tandem Repeats Finder
allow alignments with more mismatches and indels. Match = 2 has proven
effective with Mismatch and Delta ranging between 3 and 7. Mismatch
and indel weights are interpreted as negative numbers. The values options,
3 is more permissive and 7 is less permissive (−3 > −7) [Benson (2003b)].
The values 2, 3 and 5 for Match, Mismatch and Delta, have been entered
respectively during the run of Tandem Repeats Finder on swam.txt.

3. PM and PI: Detection Parameters
Detection parameters consist of a matching probability Pm and an indel
probability Pi. Pm = .80 and Pi = .10 by default and cannot be altered in
the revised, 2003 version of the program.

4. Minscore: Minimum alignment score
The minimum alignment score indicates the alignment score that must be

6.2. TANDEM REPEATS FINDER 125

met or that must be exceeded for a tandem repeat to be reported [Benson
(2003b)]. The minimum alignment score has been discussed in more detail
in Chapter 3. For the purposes of the comparison of the output of the
different software the minimum alignment score has been chosen as 10.
Thus the detected TR should constitute at least 5 nucleotides - the matching
weight is 2 and 2× 5 = 10

5. Maxperiod: Maximum period size
In Tandem Repeats Finder, period size is the program’s best guest at the
length of the TREs that are detected within an identified TR. The param-
eter Maxperiod is discussed at length in Chapter 3. For the purposes of
the presented comparison, Maxperiod has been chosen as 3, consequently
Tandem Repeats Finder reports during the run under discussion all TRs
detected that has a motif length smaller or equal to 3.

Tandem Repeats Finder provides three additional options (-f, -m and -d), that
the user may specify as part of the command line input. These “switches” are
included to provide the user with additional options in terms of output. These
switches are discussed in Chapter 3 and have not been set during the trial run as
it will not influence the number of TRs detected.

6.2.2 Tandem Repeats Finder: Output

Tandem Repeats Finder generates a summary table of repeats, as well as an
alignment explanation as output. The summary table generated by Tandem
Repeats Finder is as follows:

Tandem Repeats Finder Program writen by:

Gary Benson

Department of Biomathematical Sciences

Mount Sinai School of Medicine

Version 4.00

Sequence: swam

Parameters: 2 3 5 80 10 10 3

1931 1937 3 2.3 3 100 0 14 71 28 0 0 0.86 ACA ACAACAA

3587 3596 3 3.3 3 100 0 20 0 0 70 30 0.88 GTG GTGGTGGTGG

3672 3683 3 4.0 3 88 0 19 0 25 41 33 1.55 TGC TGGTGCTGCTGC

3771 3795 2 12.5 2 52 16 13 48 8 8 36 1.62 TA TATATAGCAATCTAAAATGATATAT

3802 3810 2 4.5 2 71 0 13 0 0 44 55 0.99 GT GTTTGTGTG

5859 5870 1 12.0 1 81 0 19 91 0 8 0 0.41 A AAAAAAAAGAAA

5993 6003 2 5.5 2 100 0 22 45 0 0 54 0.99 TA TATATATATAT

6195 6199 1 5.0 1 100 0 10 0 0 0 100 0.00 T TTTTT

6386 6395 3 3.3 3 100 0 20 30 40 0 30 1.57 CTA CTACTACTAC

6471 6483 2 7.0 2 83 16 21 53 0 0 46 1.00 TA TATATATAATATA

6487 6492 2 3.0 2 100 0 12 100 0 0 0 0.00 AA AAAAAA

6516 6560 1 45.0 1 59 0 45 80 0 4 15 0.87 A AAATATATAAAAGATAAAAAAAATAAGAAAAATAAAAAAAATAAA

6977 6999 2 12.0 2 72 9 26 43 4 0 52 1.21 TA TATAATATTCTTATATATATATA

7090 7166 2 39.5 2 56 23 31 55 7 5 31 1.50 AT ATATATATTAAATAAGATAAAAAGTAAAATACTAAAAATATACCTACTATACTAGAGAATACTTATATAATATAATA

7808 7815 1 8.0 1 100 0 16 100 0 0 0 0.00 A AAAAAAAA

7889 7893 1 5.0 1 100 0 10 0 0 100 0 0.00 G GGGGG

126 CHAPTER 6. COMPARING THE SOFTWARE

1. The summary table.
The information generated by the summary table above is discussed in more
detail in Chapter 3. Briefly the summary table above provides the following
information:

• Indices of the detected TR relative to the start of the sequence.

• The period size of the TR. This is the most common matching dis-
tance between corresponding characters in the alignment, and usually
corresponds to the motif length of the consensus motif.

• The number of repeats aligned with repeats of the consensus motif.

• The length of the consensus motif (PTRE). (If the consensus motif
is TTC then the length of the consensus motif is 3.) This may differ
slightly from the period size.

• The overall percentage of matches between adjacent repeats in the TR.

• The alignment score. If the weight assigned to each matching character
is equal to 2, and if there are x matching characters in the alignment
then the alignment score will be 2x. The alignment score refers to
matches of the consensus sequence2 and the relevant TR, detected in
the genetic sequence.

• Percentage of composition of the four nucleotides (adenine (A), cytosine
(C), guanine (G) and thiamine (T)).

• The measure of entropy3 based on percent composition.

In order to obtain more detailed information about a specific TR, the user
can click on the applicable index range. This will result in an alignment
explanation of the index range, as explained below.

2. The alignment explanation
The alignment explanation includes the actual genetic sequence stretching
throughout the TR (e.g. from indices 233 - 246 in the forthcoming example).
It corresponds to and elaborates on the information presented in the above-
described summary table that was created by Tandem Repeats Finder. Two
alignment explanations that were generated during the running of swam.txt
are included below.

Tandem Repeats Finder Program written by:

2The consensus sequence is a sequence of adjacent PTREs, repeated as many times as there
are TREs in a string under consideration.

3The entropy estimation of a DNA sequence provides a measure of its complexity and ran-
domness level [Vinga & Almeida (2004)].

6.2. TANDEM REPEATS FINDER 127

Gary Benson
Department of Biomathematical Sciences

Mount Sinai School of Medicine

Version 4.00

Sequence: swam

Parameters: 2 3 5 80 10 10 3

Pmatch=0.80,Pindel=0.10
tuple sizes 0,4,5,7
tuple distances 0, 29, 159, 500
Length: 8400
ACGTcount: A:0.29, C:0.21, G:0.23, T:0.27

Found at i:3683 original size:3 final size:3

Indices: 3771--3795 Score: 13
Period size: 2 Copynumber: 12.5 Consensus size: 2

3761 AGCATGTTAC

** * * *
3771 TA TA TA GC AA TC TA -A AA TGA TA TA T

1 TA TA TA TA TA TA TA TA TA T-A TA TA T

3796 TTGCAGGTTT

Statistics
Matches: 13, Mismatches: 8, Indels: 4

0.52 0.32 0.16

Matches are distributed among these distances:
1 1 0.08
2 10 0.77
3 2 0.15

ACGTcount: A:0.48, C:0.08, G:0.08, T:0.36

Consensus pattern (2 bp): TA

Found at i:6476 original size:2 final size:2

Indices: 6471--6483 Score: 21

128 CHAPTER 6. COMPARING THE SOFTWARE

Period size: 2 Copynumber: 7.0 Consensus size: 2

6461 TTTTAATGAC

6471 TA TA TA TA -A TA TA
1 TA TA TA TA TA TA TA

6484 GGGAAAAAAG

Statistics
Matches: 10, Mismatches: 0, Indels: 2

0.83 0.00 0.17

Matches are distributed among these distances:
1 1 0.10
2 9 0.90

ACGTcount: A:0.54, C:0.00, G:0.00, T:0.46

Consensus pattern (2 bp): TA

The consensus sequence is provided below the TR. The consensus sequence
has been discussed in Chapter 3.

Additional information that accompanies the alignment explanation is as
follows:

• The 10 base pairs, before and after a TR are shown by default. (As
discussed in Chapter 3.)

• The symbol * appears above the pair of aligned lines to indicate a
mismatch. In example 1 a T has been replaced by a C. Thus, a *
appears above the C of the detected TR.

• The symbol - appears within the applicable sequence to indicate an
insertion or a deletion. If a deletion occurred then - will appear within
the detected TR. If an insertion occurred then - will appear within the
consensus sequence. In example 2, a deletion has occurred. Thus a -
appears within the detected TR, replacing the absent T.

• Statistics pertaining to matches, mismatches, insertions and deletions
accompany the alignment explanation. These statistics have been dis-
cussed in Chapter 3.

