A technical risk evaluation of the Kantienpan volcanic hosted massive sulphide (VHMS) deposit and its financial viability

by

Deon Rossouw

Submitted in partial fulfilment of the requirements of the degree

Master of Science (Earth Science Practice and Management)

In the Faculty of Natural and Agricultural Science

University of Pretoria

April 2003
DECLARATION

I declare that the thesis that I hereby submit for the Masters Degree in Earth Science Practise and Management at the University of Pretoria has not previously been submitted by me for degree purposes at any other university.

SIGNATURE OF STUDENT: ___________________________ DATE: 2003/07/01
ACKNOWLEDGEMENTS

I would like to thank my study leader, Prof Hennie Theart, for his support and guidance in this project. Thanks are also due to Kumba Resources Company, which sponsored my studies and in particular to Messrs Hennie van der Berg, Eddie Fourie and Wynand Smit.

Thanks must also be given to Julie Streicher, from the society of language editing, for struggling with the language of this document and turning it into a understandable English treatise.

My thanks also go to my wife, Wanda, without whose support, understanding and prayer during the long evening hours of work, this project would not have been possible.

I give thanks to my Saviour, Jesus Christ, for giving me the ability, commitment and perseverance to complete this project.
Job 1: 1-12

"Surely there is a mine for silver, and a place for gold to be refined. Iron is taken out of the earth, and copper is smelted from ore. Miners put an end to darkness, and search out to the farthest bound the ore in gloom and deep darkness. They open shafts in a valley away from human habitation; they are forgotten by travellers, they sway suspended, remote from people. As for the earth, out of it comes bread; but underneath it is turned up as by fire. Its stones are the place of sapphires, and its dust contains gold. "That path no bird of prey knows, and the falcon's eye has not seen it. The proud wild animals have not trodden it; the lion has not passed over it. "They put their hand to the flinty rock, and overturn mountains by the roots. They cut out channels in the rocks, and their eyes see every precious thing. The sources of the rivers they probe; hidden things they bring to light. "But where shall wisdom be found? And where is the place of understanding?"

Job 28: 28

"And he said to humankind, 'Truly, the fear of the Lord, that is wisdom; and to depart from evil is understanding.' "

ABSTRACT

The Areachap Group represents a mid-Proterozoic fossil island arc environment consisting of amphibolite, hornblende gneiss, quartz-feldspathic gneiss, calc-silicates and pelitic schists. Chemical compositions of these highly deformed upper amphibolite/granulite grade metamorphosed rocks indicate protoliths ranging from rhyolite/rhyodacite, calc-alkaline basalt, tholeiite to ultramafic igneous rocks and sediments. The above-mentioned assemblage is typical of an island arc environment.

Island arc environments are ideal hosts for volcanic hosted massive sulphide (VHMS) type deposits and may successfully be explored by using the VHMS lithogeochemical alteration model. VHMS deposits not only yield strategic base metals such as zinc (Zn), copper (Cu) and lead (Pb), but significant grades of gold (Au) and silver (Ag) are associated with these deposits.

The Areachap Group presents a metallogenic province containing one economic deposit, the Prieska Zn-Cu mine, as well as several sub-economic deposits, including the Areachap mine and other lesser prospects at Boksputs, Kantienpan, Jacomynspan and Rokoptel. The Prieska Zn-Cu mine is the most significant VHMS deposit of the Areachap Group and occurs within the Copperton volcanic centre. This abandoned mine delivered 47 Mt sulphide ore at 1,7 % Cu and 3,8 % Zn with traces of Ag and Au.

Four volcanic centres were previously identified in the Areachap Group, namely Upington, Klein Begin, Boksputs and Copperton. Exploration activities were loosely subdivided into the same regions. Regional lithogeochemical sampling campaigns were conducted for the four subproject areas and approximately 5 000 rock samples were analysed for the twelve major oxides and ten trace elements.

The region of interest, the Boksputs Subvolcanic area, with a well-established infrastructure, is situated near Groblershoop (50 km east) and Marydale (30 km...
southeast) in the Northern Cape province and is part of the geological Areachap Group.

Several high copper anomalies and the tholeiitic lithological composition of the Boksputs Subproject resulted in this area being selected as the main target region. It was attempted to discriminate between different trace element populations using probability plots, but this was not successful. The complexity of the probability plots was attributed to the large variation in different rock types included in the data set. Corrections were made by determining threshold values for each rock type, but this refinement proved unsuccessful, indicating that the rock classification used was incorrect. Option areas were finally selected, based primarily on absolute Cu values. These areas were mapped in more detail prior to ground electromagnetic (EM) surveys and drilling. To test the target selection, a proto-lithological map of the area, based on cluster analyses of the lithogeochemical dataset, was drawn. The proto-lithological maps formed the basis of the follow-up work and the application of the VHMS conceptual model.

