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ABSTRACT 

 

The role of living plant roots and cattle manure as a soil amendment in the 

alleviation of compacted coal mine soils 

 

by 

 

Poloko Emmanuel Mosebi 

 

Supervisor: Dr W.F. Truter 

 

       Co-supervisors: Prof. N.F.G. Rethman 

    Dr I.C. Madakanze 
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 MSc (Agric): Pasture Science 
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In South Africa, most of the surface coal mines are situated on the Highveld of the 

Mpumalanga Province. The mining industry plays a vital role and contributes to the 

economy of the country. Very often the mining activities change the physical nature of 

the soil which results in soil compaction. In mine soils, compaction is of great importance 

in plant growth and the environment because its high levels may adversely result in the 

degradation of soil structure, reduced nutrient distribution and reduced root growth, 

which eventually decreases plant growth. To ensure a productive vegetation, compacted 

mine soils has to be ameliorated effectively. A combination of practices is suggested to 

alleviate soil compaction, but some of them are costly and not ecologically stable 

 
 
 



x 

 

particularly the use of conventional methods. Therefore, the challenge is to use the 

potential practices to ameliorate compacted soils. The proposed investigations, which are 

envisaged to solve harmful effects of soil compaction on plant growth, include biological 

activities, achieved through appropriate application of cattle manure and planting of 

pasture species. A review on literature, some studies indicate that the application of 

organic manure amendments such as cattle manure may overcome the negative effects of 

compaction, due to the beneficial effects on soil physical, chemical and biological 

properties in the zone of incorporation. Other studies has shown that pastures are linked 

with improvements in soil structure, soil organic matter content, rooting depths, 

consequently, reductions in bulk density. The focus of this study were to monitor the root 

biomass of irrigated Tall Fescue (F. arundinacea cv Dovey) and dryland Smuts 

Fingergrass (D. eriantha cv Irene) on mine soils, and to describe soil bulk density and 

soil nutrient concentrations in such soils. This study were also determining the effects of 

incorporating cattle manure into compacted (mine soils) and non compacted (agricultural 

soils) and evaluating its effects on the seedling growth rate, dry matter and root biomass 

production of Tall Fescue and Smuts Fingergrass. In addition, the influence of different 

rates of cattle manure on soil bulk density and nutrient concentration in such compacted 

soil was also measured. These parameters are relevant to the sustainable rehabilitation of 

mine soils. Based on the results obtained in this study, it was concluded that the use of 

two grass species, Tall Fescue and Smuts Fingergrass, with vigorous root systems have 

extended their roots in compacted mine soil layers over two growing seasons. Other 

results have demonstrated that application of cattle manure revealed a significant 

decrease in soil bulk density of compacted mine soils planted to Tall Fescue and Smuts 

Fingergrass. The bulk density was at a minimum in the 80 tha
-1

 cattle manure-treated 

plots and followed by the 40 tha
-1

 cattle manure treatment, and the maximum bulk 

density was recorded for the control treatment (0 tha
-1

). The application of cattle manure 

resulted in a large input of nutrients to the soil as compared to untreated control and 

significantly increased Tall Fescue and Smuts Fingergrass growth and production. This 

research has illustrated that use of plant roots and cattle manure as soil organic 

amendments to reduce soil compaction may be environmentally and economically 

beneficial leading to a more sustainable agricultural system. 
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Chapter 1 

A review on the plant root development and cattle manure amendments in 

compaction alleviation of mine soils 

 

1. Introduction 

 

In South Africa, most of the coal mines are currently situated on the Highveld of 

the Mpumalanga Province. The mining industry plays a vital role in the economy of the 

country. However, the mining activities often change the physical state of soil resources 

which result in certain environmental challenges, with respect to soil degradation (Truter, 

2007). Surveys have indicated that of the approximately 40 000 ha, which have been 

disturbed by surface coal mining in the past 30-35 years, approximately 30 000 ha of 

reclaimed land is severely compacted and only about 10 000 ha has a satisfactory 

effective soil depth (Rethman, 2006).  

One of the factors leading to soil degradation is compaction. Soil compaction in 

surface coal mining operations has an impact on plant growth and yield through increased 

bulk density or strength of soil, commonly known as mechanical impedance. Mechanical 

impedance of soil is an important constraint to root and shoot growth, decreasing oxygen 

availability and altering both water storage and availability. Furthermore, there is a 

reduction in size and continuity of soil macro-pores through which roots preferably grow, 

leading to slower root elongation, poor root density and reduced soil volume (Thom et 

al., 1997).  

 

In mine soils, compaction has been registered to have had a strong influence on 

the landscape and plant growth. Pasture species vary considerably in their tolerance of 

soil compaction. The roots of grass species can penetrate into rigid pores smaller than 

their nominal diameter and through this radial expansion they reduce soil compaction 

(Osmont et al., 2007). Roots grow by a process of cell division in the apical meristem, 

just behind the tip and cell expansion, in a zone just behind the apex. Water influx into 

cells generates turgor pressure, which provides the driving force for elongation and 

development of roots (Clark et al., 2003). 
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The roots of grass species exert a growth pressure in order to displace soil 

particles, overcome friction and elongate through the soil, consequently weakening and 

loosening compacted soil particles (Motavalli et al., 2003). In dense soil, with voids such 

as cracks, grass species having lateral roots which rapidly penetrate, thereby increasing 

their capacity to exploit soil resources. In non-tilled soil layers roots are predominantly 

vertical following vertical earthworms’ channels and cracks through compacted profiles 

(Clark et al, 2003). The architecture and spatial arrangement of root systems, contribute 

to the characteristics of pastures subjected to a complex soil structure of compacted 

layers (Osmont et al., 2007).  

 

As has already been noted, mine soils are seriously impacted by compaction, 

resulting in serious degradation of physical soil parameters. Application of cattle manure 

has a potentially very important role to play as on amendment to alleviate compaction. 

The addition of cattle manure to soil provides several potential benefits by improving soil 

structure, fertility and increasing soil organic matter (McAndrews et al., 2006). Mine 

soils treated with such organic amendments have a greater resilience (do not compact 

easily) and a greater resistance to re-compaction. They also exhibit systems of ecosystem 

recovery which are not evident in reclamation areas receiving only 

mechanical/physical/chemical amelioration (Rethman, 2006). 

 

Tripathi and Singh, (2004) also reported that the application of manure improved 

soil physical properties, organic matter content and nutrient capacity of the soil and 

increased plant growth. Addition of manure as an amendedment improved bulk density, 

soil crusting, porosity, aggregation, infiltration, hydraulic conductivity, water holding 

capacity, field capacity, plant-available water and permanent wilting point (Hamza & 

Anderson, 2005). With low organic matter levels mine soils are subject to compaction. 