• Distances between matching characters at corresponding positions are
listed. These distances have been discussed in Chapter 3. Consider
the data generated in terms of the distribution of matches in example
1:

6.3. STAR: SEARCH FOR TANDEM APPROXIMATE REPEATS 129

Matches are distributed among these distances:
3 9 1.00

Here 3 represents the distance. In the first example 9 matches occur -
all the matching nucleotides have a matching distance of 3. Therefore
the percentage of all matches occurring at distance 3 is 100% output
as 1.00 by Tandem Repeats Finder.

Consider the output of the second alignment explanation. Here two
distances are provided in the distance description as shown below:

Matches are distributed among these distances:
1 1 0.10
2 9 0.90

If there is referred to the indices where the base pairs occur, then it
is possible to explain the number of nucleotides at a distance and the
percentage of all matches as follows:

Distance 1 represents the two consecutive A’s occurring at index po-
sition 6478 and index position 6479. There is only 1 occurrence of
matching nucleotides with a distance of 1. This is indicated by the
second 1 in the top row of the distance distribution output. A detailed
explanation of the distance distribution can be found in Chapter 3.

• The ACGT count reflects the percentage of each nucleotide.

• The motif termed the consensus pattern by Benson that constitutes 3
base pairs.

• The little additional output provided is not of importance for the cur-
rent discussion.

6.3 STAR: Search for Tandem Approximate Re-

peats

As mentioned in Chapter 3, STAR runs on both a Linux system, as well as a
Windows operating system. The results obtained from running STAR on Linux
and Windows are similar. For the purposes of this dissertation STAR has been
run on Linux. The input of STAR is discussed in detail in Chapter 3. It can be
recalled, that at the command line prompt, STAR.linux should be entered. The
following will appear on the screen:

-i SeqFile -m Motif | -M MotifFile

130 CHAPTER 6. COMPARING THE SOFTWARE

[-na -po PositionOffset -help]
SeqFile: file containing the sequence in Fasta, Genbank

or Embl format
Motif: the motif to search for is a string over

alphabet [ACGT]
MotifFile: a file with one motif per line, each motif

is searched independently, this option
excludes option -m

-na: option without the output of alignments of
tandem repeats;

default is with alignments
-po PositionOffset: set a position offset that is

added to output positions;

Motifs introducing the longest tandem repeats detected by FireµSat were used,
in order to determine the effectiveness of STAR during the trial run of swam.txt.

The motifs identified to run STAR with were as follows:

A T TA AAG AAT ACT AGA AGC AGT ATA
ATC ATG CAC CAG CTA GAT GCT GGT GTA GTG
TAA TAC TAT TCT TGA TGC TGG TTA TTC TTT

The output of STAR has been written to swam.a as follows:

ZONE 1 BEGIN_POS 6524 END_POS 6560 LG 37 GAIN 23
A 31 C 0 G 2 T 4 N 0 %AT 94 %GC 5 Biais GC 1.00
Phase 0
Consensus columns, counts of matches, substitutions, and deletions
Position 1
Nb_Match 31
Nb_Subst 0
Nb_Del 0
Insertion columns number: 1 and list of positions and counts
Position 1
Nb_Ins 6

Match Sub Del Ins
Totals 31 0 0 6
Percents 83.8 0.0 0.0 16.2

6.3. STAR: SEARCH FOR TANDEM APPROXIMATE REPEATS 131

Nb_Motifs 31.00 Percent_of_exact_motifs 80.65 Consensus 1 a
Pat aaaa-a-aaaaaaaa-aa-aaaaa-aaaaaaaa-aaa
Seq 6524 aaaaGaTaaaaaaaaTaaGaaaaaTaaaaaaaaTaaa

^ ^ ^ ^ ^ ^

Nb_mutations 6
Mutations_list 5,s, 7,t, 16,t, 19,s, 25,t, 34,t,
FILE swam50.txt LG 8400 MOTIF_LG 1 MOTIF a NB_ZONES 1

For the above motifs entered FireµSat detected the following TRs:

motif pos len TR n,a,m,d,i
AAA 6523 36 AAAAGATAAAAAAAATAAGAAAAATAAAAAAAATAA 6,6,6,0,0
AAG 6539 21 AAGAAAAATAAAAAAAATAAA 1,6,6,0,0
AAG 6159 16 AAGTAGGAAGATGAAT 1,4,3,0,1
AAT 6516 44 AATATATAAAAGATAAAAAAAATAAGAAAAATAAAAAAAATAAA4,11,8,2,1
AAT 6498 15 AATTATAATTATAAG 2,3,3,0,0
AAT 6563 15 AATAGATATAGTAAG 1,4,2,1,1
ACT 117 26 ACTATCTTCTACAAATTACTATCTAT 1,9,3,5,1
ACT 5988 16 ACTCTATATATATATT 1,6,1,5,0
AGA 1344 16 AGACGAGAAGCTGAGA 1,5,3,2,0
AGA 4699 15 AGAAGGATACGAATA 1,4,4,0,0
AGC 3156 14 AGCAGAAAGCCAGC 1,3,1,0,2
AGT 4598 18 AGTATAGCTGTAGCGTGT 1,6,3,3,0
ATA 6517 43 ATATATAAAAGATAAAAAAAATAAGAAAAATAAAAAAAATAAA 4,11,7,3,1
ATA 6990 16 ATATATATAATTACTA 1,5,1,3,1
ATA 6593 15 ATAATTTAATTTATA 1,5,2,3,0
ATA 7158 15 ATATAATAAGTAATA 3,2,0,1,1
ATC 1458 15 ATCATCAATCTCGTC 2,3,1,1,1
ATC 8039 15 ATCACAATCAGCATT 1,4,2,1,1
ATG 2204 14 ATGTGACGGTGATG 2,3,2,1,0
CAC 3682 14 CACTACCAGCGCCC 1,4,3,1,0
CAG 847 14 CAGCAAAGGCAGAG 1,4,1,2,1
CTA 7187 16 CTATATTATAGTAATA 1,5,3,2,0
GAT 6495 15 GATAATTATAATTAT 1,4,4,0,0
GCT 4507 15 GCTCCTGCAGCTGCG 2,3,3,0,0
GGT 7921 18 GGTGCTGGTGCTGGTAGT 3,3,3,0,0
GTA 6138 29 GTAGGTAGTATTATACTAGGTAAGTAGGA 2,7,3,1,3
GTA 6142 25 GTAGTATTATACTAGGTAAGTAGGA 2,6,3,1,2
GTA 5615 16 GTAGGTAGTTGTGATA 1,4,3,0,1
GTA 5884 16 GTAGATACTAATAGCA 1,5,3,2,0
GTA 4189 15 GTATGTATATTAATA 1,4,2,1,1
GTG 7922 20 GTGCTGGTGCTGGTAGTAGG 2,5,4,1,0
GTG 3549 16 GTGGATGGTCAGTGTG 1,4,1,1,2
TAA 6529 30 TAAAAAAAATAAGAAAAATAAAAAAAATAA 4,6,6,0,0
TAA 7113 17 TAAAATACTAAAAATAT 2,4,3,1,0
TAA 4877 16 TAATGATTAGTAATTA 1,4,3,0,1
TAA 6497 15 TAATTATAATTATAA 3,2,2,0,0
TAC 5879 19 TACTAGTAGATACTAATAG 1,5,4,0,1

132 CHAPTER 6. COMPARING THE SOFTWARE

TAC 7129 15 TACCTACTATACTAG 1,4,2,1,1
TAT 6976 31 TATAATATTCTTATATATATATAATTACTAG 2,10,5,5,0
TAT 6981 26 TATTCTTATATATATATAATTACTAG 2,8,4,4,0
TAT 1144 16 TATTGATTACTACTGT 1,4,3,0,1
TAT 6991 16 TATATATAATTACTAG 1,5,3,2,0
TAT 4190 15 TATGTATATTAATAC 1,4,2,1,1
TAT 5747 15 TATTTTGATTACTAA 1,4,4,0,0
TAT 5996 15 TATATATTGTAATTT 1,5,2,3,0
TCT 7235 17 TCTCTTTTCTCTTATCT 1,6,2,4,0
TCT 7237 15 TCTTTTCTCTTATCT 1,5,2,3,0
TGA 5845 14 TGATAATATGTTTA 1,4,3,1,0
TGC 623 14 TGCAGCTGATCTGA 1,4,3,1,0
TGG 7926 15 TGGTGCTGGTAGTAG 2,3,3,0,0
TTA 6975 31 TTATAATATTCTTATATATATATAATTACTA 3,9,4,5,0
TTA 106 15 TTATTTTTCTCACTA 1,4,4,0,0
TTA 6916 15 TTAATAATTATTTTA 1,4,2,1,1
TTA 132 14 TTACTATCTATGTA 1,3,1,0,2
TTC 7234 17 TTCTCTTTTCTCTTATC 1,6,2,4,0
TTT 7232 18 TTTTCTCTTTTCTCTTAT 1,5,5,0,0

This is contrary to STAR which detected only one TR in total.