A conductor in the Kantienpan target area was located with a time domain electromagnetic (TDEM) survey and this was drilled. The drilling intersected a massive sulphide body with a tonnage of approximately 5 Mt and an average grade of 4.09 % Zn, 0.49 % Cu and traces of Au and Ag.

The orebody was evaluated financially and it was found to be uneconomic as a stand-alone operation. However, if the Kantienpan deposit is considered as an alternative to imported concentrate for the Zincor smelter, this study suggests that the project may be economically feasible. Furthermore, it must be stated that the Areachap Group remains only partly explored and that a world class VHMS deposit may be discovered within the next few years.
# TABLE OF CONTENTS

1 INTRODUCTION ................................................................. 15

1.1 GENERAL .................................................................................. 15

1.2 STUDY OBJECTIVES ............................................................... 17

1.3 LOCATION .................................................................................. 17

1.3.1 Location Risk 17

1.4 INFRASTRUCTURE ...................................................................... 20

1.4.1 Infrastructure Risk 21

1.5 PHYSIOGRAPHY ......................................................................... 21

1.5.1 Physiographical and Environmental Risk 22

1.6 LAND TENURE ........................................................................... 22

1.6.1 Tenure Risk 23

2 HISTORY ....................................................................................... 25

2.1 PREVIOUS WORK ON THE ECONOMIC GEOLOGICAL ASPECT OF THE REGION (1969 – 1994) ............................................................ 25

2.1.1 Introduction 25

2.1.2 Known Deposits 26

2.2 WORK DONE FOR THIS STUDY .................................................... 30

2.2.1 Introduction 30

2.2.2 Lithogeochemical Survey 31

2.2.3 Geophysical Surveys 32

2.2.4 Soil Survey 34
3 VHMS CONCEPTUAL MODEL AND EXPLORATION GUIDELINES ....36

3.1 VHMS CONCEPTUAL MODEL ..................................................................................36
  3.1.1 Introduction ........................................................................................................36
  3.1.2 Regional Setting ................................................................................................37
  3.1.3 Tonnage and Grade Considerations ..................................................................39

3.2 COMMON EXPLORATION GUIDELINES FOR VHMS DEPOSITS ..................40
  3.2.1 Tectonic Controls .................................................................................................40
  3.2.2 Tuffaceous Exhalites ..........................................................................................41
  3.2.3 Ore Mineralogy and Geochemistry .....................................................................42
  3.2.4 Mineralogy and Metamorphism of Alteration Zones ........................................42

3.3 LITHOGEOCHEMICAL ALTERATION CHARACTERISTICS AS A VHMS
   EXPLORATION TOOL ..................................................................................................44
  3.3.1 Cross-Cutting Footwall Alteration ....................................................................44
  3.3.2 Hanging Wall Alteration .....................................................................................45
  3.3.3 Regional Conformable Alteration ....................................................................45

4 REGIONAL GEOLOGY ..................................................................................................47

4.1 STRATIGRAPHY .........................................................................................................47
  4.1.1 Introduction .........................................................................................................47
  4.1.2 The Upington and Klein Begin Subprojects .......................................................48
  4.1.3 Boksputs Subproject ..........................................................................................51
  4.1.4 Copperton Subproject .........................................................................................53

4.2 STRUCTURE ................................................................................................................54
  4.2.1 Introduction .........................................................................................................54
  4.2.2 Faulting and Folding ..........................................................................................55
4.3 GENESIS ........................................................................................................ 58
  4.3.1 Introduction .................................................................................................. 58
  4.3.2 The tectonic framework within which the Areachap group formed and its subsequent modification. .................................................................................................................... 58

5 LOCAL GEOLOGY ..................................................................................................... 61
  5.1 LITHOLOGY ........................................................................................................ 61
    5.1.1 Hanging Wall ................................................................................................. 61
    5.1.2 Footwall ........................................................................................................ 62
    5.1.3 Sulphide Zone ............................................................................................... 65
  5.2 MICRO-ANALYSES .......................................................................................... 68
  5.3 DISCUSSION ....................................................................................................... 70

