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SUMMARY 
 

Gas chromatography - mass spectrometry (GC-MS) is an established 

instrumental technique used for the analysis of fire debris for accelerant 

detection.  However, matrix problems, such as pyrolysis product 

interference, are still encountered.  These interferences often lead to 

inconclusive interpretation of the chromatographic results. 

 

This study describes methods for analysing arson accelerants using gas 

chromatography coupled with ion trap mass spectrometry. The latter 

technique lends itself to both conventional (GC-MS) as well as tandem mass 



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  DDee  VVooss,,  BB--JJ    ((22000055))  

 
ii 

spectrometry (GC-MS-MS).  Since petrol (gasoline) is one of the more 

common distillate blends used by arsonists, especially in South Africa, the 

identification of petrol in fire debris samples was investigated.  In order to 

overcome pyrolysis product interference and improve detection selectivity of 

the aromatic hydrocarbons in petrol residues, tandem mass spectrometry 

was used in combination with capillary gas chromatography.  The added 

parameter of the third dimension of selectivity proved to be superior to 

conventional GC-MS in obtaining characteristic aromatic hydrocarbon 

profiles for petrol without interference from pyrolysis artefacts. 
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SAMEVATTING 
 

Gekoppelde gaschromatografie en massaspektrometrie (GC-MS) is ‘n 

gevestigde instrumentele tegniek vir die analise van brandstigtingpuin en 

die opsporing van brandversnelstowwe.  Daar word egter nog matriks-

probleme ondervind, soos piekoorvleuling vanaf pirolise-produkte.  Hierdie 

oorvleuling verhinder die eenduidige interpretasie van chromatografiese 

resultate. 

 

Hierdie studie omskryf ‘n metode vir die analise van brandversnelstowwe 

wat in brandstigting gebruik word deur gebruik te maak van 

gaschromatografie, gekoppel met ioonval-massaspektrometrie.  
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Laasgenoemde tegniek is gebruik vir konvensionele (GC-MS) sowel as 

tandem massaspektrometrie (GC-MS-MS).  Aangesien petrol een van die 

algemeenste distilaatmengsels is wat deur brandstigters gebruik word (veral 

in Suid-Afrika), is die identifisering van petrol in brandpuin-monsters 

ondersoek. 

 

Om die oorvleuling van pirolise-produkte te oorkom, en om die selektiewe 

waarneming van aromatiese koolwaterstofverbindings in petrol-residu te 

verbeter, is tandem-massaspektrometrie as opsporingsmetode in 

kombinasie met kapilêre gaschromatografie gebruik.  Die addisionele 

parameter van die derde dimensie van selektiwiteit oortref konvensionele 

GC-MS in die verkryging van karakteristieke aromatise koolwaterstof-

profiele van petrol sonder die steurings vanaf pirolise-verskynsels. 
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1,2,4-trimethylbenzene (parent ion mass = 120),  

channel 3 = 45 volts CID excitation amplitude.  109 

Figure 5.5.4 AMD product ion mass spectrum for  

1,2,4-trimethylbenzene (parent ion mass = 120),  

channel 4 = 46 volts CID excitation amplitude.  110 

Figure 5.5.5 AMD product ion mass spectrum for  1,2,4-

trimethylbenzene (parent ion mass = 120),  

channel 5 = 47 volts CID excitation amplitude.  110 

Figure 5.5.6 AMD product ion mass spectrum for  

1,2,4-trimethylbenzene (parent ion mass = 120),  

channel 6 = 48 volts CID excitation amplitude .  111 

Figure 5.5.7 AMD product ion mass spectrum for  

1,2,4-trimethylbenzene (parent ion mass = 120),  

channel 7 = 49 volts CID excitation amplitude.  111 
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Figure 5.5.8 AMD product ion mass spectrum for  

1,2,4-trimethylbenzene (parent ion mass = 120),  

channel 8 = 50 volts CID excitation amplitude.  112 

Figure 5.5.9 AMD product ion mass spectrum for  

1,2,4-trimethylbenzene (parent ion mass = 120),  

channel 9 = 51 volts CID excitation amplitude.  112 

Figure 5.5.10 AMD product ion mass spectrum for  

1,2,4-trimethylbenzene (parent ion mass = 120),  

channel 10 = 52 volts CID excitation amplitude.  113 

Figure 5.6 The AMD product ion chromatogram for an  

excitation storage level incorrectly set at 75 m/z  

(upper trace) and correctly set at 48m/z (lower trace).  