The following information is output for the detected TR by STAR:

1. General information.
The general information is written in the first two lines of the output:

• ZONE (Line 1), All the TRs, listed in the same output file have the
same consensus motif (identified PTRE). The zone number indicates
that the detected TR is the first occurrence with the consensus motif
“a”, within the genetic sequence file swam.txt.

• BEGIN POS (Line 1), the start position of the TR is 6524.

• END POS (Line 1), the end position of the particular TR is 6560.

• LG (Line 1), the length of the detected TR is 37.

• GAIN (Line 1), the local compression gain is 23.

• A, the number of occurrences of adenine is 31.

• C, the number of occurrences of cytosine is 0.

• G, the number of occurrences of guanine is 2.

• T, the number of occurrences of thiamine is 4.

• N, the number of occurrences of undetermined nucleotides were 0.

• %AT, the percentage of weak hydrogen bonds, AT is 94.

6.3. STAR: SEARCH FOR TANDEM APPROXIMATE REPEATS 133

• %GC, percentage of strong hydrogen bonds, GC is 5.

• Biais the GC bias occurrence is 1.00.

• Phase, indicates the pattern phase at the beginning of the TR, which
is in this case 0. From Chapter 3 it can be recalled that the Phase con-
tributes towards the positioning of the alignment [Delgrange & Rivals
(2004a)].

2. Consensus description
The consensus description is represented by a table, in which the columns
represent the respective positions in the motif. (For more detail Chapter 3
can be consulted.)

The entry in the first row (Nb Match) at column 1, is 31. Note that there
are neither deletions nor mismatches in the detected TR. The number of
insertion columns detected within the detected TR, is 1 - there occurred
according to the calculations of STAR 6 insertions within column 1 - the
only column.

3. The list of positions and counts
From Chapter 3 it can be recalled that the list of positions and counts
consists of a table in which column entries indicate where insertions occurred
in relation to the consensus motif for the TR under exploration. The number
of insertion columns detected within the detected TR is 1 - there occurred
according to the calculations of STAR 6 insertions within column 1.

4. Distribution of matches, substitutions,deletions and insertions
The 4 columns of the table that represent the distribution of matches, sub-
stitutions, deletions and insertions, contain the headings Match, Sub, Del
and Ins respectively. For more detail, Chapter 3 can be consulted. Regard-
ing the consensus motif of the detected TR there occurs 31 matches and 6
insertions, thus 83.8% of the detected TR constitutes exact matches while
16.2% of the TR consists of insertions.

5. Number of repeats and consensus pattern
An output line that contains the following information is provided:

• Nb motifs : the number of motif repeats that occurred in the detected
TR. In the case of the above example, is 31.00 repeats.

• Percent of exact motifs : The ratio between the number of exact matches
and the number of mutations is provided, which is shown to be 80.65%.

• Consensus : This serves as a boolean flag that indicates whether a
particular motif, entered as parameter, was detected or not. In this
case Consensus = 1. The motif namely, a, under consideration is
output alongside the consensus flag.

134 CHAPTER 6. COMPARING THE SOFTWARE

6. Alignment
The detected TR is aligned against a concatenation of consensus motifs
(concatenated repeats of the detected PTRE - a PTR). The alignment is
computed by Wrap Around Dynamic Programming (Section 3.2). The out-
put is written in four separate lines for each TR. There is a maximum of
60 characters in each line. The first output line is labelled as Pat. This
line contains concatenated copies of the consensus motif. The second out-
put line is labelled as Seq. Seq contains the actual detected TR. In the
third line, each mutation is marked with a ∧. Furthermore, irrespective of
whether the input format of the genetic sequence was upper or lower case,
upper case is used to indicate mutations in Pat and Seq, while all the other
nucleotides are output in lowercase. The fourth line is empty.

7. Mutations list
The mutation list consists of the list of mutations that occurred within a
TR. The first line of output contains the number 6, the total number of
mutations (Nbmutations) that occurred within the detected TR.

It can be recalled from Chapter 3 that Delgrange & Rivals (2004a) de-
veloped single symbol codes to represent the entire spectrum of possible
mutations. These codes are provided in Chapter 3 in Tables 3.2, 3.3 and
3.4. An explanation of these codes can also be found in Chapter 3. The
output of the mutation list is:
5, s;
7, t;
16, t;
19, s;
25, t; and
34, t.

The final line of the output of STAR repeats the name of the input file,
swam50.txt; the length of the input file, 8400 base pairs; the motif length
of the consensus motif namely, 1; the consensus motif itself, a and the
number of detected TRs namely, 1.

6.4 FireµSat

6.4.1 FireµSat: Input

The Windows graphical users interface (GUI) of FireµSat has been discussed in
Chapter 5 and is included in Figure 6.1. During the trial runs we only report on

6.4. FIREµSAT 135

Figure 6.1: The GUI of the FireµSat software

FireµSat2. Note, FireµSat1 will generate data similar to FireµSat2 while FireµSat3
report each TR once.

If the reader is unclear regarding any of the terminology or input data of FireµSat
then Chapter 5, Section 5.2 should be consulted. FireµSat has been run on
swam.txt using the the following parameter set:

• Source file: The source file has been specified as swam.txt. Note the
complete path to the input file has been specified as required.

• Output file: The output file has been specified as result.csv. Note the
complete path to the input file has been specified as required. The reasons
why the output file is specified as a .csv file and not as a .txt file have been
discussed in Chapter 5, Section 5.2.

• Flanking sequence: For the trial run the flanking sequence has been set
to 0, therefore no flanking sequence is output.

• Motif length: A motif length of 3 has been input for the trial run, thus
the length of the PTREs that are being detected is 3.

• Max motif error: The maximum motif error for a PTRE of length 3 has
been selected as 1, thus a motif error of 33.3% has been allowed during the
trial run.

136 CHAPTER 6. COMPARING THE SOFTWARE

• Max adjacent ATR elements: To prevent a restriction on the number of
ATR elements that occur next to each other, the largest possible value
allowed by FireµSat has been selected namely 100000.

• Maximum substring error: The maximum substring error has not been
calculated during the trial runs.

• Mismatch penalty: The mismatch penalty has been set to 0.

• Deletion penalty: The deletion penalty has been set to 0.

• Insertion penalty: The insertion penalty has been set to 0.

6.4.2 FireµSat: Output

Similar to the input of FireµSat the output of FireµSat and its accompanied
terminology have been discussed in Chapter 5. FireµSat detected 2139 TRs of
motif length 3 in swam.txt. The detected TRs are included on the CD that
accompanies this dissertation. It is thus possible to conclude that FireµSat is more
accurate than both Tandem Repeats Finder and FireµSat. An output example of
one of the detected TRs is included.

;motif, TR, tr_start_pos, tr_length, n_ptre, n_atre, n_m, n_d, n_i
;>swam
TTA, TTATAATATTCTTATATATATATAATTACTA, 6975, 31, 3, 9, 4, 5, 0

The TR detected in the above case is introduced by the motif TTA. The start
position of the detected TR is 6975 and the length of the detected TR is 31 base
pairs. The value of nptre is equal to 3. Thus there is 3 exact copies of the PTRE
or motif TTA. The total number of ATREs is 9. 4 of the detected ATRE’s contain
mismatches and 5 of the detected ATREs contain deletions.

6.5 A Tabular Comparison Between Software

Four tables have been composed to present the results, one containing the runtime
results (Table 6.1) and three with the number of detected TRs for three datasets.
The parameters are set as discussed.

Note, the Fusarium Graminearum genome, approximately 33 MB of data, is
considered to be a relatively large file in the present problem domain. Since the
processing speed of Tandem Repeats Finder and FireµSat2 is fast, it is preferable
to compare the execution times on a large set of data.

6.5. A TABULAR COMPARISON BETWEEN SOFTWARE 137

TRF STAR FireµSat2
Runtime 12 minutes More than 127

48 seconds 3 hours seconds

Table 6.1: Execution time comparison: results for Fusarium Graminearum.txt

TRF STAR FireµSat
Number of TRs detected 16 1 2139

Table 6.2: Results for swam.txt

To gain an understanding of how effectively the respective packages identify all
TRs in a given file and to answer the question if all possible TRs are identified
or not there is reported on trial runs using the files swam.txt (8500 bytes) and
Cylindrocladium.txt. Had Fusarium Graminearum.txt been used for the exper-
iment of detecting all the TRs of motif length 3, an excessively large number
of TRs would be detected during trial runs. Therefore, in the interest of both
accuracy and simplicity it was decided to use the two smaller files to compare the
generated data in a meaningful manner and to search Fusarium Graminearum.txt
only for two motifs ACG and TGA.

