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CHAPTER ONE 
 
 
 
 

A Cladistic Analysis of the Family Hersiliidae (Arachnida, Araneae) of the 
Afrotropical Region 

 
 
 
 

Abstract 
The family Hersiliidae consists of six genera in the Afrotropical region, two of 

these taxa are newly discovered viz. Tyrotama gen. nov. and Prima gen. nov. Murricia 

Simon and Neotama Baehr & Baehr are newly recorded for the region. Of the three 

original genera, Tama, Hersilia, and Hersiliola, the latter two remain. A cladistic analysis 

based on 48 characters and 22 species, which included nine species that are not 

Afrotropical, inferred the following phylogeny: ((Hersiliola Tyrotama) (Neotama (Prima 

(Murricia Hersilia)))). Morphological data supports the monophyly of Tyrotama and the 

phylogeny suggests that the genus is closely related to Hersiliola. The new genus Prima 

is weakly supported as the sister taxon of Neotama. Support for the genus Hersilia is 

weak and synapomorphies that unite six identified species groups within the genus are 

much more consistent than those that unite Hersilia. However, the genus Hersilia is 

retained until a comprehensive generic level analysis for the world is conducted. A key to 

the genera of the Afrotropical Region is provided.  

Key words: Hersiliidae, phylogeny, Afrotropical Region 
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Introduction 
The Hersiliidae is a small spider family with 141 species and 10 genera excluding 

results from this study (Platnick 2004; Rheims & Brescovit 2004). The group is 

characterized by conspicuously long posterior lateral spinnerets, elongated legs and is 

limited to the tropical and subtropical regions of the world. All hersiliids are arboreal 

except for the representatives of Hersiliola Thorell, 1870 and Tama Simon, 1882. The 

latter two genera are ground active, inhabiting arid regions of Africa, the Mediteranean 

and the western parts of the Oriental Region.  

The family has recently been the focus of extensive revisionary studies in the 

Australian (Baehr & Baehr 1987), Oriental (Baehr & Baehr 1993a), and Neotropical 

Regions (Rheims & Brescovit 2004). Baehr & Baehr’s 1987 revision of Australian 

hersiliids resulted in the description of 29 species, of which 93% were new to science. 

Subsequent publications doubled the number of species known for the Australian Region 

to 55 in total (Baehr & Baehr 1988b, 1989, 1992, 1993b, 1995). In their revision of the 

Oriental Region, Baehr & Baehr (1993a) described 27 new species out of a total of 33 

taxa and proposed a tentative phylogeny for the family. Rheims & Brescovit (2004) 

described six new species, redescribed five species, and proposed three new genera, 

Yabisi, Iviraiva, and Ypypuera for the Neotropical Region.  

Members of the family Hersiliidae are found throughout the Afrotropical Region 

and include both arboreal and ground active genera. Before this study the Afrotropical 

Region had 30 species in three genera, Hersilia (22), Hersiliola (4), and Tama (4). 

Descriptive work was done between 1827 and 1976. Smithers (1945) revised the three 

genera of Hersiliidae of southern Africa and Benoit (1967) revised the genus Hersilia of 

the Afrotropical Region excluding Madagascar. None of these studies made an attempt to 

determine the phylogenetic relationships of hersiliid taxa.  

Both Tama and Hersiliola occur in the warmer parts of the Afrotropical Regions 

where they are found under stones (Smithers 1945).  Hersiliola construct a pholcid-like 

web and Tama construct a circular shaped retreat of closely woven webbing plastered 

with small pebbles, chips and vegetable debris. Anchor threads attached to the substratum 

warn the spider of approaching prey (Smithers 1945; Dippenaar-Schoeman et al. 1999). 
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They move at great speed overpowering their prey and dragging it back to their retreat 

where they are fed on (Lawrence 1964). Their egg sacs are attached to the underside of 

rocks and covered with stone chips (Dippenaar-Schoeman & Jocqué 1997). 

Platnick (2004) catalogues the following ranges for Hersilia: Afrotropical, 

Oriental, and Australian Regions, although one species penetrates into the Palaeartic. All 

Afrotropical species of this genus live on the trunks of trees. When at rest they are well 

camouflaged with their flattened bodies, ad-pressed to the bark. They move at great speed 

when disturbed. Although specimens are very cryptic the reflection of sunlight on the 

guide threads they leave on trunks is a good indicator of their presence (Dippenaar-

Schoeman & Jocqué 1997). Females cover their eggs with an oval shaped layer of silk 

camouflaged with bits of bark. She holds guard over the eggs in an upside down position 

above the silk patch until the young hatch (pers. obs.). 

Petrunkevitch (1963),  Schawaller (1981) and Wunderlich (2004) have described 

several fossil genera, whose relationship with extant Hersiliidae remains uncertain. 

Recent work on fossil spiders also suggests that the family is an ancient taxon, and 

predict the presence of Hersiliidae in the Cretaceous (Penney, 2002). Evidence point to a 

much wider distribution in Europe during the Oligocene and Miocene (Penney 1999). 

Lehtinen (1967) considered the Hersiliidae to be related to the Oecobiidae based on 

similarity of genital structures, modification of the carapace, eye pattern and spinnerets. 

Coddington & Levi (1991), in a cladistic analysis of all spider families, grouped the 

hersiliids with the oecobiids based on the similarity of the elongated posterior lateral 

spinnerets, and the distinct prey capture behaviour of the two families. Here the spider 

rapidly encircles the prey by facing away from it and enswathes it with silk from the 

spider’s long posterior lateral spinnerets. Although Coddington & Levi (1991) placed the 

hersiliids in the Eresoidea (Hersiliidae, Oecobidae and Eresidae), basal within the 

Entelegenae, representative species of the Hersiliidae was not included in their analysis.  

Baehr & Baehr (1993a) did not consider these relationships well supported and 

based their phylogenetic analysis on morphoclines. Baehr & Baehr’s first attempt at 

inferring phylogenetic relationships for hersiliids in 1993, included representatives of the 

family from Australia, the Oriental Region and New Guinea. They subsequently also 

proposed a phylogeny for Hersilia from Australia and New Guinea (Baehr 1998). Their 
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hersiliid phylogeny has Hersiliola basal, based on the following plesiomorphic 

characters: short legs, shorter posterior lateral spinnerets, a convex abdomen and no 

flexible zone on the metatarsi of the legs. Tama is defined by longer legs, long posterior 

lateral spinnerets as well as the presence of a flexible zone on the metatarsi of legs I, II, 

and IV whereas Hersilia have a biarticulate metatarsus, very long I, II, and IV legs, and 

armed chelicerae. Rheims and Brescovit (2004) suggested the use of Uroctea as an 

outgroup based on the proposal by Lehtinen (1967) that Hersiliidae is a sister group of 

ecribellate Oecobiids belonging to the genus Uroctea and followed the principles set 

forth by Nixon & Carpenter (1993) for outgroup selection. In spite of the differences in 

approach, their proposed phylogeny correspond with that of Baehr & Baehr (1993a) 

except for placing Neotama and Hersilia as sister groups next to Tamopsis.  

It is evident from these analyses, that Africa could be considered the place of 

origin of the family Hersiliidae. This could be based on the presence of the plesiomorphic 

hook-shaped median apophysis found on the male palp in some Afrtropical Hersilia 

species and the occurrence of the ground dwelling genera of Hersiliidae in Africa. Further 

questions include Baehr & Baehr’s (1993a) suggestion that the southern African species 

presently listed in Tama might need to be transferred to Neotama. The taxonomic status 

of two Oriental genera, Murricia Baehr & Baehr and Promurricia Baehr & Baehr has 

also been brought into doubt (Rheims & Brescovit 2004). Only females are known for 

these two genera and both Baehr & Baehr (1993a) and Rheims & Brescovit (2004) 

suggested that Murricia is a junior synonym of Hersilia and Promurricia a 

morphological intermediate between these two genera.  

However, clarification of these questions would only be possible after a 

worldwide revision of the Hersiliidae. The Afrotropical Region represents the last region 

for which no contemporary revision has been done. Such a revision will shed more light 

on generic delimitations in the family Hersiliidae (e.g. Hersilia, Murricia Simon and 

Promurricia Baehr & Baehr). This thesis will therefore (1) describe, differentially 

diagnose, illustrate, and characterise phylogenetically the genera and species of 

Afrotropical Hersiliidae, summarising their geography, and natural history (2) reconstruct 

the phylogeny of Afrotropical hersiliid species, using quantitative cladistic methods. In 
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this paper a phylogeny for the Hersiliidae from the Afrotropical Region is proposed based 

on 47 species after 920 specimens were examined. 