Rethman, (2006) also emphasized the role of green manuring, organic amendments and 

restorative pastures to restore and maintain organic matter levels in mine soils over the 

long term. 
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2. Soil compaction 

 

Plant growth is restricted when the uptake of water, oxygen and nutrients is less 

than the demand of the plant. One of the factors leading to limitation of supply from the 

soil to the root system is soil compaction (Nadian et al., 1998). Soil compaction is 

perceived as a major threat to long-term survival of plants on mine soils in the 

Mpumalanga Highveld. Soil compaction is defined as a change in soil volume leading to 

increased soil bulk density (Marshall & Holmes 1988; Thom et al., 1997). Soil 

compaction reduces air volume, and causes re-arrangement of soil particles which are 

packed closer together, thereby increasing soil strength (Thom et al., 1997). The increase 

in bulk density and strength of soil are commonly known as mechanical impedance, 

reducing permeability and diffusivity of water and air (Mulholland et al., 1996). 

 

Cook et al., (1996) also reported that soil compaction, by increasing mechanical 

impedance, creates unfavourable growing conditions for roots as supplies of oxygen, 

water, and nutrients are reduced. It has been suggested by many researchers that 

increasing the soil bulk densities from 1.3 to 1.7 Mgm
-3

, or a penetration resistance from 

3.0 to 5.0 MPa, may limit root development and decrease plant growth (Bengough & 

Mullins 1990a; Kuznetsova 1990). In a study of the effects of soil bulk density on root 

and shoot growth of different ryegrass lines, it was reported that the growth of perennial 

ryegrasses was affected by increasing soil bulk density from 1.1 to 1.4 Mgm
-3

 (Thom et 

al., 1997). On the surface mine soils in the Mpumalanga Highveld, compaction is a threat 

to these soils and plant productivity, and the degree of compaction on these sites varied 

between 1.8 and 1.9 gcm
-3 

at 0-20 and 20-40 cm respectively (Rethman, 2006). 
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2.1 Causes of soil compaction 

 

Compaction can occur both naturally, by settling or slumping of soil, and because 

of the activities of humans as well as trampling by animals (Kozlowski, 1999). When it is 

very wet, loose soils may be compressed as a result of settling and or slumping. Settling 

is associated with drying and wetting, resulting to shrinkage and swelling of soil that 

leads to closer packing of soil aggregates (Koolen & Kuipers, 1983). Slumping follows 

weakening of soil aggregates as a result of wetting and disintegration at contact points, 

allowing closer packing (Mullins, 1991). Most commonly, soils are severely compacted 

by tillage tools, trampling by animals, pedestrian traffic and heavy machinery. 

 

2.1.1 Tillage tools 

 

Soils may be compacted by tillage tools that operate below the soil surface. Some 

of the soil is pushed ahead of the moving tool against the resistance of the soil body; 

hence, the soil becomes compacted (Hillel, 1982).  Wiermann et al., (2000) studied the 

long-term effect of reduced tillage on soil strength properties on a silty loam soil. They 

found that the repeated deep impact of tillage tools in conventionally treated plots 

resulted in a permanent destruction of newly formed soil aggregates. This led to a 

relatively weak soil structure of the tilled horizons.  

 

The effects of traditional tillage, minimum tillage, and no-tillage on soil water, 

soil organic matter and soil compaction were investigated by Benito et al., (1999). It was 

found that soil compaction was less in traditional tillage, but there was more compaction 

in the subsoil after harvesting, thus resulting in less soil compaction than in the no-tillage 

treatment. Li HongWen et al., (2000) reported that when farm operations are performed 

when soil is wet, it could increase soil compaction significantly. Random traffic can also 

severely compact the soil, reduce infiltration and increase energy consumption. Rethman, 

(2006) also reported that even agricultural equipment, used in post-mining land use 

systems, can cause re-compaction, especially if land is cultivated when the soil moisture 
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content is conducive to compaction and when soil organic matter and aggregation 

(structure) are sub-optimal. 

 

2.1.2 Animal trampling  

 

Most of the soil compaction in intensive agriculture is caused by the external load 

on soil from farm machinery or livestock. This causes considerable damage to the 

structure of the tilled soil and the subsoil (Defossez & Richard, 2002). Trampling of a dry 

soil by livestock may compact the surface layer and disrupt soil aggregation while 

trampling of moist soil deformed the aggregates and created a flat, relatively 

impermeable layer comprised of dense and unstable clods (Warren et al., 1987).  

 

The intensification of dairy farming has also been found to have a deleterious 

effect on soil quality, particularly in terms of compaction by trampling, which results in 

losses of production, pasture quality and hydraulic conductivity (Mitchell & Berry, 

2001). One of the most important soil properties vulnerable to animal trampling is bulk 

density and penetration resistance, which is highly sensitive to animal trampling. 

Mapfumo et al., (1999) reported that the surface (0-2.5 cm) bulk density and penetration 

resistance was significantly greater under heavily grazed than under medium and lightly 

grazed area. 

 

Soil compaction induced by trampling related to the soil depth. The depth of 

trampling-induced soil compaction varies depending on animal weight and soil moisture 

and could range from 5 to 20 cm. Ferrero & Lipiec, (2000), reported that most 

compaction effects were limited to the surface and intermediate depths of about 20 cm, 

while Vzzotto et al., (2000) reported that animal trampling increased soil density in the 

first 5 cm soil depth and Terashima et al., (1999) reported that trampling affected soil 

properties to a depth of 20 cm, with the greatest effect in the top 5 cm. Usman, (1994) 

suggested that trampling produced dense zones, which reduced water infiltration at a 

depth of 7.5 cm. 
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2.1.3 Pedestrian traffic and number of passes 

 

The use of recreational parks and forests increases soil compaction, destroys 

ground cover, decreases infiltration of water, and increases runoff and soil erosion. 

Kozlowski (1999) reported that in the Rocky Mountain National Park camp grounds the 

soil from heavily used sites had an average bulk density of 55.3% higher than soil from 

lightly used sites. The compacting effect of intensive use was more pronounced in the 0-5 

cm soil layer on lightly and moderately used sites, while it was also found to a depth of 

13 cm on heavily used sites (Dotzenko et al., 1967).  

 

Subsoil compaction may be induced by repeated traffic and the effects can persist 

for a very long time (Balbuena et al., 2000). In highly weathered soils, there are changes 

in soil physical properties in which compaction may not increase the strength but may 

reduce the porosity, thus restricting water supply to the root surface (Rengasamy, 2000). 

Alakukku, (1996) reported that in both clay and organic soil, the penetrometer resistance 

was 22-26% greater; the soil moisture water content was lower, and the soil structure 

more massive in plots with repeated traffic than in the control plots. 

 

Intensity of trafficking (number of passes) plays an important role in soil 

compaction because deformations can increase with the number of passes (Bakker & 

Davis, 1995). Experimental findings have shown that all soil parameters become less 

favourable after the passage of a tractor and that a number of passes on the same 

tramlines of a light tractor, can do as much or even greater damage than a heavier tractor 

with fewer passes (Chygarev & Lodyata, 2000). 

