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Preface 

Microarray and suppression subtractive hybridization (SSH) technologies have made it 

possible to observe changes in the gene expression of various organisms, under a range of 

conditions, and at different time points. While these experiments can improve our 

understanding of the biology of an organism, data mining is essential for inferring significant 

biological information, such as the identification of new biological mechanisms. Many 

algorithms and software have been developed for analysing gene expression, although the 

extraction of relevant information from experimental data is still a substantial challenge. 

MADIBA (MicroArray Data Interface for Biological Annotation) is an integrated, online tool 

that facilitates the assignment of biological meaning to gene expression clusters, thus assisting 

researchers in interpreting their results and understanding the meaning of the co-expression of 

a cluster of genes. MADIBA automates this post processing stage by performing a number of 

diverse analyses and generating graphical representations for easy interpretation. While other 

tools exist, they are designed for specific model organisms such as human, mouse and rat. 

MADIBA is instead aimed at the socially and economically important Plasmodium species, 

with a specific aim being to identify new drug targets; a bacterial plant pathogen that causes 

major economic losses of potato; as well as plant species with the aim to improve crops of 

relevance in Africa, such as pearl millet. Specifically, MADIBA at present contains the 

genomic data for Plasmodium falciparum, Pectobacterium atrosepticum (Pba), Arabidopsis 

thaliana and rice (Oryza sativa ssp japonica cv Nipponbare). 

Tools within the MADIBA web interface allows rapid analyses for the identification of over-

represented Gene Ontology terms; visualising of implicated genes on KEGG metabolic 

pathways; their chromosomal localisations; putative common transcriptional regulatory 

elements in the upstream sequences; and an analysis specific to the organism being analysed, 

for example to identify potential drug targets in Plasmodium or for gaining insights into 

improving crops. Specifically in the Arabidopsis Characteristics module, genes that could 

ultimately be used in improving plant defences were identified by determining how they 

respond to different treatments. The genes’ response (either up- or down-regulated) to the 

different treatments was obtained from the information in the DRASTIC database. A more 

complex approach was developed and named PCA Experiment Comparer, which compared 

the gene expression levels of the experiments in NASCArrays with a submitted set of genes. 

 
 
 



 xi 

MADIBA was initially designed for use on P. falciparum data, and written by Dr. Clotilde 

Claudel-Renard in Perl and PHP. During this MSc study, much of the Perl code was 

converted to Python, in particular the Metabolic Pathways module. In addition, the Gene 

Ontology module was rewritten using a different approach, the output module added, and A. 

thaliana, rice, and Pba genome data were implemented into MADIBA. A paper on MADIBA 

was published in 2008 in BMC Genomics (volume 9, page 105), titled “MADIBA: A web 

server toolkit for biological interpretation of Plasmodium and plant gene clusters”. In addition 

to this information, this MSc dissertation includes information on Pba, as well as new 

analyses in the Arabidopsis and rice sections, specifically focussing on plant defences. 

The primary aim of MADIBA is to enable biologists to analyse their microarray data in an 

integrated fashion. All a user needs to do is submit a set of co-expressed genes, and the 

relevant data will be retrieved and a series of diverse analyses performed on it. In this way, 

researchers do not need to be concerned with data consistency and different formats for 

different analyses. MADIBA is freely available and can be accessed on the web using a 

JavaScript enabled browser at http://www.bi.up.ac.za/MADIBA/. 

Chapter 1 of this dissertation is a literature survey dealing with downstream microarray 

analyses and a discussion of a selection of programs that are currently available; Chapter 2 

describes with the implementation and design of the MADIBA system; Chapter 3 discusses 

the biological application of data from the various organisms that have been implemented in 

MADIBA, described below in further detail; Chapter 4 provides some general concluding 

remarks; and is followed by a summary. 

Specifically in this dissertation, MADIBA was used to study two biological systems under 

investigation by the Molecular Plant-Pathogen Interactions group at the University of 

Pretoria, namely the identification of signalling pathways in Arabidopsis thaliana in both the 

resistant and susceptible interactions when infected with Ralstonia solanacearum; and a 

comparison of salicylic acid and methyl jasmonate treatments in pearl millet prior to infection 

with the rust fungus. In addition, case studies using Plasmodium falciparum data were used to 

demonstrate MADIBA’s functionality, and for Pba, data from an expI mutant experiment was 

used to identify genes involved in quorum sensing. Preceding each case study is a literature 

survey of the biological system under study. 
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A note on references: Numbers that appear in round brackets, e.g. (1), indicate internet 
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1 Chapter 1 – Introduction/Background 

1.1 Introduction to microarrays 

1.1.1 Basics about microarrays 

Microarrays are typically glass slides which contain DNA molecules attached at fixed 

locations called spots or features. There may be thousands of spots on an array, and each spot 

may contain millions of copies of genes or fragments of genes (Causton et al., 2003). 

To study gene expression levels using microarrays, the most popular method is to compare 

the gene expression levels of two different samples which come from different conditions, for 

example, cell types at different cell cycle stages, with each sample labelled with a different 

coloured dye (Stekel, 2003; Causton et al., 2003). These so-called two-colour microarrays 

generally use the fluorescent cyanine (Cy) dyes, namely Cy3 and Cy5. Once the mRNA from 

each sample has been extracted from the tissue of interest, it is converted to cDNA (using 

reverse transcriptase) and labelled with the respective fluorescent Cy dye (Causton et al., 

2003; Stekel, 2003). These labelled samples are then hybridised to the probes on the glass 

slide to form heteroduplexes via Watson-Crick base pairing (Stekel, 2003). The hybridised 

microarray is scanned by a laser at wavelengths to excite the dyes, although typically when 

using two colour arrays, two lasers are used – one for each dye. The output of the scanner is 

two monochrome images, one from each of the lasers. When these images are combined, it is 

possible to create the usual red-green false colour images (Stekel, 2003), where the Cy3 dye is 

represented a green colour and Cy5 is represented as red. The amount of fluorescence emitted 

by the spot when excited by the laser corresponds to the amount of nucleic acid bound to each 

spot. If the sample labelled with Cy3 is abundant, the spot will be green, and red if the sample 

labelled with Cy5 is abundant (Causton et al., 2003). If both samples occur with equal 

abundance, the spot will appear yellow and if neither are present, it will not fluoresce and will 

appear black (Causton et al., 2003). Figure 1.1 illustrates the process of a typical microarray 

experiment. 

Microarrays are an extremely powerful tool for monitoring gene expression levels for 

thousands of genes. Since there may be many thousands of different DNA molecules bonded 

to an array, it is possible to measure the expression of those thousands of genes 

simultaneously (Stekel, 2003). The identification of patterns in the gene expression can 
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potentially be used to rationalise a wide range of diverse phenomena, from explaining disease 

states to responses to stimuli (Causton et al., 2003). 

 

Figure 1.1: A generic microarray experiment (Causton et al., 2003). After the mRNA is extracted, it is 

labelled with one of the two different dyes. Both samples are allowed to hybridise with the microarray 

where the labelled samples bind to their complementary sequences. Afterwards, the microarray is 

scanned with a laser to excite the dyes to determine the abundance of the samples on each spot. 

1.1.2 Clustering 

Generally, gene expression data are normalised, filtered and finally genes with similar 

expression profiles are clustered into groups. The biological hypothesis behind this is that 

similarly expressed genes have a common biological characteristic, for example participation 

in the same biological process, or regulation by a common transcription factor (Segal et al., 

2004; Zhu, 2003). Clustering methods can also be used to tentatively annotate genes with 

unknown function based on the concept of “guilt by association”, where the function is 

inferred from known genes with similar expression patterns (Jupiter and Vanburen, 2008). 

Identifying these groups of genes creates an informative description of the biology and 

presents a comprehensive overview that is occurring in a particular dataset. This makes it 

possible to locate those areas of biology that warrant a more detailed investigation (Doniger et 

al., 2003). 

Eisen et al. (1998) were among the first to apply a clustering algorithm to microarray 

expression data, and showed that by using clustering, it was possible to group together genes 

that were known to have similar functions. Hierarchical clustering, using uncentred 

correlation distance and centroid linkage, was used to analyse yeast microarray data, under 

various stages in the organism’s life cycle as well as different abiotic conditions (Figure 1.2) 
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(Eisen et al., 1998). As a result of the early availability of free clustering and visualisation 

software for expression data, this is currently an extremely popular and commonly used 

clustering algorithm (D'haeseleer, 2005). 

 

Figure 1.2: Example of the output from a clustering algorithm (Eisen et al., 1998). Shown is the 

dendogram, illustrating the similarities of the genes, together with a heatmap showing how the 

expression of the genes changes over time. Heatmaps are measures of expression levels (vectors) 

where the colour scales ranges from saturated green for log ratios -3.0 and lower, to saturated red for 

log ratios greater or equal to 3.0. Black indicates unchanged expressions. Each gene’s expression is 

represented by a column of coloured boxes, and each time point is represented by a row. 

Some other general trends have been found regarding clustering real expression data 

including that single linkage affords extremely poor performance, and so should not be used; 

complete linkage seems to outperform average linkage; Euclidian distance and Pearson 

correlation seem to work reasonably well as distance measures, particularly for log-ratio data 

and absolute-valued data, e.g. Affymetrix data, respectively (D'haeseleer, 2005). 

Ultimately, there is no “one-size-fits-all” solution with regard to clustering. The interpretation 

of the clusters is highly subjective, as no precise definition of what a cluster should be exists 

(Causton et al., 2003). As a result, a cluster may be an arbitrary shape and size. Each 

clustering algorithm imposes its own set of biases on the data, and as such, each algorithm can 

give widely differing results on noisy real-world data, such as expression data. Statisticians 

argue that clustering is often misapplied and the results over-interpreted, and that clustering is 

best suited to determining relations between only a small number of variables, rather than 

deriving patterns from thousands of genes (Vos, 2005). In addition, hierarchical clustering has 

 
 
 



 4 

been criticised as there are no compelling reasons why a hierarchal structure should be 

imposed on gene expression data (Causton et al., 2003). 

Despite essentially becoming a standard in visualising expression data, it has been shown that 

k-means clustering and Self Organising Maps (SOM) outperform hierarchical clustering, with 

hierarchical methods being particularly unreliable for obtaining good high-level clusters and 

provide sub-optimal results for large data sets (D'haeseleer, 2005). 

1.1.3 Post-processing of microarray data 

The analysis of clusters is largely dependant on access to previously described features of the 

genes being studied (Diehn et al., 2003). Various publicly available resources exist, which 

catalogues diverse attributes of genes, ranging from their localisation within the genome, to 

the enzymatic function of the proteins they encode, to their position in a metabolic pathway. 

These resources include SwissProt, LocusLink, UniGene, GenBank, Protein Information 

Resource (PIR), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Ensembl, amongst 

many others (Diehn et al., 2003). In addition, genes may be annotated by assigning them to 

the functional categories of the Munich Information Center for Protein Sequences (MIPS) 

classification, or to the Gene Ontology terms, by using descriptions from public databases, 

such as those mentioned above (Chung et al., 2004). These resources provide exceptional 

depth and coverage with regard to the functional data available for a given gene, but are not 

designed to effectively explore the biological knowledge associated with hundreds or 

thousands of genes in parallel (Dennis et al., 2003).  

Traditionally, scientists have investigated genomic molecular biology in a “one-gene-at-a-

time” approach. However, with the recent emergence of high throughput technologies, such 

as microarrays, this has led to the rapid growth of genome-scale datasets and a rapidly 

increasing number of publicly available genomic sequences (Baerends et al., 2004). The 

availability of complete genome sequences, and genome-wide measurements of gene 

expression, provides the means to understand function, expression and regulation of the 

genome (Zhu, 2003). 

Microarray methods provide a global evaluation of changes in the gene expression of a cell at 

a given instant. Although the genome is mostly invariant in each cell of an organism, the 

genes can have different expression patterns related to environmental conditions, in response 

to a particular treatment, condition, or developmental program (Lelandais et al., 2004). 
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Microarray expression analysis has become one of the most widely used techniques for the 

assessment of mRNA transcript levels on a genomic scale, allowing tens of thousands of 

genes to be assayed in a single experiment (Khatri et al., 2002). A transcriptome state can 

thus be defined as the expression levels of all the genes expressed in a cell population at any 

given time (Lelandais et al., 2004). These expression patterns can possibly implicate 

unknown genes in various cellular processes and assign putative functions, as well as 

facilitating the identification of genes that are co-expressed in a transcriptional unit (Zhu, 

2003). Consequently, for a given genome, different transcriptome states can be observed, 

depending on complex regulatory networks and homeostasis. These patterns, or expression 

profiles, depict subsets of transcripts that reflect the gene activity at a given moment in time. 

These profiles represent a “genetic fingerprint” that characterises the cell or tissue being 

studied and provides a base upon which to start an investigation (Khatri et al., 2002). 

With the increased use of microarrays in genome-wide transcription profiling and the general 

research focus shifting from single genes to large gene sets, understanding what is occurring 

in the underlying biology presents a huge challenge for biologists. However, genome-scale 

approaches generate large amounts of data, and an efficient and flexible solution is required in 

order to access and interpret the data (Doniger et al., 2003). Even a simple task such as 

retrieving the functional information for a set of genes can be time consuming. To further 

complicate matters, without the assistance of appropriate bioinformatics tools, visualising and 

statistically analysing the data can be challenging and a nontrivial task for biologists (Zhang 

et al., 2005).  

1.2 Tools for the post-processing of microarray data 

Although microarray technology has been used for many years, and has seen exponential 

growth, the analysis of the data remains a challenge to many investigators. The difficulty 

primarily lies in interpreting the list of differentially expressed genes, and how to plan new 

experiments given that knowledge (Jupiter and Vanburen, 2008). 

Genome-wide gene expression analyses offer unique opportunities to study the interactions of 

genes in metabolic pathways, and to characterise gene regulatory networks. Although it was 

traditionally thought that these networks act as a linear sequence of events, it is now known 

that the processes may consist of a network of events, with cross-talk among pathways caused 

by the induction or suppression genes that belong to more than one pathway (Zhu, 2003). 

Microarray experiments have enabled the study and identification of gene regulatory 
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networks, such as transcriptional regulation (Zhu, 2003). In addition, by exploiting the large-

scale gene expression datasets, mostly from Saccharomyces cerevisiae and Escherichia coli, 

this has led to the discovery of global structures governing metabolic and regulatory networks 

(Zimmermann et al., 2004). It has also been observed that genes that encode transcription 

factors are frequently observed among genes that are rapidly suppressed by environmental 

and developmental stimuli (Zhu, 2003). Transcription factors often have crucial functions in 

regulating multiple pathways, especially the genes that are involved in several related 

pathways (Zhu, 2003). Multiple-genome comparisons have also yielded interesting 

observations on the modularity and connectivity distributions of gene expression data 

(Zimmermann et al., 2004). 

The introduction of high-throughput methodologies has generated experimental data at rates 

that exceed knowledge growth. While researchers are beginning to appreciate the statistical 

rigours required for the analysis of genome-scale datasets, the rate-limiting step in knowledge 

growth occurs at the transition from statistical significance to biological discovery (Dennis et 

al., 2003). The analysis of the large amount of data presents a tremendous challenge to 

biologists and new tools are needed to help gain biological insights from these experiments. 

To interpret the biology of these genetic profiles, investigators must analyse the data in the 

context of other information such as the biological, biochemical, and molecular function of 

the translated proteins (Khatri et al., 2002). This is particularly challenging for a human 

analyst because large quantities of largely irrelevant data often buries the useful information 

(Khatri et al., 2002). 