 

Methods 
A data matrix with 59 characters was constructed for 36 Afrotropical species and 

five non-Afrotropical hersiliid species viz. Neotama cunhabebe (Vellard) from the 

Neotropical Region, Hersilia tibialis Baehr & Baehr and Hersilia jajat Rheims & 

Brescovit from the Oriental Region, Tamopsis eucalypti Baehr & Baehr and Tama 

edwardsi Lucas from the Mediterranean (Appendix A). Murricia uva is an artificial 

amalgamation of M. emlynae males and M. uva females. An outgroup consisting of one 

species of Uroctea sp. indet. from Namibia was included in the matrix based on Lehtinen 

(1967), Coddington & Levi (1991) and Rheims & Brescovit (2004).  

All species with more than 10 ambiguities were excluded from the analysis as 

were all species with one of the sexes unknown. An exemplar was chosen from a set of 

species that were similar in terms of phylogenetically informative characters (Rheims & 

Brescovit 2004). Eleven characters became uninformative because of the exclusion of 

above taxa.  The inclusion of these characters would lead to an artificial increase in the 

consistency and retention indices these eleven characters were also excluded from the 

analysis (Prendini 1999). These characters are, however, retained in the matrix published 

here, as they are informative of relationships with some of the species excluded from the 

analysis (Appendix). Excluded species are included in the summary cladogram (Fig. 2). 

The resulting matrix of 48 characters and 22 taxa was subjected to the analysis.  

Analyses of the unweighted and unordered characters were subjected to heuristic 

searches in Nona (Goloboff 1997). Nona was done with h/1000, mult*1000, jump50. 

Successive weighting with the squared CI was also done in NONA entering the following 

command sequence: run swt.run h10000 h/1000 mult*1000 jump 50. Pee-Wee 2.6 

(Goloboff 1997) was used to obtain trees that maximise implied weights across all 

characters (Goloboff 1993a), with all characters equally weighted (wt = 1) and for both 

ordered and unordered multi-states (h10000;h/1000;mult*1000;jump50;). Pee-Wee 

maximises total fit F=Σfi where fi = k/(k+ESi); k is a constant of concavity and can be 

varied between 1 and 6 with the “concN” command, allowing less (1) or more (6) 
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influence for homoplasious charactes. Concavity constants 1, 3 and 6 were used in this 

analysis. 

Phylogenetic signal was assessed with branch support indices (Bremer 1994). 

Branch support was calculated with NONA 1.8 (Goloboff 1993b) using the options 

h10000; bsupport 100. The Bremer Support for a given node in the shortest unconstrained 

tree is the number of additional steps required in the shortest trees for which that node 

collapses. A branch present in one of the most parsimonious trees is more strongly 

supported by the data if a large increase in length of additional trees is required before 

that branch is lost in the consensus. Branch support was truncated at values of 100 and 

Bremer support values reported range from 0 and or greater. The preferred tree must be 

the shortest, most resolved tree possible i.e. make the most predictions that can be tested 

given only unambiguous branch support (Griswold & Ledford 2001). Preference is, 

therefore, given to synapomorphic characters in the construction of a phylogeny as they 

have the largest predictive power (Farris 1985). 

 

Character descriptions and interpretations 
Character 1. ─ tibia/patella male palp (l=1; uninformative) 

0 = short, close to one  

1 = elongate, more than two 

This character is a synapomorphy for Neoatama cunhabebe and two other Neotropical 

species (Rheims & Brescovit 2004) but is uninformative in this cladogram and is an 

autapomorphy of Neotama cunhabebe.  

 

Character 2. ─ Male palpal tibia form (l = 2; ci = 50; ri = 88).  

0 = absent, palpal tibia cylindrical (Chap. 2, Fig. 9b). 

1 = present, palpal tibia with angular dorsal projection, (Chap. 2, Fig. 15b). 

Presence of such an angular dorsal projection arises as a synapomorphy for Hersilia 

tibialis, H. incompta and H. nicolae and an autapomorphy of H. plara. 

 

Character 3. ─ Palpal tibia, dorsal spines (l = 5; ci = 20; ri = 75) 

0 = absent (Chap. 2, Fig. 9b) 
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1 = present (Chap. 2, Fig. 15b) 

Most Hersiliidae have no spines dorsally on their palps. The presence of these spines is 

very homoplasious and arises several times independently. 

 

Character 4. ─ Cymbium and alveolus shape (l = 2; ci = 50; ri = 0). 

0 = short cymbium with circular alveolus (Rheims & Brescovit 2004: fig. 32).  

1 = elongate cymbium with oval alveolus (Chap. 2, Fig. 2a; Rheims & Brescovit 

2004: fig. 34). 

An elongate cybium with oval alveolus arise independently in Tamopsis and Prima. 

 

Character 5. ─ Cymbium (l = 2; ci = 50; ri = 0) 

0 = narrows gradually (Rheims & Brescovit 2004: fig. 33).  

1 = narrows abruptly (Chap. 5, Fig. 2a; Rheims & Brescovit 2004: fig. 31). 

Rheims & Brescovit (2004) found that this character unites Neotama cunhabebe and two 

other Neotama species. It also is an autapomorphy for Prima. 

 

Character 6. ─ Lamellar modification of the bulbus (l = 2; ci = 50; ri = 66) 

 0 = absent 

 1 = present (Chap. 2, Figs. 4b & 19a) 

The bulbus form laminar projections that surround the median apophysis. The character is 

homoplasious and arises twice as a synapomorphy for the Hersilia incompta species 

group and an autapomorphy for H. arborea. 

 

Character 7. ─ Sperm duct (l = 5; ci = 100; ri = 100).  

0 = no basal modifications (Rheims & Brescovit 2004; fig. 35) 

1 = with basal curvature  (Chap. 1, Fig. 6a) 

2 = with single basal loop (Chap. 1, Fig. 6b) 

3 = with two basal loops  (Rheims & Brescovit 2004; fig. 38) 

4 = repeated curvature (Chap. 1, Fig. 6c) 

5 = basal loop and medial curvature (Chap. 1, Fig. 6d) 
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This character is ambiguous at nodes A, B, C and E. A sperm duct with a basal curvature 

is synapomophic at node H. A single basal loop is homoplasious, derived for Hersiliola 

and at node E.  A meandering sperm duct is apomorphic for Tyrotama whereas a sperm 

duct with a basal loop and medial curvature unites Hersilia jajat and Murricia uva at 

node P. 

 

Character 8. ─ Bulbus with a basal swelling (l = 1; ci = 100; ri =100). 

 0 = absent. 

 1 = present (Chap. 2, Fig. 26i). 

The presence of a basally swollen bulbus unites all taxa in the Hersilia baforti species 

group. 

 

Character 9. ─ Median apophysis (l = 4; ci =25; ri = 40)  

0 = present (Chap. 2, Fig. 2a). 

1 = absent (Chap. 3, Fig. 5a). 

Rheims and Brescovit (2004) suggested that the presence of a median apophysis is 

plesiomorphic based on Griswold et al. (1999) assessment of the secondary repeated loss 

of the median apophysis in several spider families e.g. Eresidae and Filistatidae. This 

character is ambiguous at node B and C, and is lost twice: as an autapomorphy for 

Neotama corticola and a synapomorphy for the Hersilia baforti species group. 

 

Character 10. ─  Median apophysis, shape (l = 4; ci =100; ri = 100). 

0 = hooks-shaped (Chap. 2, Fig. 2a)  

1 = bifid (Chap. 5, Fig. 2a) 

2 = complex with two or more projections (Rheims & Brescovit 2004; fig. 48) 

3 = concave and complex (Chap. 2, Fig. 19a). 

A simple hook-shaped median apophysis is considered to be plesiomorphic (Baehr & 

Baehr 1993a). Although Rheims and Brescovit (2004) suggested that it might be derived 

based on their tree topology. A bifid median apophysis is an autapomorphy of Prima 

ansiae, while a complex median apophysis with two or more projections represents an 
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autapomorphy for the genus Tamopsis. The synapomorphy for Hersilia incompta species 

group is a concave and complex median apophysis. 

 

Character 11. ─ Hook-shaped median apophysis, insertion (l = 3; ci = 100; ri =100) 

0 = basal (between five and seven o’clock) (Rheims & Brescovit 2004: fig. 103) 

1 = medially (Chap. 2, Fig. 2a) 

2 = retrolateral (between two o’clock and four o’clock) (Chap. 2, Fig. 17a & 26f; 

Rheims & Brescovit 2004: fig. 84) 

3 = distally (between eleven and one o’clock (Chap. 5, Fig. 2a) 

This character is ambiguous at node A. A distally originating median apophysis is an 

autapomorphy for Prima and a retrolaterally originating median apophysis is 

synapomorphic at node K. 

 

Character 12. ─ Conductor (l = 1; ci = 100; ri = 100).  

0 = present (Chap. 2, Fig. 3b).  

1 = absent (Chap. 2, Fig. 2a). 

Griswold et al. (1999) and Rheims & Brescovit (2004: 198, character 19) suggested that 

the presence of a conductor is plesiomorpic. Rheims & Brescovit (2004) found that the 

loss of a conductor is apomorphic for the family Hersiliidae. However the character is 

ambiguous at node A and has been retained in the Hersilia baforti species. 