The respective results are reported on in Table 6.2, Table 6.3 and Table 6.4. The
number of TRs detected by FireµSat2 is considerably larger than the number of
TRs detected by both TRF and STAR. Note if the duplicate data that FireµSat2
reports on is eliminated from the results of swam.txt then there will be 752
different TRs detected. Thus the number 2139 includes duplicate data reported
on by FireµSat2. So does the data in Table 6.4 also report duplicate data. If the
duplicate data is eliminated then there will be reported on 2650 repeats of which
221 have a TR-length greater or equal to 15 base pairs. Tandem Repeats Finder
and STAR detect a subset of the repeats detected by FireµSat2.

Note that the data of Cylindrocladium Pauciramosum constitutes various short
sequences in one file.

STAR does not currently provide the complete facilities to run data of this type.
Therefore it is not practical to use STAR as a detection tool of TRs on Cylindro-
cladium Pauciramosum.

Motif TRF STAR FireµSat
(longer than 15bp)

ACG 243 16 3036
TGA 309 18 5894

Table 6.3: Number of TRs detected : Results for Fusarium Graminearum.txt
(33MB)

138 CHAPTER 6. COMPARING THE SOFTWARE

TRF STAR FireµSat

Number of TRs detected 209 NA 7952

Table 6.4: Results for Cylindrocladium Pauciramosum (WrightSEQ2.txt)

FireµSat2 IMEx
Runtime 127 1 hour 34

seconds minutes

Table 6.5: Execution time comparison: results for Fusarium Graminearum.txt

6.5.1 Comparing FireµSat to IMEx

As mentioned in Chapter 1 the software package IMEx [Mudunuri & Nagarajaram
(2007)] has been released in 2007. IMEx is also considered to be a prominent
software package that detects microsatellites, allowing for mismatches, insertions
and deletions, it is not discussed at the same level of detail as TRF and STAR as
it has only been made available after most of this study had been completed. A
comparison between the runtime of IMEx and FireµSat2 as well as a comparison
between the data generated by IMEx and the data generated by FireµSat2 is
included in Table 6.5 and Table 6.6 respectively.

Note, IMEx provides various parameters that can be set. For the purposes of
the trial runs the parameters were set as loosely as possible. Repeat size: tri,
Minimum Repeat Number: 1, Imperfection Limit/repeat unit:3, % Imperfection
in Repeat Tract:50%. IMEx has been run from its web server. During the runtime
trial the 33MB of data was uploaded to the IMEx server. Time subtracted for
uploading was 30 seconds.

Table 6.5 shows that the runtime, FireµSat2 was about 42 times faster than IMEx.
For the data comparison, the file swam.txt was used. The input parameters used
correspond exactly with those used during the trial runs of the execution time
comparison.

The results are reported in Table 6.6. IMEx reports on 29% of the TRs that
is detected by FireµSat2. Note duplicate data reported by FireµSat2 has been
eliminated by a simple spreadsheet operation.

If the results of IMEx are compared to the results of FireµSat2 then it may seem
that both IMEx and FireµSat2 divide some microsatellites in two or more — in
some cases IMEx reports longer TRs than FireµSat2 in others FireµSat2 reports
longer TRs than IMEx. In the case of FireµSat2 reporting shorter or divided

6.5. A TABULAR COMPARISON BETWEEN SOFTWARE 139

FireµSat2 IMEx
Number of TRs detected 752 217

Table 6.6: Data comparison: results for swam.txt

*

At index IMEx reported FireµSat2 reported
1281 1 2
1457 1 3
3911 1 5
5338 1 5
6127 1 3
7131 1 2
7720 1 2
7888 1 3

Table 6.7: Data comparison: divided microsatellites

TRs the division of some of the TRs is partially a consequence of the order of
precedence during the identification of TREs. It can be recalled from Chapter 4
that if a final state is of multiple types, then the PTRE counter takes precedence,
followed by the mismatch counter, followed by the deletions counter, followed by
the insertion counter. By this is meant that if a state is encountered that is final
for both PTREs and mismatches, then the PTRE counter is incremented rather
than the mismatch counter. Similarly, mismatches are incremented rather than
deletions, etc. The functionality to generate data of all meaningful combinations
of precedence order is relatively easy to implement, and has been added to the
commandline version of FireµSat2, see Section 5.3.

Meaningful in this context implies either deletions are given precedence over mis-
matches or mismatches are given precedence over deletions (default). The remain-
ing cases where FireµSat2 reported shorter TRs than IMEx can be understood
by taking into account that FireµSat does not to allow for more than one motif
error if the motif length of the identified TR is equal to 3. IMEx does not follow
a similar approach — if the data generated by IMEx is carefully analysed then
it becomes apparent that IMEx allows for more than one motif error at times if
the motif length is 3.

A further analysis of the data generated by FireµSat2 and IMEx shows that
FireµSat2 divides microsatellites reported on by IMEx only in eight cases in two
or more. The data can be found in Table 6.7. It is important to realize that none
of the other TRs detected by IMEx has been divided or reported on more than
once after duplicate data has been eliminated.

If the microsatellites that FireµSat2 breaks up, compared to IMEx, are counted

140 CHAPTER 6. COMPARING THE SOFTWARE

*
FireµSat2 IMEx

Number of TRs detected 736 217

Table 6.8: Data comparison: results for swam.txt

as one for each respective microsatellite as detected by IMEx then a comparison
of the number of microsatellites detected can be seen in Table, 6.8:

Apart from the microsatellites listed in Table 6.8 IMEx detected longer mi-
crosatellites than FireµSat2 in 16 cases. FireµSat2 detected longer microsatel-
lites than IMEx in 17 cases. It can be concluded that in spite of the fact that
FireµSat2 breaks certain microsatellites in two it does detect quite a number of
microsatellites that are NOT detected by the available version of IMEx. IMEx
does not detect any microsatellites that are not detected by FireµSat2 at all. It
should be emphasized that FireµSat2 does provide its user with the ability to
fine tune its input parameters. Therefore the output of redundant data can be
prevented as discussed.

After the results of IMEx had been compared to those of FireµSat2 it was decided
to add a backward search and to the functionality of the commandline version of
FireµSat2 in order to augment results. The addition entailed adding a backward
search to the initially only forward searching algorithm, from the introductory
motif position, and augmenting the results accordingly. The results obtained after
the backward search had been implemented are presented in Figure 6.3. Figure
6.2 shows the histogram of the comparative results between IMEx and FireµSat2
without the backward search implementation. From Figure 6.2 and Figure 6.3
it can be concluded that the adjustment did not lead to a significant TR-length
improvement.

6.5.2 Remarks

A few observations that seem relevant regarding the software comparisons is listed
below:

• It is known that the current version of FireµSat 2 may report duplicate TRs.
This happens when a TR is reported that has a motif which is a suffix of
the motif of some other reported TR, and both TRs end at the same place.
This means, effectively, that one TR is contained within another.

Notwithstanding this potential error source, after checking, it was estab-
lished that the 752 TRs reported by FireµSat2 did not include any duplicate
TRs of this nature.

6.5. A TABULAR COMPARISON BETWEEN SOFTWARE 141

0 5 10 15 20 25 30
15

20

25

30

35

40

45

50

Number of TRs detected per Length−range

T
R

−
Le

ng
th

 in
 N

eo
cl

iti
de

s

Length Comparison − Histogram

FireµSat
iMEX

Figure 6.2: A histogram comparing the TR-length distributions of FireµSat2 and
IMEx respectively (for TRs longer than 15 base pairs) without backward search-
ing.

0 5 10 15 20 25 30
15

20

25

30

35

40

45

50

Number of TRs detected per Length−range

T
R

−
Le

ng
th

 in
 N

eo
cl

iti
de

s

Length Comparison − Histogram

FireµSat
iMEX

Figure 6.3: A histogram comparing the TR-length distributions of FireµSat2 and
IMEx respectively after the both-way search has been implemented.

• We have already remarked on the ambiguity in determining the most relaxed
parameter settings for the TRF package. It seems relevant to note that the
developers of IMEx report that they used the most relaxed set of input
parameters for TRF namely: Match=2, Mismatch = -7, Delta =-7 and
Min Score = 2. They report on an experiment using these settings in

142 CHAPTER 6. COMPARING THE SOFTWARE

which IMEx detected 876 repeats for a set of data, while TRF only detected
50 repeats. Mudunuri & Nagarajaram (2007) reports on the details of this
particular trial run.

Indeed, their claim initially seemed justified, because when these settings
were used in a trial runs on our data, one repeat more TR was found than
before, namely 17 in total instead of 16. However, upon closer inspection,
it was found that two of these 17 TRs could be concatenated into a single
TR that was not included in the TRs provided by the settings suggested
by Mudunuri & Nagarajaram (2007), while this single TR was indeed one
of the TRs identified by TRF run with our settings above.