There are many tools that are available for the analysis of data generated from whole genome 

microarray experiments, with each tool able to analyse the data at different biological levels. 

A greater understanding of the biological mechanisms within organisms becomes possible 

with the availability of complete genome data, in combination with high-throughput screening 

methodologies such as microarrays. In addition, numerous databases provide annotation at 

different biological levels. These include databases on the annotation of genes according to 

the Gene Ontology (GO) nomenclature (Ashburner et al., 2000), metabolic pathways as in 

KEGG (Kanehisa et al., 2004) and BioCyc (Krieger et al., 2004), or Transcription Factor 

Binding Sites (TFBS) in TRANSFAC (Matys et al., 2003) to annotate promoters. 

Several currently available tools provide an interpretation of gene clusters but are often 

specialised in their analyses. For example, FatiGO (Al Shahrour et al., 2004), GeneLynx 
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(Lenhard et al., 2001) and Gostat (Beissbarth and Speed, 2004) are powerful tools for GO 

term identification; GoMiner (Zeeberg et al., 2003), MAPPFinder (Doniger et al., 2003) and 

DAVID (Dennis et al., 2003) propose GO and metabolic pathway interpretation; Genome2D 

(Baerends et al., 2004) visualises transcriptional elements; GeneXPress (Segal et al., 2004) 

identifies DNA binding sites that are unique to the genes in each cluster; and offers multiple 

visualisations of the data; MiCoViTo (Lelandais et al., 2004) proposes metabolic pathways 

and incorporates transcription regulation visualisation; metaSHARK (Pinney et al., 2005) 

predicts enzyme-coding genes from unannotated genome data and places them on generic 

metabolic pathways; and WebGestalt (Zhang et al., 2005) uses data obtained from different 

public resources and offers an integrated platform to perform various analyses such as a GO 

analysis, metabolic pathways and chromosomal distributions. 

With the advent of whole genome microarray chips, and with the increasingly large number 

of publicly available genome sequences, such tools will be indispensable for the interpretation 

of large complex datasets, particularly those from transcriptome studies. In other words, these 

tools are used to create a comprehensive overview and interpretation of the expression 

profiles. 

Several of the abovementioned tools, namely FatiGO, Genevestigator, GeneXPress, 

Genome2D, GoMiner, MAPPFinder, and WebGestalt will be discussed and for each, the 

approach and methodology used will be reviewed. Subsequent to this will be a brief 

introduction to MADIBA, the topic of this study.  

1.2.1 FatiGO 

FatiGO (Al Shahrour et al., 2004; 13) is a tool that attempts to map biological knowledge 

onto sets of genes by extracting Gene Ontology (GO) terms that are significantly over- or 

under-represented in a given set of genes from a genome scale experiment, such as 

microarrays. FatiGO currently includes the GO associations for the genes of several diverse 

organisms (currently Homo sapiens, Mus musculus, Bos taurus, Gallus gallus, Rattus 

norvegicus, Danio rerio, Drosophila melanogaster, Saccharomyces cerevisiae, 

Caenorhabditis elegans, Arabidopsis thaliana, and Streptomyces coelicolor) as well as the 

genes whose proteins are contained in the SwissProt database. As far as possible, FatiGO 

attempts to use curated associations of genes to GO terms. 
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FatiGO differs from most other technologies in that it extracts annotation information by 

using ontologies. In its simplest representation, ontologies provide a structured description of 

biological information that is extremely useful for the management of data. One of the most 

widely accepted biological ontologies is the Gene Ontology (Ashburner et al., 2000) which 

organises information for molecular function, biological processes and cellular components. 

While it is possible to utilise biological information extracted from literature, this approach 

has serious drawbacks, most notably that pre-processing the information is absolutely 

necessary, or else the volume of data will be excessive for common online usage. Ontologies 

can thus be used as a quick and efficient information mining tool for the identification and 

validation of clusters of co-expressing genes studied. By using GO terms, interactivity 

becomes feasible, and additionally, GO terms have a clear biological meaning. GO represents 

the biological knowledge as a directed acyclic graph (DAG) where higher nodes represent 

more general concepts and deeper terms are more precise. 

For a group (cluster) of genes, FatiGO extracts the GO terms which are deemed relevant with 

respect to a reference set of genes, which is typically the rest of the genes from the 

experiment. Figure 1.3 shows the initial submission page. Genes are submitted to FatiGO by 

uploading a list of gene identifiers, including identifiers from HGNC, EMBL, 

UniProt/SwissProt, UniProtKB/TrEMBL, Ensembl, RefSeq, EntrezGene, Affymetrix, 

Agilent, PDB, and many more. It is only required that the identifiers be annotated in Ensembl, 

and any gene that is not will not be used in the further analyses. These terms are considered to 

be relevant by the application of Fisher’s exact test, and FatiGO also takes into account the 

multiple-hypothesis testing nature of the statistical contrast performed. The p-values 

calculated from Fisher’s exact test for 2×2 contingency tables are adjusted using three 

different methods of multiple testing. These include the step-down minP method, which 

controls the family wise error rate (the probability of making a Type I error over a family of 

tests); and two variations on the false discovery rate (FDR) test, which calculates the expected 

number of false rejections among the rejected hypothesis. The FDR-type tests include the 

Benjamini and Hochberg method which controls the FDR only under independence and some 

specific types of positive dependence of the test statistics, and the Benjamini and Yekutieli 

method which offers strong control under arbitrary dependency of test statistics. 

To determine the significance of the GO terms, a Nested Inclusive Analysis (NIA) is used 

where Fisher’s exact test is performed recursively on all the terms from level 3 to 9 of the GO 
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hierarchy, until the deepest significant level is obtained. Only the results from this level are 

reported for each branch. Since genes are often annotated at different levels, the NIA is used 

instead of directly using the annotation of the genes at the deepest level possible. In addition, 

a level of abstraction is chosen and genes annotated at deeper levels are assigned to this level. 

This improves the efficiency of the test because there are fewer terms to test and more genes 

annotated to each term. However, the selection of the level is arbitrary. 

FatiGO has since continued development and is now part of a suite of tools known as 

Babelomics (Al-Shahrour et al., 2006; Al-Shahrour et al., 2005), which includes FatiGO, 

FatiGO+ (finds differential distributions of biological terms, using GO terms, KEGG 

pathways, InterPro motifs, TRANSFAC motifs, and CisRed motifs, between two groups of 

genes), Tissues Mining Tool (finds tissues where the genes of two groups display differential 

distributions), Marmite (finds differential distributions of bio-entities extracted from PubMed 

between two groups of genes), FatiScan (detects blocks of functionally related genes (GO, 

KEGG, etc.) with coordinated behaviour across a list of ranked genes using a segment test.), 

GSEA (detects blocks of functionally related genes with over- or under-expression using the 

Gene Set Enrichment Analysis) and MarmiteScan (uses chemical and disease-related 

information to detect related blocks of genes in a gene list with associated values). 

 

Figure 1.3: Front page of the FatiGO tool (Al Shahrour et al., 2004). Shown are the boxes for gene 

identifier submission, selection of an ontology, and organism under investigation. 
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1.2.2 Genevestigator 

Genevestigator (Zimmermann et al., 2004; Laule et al., 2006; Zimmermann et al., 2005; 14) 

is an online tool that allows biologists to query several microarray gene expression 

experiments by mining Affymetrix GeneChip data. Genevestigator consists of a gene 

expression database and provides a number of functions that allows the data to be queried and 

analysed. Users are able to retrieve the expression patterns of genes through a chosen 

selection of environmental conditions, growth stages and organs, as well as identify genes 

specifically expressed during selected stresses. The objective of this application is to direct 

gene function discovery and aid in the design of new experiments by providing plant 

biologists with contextual information on the expression of genes. 

Genevestigator consists of a MySQL database, and is accessed through PHP script pages. The 

database contains information on the experimental and annotation data, pre-processed data as 

well as tables for the control of the workflow. Genevestigator was originally conceived for 

use on Arabidopsis thaliana, but has since progressed to include other organisms. Currently, 

there are five organisms that are available for data analysis in Genevestigator: A. thaliana, 

human, mouse, rat and barley. The annotation data are primarily obtained from public data 

repositories. For example, the A. thaliana data were obtained from experiments from the 

Gruissem Laboratory, the Functional Genomics Center Zurich, NASCArrays, ArrayExpress at 

EBI and GEO at NCBI. 

Genevestigator has several tools for the analysis of the data, and each can be grouped as 

possessing either a gene-centric approach, which reports the signal intensities for individual 

genes; or a genome-centric approach, which reports lists of genes fulfilling chosen criteria. 

The gene-centric approach tries to answer questions such as “How is gene X expressed in a 

series of conditions?”, whereas the genome-centric approaches try to determine which genes 

are expressed in selected conditions. The tools available in Genevestigator include: 

� Digital Northern, which retrieves the intensity values for the input genes. The user is able 

to choose only those experiments which exactly fit single or several criteria, such as a 

specific organ, growth stage or environmental factor. 

� Gene Correlator compares the signal intensities of two genes throughout a set of chosen 

experiments, with a Pearson’s correlation coefficient used to determine the relationship 

between the expression signals of the two genes. 
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� Gene Atlas similarly provides the average signal intensity of a gene of interest in all 

organs or tissues annotated in the database. Conversely, Genevestigator can also output a 

list of genes which have signal intensity that is above a chosen threshold in selected 

organs. 

� The Gene Chronologer is based on the Boyes growth stage ontology (Boyes et al., 2001) 

and outputs the signal intensities of a gene of interest at certain representative sections of 

the organism’s life cycle. For example, for Arabidopsis there are 10 stages, while in 

mouse there are 7 embryonic and 5 post-natal stage groups. In addition, the user is able to 

obtain a list of genes with an expression above a chosen threshold at a given growth stage. 

� Response View provides a similar functionality as Gene Atlas and Gene Chronologer, 

except it is based on stress response annotations. For each condition several representative 

experiments are chosen, and for each stress factor, the corresponding control is given 

allowing direct comparison. 

� The Meta-Analyzer utility (Figure 1.4) is designed to study the gene expression profiles of 

several genes simultaneously in the context of environmental stress, organs and growth 

stages. The output is a heat map of the normalised signal intensities, which have been 

clustered using single, average or complete linkage hierarchical clustering. This tool is 

particularly useful for comparing members of gene families and to identify clusters of 

similarly expressed genes.  

� The Database and Documentation sections provide users with technical and annotation 

information about the experiments in the database, as well as practical information about 

the tools, including details about the statistical procedures, probe set specificity, 

normalisation, interpretation of the data, and precautions to avoid over-interpretation.  

Each tool in Genevestigator attempts to utilise the best available source of data for processing, 

while unsuitable data are ignored. For example data from RNA extracted from whole adult 

plants will be unsuitable for use in relating to specific organs, although it may be used in other 

calculations. Missing information does not impact the analysis as corresponding arrays are not 

used in subsequent analyses. In addition, ambiguous data or annotations are ignored. 

Genevestigator uses the concept of a “meta-profile”, which can be defined as a representative 

vector of expression under a given condition, and underlies many of the analyses. This meta-
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profile can then be used to show how strongly a gene is expressed under different conditions 

or in different organs. This concept is used in Genevestigator to characterise expression across 

anatomy, development, stimuli (diseases or drug treatments) and mutations. 

Since Genevestigator is an analysis tool and not a data repository, only a reduced version of 

the data are stored. However, links to the full MIAME compliant data are provided. 

Nonetheless, Genevestigator still contains a coherent dataset contained in a reference 

expression database, and utilises a meta-analysis system. It aims to allow biologists to study 

the expression and regulation of genes in a broad variety of contexts by summarising 

information from hundreds of microarray experiments, into easily interpretable results. This 

type of meta-analysis is core to understanding the spatial and temporal regulation of genes, to 

identify or validate biomarkers, and to find out which expression pathways are commonly 

affected in different diseases and conditions. 

 

Figure 1.4: The Meta-Analyser tool shows the response of several genes to a large compendium of stimuli. 

Here, a cluster of Arabidopsis genes is illustrated that shows a strong induction response to isoxaben 

and a strong repression response to norflurazon. 
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1.2.3 GeneXPress 

GeneXPress (Segal et al., 2004; 15) is a Java application that was designed to be a general-

purpose visualisation and analysis tool, to “decipher” and extract useful information from 

gene expression experiments. The program consists of a suite of tools that are able to identify 

biological processes represented by each cluster, identify DNA binding sites that are unique to 

the genes in each cluster, and examine multiple visualisations of the expression and sequence 

data. 

For the input of the expression and the corresponding cluster information, there are three 

possible formats that GeneXPress can use. They are: tab-delimited files, GeneXPress's own 

format (a .gxp file) and files generated with TreeView, a commonly used software package 

for the visualisation of expression data. 

GeneXPress uses XML-based file formats, so it is easy to convert the output of cluster and 

motif-finding algorithms to such a format and use them in GeneXPress. The XML files that 

GeneXPress utilises for input are a .gxp file for expression and cluster information, a .gxa file 

for gene annotation information, and a .gxm file for gene motif information. 

Through statistical analysis of clusters relative to databases of gene function annotations, such 

as GO or KEGG, GeneXPress is able to associate each cluster with one or more biological 

processes. The data can be obtained from various other sources, including protein sequence 

motifs (e.g. InterPro), protein complexes, or any user defined gene group that contains 

annotations for the genes. This gene annotation information is loaded into GeneXPress either 

as a tab-delimited file or as a .gxa file. Given two gene sets, GeneXPress is able to identify 

pairs of gene sets that have a statistically significant overlap between their member genes. 

The procedure whereby this takes place is that, with two given gene sets, every pair of genes 

in both sets is compared using a statistical test that is based on hypergeometric distribution. 

Each comparison is associated a hypergeometric p-value and GeneXPress provides the option 

to define a cut-off p-value to filter that data so that only significant overlaps are reported. 

Such an analysis is used when a gene set from the cluster is compared against a collection of 

gene sets that represent biological processes, such as the GO database. Thus, it is possible to 

identify the biological processes represented by the genes in each cluster. The graphical view 

is a matrix of the two collections of gene sets, where each coloured entry indicates that the 

two gene sets have a statistically significant overlap. The intensity of each coloured spot 

represents the fraction of genes in the overlap. It is possible to save the image, as well as 
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generate a table providing the image data that is sortable by the annotations, clusters or p-

values. 

By using a similar analysis for motifs, GeneXPress can identify motifs that are present in the 

promoter regions of the genes in each cluster. The loaded .gxm file contains the motifs and 

also points to a FASTA file containing the promoter regions of all the genes. Each motif is 

encoded using the Position Specific Scoring Matrix (PSSM) representation, which is used to 

score each putative binding-site for its fit to the motif.  

GeneXPress provides several visualisations that allow both global and detailed views of 

expression profiles, promoter regions and motifs. The primary views that are available are the 

birdseye view, the tree browser view and the cluster view. The birdseye view shows the entire 

expression data, with a dendogram illustrating how the genes and experiments are grouped. 

The tree browser view allows the user to browse through the data hierarchically, viewing a 

node, its children, and its parents. This view allows the user to focus on a certain subtree 

(Figure 1.5). The cluster view shows in detail the expression of the genes in the cluster that 

currently selected in the birdseye or tree browser views. The annotations and experimental 

descriptions of the cluster are also displayed in the cluster view. There is also an option to sort 

the genes by performing a hierarchical clustering on the current cluster. A sequence view is 

also available when performing a motif analysis. This view shows the sequence of the clusters 

and as well as highlighting the matching motif consensus sequence positions on the clusters. 