 

Character 13. ─ Conductor size (l = 1; ci = 100; ri = 100). 

0 = large, longer than width of bulbus (Chap. 2, Fig. 3a). 

1 = small, shorter than width of bulbus (Chap. 2, Fig 5a) 

As the loss of the conductor is considered derived (Character 7) the progressive reduction 

in size is also considered derived. The reduction in the size of the conductor varies 

considerably within the Hersilia baforti species group. 

 

Character 14. Conductor with hyaline projection distally (uniformative). 

0 = absent. 

1 = present (Chap 2, Fig. 3a)  
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This character is synapomorphy for Hersilia alluaudi and H. bubi. 

 

Character 15. ─ Conductor with ventral furrow distally (uninformative). 

0 = absent.  

1 = present (Chap. 2, Fig. 26i). 

A ventral furrow arises as a synapomorphy of Hersilia salda and H. dilumen. 

 

Character 16. ─ Sclerotized tegular projection (l = 1; ci =100; ri =100). 

0 = absent.  

1 = present (Chap 2, Fig. 21b). 

This straight projection arises medially on the bulbus and is an autapomorphy of H. 

plara. 

 

Character 17. ─ Slide-like tegular projection (l = 3; ci = 33; ri = 84). 

0 = absent  

1 = present (Chap. 2, Fig. 26a-e, g, h) 

A slide-like tegular projection is homoplasious and unite all Afrotropical Hersiliola 

species as well as Neotama species and is a synapomorphy of Hersilia caudata and H. 

sigillata species groups. 

 

Character 18. ─ Embolus, position from which embolus originate on bulbus (l = 7; ci = 

42; ri = 77). 

0 = prolateral (between eight and ten o’clock) (Chap. 2, Fig. 19a). 

1 = apical (between eleven and one o’clock) (Chap. 3, Fig. 5a). 

2 = basal (between five and seven o’clock)  

3 = retrolateral (between two o’clock and four o’clock) (Chap. 2, Fig. 3a). 

An embolus with an apical origin is very homoplastic. The retrolateral originating 

embolus is a synapomorphy for Hersilia baforti. 

 

Character 19. ─ Embolus length (l = 5; ci = 40; ri = 50) 
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0 = short, not exceeding half the total length of the bulbus or do not complete 

circle around median apophysis (Chap. 2, Fig. 2a). 

1 = long, equal or slightly longer than bulbus length or complete a circle around 

median apophysis (Chap. 2, Fig. 19a). 

2 = very long, at least 1.5 times bulbus length or circles at least 1.5 times around 

median apophysis (Chap. 3, Fig. 2a). 

Reihms and Brescovit (2004) suggested that short emboli are plesiomorphic and long 

emboli are a highly homoplasious character for four taxa: T. eucalypti, N. cunhabebe, and 

nodes M. Very long emboli are a synapomorphy for the genus Hersiliola. 

 

Character 20. ─ Embolus shape (l = 3; ci =100; ri =100). 

0 = filiform, round (Chap. 3, Fig. 5a; Chap. 2, Fig. 2a). 

1 = laminar  (Rheims & Brescovit 2004: figs. 19-22). 

2 = three-cornered (Chap.  2, Fig. 19-22). 

3 = cylindrical (Rheims & Brescovit 2004: figs. 47 & 48). 

A cylindrical embolus is synapomorphic for all Tamopsis species and three-cornered 

emboli are derived character for the Hersilia incompta species group. 

 
Character 21. ─ Embolus projection (l = 1; ci = 100; ri = 100). 

0 = absent.  

1 = present (Chap. 2, Fig. 26a-b) 

Embolic projections are absent from most Afrotropical Hersiliidae except for Hersilia 

caudata, H. occidentalis and H. albicomis.  

 
Character 22. ─ Embolus distally (l = 2; ci = 50; ri =85).  

0 = acute. 

1 = furcated (Chap. 2, Fig. 13a). 

The cladogram suggest that a furcate embolus arise twice in some representatives of the 

Hersilia baforti species group and in Hersilia madagascariensis, 

 

Character 23. ─ Epigynal plate (l = 5; ci = 20; ri = 75). 

0 = entire (Chap. 2, Fig. 21f). 
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1 = median plate with pair of lateral borders (Chap. 2. Fig. 2f). 

Rheims & Brescovit (2004) tree topology suggested that an entire epigynal plate is 

plesiomorphic whereas a divided epigynal plate is apomorphic. 

 
Character 24. ─ Median plate (l = 3; ci = 33; ri =50).  

0 = partially covered by lateral borders (Chap. 2; Fig. 8f). 

1 = free (Chap. 2, Fig. 15f). 

This character was also proposed by Rheims & Brescovit (2004). Their optimization of 

this character were ambiguous at certain nodes but suggested that this character is an 

autapomorphy for Hersiliola and N. corticola and a synapomorphy for the Hersilia 

incompta species group. 

 

Character 25. ─ Median plate (l = 2; ci = 100; ri = 100). 

0 = smooth.  

1 = with lateral sclerotizations or fixing structures (Chap. 2, Fig. 2f). 

2 = rippled (Chap 2, Fig. 19e). 

A rippled lateral border of the median plate is a syanpomorphy of H. incompta species 

group. Fixing structures laterally on the median plate is a synapomorphy at node P for 

Hersilia caudata and H. sigillata species groups. 

 

Character 26. ─ Epigynal plate with atrium surrounded by projecting rim (l = 1; ci = 1; ri 

= 1) 

0 = absent.  

1 = present (Chap. 3, Fig. 5f). 

This character is synapomorphic for Tyrotama. 

 

Character 27. ─ Epigynal plate medially with transverse unpigmented plate (l = 1; ci = 

100; ri = 100). 

0 = absent. 

1 = present (Chap. 2, Fig. 21f). 

A medially transfers unpigmented plate is derived for the H. baforti species group. 
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Character 28. ─ Copulatory openings.  

0 = posterior (Chap. 2, Fig. 2g). 

1= median (Chap. 5, Fig. 2g) 

2 = anterior (Chap. 3, Fig. 4g) 

Copulatory openings open anteriorly of the spermathecae form a synapomorphy for 

Tyrotama and copulatory openings that open mesad are derived for Prima. 

 
Character 29. ─ Copulatory openings (l = 2; ci =100; ri =100). 

0 = inconspicuous. 

1 = conspicuous as oval unsclerotized openings (Chap 2, Fig. 12f). 

2 = conspicuous as circular sclerotizations (Chap. 2, Figs. 4f & 17f). 

Conspicuous circular sclerotizations around the copulatory openings are derived at node 

O. 

 
Character 30. ─ Length of copulatory duct (l = 2; ci = 100; ri =100). 

0 = very long, at least three times spermathecae length (Chap. 3, Fig. 2g). 

1 = median, twice as long as spermathecae length (Chap. 4, Fig. 1b). 

2 = short, equal (Chap 2, Fig. 8g). 

A short copulatory duct is derived at node F, while a median copulatory duct is 

synapomorhic at node N and for Hersilia incompta species group. 

 

Character 31. ─ Copulation ducts (l = 1; ci = 100; ri = 100). 

0 = narrow.  

1 = wide, exceed diameter of fertilization ducts (Chap. 5, Fig. 1g). 

Wide copulation ducts are synapomorphic for the genus Neotama. 

 

Character 32.  ─ Number of spermathecae (l = 5; ci = 40; ri = 40). 

0 = several spermathecae, more than 30 (Chap. 4, Fig. 1b). 

1 = several small and one large (Chap. 2, Fig. 27g). 

2 = one large spermathecae (Chap. 2, Fig. 2g). 
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Forster (1980) suggested a possible evolutionary sequence starting with Grandungula 

sorenseni where the invagination of bursal wall with several small spermathecae forms a 

stable bilobed arrangement of the spermathecae and a seminal receptacle. The possible 

loss of these secondary spermathecae would then give rise to the bilobed structure found 

in Hersilia sigillata group. The presence of multiple, more than 30, small spermathecae 

are most apparent in Murricia uva (Chap. 4, Fig. 2b). The tree topology suggests that that 

character is ambiguous at node A. several small spermathecae and one large 

spermathecae unites the Hersilia sigillata species group. 

 

Character 33. ─ Spermathecae shape (l = 5; ci = 40; ri = 62). 

0 = globose (Chap. 2, Fig. 2g). 

1 = cylindrical (Chap. 2, Fig. 5g). 

2 = kidney-shaped (Chap. 2, Fig. 27g). 

 
Character 34.  ─ Spermathecae stalk (l = 4; ci =25; ri = 40). 

0 = absent (Chap. 2, Fig. 5g). 

1 = present (Chap. 2, Fig. 2g). 

Rheims & Brescovit (2004) proposed stalked spermathecae as synapomorphies for 

Hersilia and Hersiliola respectively. The tree topology, however, suggests that this does 

not hold true for Hersilia where several taxa retained the plesiomorphic state. 