6 THE KANTIENPAN MASSIVE SULPHIDE BODIES ........................................... 72
  6.1 MODELLING ...................................................................................................... 72
  6.2 GEOSTATISTICAL EVALUATION ..................................................................... 74
  6.3 KANTIENPAN RESOURCE ............................................................................. 76
  6.4 CLASSIFICATION OF THE KANTIENPAN RESOURCE .................................... 76

7 THE FINANCIAL VIABILITY OF THE KANTIENPAN DEPOSIT .................. 78
  7.1 INTRODUCTION ................................................................................................. 78
    7.1.1 Metallurgy .................................................................................................... 78
    7.1.2 Mining .......................................................................................................... 79
  7.2 DISCOUNTED CASH FLOW MODEL ................................................................ 81
  7.3 KANTIENPAN BENCHMARKED AGAINST WORLD Zn PRODUCERS ............ 82
    7.3.1 Introduction .................................................................................................. 82
  7.4 SENSITIVITY ANALYSIS .................................................................................. 85
LIST OF FIGURES

FIGURE 1. LOCALITY MAP OF THE NORTHERN CAPE VHMS PROJECT AREA. ............18

FIGURE 2. LOCALITY MAP AND LOCAL INFRASTRUCTURE OF THE VHMS PROJECT AREA. .................................................................19

FIGURE 3. FARMS TAKEN UNDER OPTION....................................................24

FIGURE 4. REGIONAL GEOLOGY OF THE VHMS PROJECT ...........................................29

FIGURE 5. SAMPLE POSITIONS ACROSS THE AREACHAP GROUP......................33

FIGURE 6. VHMS CONCEPTUAL MODEL (MODIFIED AFTER LARGE ET AL, 2001) ........38

FIGURE 7. HANGING WALL MINERALOGY.........................................................61

FIGURE 8. FOOTWALL MINERALOGY..............................................................63

FIGURE 9. SULPHIDE MINERALOGY.............................................................67

FIGURE 10: SULPHIDE MINERALOGY ..........................................................68

FIGURE 11: SPHALERITE MICRO-ANALYSES (REYNEKE, 2002) ......................69

FIGURE 12. LYNX 3D MODEL.................................................................72

FIGURE 13. LONGITUDINAL SECTIONS WITH CHEMICAL CONTOURS..............73

FIGURE 14. CASH COST PER ANNUAL ZN METAL PRODUCERS ......................82

FIGURE 15. TONNAGE AND GRADE COMPARISON AT A ZN PRICE OF US$950/t ..........83

FIGURE 16. TONNAGE AND GRADE COMPARISON FOR THE KANTIENPAN DEPOSIT ....84

FIGURE 17. Zn EQUIVALENT GRADE SENSITIVITY PLOT..............................86

FIGURE 18. Zn US$/t PRICE SENSITIVITY PLOT.............................................86

FIGURE 19. NPV PROBABILITY PLOT FOR A RESERVE OF 5 Mt AT 5% Zn Eq. .........88

FIGURE 20. NPV PROBABILITY PLOT FOR A RESERVE OF 5Mt AT 12% Zn Eq. .........88
LIST OF TABLES

TABLE 1. MINERAL AND SURFACE RIGHT HOLDERS OF THE VHMS PROJECT AREA........23

TABLE 2. AVERAGE AND MEDIAN TONNAGE AND GRADE OF VHMS DEPOSITS
(CAIN, 1994)...........................................................................................................39

TABLE 3. LITHOSTRATIGRAPHY OF THE AREACHAP GROUP AND RELATIVE
EQUIVALENCE OF THE UPI NGTON, KLEIN BEGIN, BOKSPUTS AND
COPPERTON SUBPROJECTS ADAPTED ON GERINGER (1994)................48

TABLE 4. CHARACTERISTICS OF DEFORMATION PHASES IN THE KHEIS
SUBPROVINCE AND NAMAQUA PROVINCES ..................................................56

TABLE 5. ELECTRON MICROPROBE ANALYSIS IN PERCENTAGE WEIGHT OF CORE
SAMPLES. ..................................................................................................................69

TABLE 6. DRILLING RESULTS WITH A CUT-OFF OF 1% Zn....................................74

TABLE 7. DRILLING RESULTS OF ONLY THE SULPHIDE INTERSECTING ZONES........75

TABLE 8. WIDTH WEIGHTED AVERAGES AND A Zn EQUIVALENT..........................76

TABLE 9. TOTAL CASH FLOW TO EQUITY..........................................................82