It is possible to control the various properties of each of the views, including the colour and 

maximum intensity of the induced and repressed expression values, the colour for missing 

values, the width and height of the pixels, and the colour and width of padding lines on top of 

the expression data. 
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Figure 1.5: View of the tree browser view (left) and the birdseye view (right) from GeneXPress (Segal et 

al., 2004). A cluster selected in the tree browser view is highlighted (in blue) on the birdseye view. This 

cluster is illustrated in greater detail in the cluster view (not shown). 

1.2.4 Genome2D 

Genome2D (Baerends et al., 2004; 16) is a Windows-based software tool for the visualisation 

of a bacterial transcriptome on a linear chromosome map, constructed from annotated genome 

sequences. Programmed in Borland Delphi 6, it is easy to use and easily accessible because of 

its low system requirements. Due to its object-orientated design, it is possible to easily extend 

Genome2D, so new algorithms and tools can easily be implemented. Genome2D has an 

update function which automatically connects through the Internet to receive updates. 

Genome2D facilitates the analysis of transcriptome data by using different colour ranges to 

depict differences in gene expression levels on a genome map. This output format enables the 

visual inspection of the transcriptome data, and can quickly reveal transcriptional units and 

involvement of possible transcriptional operator sites, without prior knowledge on expression 

level cut-off values. 

Genome2D’s drawing module visualises a bacterial genome with all its individual genes in a 

single computer screen – the Genemap (Figure 1.6). This comprehensive genome map enables 

quick identification of biologically relevant information such as gene orientation, operon 

structure, transcriptional terminators or regulator binding sites. Using a simple tab-delimited 

input file, subsets of genes can be visualised by single or multiple colourings. This colour 
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input file consists of two columns: one with the name of gene to be coloured and the other 

indicating the respective colour or a value. This value can be a gene-expression ratio or 

differences in transcription levels. When values are used, the Genemap colours the genes 

using a colour gradient, where the degree of up- or down-regulation is depicted by the 

intensity of the colour. This feature enables easy and rapid identification of genes that are 

transcriptionally linked, e.g. operons. In a multiple transcriptome analysis experiment, such as 

a time-course experiment, all the datasets can be loaded as separate input files and 

subsequently shown in animation. Through this, the changes in gene expression can be readily 

recognised. The images and data tables from Genome2D can easily be exported for further 

use in other presentation programs. The image of the Genemap can be saved as a WMF 

(Windows MetaFormat) or as a BMP file. 

In addition to the visualisation abilities, Genome2D contains a toolbox of bioinformatics 

utilities including several data-extraction and conversion algorithms. The combination of both 

extraction and visualisation allows subsequent rounds of analyses to be performed, and so an 

increase in complexity is achieved. This facilitates rapid, easy and intuitive analysis of 

genomics data. 

These features include BLAST support routines, which allow the user to perform a BLAST 

search locally or at the NCBI. Also included are search algorithms that are able to produce a 

weight matrix (consensus sequence/motif) and screen the genome for specific sequences or 

patterns, such as binding sites of transcriptional regulators. Genomic tools are provided for 

the analysis of the data, with functions such as randomly cutting a chromosome into 

fragments, randomising the genome sequence for statistical analysis, selecting a number of 

random genes to create a gene list, and extraction of the coding and non-coding regions. A 

section of Genome2D was designed primarily for the detection of K-boxes (ComK-binding 

sites), although most of the available routines can be also be used for any box or pattern 

analysis. Genome2D includes two proteomics tools: trypsin digestion and pI calculation. 

Finally, Genome2D also allows for the reformatting of several formats, including GenBank 

files to Excel or FASTA files, and FASTA databases to a set of single entry files. 
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Figure 1.6: View of the Genemap, showing a portion of the L. lactis IL1403 genome. The genes (arrows) 

can be coloured according to user specifications. The boxes are drawn as lines with the cre-boxes in 

red, the –35 boxes in green and –10 boxes in blue. 

1.2.5 GoMiner 

GoMiner (Zeeberg et al., 2003; 17) is a Java-based program package that organises lists of 

genes of interest for biological interpretation in the context of the Gene Ontology. Such genes 

could include up- or down-regulated genes from a microarray experiment. GoMiner accesses 

the information, via the internet, from the GO database, which is updated monthly. For users 

running a Unix-based operating system, an automated script has been written to enable the 

installation of the local database. This is particularly useful when a high-speed internet 

connection is not available. GoMiner can accommodate either the default GO hierarchy (the 

GO Consortium’s database of categories and gene associations) or any user customised 

version. 

GoMiner was developed as a tool for the interpretation of biological information, and 

facilitates the analysis, organisation and visualisation of results. The GO Ontology is used in 

order to gain insights into the biological meaning of the gene lists that are produced as a result 

of the microarray experiments. Instead of using a gene-by-gene approach to analyse the data, 

GoMiner classifies the genes into biologically coherent categories and assesses these 

categories. 

GoMiner receives input in two files, each with a list of genes: one with the total set of genes 

on the array, and the other with a list of genes to be queried. The latter list is a subset of the 
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total set and includes those genes that the user flags as interesting, such as those exhibiting 

altered expression levels. With the gene list, GoMiner is able to calculate the enrichment or 

depletion of categories with genes that have changed expression. 

The output of these analyses appears in a graphical user interface (GUI), which takes the form 

of a three-panel window (Figure 1.7). These panels are: 

1. A left-hand panel that lists the genes, the databases from which their identities were 

derived, and whether the gene has changed (under-expressed, over-expressed, or 

unchanged). 

2. A middle panel showing a tree visualisation that is similar to the AmiGO browser. Genes 

that are displayed in the tree are tagged with green down arrows, red up arrows, or grey 

circles to indicate under-expressed, over-expressed and unchanged genes respectively. 

After each category are a series of calculations, which (from left to right) indicate the total 

number of genes in the category (in black); the relative enrichment of under-expressed 

genes (green); the relative enrichment of over-expressed genes (red); and the relative 

enrichment of all changed genes (blue). Fischer’s exact p-value is calculated for all the 

enrichments. 

3. A right-hand panel showing all appearances of a gene selected from the left or middle 

panel, within the GO hierarchy. There is also a tab which switches the view to display all 

the data values, and can be sorted according to any of these. 

By clicking a gene in the tree view, the user is able to submit the gene as a query to an 

external data resource, such as LocusLink, PubMed, NCBI 3D Structures and BioCarta and 

KEGG, as implemented by the NCI Cancer Genome Anatomy Project (CGAP). GoMiner also 

provides a second visualisation, a compact, interactive directed acyclic graph (DAG). Nodes 

in the DAG can be “moused-over” to list flagged genes or clicked to highlight all possible 

pathways connecting it to the root. The DAG shows in compact form the spanning hierarchy 

for all flagged genes and can be searched to locate a specific node. The summary results are 

downloadable to tab-delimited text files, which can be used further in a spreadsheet program 

for statistical analysis. The DAG can also be exported as a SVG (scalable vector graphic) file. 

A command-line version of GoMiner has also been developed to complement the GUI 

version. This allows GoMiner to be integrated with other tools via scripts or pipes. An 
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example would be allowing GoMiner to interact with its companion program, MatchMiner, as 

a pre-processor to obtain gene names for input. A high-throughput version of GoMiner is also 

available, which allows the output data stream to be coupled with integrated downstream 

analyses. This allows for the automated recognition of interesting results that are buried 

within a large number of exploratory experiments. 

 

Figure 1.7: Screenshot of GoMiner’s GUI. The green down arrows, red up arrows, or grey circles indicate 

under-expressed, over-expressed and unchanged genes respectively. 

1.2.6 MAPPFinder 

MAPPFinder (Doniger et al., 2003; 18) is an accessory program that works together with 

GenMAPP and the annotations from the GO Consortium to identify global biological trends 

in gene expression data, thus integrating the GO analysis with biological pathways. The 

package is currently written in Visual Basic, and therefore only runs on Windows systems. 

GenMAPP is a program that was designed to view and analyse gene expression data, which is 

represented on MAPPs. MAPP initially stood for MicroArray Pathway Profiler, due to its 

development for the analysis of microarray experiments, but now has been renamed to Map 

Annotator and Pathway Profiler, to include other high throughput experiments. These 

GenMAPP-produced files graphically show biological pathway relationships between genes 

and/or gene products. Examples of the types of MAPPs that can be represented are metabolic 

pathways, signal transduction cascades, subcellular locations, gene families, or lists of genes 
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associated with Gene Ontology categories. Each MAPP contains symbols that depict genes 

and gene products, as well as other objects, such as receptors, ligands, membranes and 

ribosomes, and arrows representing the relationships between the objects. Each gene object on 

a MAPP is identified by a gene identifier from one of the GenMAPP accepted gene ID 

systems, such as Affymetrix, SwissProt, InterPro or LocusLink. This gene identifier can also 

be linked to a gene expression dataset which allows GenMAPP to colour the gene, according 

to user-defined criteria. 

To be useful in identifying gene expression changes across a biological system, the available 

information on pathways needs to be expanded. This is required since GenMAPP and other 

pathway programs, such as KEGG, focus on well-defined metabolic pathways, and would 

benefit greatly from a broader base of pathway information. To resolve this problem, 

MAPPFinder was developed which uses information from the GO Consortium. MAPPFinder 

provides the ability to perform the analysis on genes associated with GO terms, as well as on 

MAPPs that are local to the user’s computer. MAPPFinder dynamically links the gene 

expression data onto the GO hierarchy and for each node (GO term or local MAPP), performs 

a series of calculations. These are: 1) the number of genes meeting the user-defined criteria; 

2) the number of genes measured at this node; 3) the number of genes associated with this 

node; 4) the % genes meeting the criterion (genes meeting the criterion/genes measured * 

100); and 5) the % genes measured in the node (genes measured/genes associated * 100). For 

the GO terms only, the same calculations are done for the cumulative total of the number of 

genes that meets the user’s criteria in a GO term along with its descendants (children, 

grandchildren, etc). This “nested” number of genes gives a more accurate and complete 

representation of the changes in gene expression that are associated with a particular GO term. 

The final calculation is the Z score, which is a standard statistical test under the 

hypergeometric distribution. A positive Z score indicates that there are more genes meeting 

the criterion in a GO term or MAPP than would be expected by random chance. A negative Z 

score indicates the opposite, that is, there are fewer genes than expected. These values are all 

displayed after each node on the MAPPFinder Browser (Figure 1.8). This browser is similar 

in appearance to the AmiGO Browser and the GO hierarchy or local MAPP folder structure 

can be navigated in a similar fashion. 

Included in the MAPPFinder Browser are several filters that can be used to further refine the 

tree to highlight only the nodes that meet specific criteria. It is possible to filter by the 
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percentage of genes changed, the number of genes changed, and the Z score. All the nodes 

that pass the filters are highlighted in yellow. It is also possible to search for a specific GO 

term, MAPP, or keyword using the Word Search option. If a match is found, that node will be 

coloured blue and if the node was already coloured yellow from the above filters, the node 

will be coloured green. Clicking on a GO term in the MAPPFinder Browser window opens a 

MAPP in GenMAPP that lists all the genes associated with that GO term so that the user can 

view the pathway. 

MAPPFinder accepts gene expression data from a GenMAPP Expression Dataset (.gex) file, 

which is the output file from GenMAPP after the expression data has been entered. This file 

contains the selected colour sets and criteria that will be used to filter the data. 

The results from a MAPPFinder analysis are exported as a tab-delimited text file (.txt) that 

can be viewed in a spreadsheet program to allow the user to perform additional filtering and 

sorting of the results. This aids the user in identifying MAPPs that are of particular interest. 

MAPPFinder results are specific to a particular build of the GenMAPP Gene Database. In 

particular, the GO data are constantly updated, and with each update, new nodes may be 

added and existing nodes moved within the GO or made obsolete. As a result, the date of the 

GO data being used is displayed, with each version of the GenMAPP Gene Database 

containing a specific build of the GO. Thus each time the Gene Database is updated, the 

MAPPFinder results must be recalculated.  

Currently, MAPPFinder is only available for C. elegans, Drosophila, human, mouse, rat, 

yeast and zebrafish. There are, however plans to expand it further to include other species in 

the GO Consortium. 
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Figure 1.8: The MAPPFinder Browser showing the results after the analysis on a number of local MAPPs. 

The terms highlighted in yellow are those that passed the filters on top, the terms in blue are those 

that were found in the text search, and the terms in green met both criteria. Also included is a colour 

chart which defines the colours of the terms. 

1.2.7 WebGestalt 

WebGestalt (Zhang et al., 2005; 28) is a “WEB-based GEne SeT AnaLysis Toolkit” and uses 

data obtained from different public resources to offer an integrated platform to perform 

various analyses such as a GO analysis, metabolic pathways and chromosomal distributions. 

WebGestalt is a web-based integrated data mining system which aims to aid biologists in 

exploring large sets of genes.  

WebGestalt utilises the GeneKeyDB database schema which in turn uses the ORACLE 

relational database. This database uses a strong gene- and protein-centric viewpoint. Gene and 

gene product information is primarily taken from NCBI LocusLink, Ensembl, Swiss-Prot, 

HomoloGene, Unigene, CGAP, UCSC, GO Consortium, KEGG BioCarta and Affymetrix, 

and is currently implemented for human and mouse. The web pages were implemented using 

PHP scripts.  

WebGestalt is composed of four main modules: gene set management, information retrieval, 

organisation/visualisation and statistics. 

 
 
 



 23 

Gene set management – This module uploads, saves, retrieves and deletes gene sets (Figure 

1.9). It accepts gene sets by files, GO categories or chromosome location ranges. Gene 

identifiers that can be used include EntrezGene IDs, Swiss-Prot IDs, Ensembl IDs, 

Unigene IDs, and Affymetrix probeset IDs. The management module also performs 

Boolean operations to generate the union, intersection and difference between two gene 

sets. By recursively applying these operations it is possible to combine information from 

any number of sets of genes. 

Information retrieval – The information retrieval module provides rapid access to the existing 

information for all genes in a gene set. Currently 20 attributes can be retrieved, which 

include nomenclature, identifiers to different databases, map and function information. 

This data can be exported as a tab-delimited text file, or Excel file. 

Organisation and visualisation – While the information retrieval module provides rapid 

access to large sets of data, it does not really help biologists explore the information 

associated with the gene sets. This module is intended to assist the biologist in exploring 

large genes under various biological contexts. The tools available include: GO Tree 

(organises the gene sets based on the GO DAG using several visualisations, including an 

expandable tree, bar chart, and enriched tree); KEGG Table and Maps, and BioCarta 

Table and Maps (identifies pathways involved in biological studies); Protein Domain 

Table (organises gene based on PFAM protein domains); Tissue Expression Bar Chart 

(organise a gene set based on large-scale, publicly available gene expression data derived 

from a variety of tissue and organ types); Chromosome Distribution Chart (visualise 

chromosome distribution of the genes); and PubMed Table and GRIF Table (organise 

genes according to their co-occurrence in publications, based on the gene-publication 

association information retrieved from the LocusLink database.). 

Statistics – The statistics module recommends and performs statistical tests to suggest 

biological areas that are significant and warrant further investigation. To identify 

functional categories with significantly enriched gene numbers in a gene set, the gene set 

of interest is compared to a reference gene set. If the gene set of interest is a subset of the 

reference gene set, a hypergeometric test is used to evaluate significance. If the gene sets 

are independent, Fisher’s exact test is used instead. 
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WebGestalt’s advantages include the ability to retrieve a large variety of information for all 

genes in a gene set, a multitude of visualisations under different biological conditions, 

assistance in selecting the appropriate statistical tests, a simple and intuitive user interface, 

and the ability to use Boolean operations on selected gene sets. Modules within WebGestalt 

can also easily be used by third-party applications, as implemented by WebQTL. 

