Towards sustainable building design principles for medium density, middle income housing in Gauteng.

by

Marianne Müller-Warrens

Submitted in partial fulfilment of part of the requirements for the degree Master of Science (Applied Sciences): Architecture in the Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria

July 2001
ACKNOWLEDGEMENTS

I would like to convey my sincere thanks to my supervisor Prof. Dieter Holm. The patient manner in which he shared his broad knowledge of this subject is an inspiration. I feel privileged to have conducted this research under one of the most respected professionals in the field.

Neil Oliver and Jeremy Gibberd of the CSIR Butek for being willing to share the prototype SBAT document with me. Thank you also for all the professional assistance and advice.

Thank you to Mrs de Bruto for your kindness and gentle encouragement.

Thank you to all family and friends for their endless encouragement and belief in me. My sincere gratitude to my parents who taught me the value of continued education. To my husband, Jürgen and daughter, Beatrix who were at my side the whole way with their unlimited love, support and understanding. We make a great team.

I dedicate this to Beatrix and all young children; they deserve a bright future on a beautiful and healthy planet.

This study uses the Harvard method.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF FIGURES</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>VIII</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>IX</td>
</tr>
<tr>
<td>EKSERP</td>
<td>XI</td>
</tr>
</tbody>
</table>

I
INTRODUCTION - THE PROBLEM AND ITS SETTING

1.1 The statement of the problem
1.2 The sub-problems
1.3 The hypotheses
1.4 The delimitations
1.5 Abbreviations
1.6 The definition of the terms
1.7 The assumptions
1.8 The importance of the study

CHAPTER II

THE REVIEW OF RELATED LITERATURE AND INFORMATION AVAILABLE

2.1 General overview of literature available on sustainable building design
2.2 Historical overview of international sustainable building design
2.3 Precedent towards achieving sustainable building design principles for the FOURways house
2.3.1 South African precedent
2.3.2 International precedent
2.4 Overview of the growing concern in South Africa with sustainability
2.5 Literature on middle income housing development in Gauteng
2.5.1 Defining the Gauteng area and identification of developing areas
2.5.2 The definition of the middle income house
2.5.3 The selection of examples to define the typical FOURways house

...
CHAPTER III

3 SUSTAINABLE BUILDING DESIGN PRINCIPLES (SBDP) AND THE FOURways HOUSE

3.1 Defining sustainable building design principles 26
3.2 Applying sustainable building design principles in Gauteng (GSBDP) 28
3.3 Ecology of the user 31
3.4 Ecology of the site 33
3.4.1 Location 34
3.4.2 Site features and natural environment 35
3.4.3 Orientation 37
3.4.4 Climate 40
3.4.5 Energy 42
3.4.6 Water 44
3.4.7 Waste 45
3.4.8 Fauna and flora 46
3.5 Ecology of the building 49
3.5.1 Relationship of building to site 49
3.5.2 Orientation of the building 50
3.5.3 Generic climate of the building 51
3.5.4 Energy efficiency 53
3.5.5 Water conservation 54
3.5.6 Waste management 55
3.5.7 Materials and construction methods 57
3.6 Life-cycle of the building 62
3.6.1 Life-cycle of building materials 63
3.6.2 Re-use of building materials 63
3.6.3 Re-cycling of building materials 63
3.7 Summary 64
3.8 Conclusion 64
CHAPTER IV

4 ADAPTING THE SUSTAINABLE BUILDING ASSESSMENT TOOL (SBAT)

4.1 Evolution of the SBAT 65
4.2 The SBAT and the three target criteria descriptors 66
4.3 Criteria for inclusion and exclusion of criteria 67
4.4 Inter-linking SBAT and the SBDP 67
4.5 Comparative analysis of social criteria and environmental criteria 69
4.6 The GSBDP and the adapted SBAT 72
4.7 Summary 77
4.8 Conclusion 77

CHAPTER V

5 THE ADAPTED SBAT ANALYSIS OF THE FOURways CASE STUDY

5.1 General introduction to the FOURways case study 78
5.2 Introduction to the case study 79
5.3 Case study - Use of the adapted SBAT on a FOURways house 79
5.4 Ecology of the user 80
5.5 Ecology of the site 81
5.5.1 Location 82
5.5.2 Site features and natural environment 88
5.5.3 Orientation 90
5.5.4 Climate 92
5.5.5 Energy 93
5.5.6 Water 94
5.5.7 Waste 95
5.5.8 Fauna and flora 96
5.6 Ecology of the building 99
5.6.1 Relationship of building to site 99
5.6.2 Orientation 102
5.6.3 Generic climate 103
5.6.4 Energy 104
5.6.5 Water 106
5.6.6 Waste 107
5.6.7 Materials and construction methods 108
5.7 Life-cycle of the building
5.7.1 Life-cycle of building materials
5.7.2 Re-use of building materials
5.7.3 Re-cycling of building materials
5.8 The adapted SBAT test of the case studies
5.9 Summary
5.10 Conclusion