• It should be noted that TRF was not developed to search for microsatellites
per se. It was used here because of its prior use for benchmarking purposes
[Mudunuri & Nagarajaram (2007), Delgrange & Rivals (2004b), and Wexler
et al. (2005)].

• TRF, STAR and IMEx detected a subset of the repeats detected by FireµSat2.

In the next section, Section 6.6 Tandem Repeats Finder, STAR and FireµSat will
be evaluated against the criteria presented in Chapter 2.

6.6 Comparing the Tools

The criteria listed below have been compiled in Chapter 2. It is proposed that
these criteria will contribute to the successful development of software tools for
the detection of microsatellites. The list constitutes criteria proposed by Benson
(1999), a criterium suggested by Delgrange & Rivals (2004b) and two of our own
criteria.

The reader may consult Chapter 2 for more detail regarding the criteria listed
below:

1. The avoidance of full scale alignment matrix computations in the case of
alignment algorithms.

2. No a priori knowledge should be required pertaining to the pattern, pattern
size or number of copies of the TR.

3. No restrictions should exist regarding the size of the repeats that can be
detected.

4. Percentage differences between adjacent copies should be used and substi-
tutions and indels should be treated separately.

6.6. COMPARING THE TOOLS 143

5. A consensus pattern for the smallest repetitive unit in the TR should be
determined.

6. The systematic detection of significant TRs in a way that is independent of
the motif, should be made by an exact algorithm.

7. Flexibility: an algorithm that detects microsatellites should be flexible in
terms of penalties awarded to indels and mismatches.

8. Useability: software to detect microsatellites should be useable specifically
in terms of output. By this we mean that analytically, biologically and
statistically relevant output should be provided to the user. Furthermore,
we suggest a hierarchical output that will enable the user easily to obtain
the most relevant data.

In the remainder of this section it will be argued that FireµSat complies to most of
these criteria. The enumerated list below corresponds numerically to the criteria
above and explains to which extend FireµSat satisfies each of these criteria. There
will also briefly be referred to Tandem Repeats Finder and STAR.

1. FireµSat does not implement matrix alignment in order to detect TRs thus
by implication full scale alignment matrix computations are avoided. Both
Tandems Repeat Finder and STAR do comply to this criteria.

2. FireµSat does not require any a priori knowledge pertaining to the pattern
or number of copies of the TR. At this stage FireµSat is developed to detect
only microsatellites and can detect microsatellites of any length. Tandem
Repeats Finder does not require any a priori knowledge pertaining to the
pattern or number of copies of the TR. Tandem Repeats Finder detects
microsatellites, minisatellites, as well as satellites. STAR needs the motif
to be input of which TRs should be detected — similarly to FireµSat STAR
only detects microsatellites.

3. FireµSat does not restrict the size of the repeats that can be detected in
any manner, neither does Tandem Repeats Finder or STAR.

4. FireµSat enables the user to penalize substitutions, deletions and insertions
separately during the calculation of the substring error by entering values for
for Mismatch penalty:, Deletion penalty: and Insertion penalty:

respectively. The percentage differences between adjacent copies are deter-
mined by the user who enters a value for the motif error - Max motif error:.
Tandem Repeats Finder provides the possibility for the user to influence the
penalization of alignment parameters - lower weights entered allow align-
ments with more mismatches, insertions and deletions, see Chapter 3, Sec-
tion 3.1.1 for more detail. However, the calculation that determines whether

144 CHAPTER 6. COMPARING THE SOFTWARE

there should be reported on a detected TR or not also depends on other
parameters (Chapter 3, Section 3.1.1 can be consulted in this regard) and
is much more complicated than that of FireµSat. Consequently, the user
cannot determine before hand exactly which types of TRs there will be re-
ported on. STAR does not allow the user to penalize mismatches, insertions
and deletions.

5. FireµSat does not determine a consensus pattern for the smallest repetitive
unit in the TR. However, FireµSat determines a consensus pattern in the
sense that for a detected TR a PTRE will always be output such that all
TREs can be deduced from the PTRE within the restrictions determined
by the user in terms of the motif error, the substring error and the maxi-
mum number of adjacent ATREs. Tandem Repeats Finder determines a so
called consensus pattern. STAR functions regarding to a consensus pattern
similarly to FireµSat.

6. The systematic detection of significant TRs in a way that is independent
of the motif should be made by an exact algorithm. FireµSat detects mi-
crosatellites in a systematic manner independent of the motif and the user
knows exactly the attributes of the detected TRs. If there exists a TR that
complies to all the attributes specified by the user then the TR will be
detected and will be output. It is possible to predetermine exactly which
attributes detected TRs should have. The authors of STAR claim that their
algorithm is exact in the sense that all TRs are reported on that yields to
their compression criterium.

7. FireµSat is flexible in terms of the penalties awarded to indels (insertions and
deletions) and mismatches. The user can predetermine the different penal-
ties allocated to insertions, deletions and mismatches by entering values
for Mismatch penalty:, Deletion penalty: and Insertion penalty:

respectively. Tandem Repeats Finder allows the user to allocate weights
to alignment parameters (Match, Mismatch and Delta determines whether
a certain stretch of DNA should be reported on). Lower weights allows for
more mismatches and indels. These parameters are used to determine the
optimal alignment calculated during the run of the program. Together with
the alignment parameters, the detection parameters PM and PI, determines
whether a certain stretch of DNA should be reported on as a detected TR
or not. The user cannot alter the values of the detection parameters, nei-
ther can the user predict the TRs he/she expects to be detected easily. The
penalty weights for deletions and insertions are always equal. The reader
is referred to Chapter 3 for more detail pertaining to the input values of
Tandem Repeats Finder. It is not possible for the user to alter the penalties
of either insertions, mismatches or deletion if they are using STAR. In this

6.7. CONCLUSION 145

regard Chapter 3 can be consulted.

8. Useability: if the output of FireµSat is in .csv file format then the output can
easily be arranged from the longest detected TR to the shortest detected
TR by using any spreadsheet application. For the molecular biologist the
longest TRs are those he/she prefers to investigate first. Furthermore, the
calculation of FireµSat to determine whether or not a detected TR will be
reported on is simple - no complicated mathematics skills are required to
decide how penalties should be allocated or what the effect of any entered
parameter will be. Both of these aspects contribute to the useability of
FireµSat. It is also possible to import the .dat file output by Tandems
Repeat Finder into a spreadsheet. However, importing the .dat file may
require some changes and not all the relevant fields will be available in
the report. Fields available are as follows: Indices, Period Size, Copy
Number, Consensus Size, Percent Indels, Percent Matches, A, C, G, T
and Entropy. The alignment parameters that can be entered by the user
of Tandems Repeats Finder has an influence on the TRs that are reported.
However, it is not simple to predetermine the exact type of repeats that will
be reported on. STAR does not allow the user to modify penalties allocated
to mismatches, insertions and deletions.

6.7 Conclusion

It has been argued that FireµSat complies to the relevant, in terms of microsatel-
lites, criteria compiled in Chapter 2. It is clear that FireµSat makes provision for
the accurate detection in a simpler, but more accurate manner than both STAR
and Tandem Repeats Finder. Simpler in this context refers to the ease with which
a user can allocate penalties and predetermine the exact nature of the TRs that
will be detected. From the comparison of output during the trial runs discussed
in this chapter it is clear that FireµSat detects more TRs than both STAR and
Tandem Repeats Finder. Chapter 7 will conclude this dissertation.

146 CHAPTER 6. COMPARING THE SOFTWARE

Chapter 7

Conclusion

To conclude this dissertation consider the research hypothesis that has been in-
troduced in Chapter 1:
FAs can effectively detect microsatellites on DNA.

Three variants of FireµSat have been introduced. The introduced algorithms
rely on the implementation of FAs. All three variants FireµSat1, FireµSat2 and
FireµSat3 have been implemented.

147

148 CHAPTER 7. CONCLUSION

Hereafter reference to FireµSat will refer to all the these packages. A compar-
ison has been made between FireµSat2 and two identified competitive software
packages TRF and STAR. The runtime of FireµSat2 is faster than that of TRF
and STAR. TRF and STAR detect a subset of the microsatellites detected by
FireµSat. Additionally the data generated by FireµSat has also been compared to
data generated by IMEx in Chapter 6. (IMEx was released after the major part
of this study had been completed.)

It was found that FireµSat detects all the microsatellites detected by IMEx. How-
ever, as a consequence of certain design decisions, FireµSat divides some of the
microsatellites detected by IMEx into more than one. Recall from Chapter 6 that
FireµSat detects microsatellites that are not detected by IMEx. The runtime of
FireµSat is faster than that of IMEx. The FireµSat software complies with the
criteria to which software should adhere in searching effectively for microsatellites.