(1) benzene, (2) toluene, (3) ethylbenzene,  

(4) m,p-xylene, (5) o-xylene, (6) isopropylbenzene,  

(7) 1,2,4-trimethylbenzene, (8) indane,  

(9) naphthalene, (10) 2-methylnaphthalene.  115 

Figure 5.7.1 AMD product ion chromatographic peak and  

mass spectrum for benzene (78 m/z, CID  

voltage for channel 1 = 59).  The upper trace  

product mass spectrum is obtained when the  

excitation storage level is set too high.  The  

expected product mass spectrum is reflected  

in the lower trace with an excitation storage  

level of 48 m/z.      116 

Figure 5.7.2 AMD product ion mass spectrum for toluene  

(m/z = 92, CID amplitude voltage = 57 for  

channel 1) and ethylbenzene (m/z = 106,  

CID amplitude voltage = 57 for channel 1).  117 

Figure 5.7.3 AMD product ion mass spectrum for  

1,2,4-trimethylbenzene (m/z = 120, CID  

amplitude voltage = 53 for channel 1) and Indane  

(m/z = 117, CID amplitude voltage = 53  

for channel 1).      117 

Figure 5.8.1 AMD product ion mass spectrum for  

benzene (m/z = 78) and toluene  

(m/z = 92) using the minimum advised  

excitation storage of 48 m/z.    118 
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Figure 5.8.2 AMD product ion mass spectrum for  

ethylbenzene (m/z = 106) with the excitation  

storage level selected as 48 m/z and  

isopropylbenzene (m/z = 120) with an  

excitation storage level of 52.7 m/z as  

calculated using the “q” calculator.    207 

Figure 5.8.3 AMD product ion mass spectrum for  

propylbenzene (m/z = 120) and mesitylene  

(m/z = 120) with the excitation storage level 

selected as 52.7 m/z as calculated  

using the “q” calculator.     208 

Figure 5.8.4 AMD product ion mass spectrum for  

naphthalene (m/z = 128) and  

2-methylnaphthalene (m/z = 142) with the  

excitation storage level selected as 56.2 m/z  

and 62.4 m/z as calculated using  

the “q” calculator.      208 

Figure 5.9.1 AMD product total ion chromatogram for petrol  

using “toolkit”.  The data points have  

not been merged.      119 

Figure 5.9.2 AMD product ion chromatogram for  

ethylbenzene and the xylenes.  The  

chromatogram in the upper trace is the raw  

data.  The chromatogram in the lower trace has  

been merged.       120 

Figure 5.9.3 The total product ion chromatogram for petrol  

using toolkit.  The chromatogram in the upper  

trace is the raw data.  The chromatogram in the  

lower trace has been merged.    120 

Figure 5.9.4 Comparison between the MS chromatogram for  

petrol and the MS-MS toolkit product ion  

chromatogram for petrol (merged).    121 

Figure 5.10.1 Selected AMD product ion mass chromatogram  

for the C4 and C5-alkylbenzenes.    122 

Figure 5.10.2 Selected AMD product ion mass chromatogram  

for the C4 and C5-alkylbenzenes.    122 
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Figure 5.11.1 The AMD product ion mass chromatogram  

for a simulated aromatic mixture (upper trace)  

with the AMD product ion mass chromatogram 

for petrol (lower trace).  