 

Seker & Isildar, (2000) reported that the number of tractor passes increased soil 

bulk density and compaction, and decreased total porosity, void ratio, air porosity and 

drainage porosity. These findings were also supported by Balbuena et al., (2000) who 

reported that 10 passes significantly affected soil properties of the surface layer to 50 cm 

depth compared to the 1 pass and no-traffic control treatments. The negative effects of 

the number of passes on soil compaction was also explained by Mosaddeghi et al., (2000) 
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who showed that increasing the number of passes counterbalanced the effect of manure in 

ameliorating soil compaction. 

 

2.1.4 Heavy machinery 

 

Tillage and traffic using heavy machines can also induce subsoil compaction in 

different soil types (Mosaddeghi et al., 2000). The depth of the compaction varies widely 

from 10 to 60 cm but it is more obvious in topsoil around 10 cm (Flowers & Lal, 1998). 

Balbuena et al., (2000) reported that penetrometer reading increments between 16 and 

76% can occur in the first 40 cm of the surface layer and bulk density can also increase 

but increases were limited to a 15 cm depth. However, in a grassland situation differences 

between heavy and light loads in the shallower depth range (topsoil) were not found 

(Jorajuria & Draghi, 2000). 

 

Heavy machine loads play an important role in soil compaction. Rethman, (2006) 

reported that in the Mpumalanga Highveld the use of heavy earth moving equipment is 

the primary causes of soil compaction. Wingate-Hill & Jakobson, (1982) indicated that 

under heavy traffic loads some soils become compacted to a depth of 1 m and sometimes 

more. However, the highest degree of compaction typically occurs in the top 30 cm of the 

soil profile, which normally contains most of the root mass. Kozlowski, (1999) reported 

that vehicles exert three major compacting forces on soils: the normal vertical force due 

to the dynamic load of the wheels, shear stress caused by slippage of wheels, and 

vibration of engines through the tyres. Most soils become compacted during the first few 

passes of a vehicle. Subsequent passes generally have little additional effect but the 

impact varies with the load and soil strength (Shetron et al., 1988).  

 

Horn et al., (2001) reported that wheel load and tyre type also increases soil bulk 

density and influences soil compaction. Almost all tyres significantly increase soil 

compaction in the wheel track, while only some of them increase soil compaction near 

the track.  Febo & Planeta, (2000) reported that wider wheels fitted with radial tyres 

reduce soil compaction as compared to those with metal tracks and diagonal-ply tyres 
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which usually destroy the layers of soil structure. However, tyre ground pressure values 

vary significantly between different machines with trailers, and slurry tankers exerting 

the highest ground pressures (Pagliai & Jones, 2002). Rethman, (2006) also reported that 

the compaction is a function of applied pressure and aggravated by size of loads, use of 

wheeled (tyres) vehicles and number of passes (traffic) over reclamation areas. 

 

 

2.2 Effects of soil compaction 

 

2.2.1 Soil parameters 

 

Soil compaction resulted in increased soil strength and soil density (Dollhopf & 

Postle, 1988). Soil strength is the resistance of a soil to deformation or fracture (Hillel, 

1980). It is an indication of the resistance that a soil will provide against the growth of 

plant roots. However, if a soil has few pores that are adequate in size for root penetration, 

then roots can displace soil back when they enlarge during growth. This is acceptable for 

low strength soils, but root growth is essentially stopped in high strength soils (Conrad et 

al., 2002). 

 

Bengough & Mullins, (1990b) reported that as a root enters a soil of high strength, 

its rate of elongation declines while radial expansion increases behind the root tip. The 

lowered rate of root elongation reflects a decreased rate of cell division in the meristem 

together with a decrease in cell elongation. Kozlowski, (1999) stated that severe 

compaction of soil not only shortens and thickens roots but also may alter their branching 

patterns. In general, the roots growing in compacted soil become more branched and 

form more lateral roots. Some species form a mat of proliferated short roots at a shallow 

soil depth.  

 

In mine soils, Rethman, (2006) found that the two most common physical 

parameters affected by compaction are bulk density (BD) and soil strength, both of which 

increase dramatically under the impact of heavy machinery. This impact is often reflected 
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in the breakdown of soil structure which in turn has strong influence on proportions of 

macro-pores, micro-pores and aeration porosity. Kozlowski & Pallardy, (1997) also 

reported that compacted profile layers resulted from surface pressure applied to the soil 

breaking the bonds of aggregating agents that hold soil particles together into structural 

units. Subsequently, the particles become reoriented into a configuration that has a higher 

bulk density (BD) (mass per unit volume) and soil strength. 

 

Rethman, (2006) also reported that within the soil profile the physical impacts of 

compaction often results in slow percolation or drainage which can have the effect of 

causing periodic waterlogging and poor aeration in the plough layer. In extreme cases, 

such poor drainage or percolation might also reduce replenishment of water in the sub-

soil or of ground water reserves. Where there is preponderance of very fine pores as in 

dense compacted horizons, water is strongly adsorbed and the utilization of such soil 

water is poor.  

 

2.2.2 Water relations 

 

In practice, however the Mpumalanga Highveld is characterized by rainfall 

distribution (over the year) and variability (from year to year) which can result in drought 

stress both within and between seasons (Rethman, 2006). The effects of soil compaction 

on plant growth are seriously increased under drought stress. Plant growth is strongly 

influenced by soil moisture (Sharp et al., 1988). Decreased soil moisture can result in 

various responses, such as decreased cellular growth, suppressed leaf expansion, stomatal 

closure, a reduction in the rate of photosynthesis, and the accumulation of various 

osmolytes within cells (Taiz & Zeiger, 2002). Nonami & Boyer, (1990) reported that in 

soybean (Glycine max) hypocotyls, growth was suppressed due to water stress, whereby a 

reduction in the surrounding water potential affected the turgor pressure of elongating 

cells, and this reduction causes a change in the elongation rate of the cells. 

 

The growth rate of roots is regulated by a combination of the expansion and the 

production of cells (Beemster & Baskin, 1998). Moreover, cell expansion appears to be 
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more sensitive in general to water stress. The rate of root elongation decreased where the 

root tip experienced low water potential resulted in the suppression of cell expansion 

(Hsiao, 1973). Hsiao & Xu, (2000) reported that when water potential is suddenly 

reduced in roots, osmotic adjustment occurs rapidly to allow partial turgor recovery, re-

establishment of water potential gradient for water uptake and the loosening ability of the 

cell wall, increases. These adjustments permit root to resume growth under low water 

potential. 

 

Water deficiency results in the growth of leaves to be readily inhibited. Osmotic 

adjustment of leaves occurs slowly when the water potential is reduced to a similar 

magnitude to that of roots. Additionally, the cell wall loosening ability does not increase 

substantially. It does, however, decrease leading to marked growth inhibition (Hsiao & 

Xu, 2000). Hsiao & Xu, (2000) further stated that the growth of both roots and leaves are 

hydraulically isolated from the vascular system. This isolation protects the roots from low 

water potential in the mature xylem and facilitates the continued growth. The water 

potential of the leaf growth region is barely affected by soil water removal through 

transpiration. Furthermore, leaf water potential would be low and subjected to further 

reductions by high evaporative demand.  