 

Character 35.  ─  Number of seminal receptacles (l = 3; ci =100; ri = 100). 

0 =  more than two.  

1 = two. 

2 = one, large hyaline (Chap. 3, Fig. 5g). 

3 = one, small sclerotized (Chap. 2, Fig. 2g). 

4 = none. 

This character is ambiguous at node A. The definition of a seminal receptacle here is 

taken from Rheims & Brescovit (2004) sensu (Sierwald 1999) as opening directly into the 

spermathecae and its stalk with no connection to the fetrilisation duct or copulatory duct. 

Forster (1980) suggested that the presence of large unsclerotized, membranous hyaline 
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seimnal receptacle is plesiomorphic (Tyrotama australis and T. bicava, Chap. 3, Figs. 6g 

& 6g). The reduction in number, size and sclerotization of the seminal receptacle is 

considered derived. The presence of a large hyaline seminal receptacle is synapomorphic 

for the genus Tyrotama.  

 

Character 36. ─ Seminal receptacle shape (l = 7; ci = 28; ri = 44). 

0 = globose (Chap. 2, Fig. 2a). 

1 = cylindrical (Chap. 4, Fig. 1b).  

2 = kidney-shaped (Chap. 2, Fig. 8g). 

 

Character 37. ─ Position of seminal receptacle (l = 4; ci = 25; ri = 57). 

0 = laterally of spermathecae (Chap. 2, Fig. 2g).  

1 = medially of spermathecae (Chap. 2, Fig. 13g). 

The cladogram suggests that a seminal receptacle laterally positioned in relation to the 

spermathecae is plesiomorphic. 

 

Character 38. ─ Seminal receptacle borders (l = 2; ci = 50; ri = 90). 

0 = smooth. 

1 = with distal tubercle, often with glandular parts covered by threads. 

Baehr & Baehr (1993a) referred to this character as glandular parts covered by threads. 

This character is synapomorhic for all Hersilia. It reverses at node Q. 

 
Character 39. ─ Clypeus length (l = 5; ci = 40; ri = 72). 

0 = short, less than median ocular quadrangle length (Chap. 2, Fig 10d). 

1 = long, less than twice median ocular quadrangle length (Chap. 2, Fig. 9d). 

2 = very long, more than twice median ocular quadrangle length (Chap. 3, Fig. 

5d). 

A long clypeus unites all ground dwelling hersiliids.  

 
Character 40. ─ ALE/AME (uninformative). 

0 = <0.6.  

1 = >0.7 (Chap. 2, Fig. 27g). 
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Rheims and Brescovit (2004: 194, character 2) identified the enlarged ALE, that is 

usually small and barely conspicuous, as an apomorphy of the genus Yabisi. In this tree 

topology it is autapomorphic for H. sigillata. 

 
Character 41. ─ Interdistance AME-ALE (uninformative). 

0 = equal or smaller than 1.5 AME diameter.  

1 = more than twice AME diameter (Chap. 2, Fig. 27c). 

Rheims and Brescovit (2004: 1945, character 3) observed the projection of the AME 

anteriorly on the carapace and that it arised as a synapomorphy for all members of Yabisi. 

In this tree topology it is autapomorphic for H. sigillata. 

 

Character 42. ─ Lateral eyes (l = 2; ci 50; ri = 0).  

0 = on slightly conspicuous tubercles. 

1 = on prominent tubercles (Chap. 4, Fig. 2d). 

Baehr & Baehr (1993: 84, character 4) proposed that eyes on prominent tubercles are 

apmorphy for the genus Murricia. Rheims & Brescovit (2004: 194, character 1) 

cladogram suggests that it is a synapomorphy for Yabisi. In this analysis it is an 

autapomorphy of H. sigillata and M. uva. 

 
Character 43. ─ cheliceral teeth on promargin (l = 1; ci =100; ri = 100). 

0 = present (Fig. 5c).  

1 = absent. 

If present, there are usually three large cheliceral teeth on the promargin. The loss is 

derived for all groundliving hersiliids (node B). 

 
Character 44. ─ cheliceral teeth on retromargin (l = 1; ci =100; ri = 100). 

0 = present (Fig. 5c). 

1 = absent. 

According to Griswold et al. (1999) the presence of cheliceral teeth on the pro- and 

retromargin is plesiomorphic. Rheims and Brescovit (2004) interpreted a cheliceral 

groove as a reversal in Hersiliidae. In this analysis the cheliceral groove is retained as a 

plesiomorphic character. 
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Character 45. ─ Abdomen: pattern on dorsum (l = 2; ci = 100; ri = 100). 

0 = lancet-shaped heart mark (Chap. 1, Fig 4a). 

2 = rectangular (Chap. 4, Fig. 4b). 

1 = heart mark heart mark broadens distally, form triangle (Chap 2. Fig. 5e). 

 

Character 46. ─ Female abdomen with two pairs of tubercles laterally (l =1; ci = 100; ri = 

100). 

0 = absent. 

1 = present (Chap2, Fig. 19c). 

The presence of two pairs of tubercles laterally on the abdomen is a synapomorphy for 

Hersilia nicolae and H. incompta. A smooth abdomen is considered plesiomorphic. 

 

Character 47. ─ Dorsal muscular pit number (l = 3; ci = 66; ri = 50). 

0 = <4 (Chap. 3, Fig. 6e). 

1 = 4 (Chap. 2, Fig. 2e). 

2 = 5 (Chap. 4, Fig. 5e). 

The conspicuous dorsal muscular pits found in most hersiliids give rise to a dorso-

ventrally flattened abdomen in all arboreal hersiliids uniting them as a group. 

  

Character 48. ─ Relative length of leg III to leg I (l = 2; ci = 50; ri = 66). 

0 = more than 0.6. 

1 = less than 0.4. 

The cladogram suggests that a long leg III is plesiomorphic and relative shortening of leg 

III is derived. There is, however, uncertainty whether it was due to a shortening of leg III 

or lengthening of leg I, II, and IV (Baehr & Baehr 1993a; Rheims & Brescovit 2004). The 

character is ambiguous at nodes A and B. 

 

Character 49. ─ Relative length of leg IV to leg I (l = 1; ci = 100; ri = 100) 

0 = leg IV longer than both leg I and II  

1 = leg IV shorter than both leg I and II 
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Elongate leg I and II is a synapomorphy for all arboreal hersiliids at node E. 

 

Character 50. ─ Metatarsi articulation of leg I, II, and III (l = 4; ci = 75; ri =83). 

0 = uniarticulate.  

1 = elongate flexible zone (Fig. 5f). 

2 = narrow flexible zone. 

3 = biarticulate (Fig. 5e). 

Baehr (1998) suggested a possible evolutionary sequence in which an elongate flexible 

zone is reduced in length to form a narrow flexible zone and ultimately develop into a 

biarticulation. A biarticulate metatarsus is synapomorphic at node K whereas a narrow 

flexible zone is derived for Neotama. The uniarticulate legs of Hersiliola and Tyrotama is 

a reversal. 

 
Character 51. ─ Metatarsus/tarsus (l = 2; ci = 50; ri = 60). 

0 = Less than four.  

1 = More than six. 

This character is also ambiguous at nodes A and B. 
 
Character 52. ─ Leg spine microstructure (l = 1; ci =100; ri = 100). 

0 = Scale-like projections (Fig. 3e,g & h). 

1 = longitudinal grooves dorsally (Fig. 3f).   

Electron micorgraphs of large spines on the legs of specimens suggest that scale-like 

projections on the surface of these spines are plesiomorphic as it is also found in Uroctea. 

The longitudinal grooves dorsally on the spines of Hersiliola and Tyrotama are derived. 

 
Character 53. ─ Metatarsal trichobothria (uninformative). 

0 = one to two. 

1 = four. 

Griswold (2004: 56, character 5) noted that the presence of more than two metatarsal 

trichobothria is derived for entelegyne spiders. The presence of four trichobothria distad 

on the metatarsi of hersiliids represents a synapomorphy for the family. 
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Character 54. ─ Claw tuft hairs (uninformative).  

0 = absent.  

1 = present (Fig. 3d). 

Rheims & Brescovit (2004: 195, character 8) considered the thick claw tufts found in all 

hersiliids to be a synapomorphy for the family.  

 

Character 55. ─ Legs spination, ventral surface  (l = 2; ci = 100; ri = 100). 

0 = pair of parallel rows of strong spines along the entire leg.  

1 = pair of parallel rows of strong spines only along femora strong spines absent. 

2 = strong spines absent. 

Rheims & Brescovit (2004) noted the presence of two rows of strong spines ventrally 

along the entire length of Uroctea legs. In the ground active representatives of Hersiliidae 

these rows are restricted to the femora and they are absent in arboreal hersiliids (node E). 

 

Character 56. ─ Feathery hairs (uninformative). 

0 = absent.  

1 = present (Fig. 3a). 