CHAPTER VI

6. CONCLUSION
6.1 Further study

BIBLIOGRAPHY

APPENDIX 1 - Definitions of sustainable development
APPENDIX 3 - Alternatives to sewerage disposal
APPENDIX 4 - The SBAT prototype
LIST OF FIGURES

Figure 1.1	No- this time we are doing without humans" (Vanderstadt 1996:96)	5
Figure 2.1	Of trees and billboards. (Denman 1990)	9
Figure 2.2	Map of South Africa (Editors inc 1996:49)	14
Figure 2.3	Map of Gauteng (Smith 1998:8)	15
Figure 2.4	Broad Vegetation types of Gauteng (adapted from van Riet et al 1997: 12)	17
Figure 2.5	Broad geology of Gauteng (adapted from van Riet et al 1997: 6)	18
Figure 2.6	Personal disposable income per province (Editors Inc 1996:52)	20
Figure 2.7a	Illustrating the LSM 7 demographics and residential characteristics	21
Figure 2.7b	Illustrating the LSM 7 demographics and residential characteristics	22
Figure 2.8	Marketing information adapted by developers from "SA's best suburbs to live in" in F & T Weekly, March 27 1998, vol.50, no.12, p12-16.	23
Figure 2.9	The Randburg area relative to the area Greater Johannesburg	24
Figure 2.10	The advertisements of the case study (The Saturday Star – Property Guide 14 November 1998: 86)	25
Figure 3.1	The ecosystem of house and nature (Pearson 1989:25)	27
Figure 3.2	The high tech approach to sustainable building design	30
Figure 3.3	The permaculture approach to sustainable building design	30
Figure 3.4	The city (inner city and suburbs) dominated by buildings (author's illustration)	33
Figure 3.5	The countryside (farming area and natural reserves) dominated by vegetation (author's illustration)	33
Figure 3.6	Factors important to a site location (author's illustration)	34
Figure 3.7	The effect of the topography of a flat site and a sloped site (author's illustration)	36
Figure 3.8	The effect of orientation on a flat site and a sloped site (adapted from Holm & Viljoen 1996)	39
Figure 3.9	The harnessing of wind energy (Pearson 1989:79)	42
Figure 3.10	The effect of trees on the micro climate (adapted from Ching 1975)	48
Figure 4.1	The original SBAT Diagram (CSIR 2001)	66
Figure 4.2	adapted SBAT diagram	75
Figure 4.3	Scenarios illustrating the petal principle as per Table 4.6 results	76
Figure 5.1	Example of two available house designs in the development Ravenna.	79
Figure 5.2	The secured property development	81
Figure 5.3	The illustration displays the trend where the city is vacated and natural surrounding areas are being encouraged upon.	83
Figure 5.4	A medium density development (not Ravenna) encroaching on the previously open environment	84
Figure 5.5	Analyses the services in the area of the development	86
Figure 5.6	The access road	87
Figure 5.7 The adjoining site that has not been developed, but previously farmed 88
Figure 5.8 The developed and undeveloped stand 90
Figure 5.9 Orientation of the development and buildings thereon 91
Figure 5.10 The non-perennial stream south of the site 95
Figure 5.11 The clearing of the site 97
Figure 5.12 Protea plant on stand case study B 98
Figure 5.13 Case study analysis 1a 100
Figure 5.14 Case study analysis 1b 101
Figure 5.15 The development with tarred road and central lighting, grassed frontage and new planting. The electrical supply and telephone exchange box are visible 105
Figure 5.16 Section of case study 112
Figure 5.17 The adapted SBAT diagram of case study 1 115
Figure 5.18 The adapted SBAT diagram of case study 2 115
Figure 6 Final illustration from “The Little Green Book” by C. Denman (1990) 119

LIST OF TABLES

Table 2.1 Gauteng temperature range 16
Table 3.1 Five basic steps to move towards sustainable design 29
Table 3.2 The average climatic data for Johannesburg and Pretoria (adapted from the directorate climatology of the South African Weather Bureau 2000) 41
Table 4.1 SBAT category definition 67
Table 4.2 Categories arising from GSBDP research 68
Table 4.3 Comparative analysis of “social” criteria 70
Table 4.4 Comparative analysis of “environmental” criteria 71
Table 4.5 The adapted SBAT including “social” and of “environmental” criteria 74
Table 4.6 Four different scoring scenarios to illustrate different petal principle results 76
Table 5.1 The adapted SBAT of case study 1 113
Table 5.2 The adapted SBAT of case study 2 114
ABSTRACT