 

Figure 1.9: User interface of WebGestalt. This page shows the gene set management tools, active gene set 

information, gene set retrieval, gene set organisation, and a gene list of the active genes. Gene set 

management tool also allows the user to apply Boolean operators (union, intersection and difference) 

to the gene sets. 

1.2.8 MADIBA 

MADIBA (MicroArray Data Interface for Biological Annotation) (Law et al., 2008; 4) is the 

topic of this dissertation, and a detailed description of the implementation of MADIBA and its 

analysis modules is provided in the following chapter. A screenshot of the front page of 

MADIBA is shown in Figure 1.10. 

MADIBA is a web-based tool, which subjects a cluster of genes to five diverse analyses, 

namely: 1) a search of over-represented GO terms in the cluster; 2) mapping of the cluster’s 

gene products onto metabolic pathways using the KEGG representation; 3) visualisation of 

the chromosomal localisation; 4) a search of over-represented motifs in the upstream 
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sequences of the genes and 5) an organism specific analysis. This tool aims to assist 

researchers in the identification of possible reasons for the common expression of a cluster of 

genes.  

MADIBA has currently been implemented for Plasmodium falciparum, Oryza sativa (rice), 

Arabidopsis thaliana, and Pectobacterium atrosepticum (strain SCRI1043; Pba). Malaria is a 

devastating disease, particularly in Africa, so understanding how its causative agent, 

Plasmodium, functions is essential. Rice and A. thaliana are model species for 

monocotyledonous and dicotyledonous plants respectively (Rensink and Buell, 2004), and 

plant analyses are useful particularly for gaining insights into improving crops in both 

developed and developing countries, for example orphan crops such as cassava, cowpea and 

pearl millet, which are important for food security in Africa. In addition, Plasmodium is 

related to plants as the apicoplast (apicomplexan plastid) is reminiscent of the chloroplast 

(Marechal and Cesbron-Delauw, 2001; Ralph et al., 2001). Pba is a destructive bacterial 

pathogen that infects potatoes (Bell et al., 2004). 

While other tools similar to MADIBA, such as WebGestalt, FatiGO and GoMiner exist, 

MADIBA differs in that it has a wider range of analyses which can be performed in an 

integrated fashion, for example, it performs a GO analysis as well as a Transcription 

Regulation analysis. Of the previously mentioned tools, MADIBA is most similar to 

WebGestalt (Zhang et al., 2005), which also obtains information from different data sources 

and provides an integrated set of analysis tools to assist researchers in mining this gene set. 

WebGestalt, however, does not provide information on transcription regulation, and currently 

only works for human and mouse data. MADIBA is unique in the diverse organisms it is able 

to analyse – a bacterium (Pectobacterium atrosepticum), a eukaryotic pathogen (Plasmodium 

falciparum), and plants, both a monocotyledon (rice) and a dicotyledon (Arabidopsis 

thaliana). 
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Figure 1.10: Front page of MADIBA. From this page, the user is able to begin a new analysis or retrieve 

previous results, as well as view the tutorial and supplementary data. 

1.3 Conclusion 

While several tools have been discussed, this is by no means a complete list of available tools. 

Each tool takes a different approach, whether a web-based or a downloadable tool, and which 

features to focus on. Some, are annotative tools and do not directly provide a visualisation, 

while other tools are exploratory and give the results in the form of a graphical representation. 

This is sometimes preferable to a purely statistical approach since with a visualisation, it is 

possible to quickly identify patterns in the data. Visualisation of information enables the 

researcher to deal with the overwhelming amount of information associated with a gene set by 

taking advantage of human pattern processing abilities (Zhang et al., 2005). 

Many of the tools were designed for specific needs by the developers of the tool, and cannot 

readily be applied generically. For example, Genome2D was specifically designed to meet the 

requirements of the research group to investigate bacterial genomes. On the other hand, 

GeneXPress is not specific to any organism, but takes any gene expression data from the user. 

Indeed, through the individual differences, a broad range of approaches were observed, all 

which are used to tackle a similar problem, that is, the identification of the biological meaning 

of large amounts of data. In Table 1.1, a basic summary of the specifications of each of the 

discussed tools is presented, and Table 1.2 contains information about the general features of 

each tool. 
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Most of the tools mentioned have in some way required the data to be pre-clustered to identify 

significant terms in the smaller gene set. However, such clustering methods suffer from 

limitations, most notably that visualisations are usually only in terms of the group members, 

with no information about its nearest neighbours; and that the quality of the relationships are 

not easily inferred (Jupiter and Vanburen, 2008). Two tools with a different approach include 

ClutrFree and StarNet. ClutrFree (Bidaut and Ochs, 2004) is a desktop-based tool which 

attempts to provide a flexible and generic platform that allows the user to compare different 

annotation and analysis approaches to a microarray data set. Pattern recognition allows 

visualisation of the relationships in a directed graph (tree) that assists the user in deriving 

biological conclusions. StarNet (Jupiter and Vanburen, 2008) is a tool that visually explores 

the correlation networks radiating from a selected gene. Using this technique presents the 

possibility of deriving and inferring transcription regulatory networks. 

Analysis from a whole genome experiment can be an extremely complex procedure, but the 

benefits that can be gained are enormously beneficial in biological discovery. In particular, 

investigating changes in the entire genome after a certain treatment will aid in the 

understanding of the complexities involved in a biological system. With the advent of whole 

genome microarrays, tools such as those discussed will become even more significant in 

understanding cellular functions and determining what the data means biologically. 

Table 1.1: Table of the basic specifications of the discussed tools. Client-server indicates whether or not 

the tools need to connect to a database on a remote server. 

Tool Platform Client-
server 

Input Output 

FatiGO Web Yes Gene list GO enrichments 
Genevestigator Web Yes Gene list Visualisation of genes satisfying a 

given condition  
GeneXPress Java No Gene expression, motif 

and annotation files 
Visualisation of expression data: 
tree, cluster and birdseye view 

Genome2D Windows No Genome sequence Genome map, with selected genes 
and genetic elements marked. 

GoMiner Java Yes* Gene list Tree visualisation and a directed 
acyclic graph (DAG) 

MAPPFinder Windows No Expression data from 
GenMAPP 

Tree visualisation of clusters that 
meet user’s criteria. 

WebGestalt Web Yes Gene list Visualisation depending on 
biological context 

MADIBA Web Yes Gene list or sequence 
file 

Visualisation depending on selected 
module 

* Database is generally accessed via the internet, but can also be installed locally. 
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Table 1.2: General features of the discussed tools 

 

Tool Functional 
annotation 

GO Metabolic 
pathway 

Genomic 
localisation 

Transcription 
regulation 

Organism 

FatiGO ● ●    Human, mouse, 
bovine, chicken, 
rat, zebrafish, 
Drosophila, yeast, 
C elegans, 
Arabidopsis, 
Streptomyces 
coelicolor. 

Genevestigator ● ●    Arabidopsis, 
human, mouse, 
rat and barley. 

GeneXPress ● ●   ● Non-specific. 

Genome2D ●   ● ● Bacteria. 

GoMiner ● ● ● ●  Organisms in GO. 

MAPPFinder ● ● ●  ● C elegans, 
human, mouse, 
zebrafish, 
Drosophila, rat, 
yeast. 

WebGestalt ● ● ● ●  Human, mouse 

MADIBA ● ● ● ● ● Plasmodium, rice, 
Arabidopsis, 
Pectobacterium 
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2 Chapter 2 – MADIBA Implementation 

2.1 Introduction 

In this chapter, the details of how MADIBA is implemented will be discussed. This will 

include information on the data currently used in MADIBA, as well as information pertaining 

to what each analysis module does and how the analyses are performed. 

2.2 Data sources 

The downloaded data currently consists of data from the PlasmoDB (Fraunholz and Roos, 

2003) database for Plasmodium falciparum (release 5.4), TIGR (Yuan et al., 2005) for rice 

(Oryza sativa ssp japonica cv Nipponbare) (Osa1 database release 5), TAIR (Rhee et al., 

2003) for Arabidopsis thaliana data (TAIR7) and Sanger-SCRI (Bell et al., 2004) for 

Pectobacterium atrosepticum strain SCRI1043 (Pba). Stored are the gene name, functional 

annotation, GO identifiers, chromosomal localisations, and the enzymatic annotations (EC 

identifiers) from the above data sources, as well as the EC numbers proposed by the KEGG 

Orthology results. 

Data pre-calculated by programs before being stored in a PostgreSQL (version 8.1.4) database 

include putative metabolic enzyme predictions using PRIAM (Claudel-Renard et al., 2003). 

These predictions are calculated based on enzyme profiles from position specific weight 

matrices (PSSM). Also stored are the 1500 nucleotides upstream of the start codon (ATG) 

based on previous experimental research on P. falciparum promoters (Crabb and Cowman, 

1996; Dechering et al., 1999; Horrocks et al., 1998; Lanzer et al., 1992), and 1000 

nucleotides upstream of the rice and A. thaliana genes, as made available by TIGR and TAIR 

respectively. For Pba, the sequence from the end of the previous gene to the start codon was 

taken, with a maximum of 400 nucleotides. The MADIBA system also identifies putative 

orthologues between Plasmodium falciparum and human proteins, rice and A. thaliana 

proteins, and Pba and Dickeya dadantii 3937, by performing a reciprocal BLASTP search, 

with an e-value cut-off of 10-15. In addition, for rice and A. thaliana, a BLASTP of all 

expressed proteins was performed against the proteome of the organism in question (a self 

BLAST), in order to determine paralogues, or protein ‘families’, for each gene. The BLAST 

results with an e-value less than 10-3 were stored in the database. Sequence information was 

obtained from the original data source (PlasmoDB, TIGR, TAIR, or SCRI), and BLAST 

searches were performed using a local version of NCBI-BLAST. 
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2.3 Database implementation 

In MADIBA, each organism possesses its own PostgreSQL database, and is used to store the 

downloaded and pre-calculated data. Although there are separate databases, each database has 

a similar structure, consisting of four primary tables: the annotation, database, 

homologues and promo_annot tables (Figure 2.1). 

 

Figure 2.1: UML class diagram showing the four generic tables for the MADIBA databases. The 

annotation table holds the information on the GO and enzymatic annotations, as indicated by the 

rows in the databases table; the homologues table holds information on the best BLAST hit for a 

gene; and the promo_annot table contains the functional annotation of the gene, its location on the 

chromosome and the sequence upstream of the gene. 

The annotation table contains the annotations for all the genes in the genome with 

annotations from all three of the GO ontologies, as well as the enzymatic annotations from 

PRIAM, KEGG and the original annotations. The annotation types are distinguished by using 

an integer identifier, which is a number from 1 to 6 to indicate the different annotations from 

the three GO annotations, PRIAM, KEGG and the original annotation. These relations are 

stored in the databases table. 

The homologues table contains the results of the top BLASTP hit of each protein in the 

organism’s proteome against a model organism – Plasmodium falciparum against human, A. 
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thaliana against rice, rice against A. thaliana, and Pba against Dickeya dadantii. In this table, 

the identifier and functional annotation of the top hit, the e-value, the percent identity (the 

number of matches in the query and match), and whether or not the hit was a reciprocal hit are 

stored. Only the best hits with a minimum e-value of 10-15 are stored. If no hit meets this 

requirement, a null value is stored. A reciprocal hit means that if protein A in organism 1 

matches protein B in organism 2, the top hit of a BLAST search of protein B in organism 1 

will be protein A. 

The promo_annot table contains the functional annotation of each gene, which 

chromosome it is found on, as well as the location of the gene on the chromosome. Also 

stored in this table is the upstream sequence which is used in the Transcriptional Regulation 

module. 

In addition to these standard tables, there are also extra tables that were used in special cases. 

For example, in A. thaliana and rice, there is an extra table containing all the BLAST results 

from the self-BLAST. These data are then used in the Organism Specific module where the 

user defines what the paralogue cut-off should be. Similarly, in the P. falciparum database, 

there is a table containing the BLAST hits of the apicoplast genes with the A. thaliana 

proteome. 

The databases were populated through Python scripts which parsed the raw data and utilised 

PyGreSQL (22), a Python module that interfaces to PostgreSQL databases, to connect to the 

database.  

2.4 User interface 

The MADIBA interface was written in PHP 5.1.1 and Python 2.4.4, and is provided using an 

Apache HTTP server (version 2.0.59) on a Sun V880 server, running Solaris 9. The Python 

pages utilise the standard cgi module to allow the Python scripts to be executed as CGI 

scripts, as well as the cgitb module for debugging purposes. The cgitb module acts an 

exception handler and any exceptions that occur in any of the Python pages will be caught and 

logged for further investigation (Beazley, 2006). The website is accessible using any 

JavaScript enabled browser at http://www.bi.up.ac.za/MADIBA. 
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2.5 Data submission 

A cluster of genes is submitted to MADIBA, either by uploading a file, or directly pasting a 

set of nucleotide sequences, in FASTA format. Alternatively, a list of gene identifiers can be 

submitted. The gene clusters are obtained from any clustering algorithm, such as hierarchical 

or k-means, since MADIBA does not perform any clustering. 

For P. falciparum, A. thaliana and Pba sequences, a BLASTN search is performed to find 

similar genes in the relevant organism’s genome. For rice sequences, a BLASTX search is 

performed to allow the possibility of entering gene clusters from the indica as well as the 

japonica subspecies. In addition, this will potentially allow orthologous gene clusters from 

other cereals to be analysed, such as pearl millet. After the BLAST search, the top five hits for 

each submitted sequence is presented, allowing users to select which of the hits they wish to 

continue the analyses with, and this list of genes is stored. The BLAST runs are executed 

using the NCBIStandalone class from the BLAST library in BioPython 1.4.4 (10), a set of 

Python tools for computational biology. 

The gene identifiers that are currently accepted by MADIBA are those as determined by the 

original annotation source, that is, PlasmoDB for P. falciparum, TIGR for rice, TAIR for A. 

thaliana, and the SCRI for Pba. 

The Plasmodium gene nomenclature are in the form PFXX_#### where XX is the 

chromosome number and #### is an identifier based on the order of the genes. However, 

some identifiers are also in the form MALxPy.zz, where x is the chromosome, and y and zz are 

roughly based on gene order. 

The TIGR gene nomenclature (27) for rice genes follows the convention LOC_OsXXg##### 

where LOC_Os indicates an Oryza sativa Locus, XX is the chromosome number from 01-12, 

g indicates it is a gene, and the hashes are a five-digit code which indicates the gene’s position 

on the chromosome and are numbered from top/north to bottom/south of chromosome. 

Additionally, different versions of a gene product, e.g. a differentially spliced gene, are 

denoted by a full stop followed by a number (1, 2, etc). However, when submitting rice 

identifiers, this information is not required and all spice forms will be retrieved in such cases. 

An example identifier is LOC_Os03g17740.1.  
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The A. thaliana gene nomenclature (26) is similar to the rice nomenclature, where genes are 

named as ATXg##### where AT means Arabidopsis thaliana, X is the chromosome number 

(1, 2, 3, 4, 5) or M or C for mitochondrial or chloroplast genes respectively, and the hashes 

are a five-digit number indicating the gene’s chromosomal order. Again, an indication of an 

alternatively spliced gene may be present. In addition, A. thaliana gene symbols (usually 

based on function) may also be submitted. Examples of acceptable inputs are AT1G08680, 

AT1G08680.1 and ZIGA4. 