Griswold et al. (1999: 56, character 18) considered the precence of feathery hairs as 

derived. This character is a synapomorphy for all hersiliids. 

 

Character 57. ─ PLS: tS/bS  

0 = Close to one.  

1 = more than three times. 

A synapomorphy for all arboreal hersiliids (node E) is the terminal segment of the 

posterior lateral spinnerets that are very elongate, at least three times the length of the 

basal segment (Baehr & Baehr 1993a: 84, character 21).  

 
Character 58. ─ Anal tubercle (uninformative). 

0 = large.  

1 = small. 
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Griswold et al. (1999: 56, character 80) suggest that a small anal tubercle is 

plesiomorphic. However the polarity proposed by Rheims & Brescovit (2004) is accepted 

in this analysis where a large anal tubercle is plesiomorphic. The small anal tubercle of 

all hersiliids is therefore derived. 

 
Character 59. ─ Habitat (l = 1; ci = 100; ri = 100). 

0 = ground-dwelling.  

1 = arboreal. 

Both Baehr & Baehr (1993a) and Rheims & Brescovit (2004) suggested that ground 

active behaviour is plesiomorphic in Hersiliidae. The latter authors also noted that Tama 

edwardsi has elongated spinnerets and modified metatarsi, suggesting that this species 

were pre-adapted for an arboreal life style. An alternative could be that arboreal habits are 

plesiomorphic and ground-dwelling in the arid regions of the Afrotropical and Palearctic 

Regions are derived. A compelling argument for it is the absence of ground active 

representatives of Hersiliidae in the Neotropical, Australian and Oriental Regions. 

 

Discussion  
Heuristic searches of the matrix in NONA with characters unweighted resulted in 

two most parsimonious trees (L = 126; CI = 59; 71). Successive weighting of the 

unordered multi-state matrix in NONA, generated one most parsimonious tree of 126 

steps that corresponds with results obtained with implied weights where k values were 1, 

3, and 6 (Table 1). All four trees resemble one of the trees found in the unweighted 

search; this is the preferred tree (Fig. 1). The second tree differs only in the placement of 

the Hersilia sigillata species group.  

The proposed phylogeny is largely congruent with that of Baehr & Baehr (1993a) 

and Rheims & Brescovit (2004) except that the groundliving hersiliids form a sister group 

to the arboreal hersiliids based on the absence of cheliceral teeth on the pro- and 

retromargin of the chelicerae and the longitudinal grooves dorsally on their spines. Tama 

edwardsi is basal in this sister group, not Hersiliola as is the case in the tree topologies of 

both Baehr & Baehr (1993a) and Rheims & Brescovit (2004). The Afrotropical species of 

Tama appear in a distinct clade, which is not closely related to the genus Tama. This 

excludes Tama from the Afrotropical region and confirms Baehr & Baehr’s (1993) 
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suggestion. As such, the genus new Tyrotama is described to include Hersiliola australis, 

H. fragilis, Tama arida, T. bicava, T. incerta and the new species T. gamkasiensis, T. 

makaliensis and T. taris. The new genus is based on the following synapomorphies: 

epigynal plate with an atrium, copulatory openings that open anteriad of the spermathecae 

and large hyaline seminal receptacles. 

The Afrotropical species, Hersilia corticola is closely related to Neotama based 

on the presence of a narrow flexible zone on the metatarsi and a wide copulatory duct. 

Therefore H. corticola were transferred to Neotama. Two new specie Prima ansiae and 

P. syda appear as a separate clade because the following syanapomorphic characters: a 

bifid median apophysis that originate distally on the bulbus, median copulatory openings, 

an elongate cymbium with an oval alveolus, and a cymbium that narrows abruptly. 

The remaining Afrotropical species were placed in a distinct clade based on the 

possession of a biarticulation on their meratarsi I, II, and IV. This clade appears sub-

divided into six species groups. H. baforti species group which consist of H. alluaudi, H. 

bubi, H. clarki, H. dilumen, H. ferra, H. plara, H. salda, H. unca, H. vanmoli, H. 

woutrinae. This taxon forms a monophyletic group based on the presence of  a basal 

swelling on the bulbus, an embolus that originate retrolaterally on the bulbus, the 

presence of a transverse unpigmented area posteriad on the median plate and a heart mark 

that broadens posteriorly to form a triangle. The new species Murricia uva and the 

Oriental species Hersilia jajat appear as sister groups based on the sperm duct that has a 

basal loop and a medial curvature and the possession of smooth seminal receptacles. 

Hersilia incompta, H.nicolae and the Oriental species H. tibialis form a monophyletic 

unit due to the presence of a concave and complex median apophysis, a three cornered 

embolus, the median plate of the epigynum that has ripples laterally and the embolus that 

originate prolaterally on the bulbus. H. madagascariens and H. arborea group together 

because of a concave median apophysis, the retrolateral origin of the median apophysis 

and the presence of conspicuous sclerotizations around the copulatory openings. The 

monophyletic unit consisting of Hersilia caronae, H. insulana, H. sigillata and H. vinsoni 

has the following synapomorphic character: The possession of several small 

spermathecae basally on a large spemathecae. The remaining species, Hersilia albicomis, 
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H. caudata, H. occidentalis, H. pungwensis, H. sericea, H. setifons and H. tamatavensis 

is monophyletic evidenced by the triangular projection distad on the embolus. 

Synapomorphies that unite these species groups are more consistent than those 

that unite all these species it would be preferable to erect a genus for each of these. I do 

however feel that to erect these genera in the absence of other species groups within 

Hersilia, notably those from the Oriental Region, is premature. Cladistic support for the 

Hersilia caudata and H. sigillata species groups is also weak.  

The paucity of hersiliid species with biarticulate metatarsi in the Neotropical and 

Australian Regions except for representatives of Hersilia in the far northern parts of 

Australia, suggest that the group had its origins before the break up of Gondwanaland. 

The distribution of Hersilia incompta and Hersilia caudata species groups as well as 

Murricia throughout the Oriental and Afrotropical Region point to the colonisation, 

presumably repeatedly, of hersiliid species from the Afrotropical Region after the closure 

of the Thetys sea (Sierwald 1997).  

Although some of the species groups in Hersilia are supported by several 

synapomorphies, their basal relationships are uncertain. The monophyly of the genus 

Hersilia is questioned as it is based on weak evidence that includes the possession of 

glandular parts covered by threads on seminal receptacles. The current classification is, 

however, retained until a world-wide revision of the family is completed. 

 

Taxonomy 
Family Hersiliidae Thorell 1870 (Figs. 4,5) 

 

Herséliensis Simon, 1864: 343 (Lycosiformes, in part) 

Hersilioidae Thorell, 1870: 109, 114; Ausserer, 877: 110 

Chalinuroidea Thorell, 1873: 605; Kaston, 1938: 640 (Chalinuroidae = Hersiliidae) 

Hersilidae Simon, 1874: 14, 15 (lapsus) 

Hersiliidae Simon, 1882: 255; Lucas, 1869: 1; Simon, 1893: 440; Smithers, 1945: 1; 

Benoit, 1967: 1; Baehr & Baehr, 1987: 351; 1993a: 3; Dippenaar-Schoeman & Jocqué, 

1997: 181; Levi, 2003: 1; Rheims & Brescovit, 2004: 202; Wunderlich 2004: 814.  
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Type genus: Hersilia Audouin, 1827.  

 

Diagnosis  

Three-clawed, ecribelate, entelegyne spiders; posterior lateral spinnerets long, terminal 

segment tapering, longer than basal segment; legs very long, longest leg at least 1.4× 

times total body length. Hersiliidae differs from Oecobiidae in the reduced anal tubercle; 

plumose setae that cover cephalothorax and abdomen; modified claw tufts surrounding 

tarsal claws (Fig. 3d); 3-5 trichobothria distad on metatarsi.  

 

Description  

Size: small to medium (3-13 mm).  

Colour: varies from golden brown to white to almost black with mottled 

appearance 

Carapace: ovoid and flattened, as wide as long; narrow longitudinal fovea with 

three pairs of radiating striae; densely covered with plumose setae. Cephalic region 

moderately elevated, thoracic region inclined (Chap. 3, Fig. 8c) or raised, higher than 

thoracic region and thoracic region flattened. Eyes: eight in two strongly recurved rows 

(Fig. 4); anterior median eyes often largest; lateral eyes on inconspicuous (Chap. 2, Fig. 

31c,d) or conspicuous tubercle (Chap. 4, Fig. 2d). Clypeus length variable, short (Chap. 

5, Fig. 1d) or very elongate (Chap. 3, Fig. 6d) Chelicerae: unarmed (Tyrotama Tama, and 

Hersiliola); armed with three large teeth on promargin and 5-11 minute teeth on 

retromargin (Hersilia, Murricia, Neotama, and Prima); labium free with rounded tip; 

endites oblique often touching each other. Sternum: heart-shaped, anterior edge straight 

or slightly convex. 