 

Chaves et al., (2002) reported that water stress has a negative impact on carbon 

assimilates of the leaf. Carbon assimilation decreases as a consequence of limitations to 

carbon dioxide diffusion in the leaf, diversion of carbon allocation to non-photosynthetic 

organs and changes in leaf biochemistry result in the down-regulation of photosynthesis. 

This resulted from stomatal closure which restricts water losses. Stomatal control of 

water losses has been identified as an early event in plant response to water deficit 

leading to a limitation of carbon uptake by leaves (Cornic & Massacci, 1996). Stomata 

close in response to either a decline in leaf turgor or water potential. Stomatal responses 

are often linked to soil moisture content. This suggests that stomata are responding to 

chemical signals like abscisic acid (ABA) produced by dehydrating roots (Chaves et al., 

2002). 
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Rethman et al., (1997) studied the influence of soil water availability on the above 

and below ground phytomass of five sub-tropical grass species. Species evaluated 

included Cenchrus ciliaris cv. Molopo, Digitaria eriantha:eriantha cv. Irene, Eragrostis 

curvula cv. Common, Panicum coloratum cv. Selection 75 and P. maximum cv. Gatton. 

They found that in terms of above ground production C.ciliaris recorded the highest yield 

15% more than E.curvula, 21% more than P.maximum, 40% more than D.eriantha and 

59% more than P.coloratum and was the least sensitive to soil water availability. In 

contrast, C.ciliaris and E.curvula recorded dramatically lower below ground phytomasses 

66% and 73% respectively than P.maximum, which had the best root development. 

 

The effects of soil compaction on plant growth are very complex in mine soils. 

The major reasons for this reduction in plant productivity include the water balance and 

nutrient usage in such soils, and the major mechanical resistance to root penetration or 

root growth offered by the high soil strength and bulk densities in compacted soils. 

Where pasture/forage crops have been established on compacted soils it is common to 

find that, apart from depressed yields, these crops are also characterized by a poorer 

cover. The same is true of annual row crops where drastic reductions in crop productivity, 

make qualification for mine closure or bond release virtually impossible on many sites. In 

forestry production; poor survival, establishment, low tree heights and an overall 

reduction in stem values are common where compaction has impacted on the 

environment (Rethman, 2006). 

 

2.2.3 Mineral nutrition 

 

Severe soil compaction decreases root absorption of major mineral nutrients, 

especially N, P and K. (Kozlowski, 1999). Mineral uptake per plant is reduced because 

the growth of roots is inhibited by greater soil resistance to root penetration. When roots 

fail to explore a large volume of soil resources, mineral nutrients become positionally 

unavailable (Wolkowski, 1990). 
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2.2.3.1 Nitrogen 

 

Root development is extremely sensitive to variations in nutrient supply. Nitrogen 

is absorbed by the roots in the form of nitrate (Zhang et al., 1999). The processes by 

which nitrate is absorbed depending on its availability and distribution, can have both 

positive and negative effects on the development and growth of lateral roots. (Zhang et 

al., 1999) reported that when Arabidopsis roots were exposed to a locally concentrated 

supply of nitrates there was no increase in lateral root numbers within the nitrate rich 

zone, but there was a localized increase in the mean rate of lateral root elongation, which 

was attributable to a corresponding increase in the rate of cell production in the lateral 

root meristem. 

 

However, severe compaction decreased the rates of nitrate supply to the roots, 

causing a systemic inhibitory effect on lateral root development (Zhang et al., 1999). Li 

et al., (2007) reported that compaction limits nitrogen (N) supply thereby causing 

reduced plant growth and morphological changes such as slowing of root growth relative 

to shoot growth. Breland & Hansen, (1996) identified that soil compaction reduced 

nitrogen (N) mineralization and N availability. Because of the possible creation of 

anaerobiosis under compacted soil conditions, more N is generally lost from the soil 

system.  

 

Denitrification is generally thought to be the most likely process of N loss from 

compacted soil condition (Ponder et al., 2003). The amount of N loss may vary widely 

among soils and ecosystems and the loss may be attributed to both denitrification and 

leaching. In a laboratory study by Torbert & Wood, (1992) on the effects of soil 

compaction on microbial activity and N losses, they found that greater N losses were 

observed with increasing bulk density, most likely due to denitrification and leaching. In 

another study of compaction effects on nitrogen mineralization and microbial biomass 

using N labeled clover, it is found that after 98 days, the net mineralization of clover N 

was reduced by 18% in the compacted pots compared with the non-compacted pots.  The 

soil was uniformly compacted to a bulk density of 1.8 g dry soil cm
-3

 which was 9.3 kg of 

dry soil per pot using a drop hammer. The non-compacted pots were not compacted and 
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its bulk density was 1.3 g dry soil cm
-3

 using 6.7 kg of dry soil per pot (Breland & 

Hansen, 1996). 

 

2.2.3.2 Phosphorus 

 

Soil compaction also affects the phosphorus (P) supply to plants. This is mainly 

dependent upon the soil’s initial degree of compactness, as well as its moisture status and 

level of plant available P (Cornish et al., 1984). A reduced root system is likely to affect 

the ability of plants to take up water and nutrients. In particular, it may reduce the uptake 

of the less mobile nutrients, such as P (Kristoffersen, 2005). Since soil compaction 

normally restricts root penetration, it is expected that a reduced root system would lead to 

lower plant uptake of phosphorus.  

 

Prummel, (1975) reported that restricted root growth due to poor soil structure 

limited the plant uptake of phosphate, especially at low phosphate availability. Lipiec & 

Stepniewski, (1995) showed a significant reduction in the P uptake by spring barley in 

strongly compacted soil, and related it to differences in the configuration of the root 

system. In another study, Kristoffersen, (2005) reported that the root length was 

drastically reduced by increased soil compaction and the P uptake per unit root length of 

roots decreased with increasing level of soil compaction. 

 

However a certain amount of compaction, such as that caused by normal tillage 

operations, may be beneficial for nutrient uptake as it increases the contact between soil 

particles and roots, and may lead to a more rapid exchange of ions between the soil 

matrix and roots (Arvidsson, 1999). It may also lead to higher concentrations of P within 

the root depletion zone due to higher soil density (Nadian et al., 1996). Thicker roots may 

also be able to take up more P per unit root length, because of increased maximal influx 

with increased root diameter (Peterson & Barber, 1981). 
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2.2.3.3 Potassium 

 

Potassium (K) is one of the major nutrients, essential for root growth and 

development. The availability of potassium to the plant is highly variable, due to complex 

soil dynamics, which are strongly influenced by root-soil interactions (Grabov et al., 

2006).  In accordance with its availability to plants, soil potassium is found in different 

pools, such as soil solution and exchangeable K (Syers, 1998). Yanai et al., (1996) 

reported that severe compaction reduced the exchange of potassium in the soil solution. 