Towards sustainable building design principles for medium density, middle-income housing in Gauteng.

by
Marianne Müller-Warrens

Supervisor: Prof. D. Holm
School of the Built Environment
Degree: Master of Science (Applied Sciences)

This dissertation addresses the current need for information specific to the sustainability of middle-income, medium density houses in Gauteng (FOURways house). The research explores principles and assesses tools that will assist in achieving more sustainable development of the FOURways house. The research identifies that if development in this sector is to be sustainable, information must be accessible to users as well as professionals. This requires clarity of information, which avoids exclusion due to scientific jargon. This research is qualitative and therefore no calculations are made comparing initial capital investment versus long term cost savings.

The concept of sustainability in domestic buildings is explored as principles that contribute towards achieving a sustainable living environment. Since the principles provide a broad background of information, the CSIR prototype "sustainable building assessment tool" (SBAT) has been adapted as a tool to introduce the topic of sustainability for discourse. A graphic representation of the adapted SBAT developed as a flower metaphor illustrates the extent to which a house is sustainable, or not.

It is proposed that the adapted SBAT document be used as an introduction at the project onset to the topic of sustainable building design. The principles can be followed to achieve the aim and finally the result can be tested using the adapted SBAT table and diagram.
This proposal was tested on a case study of the representative FOURways house. The principles checked and the adapted SBAT table and diagram illustrate that the building does not satisfy the requirements for a sustainable domestic building. Furthermore the case study revealed that current developments do not make use of sustainable principles.

Accepting that the FOURways house is a role model to the lower income groups (six earlier Living Standard Measure groups), sustainability in this housing sector urgently requires attention if sustainability is to be achieved across the range of domestic housing in South Africa.
EKSERP

Op pad na volhoubare ontwerpbeginsels vir middel-digtheid, middelinkomste behuising in Gauteng.

deur
Marianne Müller-Warrens

Leier: Prof. D. Holm
School vir die Bou-omgewing
Graad: M.Sc (Toegepaste Wetenskappe)

Hierdie verhandeling spreek die huidige gebrek aan inligting spesifiek tot die volhoubaarheid van middeldigtheid, middelinkomste huise in Gauteng (FOURways huise) aan. Die studie ondersoek beginsels en identifiseer middele wat sal help met die ontwikkeling van 'n meer volhoubare FOURways huis. Die studie beklemtoon die balansteerheid van inligting wat deur gewone mense sowel as beroepslui verstaan kan word. Dit benodig eenvoudige presentasie van die konsep sonder die gebruik van wetenskaplike terme wat die inligting buite die bereik van gewone mense sal plaas. Aangesien die ondersoek kwalitatief is, is daar geen berekeninge wat kapitaalbelegging vergelyk teen opsigte van eindelijk langdurige besparings.

Die konsep van volhoubaarheid in huishoudelike geboue is ondersoek in die vorm van beginsels wat bydra tot 'n volhoubare lewensomgewing. Aangesien die beginsels 'n breë agtergrond van inligting lever, word die WNNR prototipe “sustainable building assessment tool” (SBAT) (gereedskap vir waardebepaling van volhoubare geboue) aangewend om volhoubaarheid as 'n besprekingspunt in die bouproses in te lei. Die oorspronklike SBAT is aangepas vir gebruik aan die FOURways huis. 'n Grafiese voorstelling van die aangepaste SBAT is ontwikkel in die vorm van 'n blom-metafoor om die volhoubaarheid van 'n huis te illustreer.

Die voorstel is om die aangepaste SBAT as inleiding tot die onderwerp van volhoubaarheid in die bouomgewing te gebruik. Die beginsels kan gevolg word om die
doel te bereik en die aangepaste SBAT-dokumente toets die resultaat met die aangepaste SBAT-tabel en SBAT-diagram.

Die voorstel is getoets op 'n praktykgeval wat die gemiddelde FOURways huis verteenwoordig. Die aangepaste SBAT-tabel en -diagram illustreer dat die voorwaardes vir 'n volhoubare huishoudlike gebou nie bereik word nie.

Die studie aanvaar die FOURways huis as 'n veteenwoordigend vir die vorige ses LSM groepe, en vind dat volhoubare ontwikkeling in hierdie huis-sektor dringende aandag nodig het as volhoubaarheid oor die hele reeks woongeboue in Suid Afrika bereik wil word.