Abdomen: dorsoventrally flattened, with 4-5 distinct dorsal muscular pits 

(Hersilia, Murricia, Neotama, Prima, and Tama) (Fig. 4a) or convex with four or less 

indistinct dorsal muscular pits (Tyrotama, Hersiliola) (Fig. 4b); abdomen oval to 

triangular in shape; densely covered with plumose setae (Fig. 3a); respiratory system: two 

booklungs; tracheal spiracle opening close to spinnerets; anal tubercle small, reduced. 

Spinnerets: six spinnerets; posterior lateral spinnerets longer than cephalothorax width 
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(Hersilia, Murricia, Neotama, and Prima), shorter than cephalothorax width (Tyrotama 

Tama, and Hersiliola); cylindrical with elongated and tapering terminal segment; inner 

surface with series of long spinules producing the thin silk threads (Figs. 5b,c).  

Legs: three claws with modified claw tufts surrounding claws (Fig. 3d); unpaired 

claw simple with two teeth; paired claws with 5-12 minute teeth, legs very long; leg III 

shortest; All legs, except leg III with metatarsi uniarticulate (Tyrotama, Hersiliola, and 

Yabisi), elongate flexible zone distad (Prima, Tama, Tamposis and Iviraiva), narrow 

flexible zone (Neotama), biarticulate (Hersilia and Murricia); 3-5 trichobothria distad on 

metatarsi; legs with few spines of which scale-like projections covering spine surface 

(Fig. 3e,g) (Hersilia, Murricia, Neotama, Prima), or spines dense, longitudinal grooves 

dorsally (Fig. 3f) (Tyrotama, Tama, and Hersiliola); autospasy occurs at patella-tibia 

joint. 

Epigyne: Epigynal plate entire (Chap. 2, Fig. 13f) or longitudinally devided into 

three parts, a median plate and two lateral borders (Chap. 2, Fig. 2f); median plate free 

(Chap. 2, Fig. 14a) or slightly covered by lateral borders (Chap. 3, Fig. 2f); median plate 

smooth (Chap. 3, Fig. 2f) with sub-triangular (Chap.2, Fig. 24f), sickle-shaped fixing 

structures laterally (Chap. 2, Fig. 8f), atrium surrounded by a sclerotized rim (Chap. 3, 

Fig. 5f) or semicircular pockets (Chap. 2, Fig. 19f). Copulation openings posterior (Chap. 

2, Fig. 2g), medial (Chap. 5, Fig. 2g) or anterior (Chap. 3, Fig. 5g); copulatory ducts 

simple short (Chap. 2, Fig. 2g), simple, elongate, as long as epigynal plate (Chap. 2, Fig. 

19e) or coiled (Chap. 3, Fig. 2g). Spermathecae large, hyaline (Chap. 3, Fig. 5g), small 

sclerotized (Chap. 2, Fig. 2g); spermathecae shape varies from globose (Chap. 2, Fig. 2f), 

cylindrical (Chap. 2, Fig. 5g; Chap. 4, Fig. 1b) to subtriangular (Chap. 2, Fig. 27g). 

Seminal receptacles, absent (Chap. 3, Fig. 5g), unique (Chap. 2, Fig. 2g), several and 

small (Chap. 2, Fig. 8g) several and large (Chap. 4, Fig. 1b); fertilization ducts short, 

curved (Chap. 2, Fig. 2g) elongate, straight (Chap. 2, Fig. 19e), elongate with medial 

curve (Chap. 2, Fig. 13g) 

Palps: tibiae short as long as patellae, apophysis and modified structures absent; 

cylindrical (Chap. 2; Fig. 2a,b) or with dorsal projection (Chap. 2, Fig. 19a,b) spines 

absent (Chap. 2, Fig. 2a,b) or two to seven strong spines present on promargin (Chap. 2, 

Figs. 19a,b & Fig. 24b); Ventrally with several setae that extends in front of bulbus 
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(Chap. 2, Fig. 2a). Cymbium covered with short setae; elongate setae laterally extends in 

front of bulbus (Chap. 2, Fig. 24b; Chap. 5, Fig. 1a); 2-7 strong spines apically; cymbium 

compact, not projecting much beyond bulbus (Chap. 3, Fig. 5a);  apex narrowing abruptly 

beyond bulbus (Chap. 4, Fig. 1a), digitate, (Chap. 3. Fig. 2a); bulbus, globose (Chap. 3, 

Fig. 5a), flattened (Chap. 3, Fig. 2a), round (Chap. 2, Fig. 2a) or basally swollen (Chap. 2, 

Fig. 3a); subtegulum semicircular, sclerotized and entire; tegulum with tegular projection 

(Chap. 2, Fig.3a) or basal embolar process that accompanies the embolus (Chap. 2, Fig. 

3a & 6a) or slide like tegular projection of varying sizes that accompany embolus often 

forming a fulcrum in which the embolus lies (Chap. 2, Fig. 26h); embolus stout, hook-

shaped (Chap. 3, Fig. 5a), filiform (Chap. 2, Fig. 2a); angular (Chap. 2, Fig. 19a); 

embolic projections usually absent, when present subapical (Chap. 2, Fig. 26a,c); origin 

apical (Chap. 2, Fig. 2a), basal (Chap. 3, Fig. 2a), or prolateral (Chap.2, Fig. 19a); sperm 

duct regularly curved (Chap. 2, Fig. 2a); repeated curvature (Chap. 3, Fig. 6a); incurved 

(Chap. 2, Fig. 3a,b);  complexly coiled (Chap. 4, Fig. 2a). Median apophysis, if present, 

hook-shaped, sclerotized, convex, apex acute (Chap. 2, Fig. 2a) (Chap. 2, Fig. 2a), hook-

shaped, sclerotized, concave, apex acute with (Chap. 2, Fig. 8a) or without basal 

projection (Chap. 2, Fig. 16a); or apex truncate (Chap. 2, Fig. 28a,b), complex, 

sclerotized (Chap. 2, Fig. 19a), bifid (Chap. 5, Fig. 2a); insertion medial (Chap. 2, Fig. 

2a) or distal (Chap. 5, Fig. 3a; Chap. 4, Fig. 2a).  

Composition. Hersilia Audouin, 1826 – 73 species; Hersiliola Thorell, 1870 – 

seven species; Murricia Simon, 1882 – 5 species; Tama Simon, 1882 – 1 species; 

Tamopsis Baehr & Baehr, 1987 – 49 species; Neotama Baehr & Baehr, 1993 – 1 species; 

Ypypuera Rheims & Brescovit, 2004 – three species; Ivivraiva Rheims & Brescovit, 2004 

– two species; Yabisi Rheims & Brescovit, 2004 – two species; Tyrotama – nine species; 

Prima – two species. 

Distribution. Tropical and subtropical zones worldwide. The genus Hersilia from 

the Palearctic, Afrotopical, Oriental and Australian Regions; Hersiliola from the 

Palearctic and Afrotropical Regions; Murricia from the Oriental and Afrotropical 

Regions; Prima from the Afrotropical Region; Promurricia from the Oriental Region; 

Neotama from the Oriental and Afrotropical Regions; Tama from the Palearctic region; 
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Tyrotama from the Afrotropical Region; Ypypuera and Iviraiva from the Neotropical 

Region; Yabisi from the Nearctic and Neotropical Regions. 

Phylogenetics. The family Hersiliidae forms a monophyletic unit based on the 

elongate cylindrical terminal segment of the posterior lateral spinnerets. The presence of 

tarsal claw tufts, a small anal tubercle, four trichobothria distad on the metatarsi and the 

presence of feathery hairs that cover most of the body. 
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Key to the genera of Hersiliidae from the Afrotropical Region 
1. Chelicerae unarmed; posterior lateral spinnerets < carapace width; leg IV longest; 

thoracic region of carapace sloping (Chap.3; Fig. 4c)..……………………………2 

 Chelicerae armed; posterior lateral spinnerets > carapace width; leg I or II longest; 

thoracic region of carapace dorso-ventrally flattened (Chap.3; Fig. 3c)……..…...4 

  

2. Metatarsi with elongate flexible zone in distal third; leg III < 0.4× leg I…………... 

…………………………...……..…………………………………....Tama (Simon) 

 Metatarsi uniarticulate, leg III > 0.5 times leg I..……………..…………….……..3 

  

3. Seminal receptacle, small and sclerotized; bulbus flattened with regularly curved 

sperm duct; embolus coiled, elongate, filiform; median apophysis hook-shaped 

(Chap. 3; Fig. 2a,b).................……...…………..……...……....Hersiliola (Thorell) 

 Seminal receptacle large, unsclerotized; bulbus globose, sperm duct meandering; 

embolus short, stout, originate distally on bulbus; tegular apophysis, if present, , 

short stout distad on bulbus (Chap. 3; Fig.  5a)………………...Tyrotama gen. nov. 