Acceptable Pba gene identifiers are ECA followed by a four digit number, or the gene names, 

such as ExpI. 

The list of genes that is submitted, whether as sequences or identifiers, is stored for one week 

on the server’s file system, and is used by each analysis module to retrieve the necessary 

information required by that module from the database. In addition, a unique identifier is 

provided to allow users to later access and retrieve their data. By entering this identifier, users 

can access a gene list that they had previously submitted, and thus do not have to resubmit 

any data. In addition, most of the results of analyses will be present, so these analyses will not 

have to be rerun. These include the results from the Transcription Regulation module, which 

can take a long time to run. The unique identifiers consist of two parts: an initial alphabetic 

component and a numeric component. The alphabetic component indicates the organism that 

is being analysed, where ATH indicates Arabidopsis thaliana, OSA indicates rice and PF 

indicates Plasmodium falciparum and PBA indicates Pectobacterium atrosepticum. The 

numeric component is a random 7-digit number that is generated using the randint 

function from Python’s built-in random module, which in turn uses the Mersenne Twister as 

the core generator (Beazley, 2006). 

2.6 MADIBA modules to analyse gene clusters 

Figure 2.2 illustrates the architecture and basic data flow of an analysis in MADIBA as 

described in the next section.  
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Figure 2.2: A schematic representation of the flow of data through MADIBA. After a microarray 

experiment, the data are normalised and then clustered, since it is hypothesised that the genes in a 

cluster have common biological implications. A cluster of genes is submitted to MADIBA, either as 

nucleotide sequences, or gene identifiers. This list of genes can then be subjected to five analysis 

modules – Gene Ontology Analysis, Metabolic Pathways Analysis, Transcription Regulation Analysis, 

Chromosomal Localisation Analysis and an Organism Specific Analysis. Also shown are the data that 

are required by each of the analysis modules. The results from the analyses can be exported as a PDF 

file, or as plain text. 

 
 
 



 35 

 

Figure 2.3: Screenshot of the page after submission. Highlighted are the analysis menu with the links to 

the five analysis modules and the output module (block A), the unique identifier that is provided to 

the user for later retrieval (block B), and the list of genes that are to be used in subsequent analyses 

(section C). 

2.6.1 Front page 

MADIBA is accessible through a simple and user friendly web interface. Figure 2.3 shows the 

front page after submission of a set of sequences. Block A illustrates the analysis menu with 

the links to the five analysis modules and the output module. Each analysis module is 

independent of the others and is accessed individually. Block B shows the unique identifier 

that is provided to the user (see above), and section C lists the genes that are to be used in 

subsequent analyses. If gene identifiers were used, the list will also indicate the genes that 

could not be found in the database. 

Below this list of genes are two pie charts (Figure 2.4) – one comparing the number of genes 

that are annotated as hypothetical, expressed or have some functional annotation; and the 

other indicating how many genes have the same functional annotation. Three or more genes 

have to have the same annotation to be included in the diagram. However, annotations are 

compared using an exact text match, so annotations that are slightly different will not be 

considered to be the same. A fuzzy text comparison could be used to enhance this feature. 

Both diagrams are dynamically generated using PHP scripts which utilise the GD library (2), 
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and are created by retrieving the annotations for each gene from the database and comparing 

them.  

 

Figure 2.4: The two pie charts illustrating the number genes that are annotated as hypothetical, expressed 

or have some functional annotation (top); and indicating whether the submitted genes have a common 

functional annotation (bottom). Three or more genes have to have the same annotation to be included 

in the diagram. 

2.6.2 Gene Ontology module 

This analysis module extracts the Gene Ontology (GO) annotations according to the 

molecular function, biological process and cellular component ontologies. Due to the complex 

nature of the GO hierarchy, it was decided not to use the “ontology level” approach and 

instead represent each ontology as separate Directed Acyclic Graphs (DAG). Each DAG is 

drawn to show, in a single view, the genes from the cluster, and the GO terms that they are 

annotated to. Each GO term that is found in the cluster is drawn to show its position in the GO 

hierarchy, in a manner similar to AmiGO’s graphical representation (1) and GO::Termfinder 

(Boyle et al., 2004). The user is able to select which genes should be visualised, to prevent 

overly complex graphs (Figure 2.5a). 

Once this set of genes, along with the ontology to be analysed is submitted, the GO 

annotations for the selected genes in the required ontology are retrieved from the database. 
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The annotations for the genes that were not selected are also retrieved so that the statistics will 

be consistent for any selection of genes. This means that the p-values are calculated in terms 

of the whole cluster, irrespective of the genes that are selected by the user. The annotations 

are stored in a Python dictionary with the GO annotations as the keys, and the genes that they 

are annotated to as the values. 

 

Figure 2.5: Screenshots of the Gene Ontology module. (a) The initial selection page, where users can select 

which genes should be analysed. Genes are selected or deselected by double-clicking a gene name or 

using the buttons. (b) The top of the results page showing the hypothesis being tested, followed by a 

table of p-values, calculated from the hypergeometric distribution to determine significance of each 

GO term. The FDR-, and Holm-corrected p-values, as well as the uncorrected p-value are shown. (c) 

Below the table of GO terms is the Directed Acyclic Graph (DAG) showing all the GO terms and their 

positions in the GO hierarchy. GO terms are coloured based on their FDR-corrected p-value, as 

indicated by the legend above. Users are able to download the DAG in either SVG or JPG format. 
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For each GO term, a hypergeometric p-value is calculated, and a multiple hypothesis 

correction performed to evaluate the significance of the annotation. The adjustment methods 

used are a False Discovery Rate (FDR) adjustment (Benjamini and Hochberg, 1995), and a 

Holm adjustment (Holm, 1979), which works under the same assumptions as a Bonferroni 

correction, but is statistically more powerful (Aickin and Gensler, 1996). The uncorrected and 

corrected p-values are assembled into a table and any GO terms with a FDR-corrected p-value 

less than 0.05 is highlighted (Figure 2.5b). Other statistical tests may be implemented in the 

future to provide greater flexibility to the user in calculating the enrichment of the GO terms. 

In addition, other adjustment methods are being considered, including the q-value, which is a 

measure of significance in terms of the FDR instead of the False Positive Rate (Storey and 

Tibshirani, 2003). A tab delimited text file with each gene and the GO terms associated is 

provided should users wish to perform their own analyses. The statistical calculations 

(hypergeometric test and multiple hypothesis corrections) were computed by the R statistics 

package (2.6.0) (5), which was accessed using the RPy (1.0-RC3) package (24), a Python 

interface to R.  

To draw the DAG, a tree traversal is performed, for each GO term, to the root node of 

whichever ontology is being analysed, that is, the molecular function, biological process or 

cellular component term. These GO trees were obtained from the Gene Ontology website, and 

parsed using NetworkX (0.33) (19), a Python package for the creation and manipulation of 

graphs and networks. This network information is part of the pre-calculated data, and is made 

available for future use by using the standard pickle module, which serialises the network 

data structure so that it can be stored as a text file (Beazley, 2006). This means that each time 

the tree structure is required the data can easily be “unpickled” and used, instead of having to 

constantly re-parse the data. Once the DAG has been generated, the nodes are laid out using 

the dot program from Graphviz (version 2.16.1) (3), a graph layout and visualisation package. 

Graphviz is accessed using PyGraphviz (version 0.35) (19), a Python interface to Graphviz. 

Edges are also labelled according to a node’s relation with its child node – either an is_a or 

part_of relation. is_a is a simple class-subclass relationship, where A is_a B means that A is a 

subclass of B; for example, nuclear chromosome is_a chromosome. part_of is slightly more 

complex; C part_of D means that whenever C is present, it is always a part of D, but C does 

not always have to be present. An example would be nucleus part_of cell; nuclei are always 

part of a cell, but not all cells have nuclei (8). Nodes on the DAG are coloured according to its 

FDR corrected p-value, where red indicates p-value ≤ 10-10; orange, 10-10 < p-value ≤ 10-8; 
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yellow, 10-8 < p-value ≤ 10-6; green, 10-6 < p-value ≤ 10-4; blue, 10-4 < p-value ≤ 10-2; purple, 

p-value > 10-2. The graphs are rendered as both a JPG and a SVG, either of which can be 

downloaded by the user. The graph is also displayed to the user using the ZGRViewer applet 

(7), which is a tool to display SVG images (Figure 2.5c). The applet was used as the GO 

graphs often tend to be extremely large and difficult to view without some form of viewer. 

2.6.3 Metabolic Pathways module 

When this module is accessed, a list of all the KEGG metabolic pathways is presented, along 

with an indication of how many enzymes encoded by genes from the input cluster were found 

in each pathway (Figure 2.6a). Each pathway in the list is linked to its diagram where the 

protein products of the genes in the cluster are highlighted. This module compares the 

enzymatic annotation from three different annotation sources, namely the curated annotation 

from the original data source (PlasmoDB, TIGR, TAIR or SCRI); the semi-automatic KEGG 

annotation and the automatic PRIAM annotation (Claudel-Renard et al., 2003). The use of 

these three diverse and independent annotations increases the robustness of the analysis. 

To perform this analysis, it is necessary to determine which of the genes in the cluster have 

been annotated as an enzyme, that is, if the id column in the annotation table is 4, 5, or 6 

(KEGG, PRIAM, or original annotators respectively). These results are stored in a Python 

dictionary, with the enzymes as the keys, and the number of annotations as the values. A 

value that was pre-calculated is the list of enzymes that are found in all the pathways, and a 

value that is determined in each analysis is a list of the enzymes that are present in the 

genome of the organism of interest.  

Different colours are used to indicate the agreement between the three annotation methods, 

where yellow indicates that the enzyme was annotated by all three annotation sources; red, by 

any two annotations; blue, by KEGG only; purple, by PRIAM only; and green, by the original 

annotators only. In addition, any enzyme found in the genome annotation, but not in the 

cluster is coloured grey (Figure 2.6b). The KEGG maps are coloured using the Python 

Imaging Library (version 1.1.6) (23), and the coordinates of the enzymes on the maps are 

given by KEGG in the conf files that accompany the image files. The colouring is performed 

by creating a coloured block with a degree of transparency and having the same dimensions 

as the enzyme box on the map. The coloured box is then pasted on top of the pathway image 

at coordinates provided in the conf file for this particular pathway. A set of blank template 

pathways is used to create a new set of pathways for each user. 
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Figure 2.6: Screenshots of the Metabolic Pathways module. (a) Main page of the module, listing the names 

of all the metabolic pathways, as well as the number of enzymes that are found in each. (b) Example 

of a metabolic pathway (glycolysis), with the coloured blocks indicating enzymes that are found in the 

submitted cluster. (c) Blocks in the metabolic pathway diagrams are colour coded according to the 

number of annotations (PRIAM, KEGG or original annotators) (top), and a p-value is calculated 

using Fisher’s exact test to determine the significance of the pathway. (d) Each element on the 

pathway is clickable and brings up a window with additional information about that particular 

compound. 

Once the image creation is complete, the p-value for the pathway is calculated for each 

pathway using Fisher’s exact test (Fisher, 1935) to indicate the significance of the pathways, 

using a 2×2 contingency table where the rows indicate pathway membership and the columns 

indicate cluster membership (Chung et al., 2004) (Figure 2.6c). This means that the table 

elements are In Cluster, In Path – the number of enzymes found in both the cluster and this 

pathway; In Cluster, Out Path – the number of enzymes found in the cluster but not in this 
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pathway; Out Cluster, In Path – the number of enzymes found in this pathway but not in the 

cluster; and Out Cluster, Out Path – the number of enzymes that are neither in the cluster nor 

this pathway (enzymes in other pathways). The Fisher’s test was performed using R, which is 

accessed through RPy. 

A HTML image map is laid over the image to make the components clickable, which links to 

the KEGG website and provides additional information on the particular enzyme or 

compound (Figure 2.6d). This information is obtained by screen-scraping the relevant KEGG 

site using Beautiful Soup 3.0.3 (9), a Python HTML/XML parser. Clicking on an enzyme that 

is present in the cluster also provides information as to which annotations were used to 

describe it, and which genes from the cluster encode it. 

2.6.4 Chromosomal Localisation module 

This module permits the identification of co-expressed genes on the same chromosomal 

region. It provides a bar chart showing the distribution of the genes in the cluster across the 

chromosomes, that is, the number of genes on each chromosome (Figure 2.7). This chart is 

drawn by simply retrieving the chromosome that each gene in the cluster is found on, 

calculating the occurrence of each chromosome and sending that information to the image 

generating functions. 

In addition, a schematic visualisation of the genes along the chromosomes is provided, where 

each chromosome is drawn as a horizontal bar, and each gene is represented by a vertical blue 

line. The size of the bar is proportional to the size of the chromosomes, and the genes are 

drawn relative to its actual position on the chromosome. Localisation data was obtained from 

the original annotation source (PlasmoDB, TIGR, TAIR or SCRI). A mouse-over effect was 

included to this diagram to allow easier identification of a gene at a particular position, and 

was accomplished using wz_tooltip (12), a JavaScript library. The chromosomal localisation 

is drawn by using the locations obtained from the original annotation source. A scaling factor 

is necessary to fit the representation onto a screen, so the P. falciparum is reduced by a factor 

of 254000 and the plants by a factor of 3175000. Assuming that one base pair is the size of 

one pixel, this is the value required to fit the chromosome onto the screen. Both the 

chromosomal distribution bar chart and chromosomal schematic are dynamically generated 

using the PHP GD library.  
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For Pba, the circular genome is represented as a line circle, with the genes represented by 

blue lines perpendicular to it. Since there is only the single “chromosome”, the chromosomal 

distribution bar is not drawn. 

To further assist in identification of genes on the chromosomes, especially those that are close 

to one another in the representation, gbrowse (version 1.62) (Stein et al., 2002), a generic 

genome browser was implemented. When a user clicks on a gene on the chromosomal 

representation, the gff file required by gbrowse is generated, and contains all the genes from 

the cluster that occur on that chromosome. Once the necessary files are generated, gbrowse is 

launched, and the initial view will be of the gene that was clicked (Figure 2.8). 

 

Figure 2.7: Screenshot of the Chromosomal Localisation module, showing a bar chart (top) of the 

distribution of the genes in the cluster across the chromosomes, i.e. the number of genes on each 

chromosome. In addition, a schematic visualisation of the genes (b) along the chromosomes is 

provided, where each chromosome is drawn as a horizontal bar, and each gene is represented by a 

vertical blue line. The size of the bar is relative to the size of the chromosomes. A mouse-over effect 

was added to assist in the identification of the genes 
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Figure 2.8: Screenshot of MADIBA’s version of gbrowse. Highlighted is the gene that the user clicked, and 

shows the exon structure of that gene. 

2.6.5 Transcription Regulation module 

This module presents an approach of motif identification without any prior knowledge, by 

automatically detecting potential Transcription Factor Binding Sites (TFBS) in the promoter 

sequences of co-regulated genes, using Regulatory Sequence Analysis Tools (RSAT) (van 

Helden, 2003), specifically using the oligo-analysis and dyad-analysis programs (Figure 2.9a-

b). Oligo-analysis calculates the occurrence of words (oligo-nucleotides) in a set of 

sequences, and determines which are over-represented based on a background model. Dyad-

analysis detects overrepresented spaced dyads (oligo-nucleotide pairs which are separated by 

a variable spacer region) in a set of sequences. For each analysis, the five most significant 

motifs are reported, as well as a link to all the results. RSAT performs a number of statistics 

to provide an indication of the significance of the detected motif. The p-value represents the 

probability of the motif being significant when it is not (a false positive). The e-value is an 

estimation of the expected number of false positives for a series of test, and is often called the 

Bonferoni-corrected p-value. In MADIBA, a threshold of e-value < 1 was selected. 