These criteria were introduced in Chapter 2. During the design of FireµSat special
attention has been paid to the development of flexible software. Therefore the
implementation of FAs to search for microsatellites in DNA resulted in software
that allows the fine tuning of searches for microsatellites by manipulating input
parameters.

From the above it can be concluded that FAs can be implemented to search for
microsatellites in DNA effectively.

7.1 Future Research Initiatives

The following future research initiatives were identified:

• From the reflective research done, it is clear that there is a lack of clarity
about the specifications to which software packages should comply to search
effectively for microsatellites. In Chapter 2 criteria to which software pack-
ages should comply have been proposed. The question which arises is: “How
do research domains differ regarding these criteria ?” This research has been
specifically instigated by the needs of molecular biologists. Whether these
criteria can be used effectively in other domains in which researchers are
also searching for microsatellites, remains to be investigated.

• The implementation of FAs to search for microsatellites in DNA resulted in
software that allows the fine tuning of searches for microsatellites by ma-
nipulating input parameters. More investigation should still be conducted
to determine how generated data differs for different values of input param-
eters. It is relatively easy to change the priorities for the identification of

7.1. FUTURE RESEARCH INITIATIVES 149

mutations. An analysis of data generated by FireµSat as a result of such pri-
ority changes should be conducted. Parameter settings of FireµSat to detect
data of relevance in other knowledge domains should also be determined.
Furthermore FireµSat should be compared to more software packages.

• FireµSat1 has the potential to be extended to search for minisatellites too.
Therefore, the requirements for software searching for minisatellites should
also be investigated. Challenges that will have to be dealt with if one
extends FireµSat1 to search for minisatellites, include an investigation of
how FAs can best be stored in memory. Reduction algorithms to minimize
the number of states generated, should be investigated. Note that the
classical FA minimization algorithms cannot be directly applied, since the
counting semantics assigned to certain states should not be obscured by
state merges. Techniques that indicate how run time can be optimized,
should also be considered. Furthermore it should be investigated how to
merge the theoretical underpinnings of FireµSat1 and FireµSat3.

• Note that further research should be conducted into the extent to which
software packages that search for microsatellites comply with HCI (Human
Computer Interaction) principles. If software packages do not comply to
HCI principles then two questions should be addressed:

1. In what sense do these packages not comply with HCI principles?

2. What exactly will software packages that do comply to HCI principles
and search for microsatellites be like?

It was not a primary objective of this research to fully explore the use of
HCI principles in the present context. Nevertheless, data generated by this
research appears to be useable, and the users do have the ability to fine-tune
their searches by setting parameters in a flexible manner.

150

Glossary, Abbreviations,
Acronyms

Acronyms and Abbreviations

A The symbol used to represent the base pair Adenine.

AFLP Is an abbreviation for amplified fragment length polymorphism (the
occurrence of different forms of a gene in members of the same specie).

ATR Approximate tandem repeat.

BCCL Bioinformatics Computational Core Laboratories.

BISTIC The Biomedical Information Science and Technology Initiative Con-
sortium of the National Institution of Health of the United States Of Amer-
ica.

BLAST Basic Local Alignment Search Tool.

C The symbol used to represent the base pair Cytosine.

DDBJ DNA DataBank of Japan.

DFA Deterministic finite automaton.

DNA Deoxyribonucleic acid.

EMBL European Molecular Biology Laboratory.

EMBOSS The European Molecular Open Source Software Suite.

Entrez The widely used Entrez Search System, which allows for the retrieval
of a wide range of molecular biology data and bibliographic citations.

FA Finite automaton.

151

152 Glossary, Abbreviations, Acronyms

FASTA The FASTA format defines the file format used to store and exchange
information between genetic databases. A sequence in FASTA format be-
gins with a single line description, that is followed by lines of sequence data.
The description line is distinguished from the sequence data by means of
a greater-than symbol, “>, in the first column of the first row. It gives a
name and/or a unique identifier to the sequence. The description line may
also give other relevant information.

G The symbol used to represent the base pair Guanine.

GenBank One of the largest public sequence databases.

GSX Mouse Gene Expression Database

GUI Graphical User Interface

indel Insertion or deletion.

Me Mealy machine.

MGDB Mouse Genome Database.

Mo Moore machine.

NCBI National Center for Biotechnology Information.

NDB Nucleic Acid Database.

PCR Polymerase chain reaction

PTR Perfect tandem repeat.

STAR Search for Tandem Approximate Repeats — a software package.

T The symbol used to represent the base pair Thymine.

TR Tandem repeat.

TRF Tandem Repeats Finder — a software package.

Definitions and Descriptions

Adenine A nucleic acid, base pair or nucleotide. Also see Cytosine, Guanine
and Thymine.

approximate tandem repeat A genomic sequence whose introductory sub-
string (or motif) is followed by one or more substrings, of which at least
one need not necessarily be an exact copy of the motif.

Glossary, Abbreviations, Acronyms 153

Bioinformatics The application of computational techniques to understand
and organize the information associated with biological macromolecules.

Cytosine A nucleic acid, base pair or nucleotide. Also see Adenine, Guanine
and Thymine.

DNA polymerase An enzyme which catalyzes the addition of a nucleotide to
a nucleic acid molecule.

entropy The entropy estimation of a DNA sequence provides a measure of its
complexity and randomness level based on percent composition.

Finite automaton An FA is defined as: a finite set of states Q = {q0, q1,
q2...qn}, of which q0 is designated to be the start state; a subset of Q called
the final states (F); a finite alphabet Σ = {x1, x2, x3...xs}; and a transition
function δ : Q× Σ → Q.

Guanine A nucleic acid, base pair or nucleotide. Also see Adenine, Cytosine
and Thymine.

interspersed repeats Interspersed repeats are repeated DNA sequences lo-
cated at dispersed regions in a genome.

low complexity DNA Low complexity DNA sequences are sequences that
contain biological information that is considered to be biologically less
relevant.

Mealy machine A six tuple Me = (Q, Σ, ∆, δ, λ, q0) where Q, Σ, δ and q0 are
defined similarly to the formal definition of the FA. ∆ is the output alpha-
bet and λ maps Q×Σ to ∆ , thus λ(q, a) gives the output associated with
the transition from state q on input a. The output of Me in response to in-
put a1, a2, · · · , an is λ(q0, a1), λ(q1, a2), · · · , λ(qn−1, an), where q0, q1, · · · , qn

are states such that δ(qi−1, ai) = qi for 1 ≤ i ≤ n. If the input sequence is
of length n, then the output sequence is also of length n.

Moore machine A six tuple: Mo = {Q, Σ, ∆, δ, λ, q0} where: Q, Σ, δ, and q0

are the same as in the FA. ∆ is the output alphabet and, λ is a mapping
from each state in Q to ∆, representing the output associated with each
state. The output of Mo in response to input a1, a2, · · · , an, n ≥ 0, is
λ(q0), λ(q1) · · ·λ(qn), where q0, q1, · · · , qn represent the sequence of states
such that δ(qi−1, ai) = qi for 1 ≤ i ≤ n. Notice that the Moore machine
will give output of length n + 1 if n is the length of the input sequence

optimal alignment The optimal alignment of two sequences implies the de-
termination of an alignment that will obtain the highest score (the score is

154 Glossary, Abbreviations, Acronyms

calculated by a function as specified by the developer) from aligning two
given sequences in all possible manners can be found.

perfect tandem repeat A perfect tandem repeat (PTR) is a string of nu-
cleotides in a genomic sequence whose initial substring (of some arbitrary
length), is followed by one or more exact copies of that substring.

polymer molecule Polymer molecules are large molecules consisting of re-
peated chemical units joined together.

polymerase chain reaction A molecular biological technique for amplifying
or copying a selected region of a DNA molecule, so that its sequence is
multiplied many times in a laboratory.

primer A primer is an oligonucleotide (a short, single stranded DNA molecule
synthesized chemically under automated conditions generally 15 - 50 nu-
cleotides in length) which is complementary to a specific region within a
DNA or a RNA molecule. Primers are used to initiate synthesis of a new
strand of complementary DNA at that specific site, in a reaction or series
of reactions catalyzed by a “DNA polymerase.

regular expressions Languages associated with regular expressions are reg-
ular languages. Regular languages are type 3 languages of the Chomsky
hierarchy of grammars and are accepted by FAs.

sequencing Sequencing is the determination of the order of nucleotides in a
DNA or RNA molecule or the order of amino acids in a protein.

short tandem repeats See microsatellites.

tandem repeat Is a string of nucleotides that is characterized by a certain
motif which introduces the string, followed by at least one “copy of the
motif.

Thymine A nucleic acid, base pair or nucleotide. Also see Adenine, Cytosine
and Guanine.