[(1) benzene,(2) toluene, (3) ethylbenzene,  

(4) p-xylene, (5) o-xylene, (6) isopropylbenzene,  

(7) propylbenzene, (8) mesitylene,  

(9) p-isopropyltoluene, (10) indane,  

(11) naphthalene, (12) hexylbenzene,  

(13) 2-methylnaphthalene].     123 

Figure 5.11.2 Comparison between a simulated aromatic mix  

(upper trace) and a petrol standard (lower trace)  

of the AMD product ion mass spectra for benzene  

(m/z = 78), before finalizing the CID voltages.  209 

Figure 5.11.3 Comparison between a simulated aromatic mix  

(upper trace) and a petrol standard (lower trace)  

of the AMD product ion mass spectra for toluene  

(m/z = 92), before finalizing the CID voltages.  209 

Figure 5.11.4 Comparison between a simulated aromatic mix  

(upper trace) and a petrol standard (lower trace)  

of the AMD product ion mass spectra for ethyl- 

benzene and the xylenes using o-xylene  

(m/z = 106), before finalizing the CID voltages.  210 

Figure 5.11.5 Comparison between a simulated aromatic mix  

(upper trace) and a petrol standard (lower trace)  

of the AMD product ion mass spectra for isopropyl- 

benzene (m/z = 120), before finalizing the CID  

Voltages.       210 

Figure 5.11.6 Comparison between a simulated aromatic mix  

(upper trace) and a petrol standard (lower trace)  

of the AMD product ion mass spectra for propyl- 

benzene (m/z = 120), before finalizing the CID  

voltages.       211 

Figure 5.11.7 Comparison between a simulated aromatic mix  

(upper trace) and a petrol standard (lower trace)  

of the AMD product ion mass spectra for mesitylene  

(m/z = 120), before finalizing the CID voltages.  211 
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Figure 5.11.8 Comparison between a simulated aromatic mix  

(upper trace) and a petrol standard (lower trace)  

of the AMD product ion mass spectra for p-iso 

propyltoluene (m/z = 120), before finalizing the  

CID voltages.       212 

Figure 5.11.9 Comparison between a simulated aromatic mix  

(upper trace) and a petrol standard (lower trace)  

of the AMD product ion mass spectra for indane  

(m/z = 117), before finalizing the CID voltages.   212 

Figure 5.11.10 Comparison between a simulated aromatic mix  

(upper trace) and a petrol standard (lower trace)  

of the AMD product ion mass spectra for  

naphthalene (m/z = 128), before finalizing the  

CID voltages.       213 

Figure 5.11.11 Comparison between a simulated aromatic mix  

(upper trace) and a petrol standard (lower trace)  

of the AMD product ion mass spectra for hexyl- 

benzene (m/z = 162), before finalizing the CID  

voltages.  This indicates the need for correcting  

the voltages, since the hexylbenzene peak is  

minute in petrol.      213 

Figure 5.11.12 Comparison between a simulated aromatic mix  

(upper trace) and a petrol standard (lower trace)  

of the AMD product ion mass spectra for  

2-methylnaphthalene (m/z = 142), before  

finalizing the CID voltages.      214 

Figure 5.12.1 Comparison between the initial and final AMD  

product ion mass spectra for benzene.   124 

Figure 5.12.2 Comparison between the initial and final AMD  

product ion mass spectra for toluene.   215 

Figure 5.12.3 Comparison between the initial and final AMD  

product ion mass spectra for ethylbenzene,  

m,p-xylene and o-xylene using m,p-xylene as  

an example.       215 

Figure 5.12.4 Comparison between the initial and final AMD  

product ion mass spectra for isopropylbenzene 

and propylbenzene, using propylbenzene as  

an example.       216 
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Figure 5.12.5 Comparison between the initial and final AMD  