The upstream regions are also searched for known TFBS in the TRANSFAC database 

(Professional version 11.1) using the built-in Patch and Match programs (Matys et al., 2006) 

(Figure 2.9c-d). Patch uses predefined binding site entries and performs a pattern-based 
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binding site search, while Match uses positional weight matrices derived from alignments of 

binding sites (i.e. matrix-based search). The ten most common motifs found by each tool are 

presented. For each identified binding sites, a link is provided to additional information from 

TRANSFAC about the factors that bind to that site. If the sequence of the binding site is 

available, it is possible to BLAST it against the genome of the organism under study to see if 

that same factor is present in the genome. This is useful as the binding sites and binding 

factors in TRANSFAC are often obtained from other organisms, such as tobacco (Nicotiana 

tabacum).  

Both RSAT and TRANSFAC are accessed using system calls, and the results are parsed in 

Python scripts. 

 

Figure 2.9: Example outputs from the Transcription Regulation module, showing the results from RSAT 

(oligo-analysis (a) and dyad-analysis (b)) and TRANSFAC (Patch (c) and Match (d)). Both show the 

motifs that were found, and in RSAT, a diagram is drawn showing where in the upstream regions 

those motifs may be found. 
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2.6.6 Organism Specific Characteristics module 

In the P. falciparum cluster analyses, a component of the aim for this module is to identify 

putative new drug targets. Thus, a list of the genes without human homologues, with their 

respective annotations is generated (Figure 2.10a). Also, if any genes similar to the apicoplast 

are present, its closest homologue to A. thaliana is identified. Due to its vegetal nature, the 

apicoplast may provide a target for herbicide-like drugs which will not affect the human host 

(Marechal and Cesbron-Delauw, 2001; Ralph et al., 2001). 

For Pba the results from a reciprocal BLAST search against Dickeya dadantii are stored. 

For the plant analyses, the closest A. thaliana orthologue of each rice gene, and vice versa, is 

given, in an effort to identify similar genes (Figure 2.10b). This was accomplished by 

implementing a reciprocal BLASTP search, with a stringent e-value cut-off of 10-15 to identify 

highly probable orthologous proteins. In addition, a list of all similar genes, based on 

sequence similarity is returned, representing the paralogues, or protein ‘families’, for each 

gene. These results are determined by performing a self BLAST, and the user is able to 

determine the most relevant results by choosing their own e-value cut-off, minimum percent 

coverage (how much of the query matched the subject) and minimum percent identity (how 

much of the match corresponded). All the BLAST results from this analysis with an e-value 

less than 10-3 were stored in the database. 

As an addition to the Arabidopsis Characteristics module, two analyses were developed to 

identify similar expression profiles in a submitted set of genes to various experiments. A 

simple approach that was used identified how a set of genes were expressed under the various 

experimental treatments which are stored in the DRASTIC database (Button et al., 2006). A 

more complex approach, named PCA Experiment Comparer, used the expression data from 

NASCArrays (Craigon et al., 2004) to compare the expression profiles from different 

experiments to the expression profile of the genes in the submitted cluster. Further details on 

these approaches are provided below. 
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Figure 2.10: Examples from the Organism Specific module. Shown is an output from P. falciparum (a) 

illustrating the percentage of genes that have human homologues; and an example from A. thaliana 

(b) showing the best BLAST results against rice. 

2.6.6.1 DRASTIC 

To determine which conditions an experiment has a similar expression pattern to, the 

regulation of a set of genes was retrieved from the experiments contained in the DRASTIC 

database (11; Button et al., 2006). DRASTIC (Database Resource for the Analysis of Signal 

Transduction in Cells) is a gene expression database that was developed to record a plant’s 

response to various treatments, including exposure to pathogens (Button et al., 2006). The 

database contains the treatments affecting several different plant species, but with most of the 

emphasis on A. thaliana. DRASTIC contains lists of genes with their up- or down-regulation 

in response to various pathogens and other treatments, such as cold, drought and salt. The data 

includes genomic, EST, northern and microarray data that is obtained from peer-reviewed 

publications, and is all human curated to ensure accuracy and to standardise the gene 

nomenclature (G. Lyon, SCRI, personal communication). 
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Within MADIBA, a subsection of the Arabidopsis Characteristics module was developed to 

implement DRASTIC. A copy of DRASTIC was kindly provided by Dr Gary Lyon of the 

Scottish Crop Research Institute (SCRI). Using this database, it was possible to retrieve the 

regulation (either up- or down-regulated) for each gene in the submitted cluster, to various 

conditions. These data were then compiled into a table to show the regulation of the genes in 

the cluster and possibly reveal common annotations, where a green block indicates up-

regulation and a red block indicated down-regulation. 

2.6.6.2 PCA Experiment Comparer 

Since the DRASTIC database is relatively small, due to the data being manually curated, the 

dataset may not reveal all patterns. In addition, information for only a few of the genes 

present in A. thaliana are contained in the database, which itself is not updated very regularly. 

Thus, an alternative approach was to compare the expression profile of the genes in the cluster 

to the expression profiles of previously acquired data. The plant’s response to a particular 

treatment could then be tentatively transferred to the expression of the genes in the cluster. 

For example, if the expression profile from an ET treatment experiment was most similar to a 

JA treatment, it could be inferred that both these treatments elicit a similar gene response. 

To this end, a large set of microarray experiments was obtained from NASCArrays 

(Nottingham Arabidopsis Stock Centre Arrays) (Craigon et al., 2004; 20). NASCArrays is a 

data repository which stores information on Affymetrix experiments on A. thaliana, including 

the expression values for each slide as well as sample preparation and experiment 

information. The log2-ratios for each experiment in NASCArrays were stored within the 

MADIBA database. A log2-ratio means that the ratio of the expression level in the test case to 

the expression level in the corresponding control case was calculated and then log2 

transformed. If multiple replicate slides were used, the median of all the replicate values was 

taken. A problem arose in that the slide names in the NASCArrays dataset do not have a 

standardised naming scheme, making it extremely difficult to parse them. As a result, the 

slides that did not explicitly indicate which were the control and test cases had to be 

discarded. Unfortunately this resulted in a lot of experiments being discarded. Currently in the 

“normalised NASCArrays database” there is data present for 301 experiments. In the original 

data file (the NASCArrays “supercluster” file, downloaded on 22 February 2008) there was 

information on 2906 slides. Assuming that there were three replicate slides per experiment, 

this means that over two-thirds of the slides were discarded, simply because the control and 
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experimental slides could not be easily distinguished. In addition, any genes that were not 

represented in all the experiments (i.e. had missing data) were removed. This ensures that the 

data for each gene is consistent. 

With the normalised NASCArrays database, it was possible to obtain the expression profile 

for a set of genes, over a number of different experiments. However, even when reducing the 

dataset to only the genes in the cluster, this is still an extremely large amount of data that 

would be difficult to interpret. One approach to the problem was to reduce the dimensionality 

of the data such that only the vital information is retained and the redundant information is 

discarded. In addition to making the data simpler to handle, if the number of dimensions were 

to be reduced to two or three dimensions, it would be possible to visualise the data, making it 

easier for a researcher to identify patterns in the data. 

Dimension reduction is possible as, in general, not all the measured variables are “important” 

for understanding the underlying phenomena of interest (Fodor, 2002). The complex, high 

dimensional data can be governed by only a few simple variables, often called the “hidden 

causes” or “latent variables” (Carreira-Perpiñán, 1997). The remaining “unimportant” data 

may be discarded as many of the variables will be correlated with each other (by some linear 

combinations or other functional dependence), thus making them redundant (Carreira-

Perpiñán, 1997). Therefore in many situations it should be possible to discard this unneeded 

information and produce a more economical representation of the data (Carreira-Perpiñán, 

1997). 

One common and relatively simple dimension reduction technique is Principal Component 

Analysis (PCA). PCA reduces the data’s dimensionality by finding orthogonal linear 

combinations (the Principal Components – PCs) of the original variables with the largest 

variance. The first PC is the linear combination with the largest variance; the second PC is the 

linear combination with the second largest variance and is orthogonal (perpendicular) to the 

first PC; and so on (Fodor, 2002). Thus PCA aims to identify the dimensions with the largest 

variances that are the most important (most “principal”) (Shlens, 2005). There are as many 

PCs as the number of original variables, although for most datasets, the first few PCs will 

explain most of the variance, so the rest can be disregarded with minimal loss of information 

(Fodor, 2002). Usually the first two or three PCs are taken so that the data can be visualised. 

Essentially, PCA uses these linear combinations of vectors to transform, or rotate, the original 

vector space into a new vector space such that the axes of the new coordinate system are 
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oriented along the directions of greatest variability (Wold et al., 1987; Fodor, 2002). 

Mathematically, PCA can be defined as X = TPT, where PT is a projection matrix, which 

projects X down to a k-dimensional space, and gives the object coordinates in this plane, T. 

The columns in T, ta, are called the score vectors and the rows in PT, pa, are called loading 

vectors, with the vectors ta and pa being orthogonal (Wold et al., 1987). 

PCA is not a very robust technique, as the covariance matrix for the PCA is derived 

independently each time, so this could result in the same data generating different plots. Thus 

in any multivariate statistics approach, particularly in applications such as PCA and neural 

networks, validation is necessary to determine how well the model fits the data. Statistics such 

as the R2 statistic can be used for this purpose. In addition, cross-validation is needed to 

discover how well the model will handle new data, and to avoid over-fitting of the data. This 

can be calculated using the Q2 statistic, which is a validation criteria obtained from an 

estimate of R2 from leave-one-out cross-validation (LOOCV) (Hawkins et al., 2003), and is 

interpreted as the amount of variance that can be represented by the PCA model (Stacklies et 

al., 2007). A poor (low) Q2 indicates that the model describes noise and that the model may 

not be related to the true data structure. Thus, the better (higher) the value of Q2 (to a 

maximum of 1), the better the model prediction (Stacklies et al., 2007). 

In PCA Experiment Comparer, the expression values (log2-ratios) of the genes in the cluster 

are required. Once the set of genes with the associated log2-ratios is submitted, the log2-ratios 

for each gene in the submitted cluster, across all the experiments, are retrieved from the 

normalised NASCArrays database. These values are combined together and the PCA is 

performed on this reduced dataset. Once the PCA is performed, the data can be inspected by 

plotting the top two or three PCs against each other. To determine which of the other 

experiments closest matches the submitted data, a distance measure is used to estimate how 

“far” any one of the experiments in the experiment dataset is from the submitted data. A 

Euclidian distance measure was used although numerous other measures of similarity are 

available, such as the Pearson correlation and the Spearman rank correlation (Yona et al., 

2006). The closest 10 experiments are reported. For each slide, there is a link to the 

NASCArrays site for additional information on the experiment. This process is illustrated in 

Figure 2.11. 

The PCA calculations were performed using the pca function in the pcaMethods library 

(21; Stacklies et al., 2007), a Bioconductor package. The calculation is done by a singular 
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value decomposition (SVD) of the data matrix, and not by using eigenvector decomposition 

on the covariance matrix, as this is generally the preferred method for numerical accuracy 

(Vos, 2005). The actual method used in pcaMethods is an implementation of the 

SVDimpute algorithm, which is a variation of a singular value decomposition of the data 

matrix that allows for missing values (Troyanskaya et al., 2001). In all the visualisations, the 

loadings of the eigenvectors were used, so that the correlation between the variables (the 

genes) can be observed. For the 3D plots, the scatterplot3d library (25) was used. The 

data were all initially mean centred. 

The Q2 statistic for the PCA model was implemented by using the Q2 function, also from the 

pcaMethods library. The data were divided into five groups, and the entire cross-validation 

was repeated three times. The results of this analysis were visualised as a box plot (also 

known as a box-and-whisker plot), using the built-in boxplot function in R.  

 

Figure 2.11: Schematic dataflow illustrating the PCA Experiment Comparer. A set of genes and their 

corresponding log2-ratios are submitted by the user. The expression ratios for these same genes across 

all the various experiments are retrieved from the normalised NASCArrays database, and combined 

with the user submitted data. The PCA is performed on this dataset, and the loadings of the top two 

and three PCs are plotted. At the same time, the “closest” experiments are calculated using a 

Euclidian distance measure and the Q2 values for the PCs are calculated. 
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2.6.7 Output 

Results from MADIBA can be exported in either plain text (.txt) or PDF formats. The user 

selects the required set of results which is then generated for immediate download. The 

requested information is obtained by connecting to the relevant analysis script using the 

Python urllib module, and then screen-scraping the page using Beautiful Soup (9) to 

obtain the relevant information. The text files are created using Python’s standard file object 

write method, and PDF output files are created using ReportLab 2.0 (6). 

2.6.8 Contact form 

A contact form is also provided for the user to send comments or problems back to the 

administrator. This form was written in PHP and uses the standard mail function, and sends 

the information contained in the form – the person’s name, email address, subject and 

comment. In addition, the form also contains the referring page (that is, the page which the 

user came from) to assist in identifying any problems that may have occurred on that page. 

2.7 Data maintenance 

In order to ensure that the server does not become cluttered, it is necessary to remove the old 

results. As mentioned previously, a user’s data are stored on the server for one week. The 

maintenance task is performed by setting a Python script to run in the server’s crontab file. 

This ensures that the task will be performed at a consistent interval (currently every Sunday at 

midnight). The Python script that is run utilises a number of functions from the standard os 

module, including getmtime, to obtain the last time a path was modified, and the remove 

function to remove files. The rmtree function from the shutil module is used to remove 

directories. In addition, the standard time module is required to determine if the time given 

by getmtime and the current time are at least one week apart. If so, the files in the following 

directories are removed: 

� /usr/local/MADIBA/temp/<uid> 

� /usr/local/apache2/htdocs/MADIBA/temp/<uid> 

� /usr/local/apache2/conf/gbrowse.conf/MADIBA/ 

In addition, as the organisms’ genome annotations are revised, it is important to update the 

data within MADIBA, and this can be done in a semi-automated manner using pre-built 

Python scripts. 
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2.8 Documentation 

From the main page, it is possible to access a tutorial, which explains what MADIBA does as 

well as provide and explain the outputs from a typical analysis. In addition, a basic help page 

can be accessed which contains the solutions to some common problems, such as gene 

identifier formats and errors that the user may encounter. 

Also, for each organism, the gene clusters that were used in the original study are accessible 

(Law et al., 2008). This includes data from a Plasmodium falciparum life cycle expression 

analysis (Le Roch et al., 2003); an investigation of hypothetical genes in P. falciparum that 

are thought to be involved in the sexual development of the parasite (Young et al., 2005); an 

Arabidopsis thaliana salt stress experiment (Ma et al., 2006); expression of rice cells in 

response to flagellin (Fujiwara et al., 2004); and a rice transcriptome study on cold, drought, 

salinity and abscisic acid treatments (Rabbani et al., 2003). The full set of clusters from each 

of the above experiments is provided, and a brief summary of some of the results can also be 

obtained. A demo set of genes can be accessed on the submission page, so that the user does 

not have to go through the above system to obtain a set of test genes. 