Computational Biology The development and application of analytical and
theoretical methods, mathematical modeling and computational simula-
tion techniques to the study of biological, social and behavioural systems.

Bibliography

Abajian, C. (2003). Sputnik. Online: http://espressosoftware.com/pages/sputnik.jsp.

Altschul, S., Gish, W., Miller, W., Myers, E. W. & Lipman, D. (1990). A basic local alignment search tool. Journal

of Molecular Biology 215, 403–410.

Answers.com (2003). Peptide (in Biology): definition from The Columbia Electronic Encyclopedia. Online:

http://www.answers.com/topic/peptide?method=5&linktext=peptide#copyright.

Benson, G. (1995). A space efficient algorithm for finding the best non-overlapping alignment score. Theoretical

Computer Science 145.

Benson, G. (1999). Tandem Repeats Finder. Nucleic Acids Research 27(2), 573 – 580.

Benson, G. (2003a). How does Tandem Repeats Finder work? Online: http://tandem.bu.edu/trf/trfdesc.html.

Benson, G. (2003b). Tandem Repeats Finder: Definitions: FASTA Format. Online: http://tandem.bu.edu/trf/

trf.definitions.html.

Benson, G. (2003c). Tandem Repeats Finder:Unix Version help: using Tandem Repeats Finder for Unix. Online:

file://D:/Tandem%20Repeats%20Finder%20%20Unix%20Version%20Help.htm.

Benson, G. (2005a). Gary Bensonś Homepage. Online http //tandem.bu.edu/benson.html.

Benson, G. (2005b). Tandem Repeats Finder Download Page. Online: http://tandem.bu.edu/trf/ trf.download.html.

Bergeron, B. P. (2003). Bioinformatics Computing. Prentice-Hall/ Professional Technical Reference: Upper Saddle

River, NJ.

Bio-Synthesis, Inc (2007). Bioinformatics glossary. Online: http://falcon.roswellpark.org/labweb/glossary.html.

Bioinformatics Computational Core Laboratories (2005). BCCL software. Online:

http://www.vcu.edu/csbc/bccl/resources-software.htm.

Biology Online (2005). Chromosome in th Biology Online Dictionary. Online: www.biology-online.org.

Broad Institute (2009). Broad Institute of MIT and Harvard [homepage]. Online: http://www.broadinstitute.org.

Brown, S. (2004). Computers and the Human Genome Project: Smith-Waterman algorithm. Online:

http://cse.stanford.edu/class/sophomore-college/projects-00/computers-and-the-hgp/smith waterman.html.

Brown, S. M. (1995). Searching databases for sequences similar to a sequence of interest: H. Smith-Waterman searching.

Online: http://www.med.nyu.edu/rcr/rcr/course/sim-sw.html.

Camp, N., Cofer, H. & Gomperts, R. (1998). High-Throughput. Online: http://www.sgi.com/ industries/-

sciences/chembio/resources/papers/HTBlast/HT Whitepaper.html.

Castelo, A. T., Martins, W. & Gao, G. R. (2002). TROLL: Tandem Repeat Occurrence Locator. Bioinformatics

Applications Note 18(4), 634–636.

155

156 BIBLIOGRAPHY

Chao, K. M., Hardison, R. C. & Miller, W. (1993). Locating well-conserved regions within a pairwise alignment.

Computer applications in the biosciences (CABIOS) 9, 169–176.

Clamp, M. (2009). Jalview: a Java Multiple Alignment Editor. Online: http://www.jalview.org.

Cohen, D. I. A. (1997). Introduction to Computer Theory. Wiley: New York, 2nd ed.

Cooper, S. (2008). Translation and open reading frames. Online: http://bioweb.uwlax.edu/GenWeb/Molecular/

Seq Anal/Translation/translation.html.

Coward, E. & Drablos, F. (1998). Detecting periodic patterns in Biological sequences . Bioinformatics 14, 498–507.

Cowen, L. J. (2002). COMP 150BIO: Computational Biology: Lecture 1: Sequence alignment (Part I). Online:

http://www.eecs.tufts.edu/ cowen/biotalk/02lecture1.ps.

Dahl, O.-J., Dijkstra, E. W. & Hoare, C. A. R. (1972). Structured Programming, vol. 8. Academic Press.

De Ridder, C., Kourie, D. G. & Watson, B. W. (2006a). FireµSat: an algorithm to detect microsatellites in DNA.

Proceedings of the Prague Stringology Conference .

De Ridder, C., Kourie, D. G. & Watson, B. W. (2006b). Meeting the challenge of detecting microsatellites in DNA.

South African Institute of Computer Scietists and Information Technologists:Service-oriented Software and Sys-

tems .

Delgrange, O. (2005). Curriculum vitae: 21 Octobre 2005: Oliver Delgrange. Online:

http://staff.umh.ac.be/Delgrange.Olivier/home.html.

Delgrange, O. & Rivals, E. (2004a). Appendix to the article: STAR: an algorithm to search for tandem approximate

repeats. Online: http://atgc.lirmm.fr/STAR/downloads/STAR-Appendix.pdf.

Delgrange, O. & Rivals, E. (2004b). STAR: an algorithm to search for tandem approximate repeats. Bioinformatics

20(16), 2812–2820.

Easterbrook, S., Singer, J., Storey, M.-A. & Damian, D. (2007). Selecting empirical methods for software engineering

research. Guide to Advanced Empirical Software Engineering .

Farlex Inc. (2005). FASTA format in The Free Dictionary. Online: http://encyclopedia.thefreedictionary.com /FASTA

format.

Gish, W. R. (2009). AB BLAST. Online: http://blast.advbiocomp.com/doc/README.html.

Glas, R. L., Ramesh, V. & Vessey, I. (2004). An analysis of research in Computing disciplines. Communications of

the ACM 47(6).

Google (2005). Definitions of Entrez on the Web. Online: http://www.google.co.za/search?hl=en&lr=&

oi=defmore&q=define:Entrez.

Goubil-Gambrell, P. (1991). What do Practitioners need to know about Research Methodology? Directions in

Technical communications research .

Grunwald, P., Myung, I.-J. & Pitt, M. (2001). NIPS 2001 Workshop: Minimum description length: developments in

theory and new applications. Online: http;//quantrm2.psy.ohio-state.edu/injae/workshop.htm.

Guan, X. & Uberbacher, E. (1996). A fast look-up algorithm for detecting repetitive DNA sequences. In: Proceedings

of the Pacific Symposium on Biocomputing 1996 .

Hackett, B. & Gross, R. B. (2007). Providing Quality Molecular Biology Software Since 1984. Online:

http://www.textco.com.

Herr, C. M. (2008). Chapter 2: Reproduction is the manifestation of heredity. Online: http://www.biology.

ewu.edu/aHerr/Genetics/Bio310/Pages/ch2pages/genchap2.html.

Herrmannsfeldt, G. (1998). A highly parallel finite state automaton processor for Biological pattern matching. In:

Proceedings of the Prague Stringology Club Workshop 1998 .

BIBLIOGRAPHY 157

Hopcroft, J. E. & Ullman, J. D. (1979). Introduction to automata theory languages and computation. Addison-Wesley

publishing company.

Hyde, B. (2000). Data structures and search trees: class notes for Bio-Informatics. Online: www.msci.memphis.edu/ gir-

i/compbio/f00/BryanHyde/Bryan.htm.

Johns, U. (2005). The GNU Project. Online: http://www.gnu.org/.

Kahn, C. E. (2005). BioInformatics Glossary: Quantitative PCR. Online: http://big.mcw.edu.

Kannan, S. K. & Myers, E. W. (1996). An algorithm for locating nonoverlapping regions of maximum alignment score.

SIAM Journal on Computing 25(3), 648–662.

Karlin, S., Morris, M., Ghandour, G. & Leung, M. Y. (1988). Efficient algorithms for molecular sequence analysis.

vol. 85.

Kim, N.-S., Park, N.-I., Kim, S.-H., Kim, S.-T., Han, S.-S. & Kang, K.-Y. (2000). Isolation of TC/AG repeat microsatellite

sequences for fingerprinting rice blast fungus and their possible horizontal transfer to plant species. Molecules and

Cells 10(2), 127–134.

Kolpakov, R. & Kucherov, G. (1999). Finding maximal repetitions in a word in linear time. In: 40th FOCS. IEEE

Computer Society Press .

Kolpakov, R. & Kucherov, G. (2001). Finding approximate repetitions under Hamming distance. In: ESA: Annual

European Symposium on Algorithms, Lecture Notes in Computer Science 2161, 170–181.

Kourie, D. G. (2009). Formal Aspects of Computing.

Kressel, K. (1997). Practice-Relevant Research in Mediation: Toward a Reflective Research Paradigm. Negotiation

Journal 13(2), 143–160.