product ion mass spectra for the C3-alkylbenzenes,  

using 1,2,4-trimethylbenzene as an example.  216 

Figure 5.12.6 Comparison between the initial and final AMD  

product ion mass spectra for Indane.   217 

Figure 5.12.7 Comparison between the initial and final AMD  

product ion mass spectra for the C4-alkylbenzenes,  

using 1,2,4,5-tetramethylbenzene as an example. 217 

Figure 5.12.8 Comparison between the initial and final AMD  

product ion mass spectra for the C5-alkylbenzenes,  

using 1-methyl-4-(1-methylpropyl)benzene as  

an example.       218 

Figure 5.12.9 Comparison between the initial and final AMD  

product ion mass spectra for the C6-alkylbenzenes,  

using 1-ethyl-1-methylpropylbenzene as an example. 218 

Figure 5.12.10 Comparison between the initial and final AMD  

product ion mass spectra for naphthalene.   219 

Figure 5.12.11 Comparison between the initial and final AMD  

product ion mass spectra for the C1-alkylnaphthalenes,  

using 2-methylnaphthalene as an example.  219 

Figure 5.12.12 Comparison between the initial and final AMD  

product ion mass spectra for the C2-alkylnaphthalenes,  

using dimethylnaphthalene as an example.  220 

Figure 5.12.13 Comparison between the initial and final AMD  

product ion mass spectra for the C3-alkylnaphthalenes,  

using trimethylnaphthalene as an example.  220 
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Figure 5.13.2 MS-MS product ion mass spectrum for toluene.  221 

Figure 5.13.3 MS-MS product ion mass spectrum for  

ethylbenzene.       221 

Figure 5.13.4 MS-MS product ion mass spectrum for o-xylene.  222 

Figure 5.13.5 MS-MS product ion mass spectrum for  

isopropylbenzene.      222 

Figure 5.13.6 MS-MS product ion mass spectrum for  

propylbenzene.      223 

Figure 5.13.7 MS-MS product ion mass spectrum for  

mesitylene.       223 
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Figure 5.13.8 MS-MS product ion mass spectrum for  

1,2,4-trimethylbenzene.     224 

Figure 5.13.9 MS-MS product ion mass spectrum for  

1-methyl-3-propylbenzene (C4-alkylbenzene).  224 

Figure 5.13.10 MS-MS product ion mass spectrum for 1,2,3,5- 

tetramethylbenzene (C4-alkylbenzene).   225 

Figure 5.13.11 MS-MS product ion mass spectrum for 1-ethyl- 

1-methylpropylbenzene (C5-alkylbenzene).  225 

Figure 5.13.12 MS-MS product ion mass spectrum for 1-ethyl- 

2,4,5-trimethylbenzene (C5-alkylbenzene).  226 

Figure 5.13.13 MS-MS product ion mass spectrum for 1-ethyl- 

methylpropylbenzene (C6-alkylbenzene).   226 

Figure 5.13.14 MS-MS product ion mass spectrum for naphthalene. 227 

Figure 5.13.15 MS-MS product ion mass spectrum for 2-methyl- 

naphthalene.       227 

Figure 5.13.16 MS-MS product ion mass spectrum for dimethyl- 

naphthalene.       228 

Figure 5.13.17 MS-MS product ion mass spectrum for trimethyl- 

naphthalene.       228 

Figure 5.14.1 Comparison between the MS mass spectrum and the  

MS-MS product ion mass spectrum for benzene.  128 

Figure 5.14.2 Comparison between the MS mass spectrum and the 

MS-MS product ion mass spectrum for toluene.  229 

Figure 5.14.3 Comparison between the MS mass spectrum and the 

MS-MS product ion mass spectrum for o-xylene.  229 

Figure 5.14.4 Comparison between the MS mass spectrum and the  

MS-MS product ion mass spectrum for propylbenzene. 230 

Figure 5.14.5 Comparison between the MS mass spectrum and the  

MS-MS product ion mass spectrum for 1,2,4-trimethyl- 

benzene.       230 

Figure 5.14.6 Comparison between the MS mass spectrum and the 

MS-MS product ion mass spectrum for indane.  231 

Figure 5.14.7 Comparison between the MS mass spectrum and the  
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1,2,3,5-tetramethylbenzene.    231 