2.9 Conclusion 

MADIBA currently implements five analysis modules – a Gene Ontology, Metabolic 

Pathways, Chromosomal Localisation, Transcription Regulation, and Organism Specific 

analysis modules. Table 2.1 summarises the tools that were utilised in each of the analysis 

modules. Each organism in MADIBA (currently Plasmodium falciparum, Oryza sativa, 

Arabidopsis thaliana and Pectobacterium atrosepticum) has its own PostgreSQL database 

containing sequence and annotation information. Some data are pre-calculated, such as 

BLAST searches against a related organism, to reduce the time required for computations. A 

user can submit a cluster of genes to MADIBA either as a set of nucleotide sequences in 

FASTA format, or as a list of gene identifiers. If sequences are submitted, a BLASTN search 

is performed (BLASTX for rice sequences), and the user can select which of the hits to 

continue the analyses with. This list of genes is submitted to each analysis module as it is 

accessed. 

The MADIBA web interface was written using Python and PHP. A tutorial explaining the 

functionality of MADIBA, as well as several test datasets for each organism are available for 

users. MADIBA is accessible at http://www.bi.up.ac.za/MADIBA/. 
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Table 2.1: A summary table of the various tools that were used in each of the analysis modules. 

Module Tool Function 
General PHP and Python cgi module 

GD graphics library  
PostgreSQL 
PyGreSQL 

Web-page generation 
Generation of pie charts 
MADIBA Database 
Python library for interfacing with PostgreSQL 
database 

Data submission BioPython  
 
Python random module 

Perform BLAST searches on submitted 
sequences 
Generation of unique user identifier 

Gene Ontology Python pickle module 
NetworkX  
Graphviz/PyGraphviz 
R/RPy 
ZGRViewer 

Load the stored GO hierarchy 
Perform tree traversal of the GO hierarchy 
Layout and render the graph as an image 
Calculate hypergeometric statistics 
Java applet for easier viewing of graph 

Metabolic 
Pathways 

Python Imaging Library 
Beautiful Soup 
R/RPy 

Colour nodes of the metabolic pathways 
Read additional information for the KEGG site 
Calculate statistics 

Chromosomal 
Localisation 

GD graphics library 
 
wz_tooltip 
gbrowse  

Draw the histogram and chromosomal 
representation 
Mouseover effect 
Genome browser 

Transcription 
Regulation 

RSAT – oligo-analysis and dyad-
analysis  
TRANSFAC – Patch and Match 

Tools to identify over-represented motifs in 
the upstream regions. Accessed using Python 

Organism 
Specific 

BLAST Calculate orthologues 

Output Beautiful Soup 
ReportLab 

Generate pdf or txt files of selected analyses 

Contact form PHP mail function Allow user to send an email to the 
administrator from the MADIBA site 

Data 
maintainance 

Python Various functions to delete old data 
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3 Chapter 3 – Application to Biological Data 

3.1 Introduction 

In this chapter, for each of the implemented organisms, the application of MADIBA to 

biological data will be demonstrated. Firstly, the importance of studying the malaria parasite 

Plasmodium falciparum will be discussed, followed by an application of a P. falciparum 

dataset in MADIBA only as a short proof of concept. Following this, an extended discussion 

of Arabidopsis thaliana and rice is provided, with a strong focus on plant defences. Finally, 

Pectobacterium atrosepticum will be discussed, concentrating on quorum sensing. The data 

for all these analyses can be found in the appendices, available online at 

http://www.bi.up.ac.za/MADIBA/doc/appendix/. 

3.2 Application to Plasmodium falciparum 

3.2.1 Plasmodium falciparum introduction 

Malaria is one of the most significant tropical parasitic diseases and one of the top three 

killers among communicable diseases. Malaria is a particularly devastating disease, where it 

is estimated that each year, approximately 2.2 billion people are exposed to the threat of 

malaria (Snow et al., 2005), resulting in a conservative estimate of 300-600 million clinical 

cases attributable to the disease (Sachs and Malaney, 2002; Snow et al., 2005). 

Approximately 70% of these cases are concentrated in Africa (Sachs and Malaney, 2002; 

Snow et al., 2005). Of these 300-600 million cases, malaria will kill more than one million 

people a year, and the figure is possibly closer to three million when the role of malaria in 

death related to other diseases is included (Sachs and Malaney, 2002; Snow et al., 2005). In 

areas of stable endemic transmission, the cause of death of about 25% cases involving 

children aged 0 to 4 has been attributed directly to malaria (Sachs and Malaney, 2002). This 

means the every 40 seconds a child dies of malaria, resulting in a daily loss of more than 2000 

young lives worldwide (Sachs and Malaney, 2002). Malaria is so destructive that is has been 

suggested that certain genetic polymorphisms, such as sickle cell trait, were selected for due 

to their protective effect against malaria. However, this can be fatal if the same allele is 

inherited from both parents. The implications are that the chance of death from malaria was so 

high that it justified introducing a potentially fatal mutation into the gene pool (Sachs and 

Malaney, 2002). 
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In general, where malaria prospers the most, human societies have prospered least. 

Comparisons of malaria maps shows that the disease has been geographically restricted to the 

tropical and subtropical zones, which closely frames the poorest areas of the world (Sachs and 

Malaney, 2002; Snow et al., 2005). A comparison of the average GDP (adjusted so that there 

is equal purchasing power) in malarious and non-malarious countries in 1995 showed a 

greater than five-fold difference in GDP. This poverty-malarial infections correlation can be 

explained in several possible ways, with the most probable being that the causality runs both 

ways (Sachs and Malaney, 2002). By personal expenditure on preventative methods such as 

bed nets or insecticides, and with government funding on control programs, a decrease in 

malaria transmission may be obtained. Indeed, malaria has been essentially eliminated in 

wealthier countries, such as the United States, Italy and Greece, as a result of socioeconomic 

development and intensive anti-malarial interventions (Sachs and Malaney, 2002). However, 

economic development is not enough. Even wealthy countries such as Oman and the United 

Arab Emirates have not been able to eliminate the disease (Sachs and Malaney, 2002). 

Causation in the other direction, from malaria to poverty, is indicative of the economic burden 

of the disease. The cost of malaria is often divided into two categories: private and non-

private medical costs. Private medical costs refer to the personal expenditures on the 

prevention, diagnosis, treatment of the disease, such as bed nets, doctor’s fees and the cost of 

anti-malarial drugs. Non-private medical care refers to public expenditures by a government 

on factors such as health facilities, education and research (Sachs and Malaney, 2002). 

Besides these expenditures, there is also the loss of income as a result of mortality (foregone 

incomes). In addition to these economic costs, there are other effects that malaria has on the 

population. This includes effects through changes in household behaviour in response to the 

disease, such as schooling, demography, migration and saving, as well as the macroeconomic 

costs that arise in response to the disease and include the impact on trade, tourism and foreign 

investment (Sachs and Malaney, 2002). 

Thus malaria is one of the most devastating diseases, particularly in Africa, so it is critical to 

understand how its causative agent, Plasmodium falciparum, functions. In addition, P. 

falciparum is related to plants as the apicoplast (apicomplexan plastid) is reminiscent of the 

chloroplast (Marechal and Cesbron-Delauw, 2001; Ralph et al., 2001). 
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3.2.2 MADIBA Plasmodium falciparum data analysis 

The application of MADIBA to P. falciparum data was not the focus of this dissertation, but 

is presented here primarily for proof of concept purposes. The results of an oligonucleotide 

array profiling the expression of human and mosquito stages of the malaria parasite's lifecycle 

(Le Roch et al., 2003) were chosen to demonstrate the functionalities of MADIBA. The 

experiment performed by Le Roch et al. was aimed primarily at determining the patterns in 

the expression of genes in the P. falciparum genome during the different phases in its 

lifecycle. After a robust k-means clustering was performed by the group, 15 clusters were 

proposed, and these clusters were then subsequently analysed in this study with MADIBA. 

The Gene Ontology module automatically allocated annotations to the gene clusters with 

terms including immune evasion, in cluster 1, and cell invasion in cluster 15. This makes 

sense as the genes in cluster 1 were found to be expressed during the sporozoite stage of the 

P. falciparum lifecycle, where the parasite attempts to infect the host by invading the liver 

cells. Similarly, cluster 15 contained genes that were highly transcribed in the schizont stage, 

where the parasite leaves the infected red blood cells to invade more red blood cells (Le Roch 

et al., 2003). In addition, the genes in cluster 6 were correctly identified as being involved in 

hexose metabolism. The genes in this cluster were expressed during the trophozoite stage, 

where the parasite is in its activated, feeding phase (Le Roch et al., 2003). The Metabolic 

Pathways analysis module successfully showed that in this cluster, six of the nine enzymes in 

the glycolysis pathway were found, with a p-value of 0.04, as calculated by using Fisher’s 

exact test (Figure 3.1). This result is further supported by the indication that all the enzymes 

in the pathway were identified by all three annotation sources, as indicated by the yellow 

boxes, and by using the GO analysis, it was shown that the anaerobic glycolysis term had a 

highly significant p-value (Figure 3.2 and Table 3.1). Using the module specific for P. 

falciparum characteristics allowed the identification of genes in cluster 3 as interesting drug 

or vaccine targets, such as PF10_0303, an ookinete surface antigen. Cluster 3 is noted as 

having genes that are highly expressed during the gametocyte stage, so targeting the parasite 

during this stage, before the sexual cycle and large scale mitosis begins would be valuable in 

the treatment of malaria. 

Young et al. (2005) performed an analysis on the transcriptome of P. falciparum in an attempt 

to identify genes that are likely to be involved in the sexual development of the parasite. 

Young et al. used an algorithm called ontology-based pattern identification (OPI) on the data, 
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which grouped a set of 246 genes. These genes were found to have expression patterns 

specific for the gametocyte lifecycle stage, and so are most likely involved in the sexual 

development process. Applying RSAT from the Transcriptional Regulation module of 

MADIBA on this data set identified several overrepresented motifs in the upstream regions of 

the genes. In particular, oligo-analysis identified the motif GATGAA, which had an expected 

occurrence of 96.6 based on the background model, but occurred 228 times (e-value for 

occurrence 10-26). Similarly with dyad analysis, the motif ATCN(7)TCA was found to occur 

154 times, as opposed to its expected occurrence of 41.3 (e-value for occurrence 3.5x10-32). 

While these patterns did not match those found by the authors, it is possible that these motifs 

may still be relevant, particularly since relatively little information regarding the transcription 

regulation of genes involved in pathogenesis and development in P. falciparum is known 

(Young et al., 2005) 

.  

Figure 3.1: Analysis of cluster 6 of the Plasmodium falciparum data (Le Roch et al., 2003) revealed that it 

was noticeably involved in glycolysis. In the KEGG map for glycolysis (left), it could be seen that 

almost all of the enzymes involved are present in the cluster. Additionally, all of the enzymes were 

annotated by all the three annotation sources – the curated annotation from the original data source 

(PlasmoDB, TIGR or TAIR); the semi-automatic KEGG annotation and the automatic PRIAM 

annotation, as indicated by the yellow boxes. The table on the right lists the enzymes that were found 

in the glycolysis pathway and the gene from the cluster that encodes it. 

EC PlasmoDB ID Annotation 
5.3.1.9 PF14_0341 glucose-6-phosphate isomerase 
1.2.1.12 PF14_0598  glyceraldehyde-3-phosphate 

dehydrogenase 
2.7.2.3 PFI1105w  phosphoglycerate kinase 
5.4.2.1 PF11_0208  phosphoglycerate mutase, 

putative 
4.2.1.11 PF10_0155  enolase 
2.7.1.40 MAL6P1.160  pyruvate kinase, putative 
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Figure 3.2: Results from the Gene Ontology module. An analysis of the biological process ontology of the 

cluster 6 of the P. falciparum data (Le Roch et al., 2003) revealed that anaerobic glycolysis was the 

most significant term. The DAG was reduced to show only the terms that are most relevant to glucose 

metabolism. The grey ellipses contain the genes that are annotated to the connected GO term and the 

colour of the GO terms indicates different levels of significance, as indicated by the legend (bottom 

left). 

Table 3.1: A portion of the table of p-values that accompanied the DAG in Figure 3.2, showing the p-value 

calculated from the hypergeometric distribution, along with the Holm and FDR multiple hypothesis 

corrections. 

Term Definition Corrected p-
value (FDR) 

Corrected p-
value (Holm) 

Uncorrected 
p-value 

GO:0019642 anaerobic glycolysis 0 0 0 
GO:0006096 glycolysis 3.6675x10-6 1.0971x10-4 7.2180x10-7 
GO:0005996 monosaccharide 

metabolic process 
5.3464x10-6 1.6747x10-4 1.1091x10-6 

GO:0019318 hexose metabolic 
process 

5.3464x10-6 1.6747x10-4 1.1091x10-6 

GO:0006094 gluconeogenesis 6.7072x10-6 2.1795x10-4 1.4627x10-6 
GO:0016051 carbohydrate 

biosynthetic process 
6.7072x10-6 2.1795x10-4 1.4627x10-6 
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3.2.3 Conclusion 

Analysis of clusters of expression data from P. falciparum using MADIBA showed that it is 

possible to easily identify what the biological implications of a co-expressed set of gene are. 

By simply submitting a set of gene names, it was possible to retrieve a wealth of information 

relating to those genes. The varied tools provide access to a wide range of analyses that will 

allow a researcher to derive some conclusions from the data. 

3.3 Application to Arabidopsis thaliana 

Plant analyses are useful particularly for gaining insights into improving crops in both 

developed and developing countries. Arabidopsis thaliana, which formed a major part of this 

study, will be discussed as a model species in this section, followed by a discussion on plant 

defences. The primary aim of this analysis was to determine which defence signalling 

pathways are activated upon infection by Ralstonia solanacearum (bacterial wilt). The current 

hypothesis suggested that it is the salicylic acid (SA) pathway, so it was hoped that MADIBA 

can be used to replicate this result. 

3.3.1 Arabidopsis thaliana as a model species 

Over twenty years ago, plant biologists began to search for a model organism that could be 

used for a detailed analysis of plant genetics and molecular biology. Plants that could 

effectively be regenerated in culture, such as petunia and tomato, were logical candidates, but 

attention gradually shifted towards Arabidopsis thaliana, a small plant from the mustard 

family (Meinke et al., 1998). This shift gained momentum with the release of a detailed 

genetic map in the early 1980s, followed by transformation protocols and the demonstration 

that A. thaliana had a small enough genome (about 120Mb) to allow detailed molecular 

analysis (Meinke et al., 1998). A. thaliana is a member of the Cruciferae (Brassicaceae) 

family with a broad natural distribution throughout Europe, Asia and North America. Various 

different ecotypes are available for molecular and genetic studies, but the Columbia and 

Landsberg ecotypes are the accepted standards (Meinke et al., 1998). 

A. thaliana has many advantages for use in genetic analysis, the most important being its 

short generation time, with the plant’s entire life cycle, from seed germination to maturation 

of the first seed, taking approximately 6 weeks (Meinke et al., 1998). In addition, A. thaliana 

has a relatively small nuclear genome, a large number of offspring and is small in size, with 

plants reaching only 2-10cm in diameter and up to 20cm in height, depending on growth 
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conditions. It is possible for the plants to be grown in Petri plates as well as in pots (Meinke et 

al., 1998). The ability to save the genetic stock as seeds also minimises the effort required for 

storage over long periods of time. 

The complete sequencing of a flowering plant’s nuclear genome would allow a comparison of 

the differences and similarities between plants and other eukaryotes, at a genetic level. 