The release of exchangeable K is often slower in compacted soil, resulting in a decrease 

rate of K acquisition by plants roots (Johnston, 2005). 

 

Potassium status may further deteriorate with the increasing soil bulk density and 

soil strength, which interfere with potassium uptake (Qi & Spalding, 2004). Plant roots 

can experience transient shortages of potassium because of spatial heterogeneity and 

temporal variations in the availability of this nutrient. The main source of soil 

heterogeneity is soil compaction, which often suppresses roots growth and inhibits the K 

transport activity, which creates zones with reduced nutrient content (Grabov et al., 

2006). However in less compacted soils contact between roots and K may occur, because 

of root growth into the area where the nutrient is located and transport of a nutrient to the 

root surface through the soil (Jungk & Claassen, 1997). 

 

In a greenhouse study conducted by Kuchenbuch et al., (1986) it was found that 

less soil compaction is associated with higher volumetric water content and therefore 

tends to facilitate K transport to the root surface. However, the dense soil may also cause 

a reduction in the root length and so the higher bulk density does not necessarily result in 

increased K accumulation (Seiffert et al., 1995). Oliveira et al., (2004) reported that K 

translocation through the soil to the root surface is facilitated by diffusion and mass flow. 

Diffusion is the dominant mechanism of K delivery to the root surface and constitutes up 

to 96% of total soil K transport. In dry soils, bulk density content is normally higher and, 

therefore, K delivery was found to be low, from the restricted mass flow and diffusion 

(Vetterlein & Jahn, 2004). 
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2.3 Alleviation of soil compaction 

 

Compaction is one of the most important soil quality indicators reflecting the 

potential for environmental damage and the physical state of the soil resources (Birkas et 

al., 2004). A combination of practices is suggested to alleviate soil compaction. These 

practices include conservation tillage and biological activities. Managing soil compaction 

by conservation tillage can be achieved through appropriate application of some of the 

following techniques: mechanical soil loosening such as deep ripping, controlled traffic 

and reducing soil disturbances by strip, shallow tillage or no-till. Biological effects 

involve incorporating organic materials and growing soil loosening crops by rotating cash 

crops and pastures with strong tap roots capable of penetrating and breaking down 

compacted soils. 

 

2.3.1 Conservation tillage 

 

2.3.1.1 Deep ripping 

 

 Deep ripping or deep cultivation is an important practice to alleviate soil 

compaction, destroying hard pans and ameliorating hard setting soils (Laker, 2001; 

Hamza & Anderson, 2005). Henderson, (1991) reported that deep ripping of compacted, 

sandy soil increased dry matter at flowering of field peas (Pisum species) and lupins 

(Lupinus species) and their yield increased on ripped soils by 64 and 84%, compared to 

undisturbed soils. In another study of compacted soils, it was found that grain yields were 

increased slightly more on the compacted loamy sand soil than on the sandy loam soil 

due to deep ripping and gypsum application (Hamza & Anderson, 2003).  

 

Deep ripping has an influence on the soil-water relations, especially infiltration 

rate of compacted soils.  Hamza & Anderson, (2002) found that deep ripping alone 

increased the infiltration rate in the first three years but the effect did not last into the 

fourth year. In fact the effect of ripping on water infiltration began to decline sharply in 

the second year. It was suggested that the decrease in the infiltration rate with time for the 
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ripped, treatments indicates that large soil voids created by ripping, filled gradually with 

fine particles and colloids and the soil became compacted again. Hall et al., (1994) also 

reported that the effect of deep ripping on soil-water relations declines after the first year 

and yield increases associated with deep ripping did not persist in the second year of the 

experiment, presumably due to re-compaction.  

 

Ripping soil alleviates compaction and increases yields more efficiently by 

removing the causes of compaction. Ellis, (1990) reported that grain yields showed little 

response to deep ripping in wheeled treatments even though penetrometer resistance 

showed a marked decrease, but a significant increase in grain yield occurred where both 

the compacted layer and wheel traffic were removed. Kayombo & Lal, (1993) suggested 

that the alleviation of soil compaction can be achieved by the use of mechanical 

loosening techniques such as deep ripping and subsoiling to remove soil compaction. 

They added that the effect of mechanical loosening tends to work more effectively if the 

field traffic is controlled. 

 

2.3.1.2 Controlled traffic 

 

Soil compaction may be the most devastating effect of vehicle traffic. The option 

for overall reduction of vehicle traffic in the field is to consider a form of controlled 

traffic (Raper, 2005). Controlled traffic is a system which restricts soil compaction to the 

traffic lanes to maintain a zone more favourable for plant growth (Braunack et al., 1995). 

Williford, (1980) found significantly increased cotton yields in a Tunica clay in 

Mississippi over a 5 year period from controlled traffic plots. Controlled traffic slows 

down the effect of re-compaction on tilled soil (Busscher et al., 2000), significantly 

increases soil water infiltration, improves soil structure, increases soil moisture and 

reduces run-off (Li YuXia et al., 2001). 

 

Controlled wheel traffic has effects on soil strength. Liebig et al., (1993) found 

that soil strength in the trafficked inter-row was 56% greater than the non-trafficked 

inter-row and 104% greater than the row on a silty clay loam. Alakukku, (1998) also 
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reported that soil penetrometer resistance was greater in compacted than control plots in 

the 35-49 cm layer of a clay loam and the 25–35 cm layer of a silt soil. This was found 

when comparing compacted soil by three passes of high axle load traffic and un-

compacted (no traffic) silt and clay loam soils. The subsoil structure was also more 

massive and homogeneous in compacted than in control plots. 

 

Controlled traffic has been shown to have lower energy requirements as compared 

to other tillage techniques (Coates & Thacker, 1990). Williams et al., (1991) reported that 

controlled traffic used up to 79% less energy to perform a tillage activity such as discing. 

The same results were supported by Nikolic et al., (2001) who estimated the saving 

energy of 20-25%. Coates, (1997) also reported that the second best tillage, as far as 

energy is concerned, is reduced (minimum) tillage, which has been shown to offer 

significant energy savings over conventional systems. 

 

Raper et al., (1998) compared the effect of controlled traffic on soil compaction 

with trafficked areas and the subsequent effect on crop root penetration on sandy loam. 

They found that traffic decreased the total estimated soil volume suitable for root growth. 

Bulinski & Niemczyk, (2001) also reported that the volumetric density of soil sampled 

from the traffic lanes in a controlled traffic system was higher by 15–39% as compared 

with trafficked areas. Similar results were also reported by Panayiotopoulos et al. (1994) 

who found that controlled traffic resulted in better root growth and lower resistance to 

penetration. 

 

2.3.1.3 Reducing soil disturbances by tillage systems 

 

Traffic on loose soil causes a significant increase in soil compaction. The main 

function of tillage systems is to alleviate subsoil compaction. Botta et al., (2004) 

emphasized primary and secondary tillage to be applied to reduce soil disturbances. 