Figure 5.14.8 Comparison between the MS mass spectrum and the  

MS-MS product ion mass spectrum for 1-ethyl- 
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Figure 5.14.9 Comparison between the MS mass spectrum  

and the MS-MS product ion mass spectrum for  

1-ethyl-methylpropylbenzene.    232 

Figure 5.14.10 Comparison between the MS mass spectrum  

and the MS-MS product ion mass spectrum  

for naphthalene.      233 

Figure 5.14.11 Comparison between the MS mass spectrum  

and the MS-MS product ion mass spectrum  

for 2-methylnaphthalene.     233 

Figure 5.14.12 Comparison between the MS mass spectrum  

and the MS-MS product ion mass spectrum 

for dimethylnaphthalene.     234 

Figure 5.14.13 Comparison between the MS mass spectrum and  

the MS-MS product ion mass spectrum for  

trimethylnaphthalene.     234 

Figure 5.15.1 MS-MS product ion mass chromatogram for  

lacquer thinners.      130 

Figure 5.15.2 MS-MS product ion mass chromatogram for  

lighter fluid.       131 

Figure 5.15.3 MS-MS product ion mass chromatogram for avgas. 131 

Figure 5.15.4 MS-MS product ion mass chromatogram for  

genuine turpentine.      132 

Figure 5.15.5 MS-MS product ion mass chromatogram for  

mineral turpentine (white spirits).    132 

Figure 5.15.6 MS-MS product ion mass chromatogram for  

unevaporated petrol.      133 

Figure 5.15.7 MS-MS product ion mass chromatogram for kerosene. 133 

Figure 5.15.8 MS-MS product ion mass chromatogram for paraffin. 134 

Figure 5.15.9 MS-MS product ion mass chromatogram for jet fuel. 134 

Figure 5.15.10 MS-MS product ion mass chromatogram for diesel. 135 

Figure 5.15.11 MS-MS product ion mass chromatogram for fuel oil. 135 

Figure 6.1.1 Total chromatographic ion profile for a petrol  

standard by GC-MS.  The reconstructed ion  

profiles for the aromatic hydrocarbons are  

depicted below the total ion profile.    138 
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Figure 6.1.2 Total chromatographic ion profile for a petrol  

standard by GC-MS.  The reconstructed ion profiles  

for the aliphatic hydrocarbons, naphthalene and the  

alkylnaphthalenes depicted below the total ion profile. 139 

Figure 6.1.3 Total chromatographic ion profile for a debris  

sample of floor screed by GC-MS. The  

reconstructed ion profiles for the aromatic  

hydrocarbons are depicted below the total ion  

profile.        140 

Figure 6.1.4 Total chromatographic ion profile for a debris  

sample of floor screed by GC-MS. The  

reconstructed ion profiles for the aliphatic  

hydrocarbons, naphthalene and the  

alkylnaphthalenes are depicted below the  

total ion profile.      140 

Figure 6.1.5 The MS-MS product ion chromatogram (aromatic  

hydrocarbon profiles – table 5.6) for a petrol  

standard with the MS-MS product ion  

chromatogram for the debris sample of floor  

screed below.       141 

Figure 6.1.6 The selected time segment MS-MS product ion  

chromatogram for a petrol standard with the  

selected MS-MS product ion chromatogram for  

the debris sample of floor screed below, to  

illustrate more clearly the C3 and  

C4-alkylbenzenes, naphthalene and  

the C1-naphthalenes.     142 

Figure 6.1.7 The GC-MS total chromatographic ion profile for  

the sample of floor screed with the GC-MS-MS  

product chromatographic ion profile below.   

The MS-MS aromatic hydrocarbon profile is  

clearly less “cluttered” than the MS total ion profile. 143 

Figure 6.2.1 Total chromatographic ion profile for a petrol  

standard by GC-MS with the total chromatographic  

ion profile for a debris sample of charred pine floor  

planking below.  The terpenoid compounds visible  

in the pine floor planking sample obscure the  

aromatic compounds.     144 
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Figure 6.2.2 Reconstructed ion profile for a petrol standard  

showing the C2-alkylbenzenes by GC-MS (upper  

trace).  The reconstructed ion profiles for the  

C2 and C3-alkylbenzenes for the charred pine  

floor planking sample are depicted in the middle  

trace in which the Y-axis has been expanded to  

illustrate how the terpenoid compounds  

interfere with the C2 and C3-alkylbenzenes.   