Krishan, A. & Tang, F. (2004). Exhaustive whole-genome tandem repeats search. Bioinformatics 20(16), 2702–2710.

Kurtz, S., Choudhuri, J., Ohlebush, E., Schleiermacher, C., Stoye, J. & Giegerich, R. (2001). REPuter: the manifold

applications of repeat analysis on a genomic scale. Nucleic Acid Research 29.

Kurtz, S. & Schleiermacher, C. (1999). REPuter: fast computation of maximal repeats in complete genomes. Bioin-

formatics Application Note 15(5), 426–427.

Landau, G. M. & Schmidt, J. P. (1993). An algorithm for approximate tandem repeats. In: Proceedings of the 4th

Combinatorial Pattern Matching Conference, Lecture Notes in Computer Science 648 .

Landau, G. M., Schmidt, J. P. & Sokol, D. (2001). An algorithm for approximate tandem repeats. Journal of

Computational Biology 8(1), 1–18.

Lee, F. (1996). Interspersed repeats and Tandem Repeats in the Molecular Biology Web Book, chap. 3.

Lefebvre, A., Lecroq, T., Dauchel, H. & Alexandre, J. (2003). FORRepeats: detects repeats on entire chromosomes

and between genomes. Bioinformatics 19(3), 319–326.

Lefers, M. (2004). Sequencing: Definition. Online: http://www.biochem.northwestern.edu/holmgren/Glossary.

Lemon, S. M. & Barbour, A. G. (1993). A glossary of terms commonly used in molecular biology. Online:

http://www.med.unc.edu/wrkunits/3ctrpgm/pmbb/mbt/GLOS.htm.

Luscombe, N. M., Greenbaum, D. & Gerstein, M. (2001). What is Bioinformatics? A proposed definition and overview

of the field. Methods of Information in Medicine 40.

Main, M. & Lorentz, R. (1984). An O (n log n) algorithm for finding all repetitions in a string . Journal of Algorithms

5, 422–432.

Milosavljevic, A. & Jurka, J. (1993). Discovering simple DNA sequences by the algorithmic significance method.

Computer Applications in Biosciences 9(4), 407–411.

158 BIBLIOGRAPHY

Mudunuri, S. B. & Nagarajaram, H. A. (2007). IMEx: Imperfect microsatellite extractor. Bioinformatics 23(10),

1181–1187.

Myers, G. & Sagot, M.-F. (1998). Identifying satellites and periodic repetitions in Biological sequences. Journal of

Computational Biology 5(3), 539–554.

National Center for Biotechnology Information (2005). National Center for Biotechnology Information homepage.

Online: http://www.ncbi.nlm.nih.gov/.

National Institute of Health of the United States of America. BISTIC Definition Committee (2000). NIH working

definition of Bioinformatics and Computational Biology. Online: http://www.bisti.nih.gov/CompBioDef.pdf.

Paces, J. (2001). Bioinformatics: Tools for analysis of Biological sequences. In: Proceedings of the Prague Stringology

Conference 2001 , 50–58.

Pestronk, A. (2005). DNA repeat sequences and diseases. Online: http://www.neuro.wustl.edu/neuromuscular /moth-

er/dnarep.htm.

Rice, P. & Bleasby, A. (2009). EMBOSS: The Application. Online: http://emboss.sourceforge.net/.

Rivals, E., Delahaye, J. P., Delgrange, O. & Dauchet, M. (1995). A first step toward chromosome analysis by

compression algorithms.

Rivals, E., Delgrange, O., Delahaye, J.-P., Dauchet, M., Delorme, M.-O., Henaut, A. & Ollivier, E. (1997). Detection

of significant patterns by compression algorithms: The case of approximate tandem repeats in DNA sequences.

CABIOS 13, 131–136.

Safran, M., Solomon, I., Shmueli, O., Lapidot, M., Shen-Orr, S., Adato, A., Ben-Dor, U., Esterman, N., Rosen,

N., Peter, I., Olender, T., Chalifa-Caspi, V. & Lancet, D. (2002). GeneCardsTM 2002: Towards a complete,

object-oriented, human gene compendium. Bioinformatics Applications Note 18(11), 1542–1543.

Sagot, M. F. & Myers, E. W. (1998). Identifying satellites in nucleic acid sequences. In: Proceedings of the Second

Annual International Conference on Computational Molecular Biology (RECOMB-98), edited by S. Istrail, P.

Pevzner and M. Waterman. ACM Press , 234–242.

Schmidt, J. P. (1998). All highest scoring paths in weighted grid graphs and its application to finding all approximate

repeats in strings . SIAM Journal on Computing 27, 972–992.

Smit, A. F. A., Hubley, R. & Green, P. (2003). RepeatMasker documentation. Online: http://

www.repeatmasker.org/webrepeatmaskerhelp.html.

Stoye, J. & Gusfield, D. (2002). Simple and flexible detection of contiguous repeats using a suffix tree. Theoretical

Computer Science 27, 843–856.

Strachan, T. & Read, A. P. (2004). Human Molecular Genetics, vol. 3. Garland Science, 3 ed.

The Marine Biological Laboratory (2003). File formats. Online: http://workshop.molecularevolution.org.

The Marine Biological Laboratory. Workshop on Molecular Evolution (2004). FASTA DNA (aligned). Online:

http://workshop.molecularevolution.org.

Theologis, A. (2001). Goodbye to one by one’ genetics. Genome Biology 2(4), 1–9.

Thurston, M. I. & Field, D. (2005). Msatfinder: Detection and characterisation of microsatellites. Online:

http://www.genomics.ceh.ac.uk/ milo/msatfinder/.

Tran, N., Bharaj, B. S., Diamandis, E. P., Smith, M., Li, B. D. L. & Yu, H. (2004). Short tandem repeat polymorphism

and cancer risk: influence of laboratory analysis of epidemiologic findings. Cancer Epidemiology Biomarkers and

Prevention 13, 2133–2144.

Trivedi, B. P. (2000). Sequencing the genome. Online: http://www.genomenewsnetwork.org/ articles/06 00/ se-

quence primer.shtml.

Trochim, M. K. (2006). Deduction and Induction. Online: http://www.socialresearchmethods.net.

BIBLIOGRAPHY 159

Van den Bergh, I. (2006). Finding microsatellites in whole genomes. Master’s thesis, Technische Universiteit Eind-

hoven.

Van der Nest, M. A., Steenkamp, E. T., Wingfield, B. D. & Wingfield, M. J. (2000). Development of simple sequence

repeat (SSR) markers in Eucalyptus from amplified inter-simple sequence repeats (ISSR). Plant Breeding 119,

433– 436.

Vide, C. M., Mitrana, V. & Paun, G. (2003). Grammars and Automata for String Processing. CRC Press.

Vinga, S. & Almeida, J. S. (2004). Rnyi continuous entropy of DNA sequences. Journal of Theoretical Biology 231(3),

337–388.

Volfovsky, N., Haas, B. J. & Salzberg, S. L. (2001). A clustering method for repeat analysis in DNA sequences.

Genome Biology 2(8).

Ware, D., McCouch, S., Buckler, E. & Jaiswal, P. (2005). Gramene Glossary. Online:

http://www.gramene.org/documentation/glossary/.

Watson, B. W. (1994). The design and implementation of the FIRE Engine: A C++ toolkit for FInite automata and

regular expressions. Online: http://alexandra.tue.nl/extra1/wskrap/public html/9411065.pdf.

Watson, B. W. (1995). Taxonomies and Toolkits of Regular Language Algorithms. Online:

http://www.fastar.org/publications/PhD Watson.pdf.

Watson, B. W. (1996). Implementing and using finite automata toolkits. Nat. Lang. Eng. 2(4), 295–302.

Watson, B. W. (2001). A Taxonomy of Algorithms for Constructing Minimal Acyclic Deterministic Finite Automata

2214/2001, 174–182.

Watson, B. W. (2002). A Fast and Simple Algorithm for Constructing Minimal Acyclic Deterministic Finite Automata.

j-jucs 8(2), 363–367.

Webopedia (2004). Perl: The Webopedia Computer Dictionary. Online: http://www.webopedia.com/ TER-

M/P/Perl.html.

Wexler, Y., Yakhini, Z., Kashi, Y. & Geiger, D. (2005). Finding approximate tandem repeats in genomic sequences.

Journal of Computational Biology 12(7), 928–924.

Wright, L. P., Wingfield, B. D., Crous, P. W. & Wingfield, M. J. (2007). Isolation and characterization of microsatel-

lite loci in Cylindrocladium pauciramosum. Molecular Ecology Notes 7(2), 343–345.

Zane, L., Bargelloni, L. & Patarnello, T. (2002). Strategies for microsatellite isolation: A review. MOL ECOL 11,

1–16.