Primary tillage increases the volume of soil accessible by plant roots, so one of its 

objectives is to increase the void ratio of soil. Secondary tillage decreases the size of soil 

aggregates. Busscher et al., (2006) reported that tillage systems, especially primary 
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tillage, helps to alleviate plant water stress by making more of the profile available for 

root exploration and water extraction. A significant decrease in soil compaction and 

higher pasture yields, measured as dry matter production, were observed when the 

secondary system was performed by tractor equipped with larger sized radial tyres (Botta 

et al., 2004). 

 

The techniques commonly utilized for control and management of topsoil and 

subsoil compaction are subsoiling and chiseling. Balbuena et al., (1998) reported that 

subsoiling and chiseling applied at depth of 280-450 mm are utilized for controlling 

subsoil compaction and to increase crop yields. In a study of deep tillage and traffic 

effects on subsoil compaction and sunflower (Helianthus annus L.) yields, Botta et al., 

(2006) found that the total cross-sectional area loosened by the chisel was 14% more than 

the subsoiler and even though the chisel efficiency was 85% less than the subsoiler. 

 

Raper et al., (1994) compared various cotton tillage systems on a sandy loam soil, 

including annual subsoiling at 0.4 and 0.5 m depth. They found that the positive effects of 

controlling traffic were significant when in-row subsoiling was used as an annual tillage 

treatment. In addition to the environmental benefit of maintaining surface residues and 

alleviating soil compaction, they found that strip tillage, involving in-row subsoiling to 

0.4 m depth, decreased cone index directly beneath the row, decreased topsoil bulk 

density, increased soil water content, decreased energy usage and increased yields.  

 

2.3.2 Biological effects 

 

2.3.2.1 Addition of organic manure 

 

Application of organic manure such as cattle manure, may overcome the negative 

effects of compaction due to the beneficial effects on soil physical, chemical and 

biological properties in the zone of incorporation (Motavalli et al., 2003). An increase in 

soil organic matter from organic manure is a desirable aim as it is associated with better 
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soil physical properties such as greater aggregate stability, reduced bulk density, 

improved water holding capacity at low suctions and enhanced porosity (Moreno et al., 

2006). Carter, (2002) suggested that maintaining an adequate amount of organic matter in 

the soil not only stabilizes soil structure and makes it more resistant to degradation, but 

also decreases bulk density and soil strength.  Zhang, (1994) emphasized that mixing 

organic matter with soil reduced soil bulk density and improved porosity. Similarly 

Martin & Stephens, (2001) indicated that organic materials possess lower bulk density 

and greater porosity than that of mineral soils. 

 

The addition of organic matter to topsoil through incorporation of plant residues 

or manure application has been widely studied by many researchers (Soane, 1990; Zhang, 

1994; Hamza & Anderson, 2003). Fettell, (2000) reported that manure as a source of 

organic matter is a beneficial practice in improving soil physical properties in compacted 

soils. Reddy, (1991) observed a decrease of 0.02 Mg m
-3

 in bulk density and 11.8 kPa in 

soil strength while the infiltration rate increased by 0.4 cm h
-1

 on a sandy loam soil due to 

the application of 10 t ha
-1

 of green leaf manure. 

 

Organic matter influences soil structure and compatibility through different 

mechanisms such as binding of soil aggregate particles (Zhang & Hartge, 1992). Puget et 

al., (1999) confirmed that stable aggregates were enriched and formed around young 

decomposing soil organic matter. The type of organic matter is also important. Readily 

oxidisable soil organic matter seems to be more relevant in determining mechanical 

behaviour of the soil (Ball et al., 2000). On the other hand, the less humified organic 

matter has a greater effect in increasing aggregate porosity resulting in the decrease of 

aggregate tensile strength (Zhang, 1994). 

 

Matsi et al, (2003) have shown that the application of cattle manure can increase 

the soil available macronutrients N, P, and K. Nitrogen is a primary plant nutrient 

(especially for grasses) and exists as plant available nitrogen in the form of ammonium or 

nitrate. Nitrogen applied to grasses before they begin flowering stimulates tillering, while 

nitrogen applied during or after flowering stimulates stem and leaf growth (Whitehead, 
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2000). Phosphorus is critical for early root growth, for seed production, and for effective 

nitrogen fixation by legume nodules. Potassium is important during the growing season. 

It increases the ability of plants to survive winter conditions, by stimulating root growth 

and reducing water loss through stomata or leaf pores (Horne, 1992). 

 

2.3.2.2 Soil loosening deep-rooted crops  

 

Subsoil compaction may reduce the availability and uptake of water and plant 

nutrients thereby lowering crop yields. Amongst the management options for alleviating 

subsoil compaction is the selection of crop rotations with deep-rooted crops (Motavalli et 

al., 2003). Ishaq et al., (2001) reported that plant species that have the ability to penetrate 

soils with high strength usually possess a deep tap root system. Incorporating such 

species in rotation is desirable to minimize the risks of subsoil compaction. Jayawardane 

& Chan, (1994) suggested that on soils such as vertisols with high shrink swell potential, 

strong rooted crops such as safflower (Carthamus spp.) could be used as a biological soil 

loosening treatment through a deep soil profile.  

 

It has been suggested that genetic improvement for root growth in soils with hard 

layers, could potentially reduce subsoil compaction (Hamza & Anderson, 2005). 

Busscher et al., (2000) reported that soybean (Soja spp.) CV PI 416937 possesses a 

superior genetic capability over CV Essex, to produce more root growth in soils with 

high penetration resistance. Rosolem & Takahashi, (1998) studied the effects of soil sub-

surface compaction on root growth and nutrient uptake by soybean grown on sandy loam 

soils. They reported that sub-surface compaction led to an increase in root growth with a 

corresponding decrease in the compacted layer. There was no effect of subsoil 

compaction on total root length or surface area, soybean growth or nutrition. 

 

Changes in root diameter loosen and break down any compacted soil layer around 

them. Hamza et al., (2001) using a computer assisted tomography technique, showed that 

radish (Raphanus spp.) and lupin (Lupinus spp.) roots exhibit a temporary decrease in 

diameter after transpiration commences followed by a significant temporary increase. 
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This fluctuation in diameter destabilizes soil and loosens the compaction. Cochrane and 

Aylmore, (1994) studied the effects of plant roots on soil structure. They found that 

legumes are more effective for loosening soil structure aggregates than non-legumes, and 

lupins were reported to be the most efficient species. 

 

2.3.3 Alleviation of compaction in mine soils by using cattle manure and 

pasture grasses 

 

2.3.3.1 Cattle manure 

 

Organic matter levels are generally very low in mine soils. This may be ascribed 

to the loss of organic matter from the A-horizon because of compaction and re-

compaction, high bulk densities and soil strength, hard setting and surface crusting. 