In the lower trace the C3 and C4-alkylbenzenes  

have been selected to show that the terpenoid  

interference lies mainly within the C3-alkylbenzene  

region        145 

Figure 6.2.3 The MS-MS aromatic product ion profile (table 5.6)  

for a petrol standard (upper trace) with the MS-MS  

product ion profile for the debris sample of charred  

pine floor planking depicted in the lower trace.  146 

Figure 6.2.4 Selected time segment MS-MS product ion profile  

(all product ions of m/z = 120) for a petrol standard  

(upper trace) with the selected time segment MS-MS  

product ion profile for the debris sample of charred  

pine floor planking (lower trace).  The C3-alkyl- 

benzenes are shown with an artefact peak lying  

adjacent to the mesitylene peak.    147 

Figure 6.2.5 Reconstructed MS-MS product ion profile  

(SRM 120 → 105) for a petrol standard using  

m/z = 105 with the reconstructed MS-MS product  

ion profile for the debris sample of charred pine floor  

planking (lower trace).  The C3-alkylbenzenes are  

shown with the artefact peak removed.   148 

Figure 6.2.6 Product ion spectrum of parent ion m/z = 120 for  

mesitylene in a petrol standard (lower spectrum).  

The same parent ion was selected for the charred  

pine floor planking sample and the product ion  

spectrum obtained is depicted in the upper spectrum. 149 
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Figure 6.2.7 The unknown chromatographic peak from the  

charred pine planking sample adjacent to  

mesitylene produced the product ion spectrum  

of m/z = 120 (upper spectrum) and the product  

ion spectrum for the parent ion m/z = 120 for  

mesitylene in a petrol standard (lower spectrum).  150 

Figure 6.3.1 Total chromatographic ion profile for a debris  

sample of shoe debris and carpeting from a shoe  

store with the total chromatographic ion profile for  

a petrol standard depicted beneath    151 

Figure 6.3.2 Selected ion profile for a debris sample of shoe  

debris and carpeting from a shoe store with the  

selected ion profile for a petrol standard depicted  

beneath, showing the C2, C3 and C4-alkylbenzenes. 151 

Figure 6.3.3 The MS-MS product ion profile (RT = 6 – 24 min,  

parent ions for segment 4; m/z = 91 – segment 17;  

m/z = 170) for a petrol standard by GC-MS (upper  

trace) with the product ion MS-MS profile for the  

debris sample of shoes and carpeting from a shoe  

store depicted beneath.     152 

Figure 6.3.4 Selected time segment MS-MS product ion profile  

for a petrol standard, with the selected time segment  

MS-MS product ion profile for a debris sample of  

shoes and carpeting from a shoe store below,  

showing the C3 and C4-alkylbenzenes.   153 

Figure 6.3.5 Reconstructed MS-MS product ion profile for a  

petrol standard using m/z = 105 with the  

reconstructed MS-MS product ion profile (m/z = 105)  

for the debris sample of shoes and carpeting from  

a shoe store below, showing the C3-alkylbenzenes  

more clearly.       153 

Figure 6.4.1 Total chromatographic ion profile for a debris  

sample of gymnasium floor cover and a  

petrol standard analysed by GC-MS.    155 

Figure 6.4.2 The total GC-MS ion profile depicted in the upper  

trace with the selected ion profiles for the  

C2 to C4-alkylbenzenes depicted beneath.   155 
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Figure 6.4.3 The MS-MS product ion profile (RT = 12 - 22 min,  

parent ions for segment 6; m/z = 120 – segment 15;  