  

4.  Metatarsi distally with flexible zone on legs I, II, and IV………….….……..……5 

 Metatarsi biarticulate in legs I, II, and IV…….....…………………………………6 

  

5. Distal third of metatarsus I,II, IV flexible…….………. ………......Prima gen. nov.

 Narrow flexible zone in distal third of metatarsi I, II, and III……………………… 

………………………………………………………….…Neotama Baehr & Baehr 

  

6. Five pairs of dorsal muscular pits, second pair small, postero-mesad of first pair 

(Chap. 4; Fig. 2e); abdomen sub-triangular to sub-quadrate; dorsal surface of eye 

area concave; segment………..……..……………….…………....Murricia Simon 

 Four pairs of dorsal muscular pits; abdomen ovoid to obovate; dorsal surface of 

eye area convex; distal segment of metatarsi variable in >0.3 and <0.8 times 

proximal segment………………………………………………...Hersilia Audouin 
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Table 1. Summary of statistical and topological differences among the most 

parsimonious trees (MPTs) obtained by analysis with equal weights (EW), Successive 

weights (SW and Implied weights (IW) with three values for the Concavity Constant (k). 

 
 MPTs Steps CI RI 
EWu 2 126 59 71 
SWNu 1 126 59 71 
IWu = 1 1 126 59 71 
IWu = 3 1 126 59 71 
IWu = 6 1 126 59 71 
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Appendix 1. Character matrix with all the characters (uninformative included) and species (taxa with more than ten missing 

characters) included. 
 

 Characters     
 1 2 3 4 5 6 7 8 9 1

0
1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0 

3
1 

3
2 

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9 

Uroctea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Tyrotama australis 0 0 0 0 0 0 4 0 1 - - 1 - - - 0 0 0 0 0 0 0 1 0 0 1 0 2 0 0 0 2 0 0 2 0 1 0 2 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 1 0 
Hersiliola macullulata 0 0 0 0 0 0 2 0 0 0 1 1 - - - 0 1 1 2 0 0 0 1 1 0 0 0 0 0 0 0 2 0 1 3 0 1 0 2 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 
Tyrotama arida 0 0 0 0 0 0 4 0 1 - - 1 - - - 0 0 1 0 0 0 0 1 0 0 1 0 2 0 0 0 2 0 0 2 0 1 0 2 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 1 0 
Murricia uva 0 0 0 0 0 0 5 0 0 0 1 1 - - - 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 3 1 1 0 1 0 0 1 0 0 0 0 2 1 1 3 1 0 1 1 2 1 1 1 1 
Prima ansiae 0 0 0 1 1 0 1 0 0 2 3 1 - - - 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 0 2 1 0 3 0 - 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 2 1 1 1 1 
Neotama corticola 0 0 0 0 0 0 2 0 1 - - 1 - - - 0 1 2 0 0 0 0 1 1 0 0 0 0 0 2 1 2 1 0 3 1 0 0 0 0 0 0 0 0 0 0 1 1 1 2 1 0 1 1 2 1 1 1 1 
Hersilia albicomis 0 0 1 0 0 0 1 0 0 0 1 1 - - - 0 1 1 0 0 1 0 1 0 1 0 0 0 0 2 0 2 0 1 3 0 0 1 1 0 0 0 0 0 0 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia alluaudi 0 1 1 0 0 0 1 1 1 - - 0 0 1 0 1 0 3 0 0 0 1 0 - - 0 1 0 0 2 0 2 1 0 3 1 1 1 0 0 0 0 0 0 2 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia arborea 0 0 0 0 0 1 1 0 0 1 2 1 - - - 0 0 2 0 0 0 0 1 0 0 0 0 0 2 2 0 2 0 1 3 0 1 1 2 0 0 0 0 0 0 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia baforti 0 0 0 0 0 0 1 1 1 - - 0 1 0 0 0 0 3 0 0 0 0 0 - - 0 1 0 0 2 0 2 1 0 3 1 1 1 0 0 0 0 0 0 2 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia beva 0 1 1 0 0 0 1 1 1 - - 0 1 0 0 0 0 3 0 0 0 0 0 - - 0 1 0 0 2 0 2 1 0 3 1 1 1 0 0 0 0 0 0 2 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia caronae 0 0 1 0 0 0 1 0 0 0 1 1 - - - 0 1 1 0 0 0 0 1 0 1 0 0 0 0 2 0 1 1 0 3 1 0 1 1 0 0 0 0 0 0 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia caudata 0 0 0 0 0 0 1 0 0 0 1 1 - - - 0 1 1 0 0 1 0 1 0 1 0 0 0 0 2 0 2 0 1 3 0 0 1 1 0 0 0 0 0 0 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia clarki 0 0 0 0 0 0 1 1 1 - - 1 - - - 0 0 1 0 0 0 0 - - - - - - - - - - - - - - - - 0 0 0 0 0 0 2 - 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia madagascariensis 0 0 1 0 0 0 1 0 0 1 2 1 - - - 0 0 1 0 0 0 1 0 - - 0 0 0 2 2 0 2 0 1 3 1 0 1 1 0 0 0 0 0 0 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia dilumen 0 1 1 0 0 0 1 1 1 - - 0 0 0 1 1 0 3 0 0 0 1 - - - - - - - - - - - - - - - - 0 0 0 0 0 0 2 - 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia eloetsensis 0 0 1 0 0 0 1 0 0 0 1 1 - - - 0 0 1 0 0 0 0 - - - - - - - - - - - - - - - - 1 0 0 0 0 0 0 - 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia ferra 0 1 0 0 0 0 1 1 1 - - 0 1 0 0 0 0 3 0 0 0 1 0 - - 0 0 0 1 1 0 2 1 0 3 0 1 0 0 0 0 0 0 0 2 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia bubi 0 1 1 0 0 0 1 1 1 - - 0 1 1 0 0 0 3 0 0 0 1 0 - - 0 1 0 0 2 0 2 1 0 3 0 1 1 0 0 0 0 0 0 2 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia hildebrandti 0 - - 0 0 - - - - - - - - - - - - - - - - - 1 1 0 0 0 1 0 2 0 2 0 1 3 0 1 0 1 0 0 0 0 0 0 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia incompta 0 1 1 0 0 1 1 0 0 4 - 1 - - - 0 0 0 1 2 0 0 1 1 2 0 0 0 0 1 0 2 1 0 3 1 0 1 1 0 0 0 0 0 0 1 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia insulana 0 0 1 0 0 0 1 0 0 0 1 1 - - - 0 1 1 0 0 0 0 1 0 1 0 0 0 0 2 0 2 1 0 3 2 0 1 1 0 0 0 0 0 0 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia moheliensis 0 0 0 0 0 0 1 0 0 1 1 1 - - - 0 1 1 0 0 0 0 - - - - - - - - - - - - - - - - 0 0 0 0 0 0 0 - 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia nicolae 0 1 1 0 0 1 1 0 0 4 - 1 - - - 0 0 0 1 2 0 0 1 1 2 0 0 0 0 1 0 2 1 0 3 1 0 1 1 0 0 0 0 0 0 1 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia occidentalis 0 0 1 0 0 0 1 0 0 0 1 1 - - - 0 1 1 0 0 1 0 1 0 1 0 0 0 0 2 0 2 0 1 3 0 0 1 1 0 0 0 0 0 0 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia plara 0 1 1 0 0 0 1 1 1 - - 0 0 0 0 1 0 3 0 0 0 1 0 - - 0 1 0 0 2 0 2 1 0 3 1 1 1 0 0 0 0 0 0 2 0 1 1 - 3 1 0 1 1 2 1 1 1 1 
Hersilia pungwensis 0 0 0 0 0 0 1 0 0 0 1 1 - - - 0 0 1 0 0 0 0 - - - - - - - - - - - - - - - - 1 0 0 0 0 0 0 - 1 1 1 3 1 0 1 1 2 1 1 1 1 
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Hesrilia salda 0 0 1 0 0 0 1 1 1 - - 0 0 0 1 1 0 3 0 0 0 1 0 - - 0 0 0 1 1 0 2 0 1 3 0 1 1 1 0 0 0 0 0 2 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia scopulae 0 0 1 0 0 0 1 0 0 1 1 1 - - - 0 1 1 0 0 0 0 - - - - - - - - - - - - - - - - 1 0 0 0 0 0 0 - 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia sericea 0 0 1 0 0 0 1 0 0 0 1 1 - - - 0 1 1 0 0 0 0 1 0 1 0 0 0 0 2 0 2 0 1 3 0 0 1 1 0 0 0 0 0 0 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia setifrons 0 0 0 0 0 0 1 0 0 0 1 1 - - - 0 1 1 0 0 0 0 1 0 1 0 0 0 0 2 0 2 0 1 3 0 0 1 1 0 0 0 0 0 0 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia sigillata 0 0 0 0 0 0 1 0 0 0 1 1 - - - 0 1 1 0 0 0 0 1 0 1 0 0 0 0 2 0 1 2 0 3 2 0 1 0 1 1 1 0 0 0 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia tamatavensis 0 - - 0 0 0 1 0 0 0 1 1 - - - 0 1 1 0 0 0 0 - - - - - - - - - - - - - - - - 0 0 0 0 0 0 0 - 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia unca 0 - - 0 0 - - - - - - - - - - - - - - - - - 0 - - 0 1 0 1 2 0 2 1 0 3 1 1 1 1 0 0 0 0 0 2 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia vanmoli 0 1 0 0 0 0 1 1 1 - - 0 1 0 0 0 0 3 0 0 0 0 0 - - 0 1 0 0 1 0 2 1 0 3 1 1 0 0 0 0 0 0 0 2 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia vinsoni 0 - - 0 0 - - - - - - - - - - - - - - - - - 1 0 1 0 0 0 0 2 0 1 1 0 3 2 0 1 1 0 0 0 0 0 0 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
Hersilia woutrinae 0 0 0 0 0 0 1 1 1 - - 0 1 0 0 0 0 3 0 0 0 0 0 - - 0 1 0 0 2 0 2 1 0 3 1 1 1 0 0 0 0 0 0 2 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
(Hersilia tibialis) 0 1 1 0 0 1 1 0 0 4 1 1 - - - 0 0 0 1 2 0 0 1 1 2 0 0 0 0 1 0 2 0 1 3 0 - 1 1 0 0 0 0 0 0 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
(Neotama cunhabebe) 1 0 0 0 1 0 2 0 0 0 1 1 - - - 0 1 2 1 0 0 0 1 0 0 0 0 0 0 2 1 2 1 0 1 1 - 0 0 0 0 0 0 0 0 0 1 1 1 2 1 0 1 1 2 1 1 1 1 
(Tamopsis eucalypti) 0 0 0 1 0 0 2 0 0 3 1 1 - - - 0 0 2 1 3 0 0 0 - - 0 0 0 0 0 0 2 1 0 3 0 - 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 2 1 1 1 1 
(Hersilia jajat) 0 0 0 0 0 0 5 0 0 - - 1 - - - 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 2 0 0 3 1 1 0 0 0 0 0 0 0 0 0 1 1 1 3 1 0 1 1 2 1 1 1 1 
(Tama edwardsi) 0 0 0 0 0 0 0 0 1 - - 1 - - - 0 0 0 0 0 0 0 0 - - 0 0 0 0 0 0 2 0 0 3 1 - 0 2 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 0 