These, in turn, result in poor structure, aggregate stability, porosity, infiltration, drainage, 

water retention, an increase in runoff and erosion, poor aeration, drainage and root 

penetration (Rethman, 2006). The application of cattle manure has often been reported to 

increase plant growth and improve physical properties of the soil. Hati et al., (2006) 

reported that the application of animal manures improved physical properties of the soil, 

which promoted higher nutrient and water uptake by plant roots and increased plant 

growth.  Zhang et al., (2006) also found that cattle manure application improved the 

physical properties of the soil, which promoted better rooting as well as higher nutrient 

and water uptake by Bromegrass and Oat production. Rethman, (2006) also emphasized 

the role of green manuring, organic amendments and restorative pastures to restore and 

maintain organic matter levels in mine soils over the long term. 

 

2.3.3.2 Pasture grasses 

 

In South Africa surveys on reclaimed areas have revealed that compaction has 

imposed severe restrictions on the effective rooting depths of most reconstructed soils. 

Successful strategies to achieve alleviation of compaction will probably include the 
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selection of species which are not only adapted to local climatic conditions and satisfy the 

defined objectives of post-mining land use but will also be able to tolerate high bulk 

densities or better still alleviate such conditions and penetrate dense compacted layers, in 

combination with mechanical, chemical and other biological methods of alleviation, or 

amelioration of compaction (Rethman, 2006). 

 

Tall Fescue (Festuca arundinacea) is an important temperate perennial grass, 

which it is widely used for both forage and turf purposes (Sleper & West, 1996). 

Compared with other cool-season turfgrass cultivars, Tall Fescue is reported to have good 

high temperature tolerance and drought resistance. Major components of drought 

resistance are the development of a deep and viable root system (Carrow, 1996; Dane et 

al., 2006). Sheffer et al., (1987) reported that Tall Fescue is better able to avoid drought 

than other turfgrasses such as perennial ryegrass (Lolium perenne L.) or Kentucky 

bluegrass (Poa pratensis L.). They indicated that variations in turfgrass drought 

resistance have been attributed mainly to differences in total root length density and 

rooting depth. 

 

Salt stress is also a major factor reducing plant productivity. The detrimental 

effects of salinity on turfgrass growth include osmotic stress, ion toxicity and nutritional 

disturbances (Cheeseman, 1988). Salt tolerant plants have the ability to minimize these 

detrimental effects by producing an extensive root system and having salt secreting 

glands on the leaf surface (Poljakoff-Mayber, 1988). Alshammary et al., (2004) studied 

the growth responses of four turfgrass species to salinity. They found that the growth of 

Tall Fescue roots was less adversely affected by salinity than that of shoots, leading to a 

significant shift in the root to shoot ratio in favour of the root. Tall Fescue also had a 

higher root to shoot ratio than Kentucky bluegrass at 4.7 and 9.4 dSm
-1

 salinity levels. 

 

Tall Fescue is long-lived and often survives for 6-10 years or more, penetrating 

moist soils to a depth of 150 cm and tolerating contaminated soils (Walsh, 1995). Aprill 

& Sims, (1995) have suggested the use of such grasses for the treatment of hydrocarbon-

contaminated sites. Horst et al., (2000) compared the growth and development of Smooth 
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Bromegrass and Tall Fescue in 2,4,6-trinitrotoluene (TNT)-contaminated soil. They 

reported that the shoot dry weight of Tall Fescue was 50% greater than that of Smooth 

Bromegrass. Tall Fescue roots were also significantly longer than those of Smooth 

Bromegrass, at all concentrations of TNT. 

 

Smuts Fingergrass (Digitaria eriantha) is a subtropical species widely spread in 

southern Africa. Smuts Fingergrass is now widespread in grazing areas throughout the 

world's humid tropics and subtropics, including South-East Asia (Smith & Valenzuela, 

2002). It is a palatable, good quality summer growing perennial grass suited to a range of 

soils, very persistent and productive species (Buckley, 1959). In agreement with other 

investigations, D. eriantha showed its adaptation to the environment of the north-west 

slopes in southern Queensland by tolerating regular and severe night frosts over a season 

of 4-5 months (Strickland, 1974). Its persistence and competitive ability, particularly in 

low nitrogen soil, may be due to non-symbiotic N fixation in its rhizosphere (Tow & 

White, 1976). 

 

Rethman & Tanner, (1993) studied the influence of the level of soil fertility on the 

botanical composition of pastures established on rehabilitated strip-mined land in South 

Africa. They found that over an experimental period of five years (1987-1992) the annual 

Eragrostis tef and weakly perennial Chloris gayana species disappeared completely, 

irrespective of the level of fertility, whereas the perennial Smuts Fingergrass (Digitaria 

eriantha) persisted as dominant species irrespective of soil acidity, phosphorus or 

potassium status. 

 

In other investigations it was found that D. eriantha can establish well in 

degraded areas. It is better adapted to low fertile soils and is tolerant of soil aluminum, 

which is often present in acidic tropical soils. It tolerates soil pH (H2O) from 4.5 to 8.0 and 

drought (Smith & Valenzuela, 2002). Snyman, (2003) studied revegetation of bare 

patches in a semi-arid rangeland of South Africa. He reported that regardless of 

cultivation treatment, or soil form, D. eriantha had the best survival after 10 years and 

had even spread into adjacent areas. Tow et al., (1997) reported that D. eriantha indicated 
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good adaptation to the poor physical conditions and extremes of moisture supply 

encountered in solodic soil profiles by producing the high yields of both shoot and root. 

 

High summer temperatures can often have an adverse effect on growth of 

temperate species. Since D. eriantha is a subtropical grass, its better growth and water-

use efficiency at higher temperature regimes (between 35-38ºC) was predictable (Tow, 

1993). Tow et al., (1997) also compared the effects of environmental factors on the 

performance of D. eriantha and Medicago sativa in monocultures and as a mixture. The 

results of the experiment confirmed the field observations that Smuts Fingergrass and 

lucerne had complementary temperature responses, and thus complementary seasonal 

growth patterns, Smuts Fingergrass being favoured by summer temperatures and lucerne 

by spring temperatures.  

 

On post-mining environments the following effects of pastures have been 

recorded and most of these are linked with the impact of soil compaction; improvements 

in soil structure / aggregation, soil organic matter content, rooting depths, microbial and 

micro-fauna, infiltration rates and reduced erosion, hydraulic conductivity, water holding 

capacity and aeration, consequently, reductions in bulk density, surface crusting and hard 

setting (Rethman, 2006). 
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3. Conclusions 

 

Surface mining activities contribute to environmental damage and change the 

physical state of soil leading to harmful effects of soil compaction on plant growth. In 

mine soils, compaction restricts the establishment and growth of plants by decreasing the 

development of roots to acquire nutrients and water. The capacity of roots to penetrate 

soils decreases with increasing soil strength and bulk density. Soil of high strength 

reduces root elongation. Root and shoot masses, root system surface areas and root 

diameters decrease with increasing soil bulk density. 