m/z = 142) for a petrol standard, with the MS-MS  

product ion profile for the debris sample of  

gymnasium floor covering depicted beneath.  156 

Figure 6.5.1 Total chromatographic ion profile for a sample  

of carpet and bedding from a home and a  

petrol standard.      157 

Figure 6.5.2 Total chromatographic ion profile for a debris  

sample of carpeting and bedding by GC-MS  

(upper trace).  The selected ion profiles for the  

C2 to C4-alkylbenzenes are depicted beneath.  157 

Figure 6.5.3 The MS-MS product ion profile (RT = 12 - 22 min,  

parent ions for segment 6; m/z = 120 – segment 15;  

m/z = 142)for a petrol standard (upper trace), with  

the MS-MS product ion profile for the debris sample  

of carpeting and bedding (lower trace), showing the  

C3, C4, C5-alkylbenzenes, naphthalene and the  

C1-Naphthalenes.      158 

Figure 6.6.1 Total chromatographic ion profile for a sample  

of burnt plastic from a factory and a petrol  

standard.       159 

Figure 6.6.2 Selected MS ion profiles for a sample of burnt  

plastic from a factory and a petrol standard,  

showing the C2, C3 and C4-alkylbenzenes.   160 

Figure 6.6.3 Selected MS-MS product ion profiles  

(RT = 6 – 20 min, Parent ions for segment 5;  

m/z = 106 – segment 12; m/z = 148) for a  

sample of burned plastic from a factory and a  

petrol standard, showing the C2, C3,  

C4 and C5-alkylbenzenes.  Interferences  

are still visible.      161 

Figure 6.6.4 Reconstructed MS-MS product ion profile  

(SRM 120 → 105) for a sample of burnt plastic  

using m/z = 105 with the reconstructed MS-MS  

product ion profile for a petrol standard below.   

The C3-alkyl-benzenes are clearly shown with  

the α-methylstyrene interference removed.  162 
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Figure 6.7.1 Total chromatographic ion profiles for a sample  

of charred carpet and a petrol standard, showing  

the C2, C3 and C4-alkylbenzenes.    163 

Figure 6.7.2 Selected MS chromatographic ion profiles for a  

sample of charred carpet and a petrol standard,  

showing the C2, C3 and C4-alkylbenzenes.   164 

Figure 6.7.3 MS-MS product ion profiles (RT = 6 – 24 min,  

parent ions for segment 4; m/z = 91 – segment 17;  

m/z = 170) for a sample of charred carpet and  

a petrol standard, showing the C2, C3, C4  

and C5-alkylbenzenes, naphthalene and  

methylnaphthalenes.      165 

Figure 6.7.4 Reconstructed MS-MS product ion profile  

(SRM 120 → 105) for a sample of charred carpet  

using m/z = 105 with the reconstructed MS-MS  

ion profile for a petrol standard below.   

The ratios of the C3-alkylbenzenes are evident  

although  there are still interferences present.  166 

Figure 6.7.5 MS-MS product ion profiles for burnt debris, burnt  

carpet and burnt plastic samples and a petrol  

standard.       167 

Figure 6.7.6 Reconstructed MS-MS product ion profiles  

(SRM 120 → 105) for burnt debris, burnt carpet  

and burnt plastic samples and a petrol standard,  

using m/z = 105.      167 
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using methanol and conventional electron impact  

ionisation.       172 

Figure 7.2 Comparison between the selected aromatic ion  

profile for petrol generated by CI using  

methanol and conventional EI.    173 

Figure 7.3 The MS spectrum for toluene from a petrol  

standard with the upper trace and spectrum  

generated by CI and the lower trace and  

spectrum generated with conventional EI.   173 
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Figure 7.4 The CI-MS-MS (Table 7.1) and EI-MS-MS  

(Table 5.6) product ion profiles for a petrol  

standard.       174 

Figure 7.5 Comparison between an MS-MS product ion  

spectrum for 1,2,4-trimethylbenzene generated  

by CI (upper trace and spectrum) and  

conventional EI (lower trace and spectrum).  175 

Figure 7.6 Comparison between an MS-MS product ion  

spectrum for naphthalene generated by CI above  

and conventional EI below.     175 

Figure 7.7 CI-MS-MS product ion spectrum for a petrol  

standard and a sample of carpet debris (Table 7.1). 177 
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