           
List of characters           
1 tibia/patella male palp            
2 Palpal tibia: angulate dorsal projection       
3 Palpal tibia: dorsal spines            
4 Cymbium and alveolus shape           
5 Cymbium narrows            
6 Lamellar modifications            
7 Sperm duct form            
8 bulbus: basal swelling            
9 Median apophysis            
10 Median apophysis shape             
11 Median apophysis origin            
12 Conductor             
13 Conductor: size            
14 Conductor, hyaline projection distally       
15 Conductor with ventral furrow distally       
16 Sclerotized tegular projection          
17 lateral tegular projection            
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18 Embolus, position from which embolus originate     
19 Embolus length           
20 Embolus shape            
21 embolus with a triangular projection distally      
22 Embolus apex            
23 Epigyne plate           
24 Median plate: lateral lobespartially_covered_by_lateral_borders free;     
25 median plate form            
26 Epigynal plate: atrium            
27 Epigynum medially transverse unpigmented plate      
28 Copulatory openings position relative to spermathecae     
29 Copulatory opnenings sclerotizations       
30 Length of copulatory duct            
31 Copulation ducts shape           
32 Number of spermathecae            
33 Spermathecae shape            
34 Spermathecae stalk            
35 Seminal receptacle number           
36 seminal receptacle shape           
37 Position of seminal receptacle relative to spermathecae      
38 Seminal receptacle borders          
39 Clypeus length            
40 ALE/AME           
41 Interdistance AME-ALE            
42 Lateral eyes on tubercles           
43 cheliceral teeth on retromargin          
44 cheliceral teeth on promargin          
45 Abdomen: patter on dorsum           
46 Female abdomen with two pairs of tubercles laterally      
47 Dorsal muscular pit number           
48 Relative length of leg III to leg I          
49 Relative length of leg IV to leg I >1 <1      
50 Metatarsi articulation of leg I, II, and III       
51 Metatarsus/tarsus             
52 Leg spine microstructure            
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53 Claw tuft            
54 Metatarsal trichobothria            
55 Legs spination, ventral surface         
56 Feathery hairs            
57 PLS: tS/bS            
58 Anal tubercle           
59 Habit            
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Appendix 2 
Index of species 

 
Chapter 2 
Hersilia Audouin, 1826 

1. Hersilia albicomis Simon, 1887 (Figs. 2, 26a & 33)  

2. Hersilia alluaudi Berland, 1919 (Figs. 3 & 34)  

3. Hersilia arborea Lawrence, 1928 (Figs. 4 & 38)  

4. Hersilia baforti Benoit, 1967 (Figs. 5 & 34)  

5. Hersilia beva sp. nov. (Figs. 6 & 34)  

6. Hersilia bubi sp. nov. (Figs. 7 & 34)  

7. Hersilia caudata Audouin, 1826 (Figs. 9, 26b & 33)  

8. Hersilia caronae sp. nov. (Figs. 8, 26g & 35)  

9. Hersilia clarki Benoit, 1967 (Figs. 10 & 34) 

10. Hersilia dilumen sp. nov. (Figs. 11 & 34)  

11. Hersilia eloetsensis sp. nov. (Figs. 12 & 36)  

12. Hersilia ferra sp. nov. (Figs. 13 & 34) 

13. Hersilia hildebrandti Karsch, 1878 (Figs. 14 & 38)  

14. Hersilia incompta Benoit, 1971 (Figs. 15 & 37)  

15. Hersilia insulana Strand, 1907 (Figs. 16 & 35)  

16. Hersilia madagascariensis (Wunderlich 2004) (Figs. 17, 26a & 36)  

17. Hersilia moheliensis sp. nov. (Figs. 18 & 36)  

18. Hersilia nicolae sp. nov. (Figs. 19 & 38) 

19. Hersilia occidentalis Simon, 1907 (Figs. 20, 26c & 33)  

20. Hersilia plara sp. nov. (Figs. 21 & 34)  

21. Hersilia pungwensis Tucker, 1920 (Figs. 22 & 33)  

22. Hersilia salda sp. nov. (Figs. 23, 26i & 34)  

23. Hersilia sericea Pocock, 1898 (Figs. 24, 26d & 33 )  

24. Hersilia setifrons Lawrence, 1928 (Figs. 25, 26e & 33)  

25. Hersilia sigillata Benoit, 1967 (Figs. 27, 26h & 36)  

26. Hersilia taita sp. nov. (Figs. 28 & 36)  

27. Hersilia tamatavensis sp. nov. (Figs. 29a-d & 33)  
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28. Hersilia unca sp. nov. (Figs. 29e-i & 34)  

29. Hersilia vanmoli Benoit, 1971 (Figs. 30 & 34)  

30. Hersilia vinsonii Lucas, 1869 (Figs. 31 & 35) 

31. Hersilia woutrinae sp. nov. (Figs. 32 & 34) 

 

Chapter 3 

Hersiliola Thorell, 1870 

1. Hersiliola macullulata (Dufour, 1831) (Figs 2 & 11) 

2. Hersiliola simonii (O.P.-Cambridge, 1872) (Figs. 3  & 11) 

3. Hersiliola versicolor Blackwall, 1865 (Figs. 4 & 11 

 

Tyrotama gen. nov. 

1. Tyrotama arida (Smithers, 1945) comb. nov.  (Figs. 5 & 12) 

2. Tyrotama australis (Simon, 1893) comb. nov. (Figs 6 & 12) 

3. Tyrotama bicava (Smithers 1945) comb. nov. (Figs. 7 & 12) 

4. Tyrotama fragilis (Lawrence, 1928) comb. nov. (Figs. 8 & 12) 

5. Tyrotama gamkasiensis  sp. nov. (Figs. 9a-e & 12) 

6. Tyrotama incerta (Tucker, 1920) comb. nov. (Figs. 9f-j & 12 ) 

7. Tyrotama makalaliensis sp. nov. (Figs. 10a,b & 12) 

8. Tyrotama taris sp. nov. (Figs. 10c-g & 12) 

 

Chapter 4 

Murricia Simon, 1882 

1. Murricia uva  sp. nov. (Figs. 1 & 3) 

2. Murricia emlynae sp. nov. (Figs. 2 & 3) 

 

Chapter 5 

Neotama Baehr & Baehr, 1993. 

1. Neotama corticola (Lawrence, 1937) comb. nov. (Figs. 1 & 4) 

 

Prima gen. nov. 
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1. Prima ansieae sp. nov. (Figs. 2 & 4) 

2. Prima syda sp. nov. (Figs. 3 & 4) 
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