It was found that compaction can occur naturally by settling of soil, and because 

of the activities of humans. In mine soils, most commonly, soils are severely compacted 

by heavy machinery. From surveys it has been reported that in the Mpumalanga Highveld 

the use of heavy earth moving equipment is the primary causes of soil compaction. Other 

studies indicated that under heavy traffic loads some soils become compacted to a depth 

of 1 m and sometimes more. However, the highest degree of compaction typically occurs 

in the top 30 cm of the soil profile, which normally contains most of the root mass. 

A combination of practices is suggested to alleviate soil compaction. These 

practices include conservation tillage and biological activities, achieved through 

appropriate application of some of the following techniques; mechanical soil loosening 

such as deep ripping, controlled traffic, reducing soil disturbances by strip, shallow 

tillage or no-till, incorporating organic materials and growing soil loosening crops by 

rotating cash crops and pastures plants with strong tap roots capable to penetrate and 

break down compacted soils. 

In mine soils, the proposed investigations, which are envisaged to solve harmful 

effects of soil compaction on plant growth, include planting of pasture species and 

application of cattle manure. Pastures are linked with improvements in soil structure, soil 

organic matter content, rooting depths, consequently, reductions in bulk density. The 

application of cattle manure has often been reported to increase plant growth and improve 

physical properties of the soil. 
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Abstract 

Soil depth and area of rooting are important to the long-term survival of plants on mine soils. Soil 

compaction is perceived as a major threat to mine soils and productivity. It increases the bulk density which 

may limit the access of nutrients and water, thereby affecting survival and growth of plants. The objectives 

of the study were to monitor the root biomass of irrigated Tall Fescue (F. arundinacea cv Dovey) and 

dryland Smuts Fingergrass (D. eriantha cv Irene) on mine soils, and to describe soil bulk density, pH (H2O) 

and soil nutrient concentrations in such soils. The study was conducted on field trials located on a surface 

coal mine in Mpumalanga Province in South Africa. The mine cover soil was a sandy clay with a depth of 

40 cm over spoil material. The bulk density of mine soils varied from 1.80 gcm
-3

 to 1.90 gcm
-3

 at depths of 

0-20 and 20-40 cm respectively. Tall Fescue was established on an area of compacted soil which had been 

cultivated and irrigated with poor quality mine water for three years prior to pasture establishment. The 

Smuts Fingergrass was planted on an adjacent area of rehabilitated dryland. The greatest root biomass of 

Tall Fescue was recorded in the 0-10 and 10-20 cm soil depth, followed by 20-30 and 30-40 cm soil depth. 

The root mass of Smuts Fingergrass was also significantly greater in 0-10 and 10-20 cm soil layers 

followed by 20-30 and 30-40 cm soil layers. The soil bulk density of soils planted to both grass species was 

lowest (1.61gcm
-3

) in the 0-10 cm soil depth, followed by 10-20 cm, 20-30 cm and was highest (1.86gcm
-3

) 

in the 30-40 cm soil depth. Root systems of both grass species were best in the upper 10 cm of the mine 

cover soil and declined with both depth and pH. The concentration of soil nutrients P, Na, K, Mg and Ca 

was greater in the 0-20 cm than in the 20-40 cm soil horizon. The development of roots into compacted soil 

to utilize water and nutrients is regarded as a natural process, which may alleviate compaction because of 

root channels and the increase in organic material in such soils. 

 Key words: pH (H2O); Root biomass; Soil bulk density; Soil compaction; Soil nutrient concentrations; 

Smuts Fingergrass; Tall Fescue. 
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1. Introduction 

 

A well developed root system is fundamental for plant growth and survival. Grass 

species rely on a good distribution of roots to acquire nutrients and water from the soil. 

While Tall Fescue (Festuca arundinacea cv Dovey) is planted under irrigation or under 

high rainfall conditions in South Africa, Smuts Fingergrass (Digitaria eriantha cv Irene) 

is planted under rainfed conditions in areas with an annual precipitation of 450-600 mm. 

Tall Fescue is a deep-rooted, long-lived perennial temperate grass species (Walsh, 1995). 

Smuts Fingergrass as a palatable good quality summer growing perennial grass suited to 

a range of soils, is very persistent and productive species (Buckley, 1959). One of the 

major constraints on root development in the soil is compaction. 

Soil compaction is perceived as a major threat to agricultural soils and 

productivity (Nolte & Fausey, 2000). Areas of compact soil with high shear strength can 

be caused by agricultural machinery and surface mining activities. In South Africa, 

surveys have indicated that approximately 40 000 ha have been disturbed by coal surface 

mining in the past 30 – 35 years (Rethman, 2006). Compaction in such soils increases the 

bulk density and strength of soil, which are important factors affecting both shoot and 

root growth of plants. 

 

It has been suggested by many researchers that soil bulk densities as low as 1.3 to 

1.7 gcm
-3

, may limit root growth and decrease plant yield (Bengough & Mullins, 1990; 

Kuznetsova 1990; Thom et al., 1997). In the study of effects of soil bulk density on 

ryegrass, root length and herbage yields decreased as bulk density increased from 0.9 to 

1.3 Mgm
-3

 (Thom et al., 1997). Further effects of soil compaction are decreased root size, 

retarded root penetration and smaller rooting depth (Unger & Kaspar, 1994), which are 

among major reasons for reduced plant productivity. 

 

Soil compaction susceptibility depends on soil texture, soil water content during 

of field operations and machinery loads (Hamza & Anderson, 2005; Raper 2005). When 

driving a vehicle on moist, arable soil, measurable compaction may be exerted to a depth 

of at least 30 cm at an axle load of 4 Mg (Raper, 2005). Alakukku and Elonen (1994) 
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found that compaction of clay soil caused by axle load of 19 Mg penetrated to depth of 

50 cm. In experiments, conducted by Hammel (1994), crop yields were not affected by a 

10 Mg axle load in a silt loam soil, but compaction resulting from the 20 Mg axle load 

reduced root growth and crop growth. 

 

Rethman, (2006) reported that the effects of soil compaction on plant growth are 

very complex in mine soils. Where pasture/forage crops have been established on 

compacted soils it is common to find that, apart from depressed yields, these crops are 

also characterized by a poorer cover. The major reasons for this reduction in plant 

productivity include the water balance and nutrient usage in such soils, and the major 

mechanical resistance to root penetration or root growth offered by the high soil strength 

and bulk densities in compacted soils. The effects of soil compaction on plant growth are 

seriously increased under drought stress (Sharp et al., 1988). Nonami & Boyer, (1990) 

reported that in soybean (Glycine max) hypocotyls, growth was suppressed due to water 

stress, whereby a reduction in the surrounding water potential affected the turgor pressure 

of elongating cells, and this reduction causes a change in the elongation rate of the cells. 

The aims of this study were to monitor the root biomass of irrigated Tall Fescue 

(F. arundinacea cv Dovey) and dryland Smuts Fingergrass (D. eriantha cv Irene) on 

compacted mine soils, and to describe pH (H2O) and soil nutrient concentrations in such 

soils and the possible effects on plant growth. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 