Furthermore, it would provide a foundation for a detailed characterisation of plant genes, thus 

allowing for further studies into plant development and environmental responses (The 

Arabidopsis Genome Initiative, 2000). As a result, the complete sequencing of the A. thaliana 

genome began in 1996, and was largely completed in 2000 by an international collaboration 

called the Arabidopsis Genome Initiative (AGI) (Meinke et al., 1998; The Arabidopsis 

Genome Initiative, 2000). The 125MB genome is organized into five chromosomes and an 

estimated 26 000 genes. At the time, about 70% of the genes were classified according to 

sequence similarity to proteins of known function in other organisms, with only 9% of the 

genes characterised experimentally, and approximately 30% of the predicted gene products 

could not be assigned to functional categories (The Arabidopsis Genome Initiative, 2000). 

Since then, although the number of genes that have been manually annotated has increased, 

the number of genes with no annotation has not changed much (Clare et al., 2006). As of 

January 2006, 37% of the genes had no annotation or had an annotation to the GO term 

“molecular function unknown” (Clare et al., 2006). 

With the A. thaliana genome sequence available, it becomes possible to exploit this 

information to learn more about the plant’s biology. For example, by studying the A. thaliana 

genome sequence, it was determined that the plant had undergone several rounds of complete 

genome duplications in the past, as well as determine the fates of duplicated genes (Seoighe 

and Gehring, 2004). In addition, as the first complete genome sequence of a plant, the 

sequence provides a basis for a more detailed comparison of conserved processes in all 

eukaryotes, identifying the set of plant-specific gene functions and establishing a method for 

identifying potential genes for crop improvements (The Arabidopsis Genome Initiative, 

2000). 

A. thaliana is the most widely-studied plant today and so, it serves as a model organism for 

the understanding of the complex processes involved in plant growth and development. With 

the large quantity and diversity of information being generated, The Arabidopsis Information 

Resource (TAIR) was developed (Rhee et al., 2003) (http://arabidopsis.org). An on-line 
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resource, TAIR contains fully-annotated genes and gene products, using a controlled 

vocabulary, as well as a data retrieval system and analysis and visualisation tools (Rhee et al., 

2003). 

3.3.2 Plant defence responses 

3.3.2.1 Overview 

Even with advances in the control of plant diseases, the global food supply is still under threat 

from a multitude of pathogens, with up to 20% of the yield in developed countries lost to 

disease (Anderson et al., 2005). The impact of crop loss is even more detrimental in 

developing countries. The use of pesticides and other chemicals provides some protection, but 

the disadvantages can include adverse environmental effects and the emergence of resistant 

strains. Furthermore, such chemical controls are often too expensive for use by farmers in 

developing countries. It is for these reasons that much effort has been invested in 

understanding the “built-in” defence responses.  

Plant defence responses to microbial pathogens have been extensively studied for many years, 

as a result of crop damage from pathogen attack (McDowell and Woffenden, 2003), with 

much research gone into understanding a plant’s response to pathogens (Gurr and Rushton, 

2005). The ultimate goal is to produce crops with increased and durable resistance to a variety 

of diseases (Murray et al., 2002). Plants have an effective collection of inducible defence 

responses including genetically programmed suicide of infected cells, as well as tissue 

reinforcement and the expression of genes involved in defence (McDowell and Woffenden, 

2003). 

No real attempt to “genetically dissect” these responses was made until the advent of the well-

characterised A. thaliana model system. This was largely due to the intractability of genetic 

analysis of other hosts, caused partly by long generation times and large, polyploid or 

repetitive genomes. Moreover, A. thaliana is susceptible to a wide range of pathogens, 

including bacterial, fungal and viral pathogens (Glazebrook et al., 1997). Before the genome 

sequence was known, mutants of A. thaliana that are defective in almost every aspect of plant 

growth, development and reproduction were generated using forward genetics. This approach 

entails random EMS mutagenesis, selecting a phenotype, genetically characterising the 

mutant, and finally cloning the mutant gene by map-based cloning. However, with the 

genome sequence known, it has also been possible to develop mutants using reverse genetics 
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approaches, such as RNAi and VIGS. The existence of a large collection of mutants with 

defects in defence-related signalling pathways made it possible to use the mutants to 

determine which pathways are controlling an observed response, as well as place and order 

genes within signal transduction networks (Glazebrook et al., 1997; Glazebrook, 2001). 

Analysis of these mutants generated in A. thaliana is beginning to give researchers an idea as 

to the organisation of the complex transduction pathways that result in the defence responses 

that protect plants from pathogen infection (Glazebrook et al., 1997). 

In nature, plants are continuously challenged by fungi, bacteria, viruses and nematodes, yet 

relatively few successfully infect the plant (Gurr and Rushton, 2005). This is due to the 

various layers of defence strategies that plants possess that include strengthening of structural 

barriers by lignification of host cell walls, as well as enzymatic and chemical defences that 

interfere with pathogen metabolism. These defences may be the synthesis of reactive oxygen 

species (ROS), nitric oxide (NO), or the expression of genes that encode glucanases, 

chitinases, thionins, defensins and glutathione-S-transferases and other pathogenesis related 

(PR) genes (Thatcher et al., 2005). Of the eleven classes of PR proteins, most have been 

assigned probable functions. They target the pathogen cell wall (PR-2, -3, -4, -8, -11), 

pathogen membrane (PR-1, -5), pathogen RNA (PR-10), undefined pathogen proteins (PR-6) 

or display peroxidase activity (PR-9) (Gurr and Rushton, 2005). These defence responses 

have to be strictly regulated as activation of defence responses impacts negatively on plant 

growth, as it is metabolically expensive (Glazebrook, 2005; McDowell and Woffenden, 

2003). 

In recent years, the focus of studies of the genes controlling expression of defence responses 

in A. thaliana has shifted from the identification of involved genes, to the ordering of these 

genes within the branches of signal transduction networks. It is now clear that resistance is 

mediated through at least three genetically distinct pathways (Glazebrook, 2001). These 

pathways can be distinguished by the downstream signalling molecules: salicylic acid (SA), 

jasmonic acid (JA) and ethylene (ET). In addition to possessing different signalling 

molecules, these pathways result in an increase in the expression of different sets of genes. An 

increase in SA results in the expression of a subset of PR genes including PR-1, PR-2 and PR-

5, whereas the induction of JA and ET signal transduction pathways induces a different subset 

of PR genes, including PDF1.2 and Thi2.1 (Thatcher et al., 2005). 
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SA-dependent and JA/ET-dependent responses are used differently against pathogens with 

different invasive techniques (Murray et al., 2002; Thatcher et al., 2005). Biotrophic 

pathogens keep their host alive and cause minimal cell damage, in order to extract food from 

host cells using specialised feeding structures, known as haustoria (Murray et al., 2002; 

Glazebrook, 2005). These pathogens do not cause host cell death, as they can only live and 

multiply on another living organism, and include the oomycete Peronospora parasitica and 

fungal pathogen, Erysiphe orontii (Glazebrook, 2005). Resistance to biotrophic pathogens 

tends to rely on SA-dependent responses and defence occurs through programmed cell death 

in the host (Glazebrook, 2005). Necrotrophic pathogens, however, kill host tissue by 

producing cell wall degrading enzymes or toxins, leading to host tissue maceration, thus 

obtaining its energy from the dead host cells. Therefore, necrotrophs would benefit from host 

cell death, and so defence against necrotrophic pathogens tends to rely on a different defence 

response, namely JA/ET-dependent signalling (Glazebrook, 2005). Pathogens of this type 

include Botrytis cinerea and Alternaria brassicicola. However, some pathogens behave both 

as biotrophs and necrotrophs, depending on growth conditions or stages in the developmental 

cycle. Such pathogens are termed hemi-biotrophs and include the bacterium Pseudomonas 

syringae (Glazebrook, 2005) and Phytophthora infestans, the oomycete that causes potato 

blight (Strange and Scott, 2005). Similarly, some bacterial pathogens such as Pectobacterium 

atrosepticum and Ralstonia solanacearum are generally considered necrotrophs due to the 

large amounts of cell wall degrading enzymes that they produce, although it has been 

suggested that they may also have a biotrophic phase during early infections (Toth and Birch, 

2005). 

3.3.2.2 Gene-for-gene resistance 

The simplest model of plant-pathogen recognition is based on the interaction of pathogen 

elicitors with plant receptors and the subsequent transduction of this interaction into a defence 

response. This interaction can be subdivided into non-host resistance and host-specific 

recognition (Thatcher et al., 2005). Non-host resistance is a type of resistance shown by all 

members of a plant species to a specific pathogen. It is the less understood resistance 

mechanism, even though it is the most common form of resistance (Mysore and Ryu, 2004). 

In host-specific recognition (more commonly known as the “gene-for-gene” model), 

resistance occurs when the pathogen carries an avirulence (avr) gene that corresponds to a 

particular resistance gene (R gene) in the host. Generally, each R gene confers resistance only 

to pathogens carrying the corresponding avr gene. Essentially, when corresponding R and avr 
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genes are present, the result is disease resistance (an incompatible reaction) and if either is 

absent, the result is disease (a compatible reaction) (Gurr and Rushton, 2005). 

In both non-host resistance and host-specific recognition, reactive oxygen species (ROS) are 

produced, a hypersensitive response (HR, a programmed cell death) occurs, and lignification 

takes place (Mysore and Ryu, 2004). However, it is questionable whether these similarities 

involve the same signal transduction pathways. Even with the similarities, there are 

significant differences, and it is possible that both non-host resistance and host-specific 

recognition have completely separate signal transduction pathways that merely have 

significant cross-talk between the two pathways that converge at a later stage (Mysore and 

Ryu, 2004).  

Avirulent pathogens often trigger the hypersensitive response (HR), a programmed cell death 

of the plant cells in contact with the pathogen. This is thought to limit biotrophic pathogens 

access to water and nutrients, and thus limit pathogen growth (Glazebrook, 2005). During the 

HR, there is a influx of Ca2+ and H+, and an efflux of K+ and Cl–, and these are thought to be 

signals for the generation of ROS such as the superoxide anion (O•–
2
) and hydrogen peroxide 

(H2O2), and reactive nitrogen species such as nitric oxide (NO) (Thatcher et al., 2005). During 

HR, H2O2 not only has a microcidal effect, but also stimulates cell wall lignification, thus 

strengthening the cell wall against the pathogen. It has been found that NO alone is not able to 

activate hypersensitive cell death during HR, but only when there is an appropriate balance 

between NO and ROS, in particular H2O2 (Thatcher et al., 2005). 

Several signalling molecules are involved in the downstream responses, and these include 

salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) (Thatcher et al., 2005). Signal 

transduction networks are proving to be tightly regulated and accommodate considerable 

cross talk between the SA-dependent and JA/ET-dependent responses in synergistic or 

antagonistic fashions (Thatcher et al., 2005). Based on current knowledge of signalling 

pathways, the signal transduction networks can be divided into five categories: SA-dependent 

resistance, JA-dependent resistance and ET-dependent resistance, systemic acquired 

resistance (SAR), induced systemic resistance (ISR) (Thatcher et al., 2005). Figure 3.3 

illustrates a summary of these pathways. 
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Figure 3.3: Brief summary of plant defence signalling pathways in Arabidopsis thaliana (Thatcher et al., 

2005). Shown are the primary genes that have been found to be involved in SA-, JA- and ET-

dependent signalling pathways, as well as SAR and ISR. Capitals indicate wild-types and italics 

indicate mutants. ISR: Induced Systemic Resistance, SAR: Systemic Acquired Resistance, OB: 

Oxidative Burst. 

3.3.2.3 Salicylic acid (SA) dependent pathway 

Salicylic acid has been shown to play a central role in local plant defence responses, and 

several A. thaliana mutants have been isolated that have defects in SA signalling and have 

been positioned within the signalling pathway. These include eds5-1 (enhanced disease 

susceptibility) and sid (salicylic acid induction deficient) mutants, sid1 and sid2, which are 

unable to accumulate SA after pathogen infection (Thatcher et al., 2005). Thus, EDS5 and 

SID2 are suggested to function upstream of SA accumulation. SID2 encodes isochorismate 

synthase, and in sid2 mutants, the production of SA is reduced (Glazebrook, 2005). This 

suggests that the majority of SA is produced from isochorismate, although a small amount 

may be produced via the phenylalanine pathway (Glazebrook, 2005; Thatcher et al., 2005). 

Both eds5 and sid2 mutants result in reduced PR-1 gene expression, although PR-2 and PR-5 
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expression levels are normal (Thatcher et al., 2005). SID1/EDS5 expression also increases 

with SA treatment, suggesting a positive feedback mechanism (Thatcher et al., 2005). 

Phytoalexin-deficient mutants (pad1, pad2, pad3, pad4) have defects in phytoalexin and SA 

accumulation, and reduced PR expression (Thatcher et al., 2005). Phytoalexins are 

antimicrobial compounds in A. thaliana, which include camalexin (Glazebrook, 2005). PAD3 

encodes a camalexin biosynthetic enzyme and so, pad3 mutants, which produce very little 

camalexin, are commonly used for pathogen studies (Glazebrook, 2005). PAD4 encodes a 

protein similar to EDS1 and is predicted that PAD4 may lead to the synthesis and degradation 

of a molecule that is involved in defence signalling (Thatcher et al., 2005). EDS1 and PAD4 

act upstream of SA to promote SA accumulation. EDS5 expression requires PAD4 and EDS1 

and so is placed downstream of them (Glazebrook, 2005). 

A protein with a key regulatory function in SA signalling is NPR1 (non-expressor of PR 

genes 1), also known as NIM1 (Thatcher et al., 2005; Glazebrook, 2001). NPR1 and SAI1 

(salicylic acid insensitive 1) both act downstream of SA to promote the expression of PR-1, 

BGL2 and PR-5. npr1 is impaired in its ability to express PR genes in the presence of 

avirulent pathogens (Thatcher et al., 2005; Glazebrook et al., 2003). When cellular SA levels 

are low, NPR1 exists in an oligomeric form in the cytoplasm (Eulgem, 2005). When SA 

levels rise, the oligomers dissociates into NPR1 monomers which move into the nucleus 

(Glazebrook, 2005; Maleck et al., 2000). NPR1 encodes an ankyrin-repeat containing protein, 

a domain that is often involved in protein-protein interactions. It has been found that a 

subclass of basic region/leucine zipper (bZIP) transcription factors, called TGAs, interact 

specifically with NPR1 (Thatcher et al., 2005; Glazebrook et al., 2003; Maleck et al., 2000). 

Furthermore, NPR1 interacts with TGA2, which in turn binds to a SA-responsive promoter 

element in the PR-1 gene. Using triple knockout mutants of TGA2, TGA5 and TGA6, PR gene 

expression and pathogen resistance induced by SA was blocked and this mimicked mutations 

in NPR1 (Thatcher et al., 2005). 

With regard to transcription factors involved in SA-mediated defence responses, an important 

family is the plant-specific WRKYs, which bind to the W-box motif (TTGAC) (Thatcher et 

al., 2005; Maleck et al., 2000). The NPR1 promoter contains several W-box motifs and when 

they are mutated in promoter::reporter fusions, promoter activity is abolished, suggesting 

WRKY transcription factors are required for NPR1 expression (Thatcher et al., 2005; Maleck 

et al., 2000). Additionally, analysis of PR-1 co-regulated genes induced during SAR shows an 
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over-representation of W-box or W-box-like motifs in their promoters (Thatcher et al., 2005; 

Maleck et al., 2000). 

Researchers often use NahG plants to dissect SA signalling as the NahG transgene blocks SA 

accumulation by encoding a SA-degrading enzyme, salicylate hydroxylase. This enzyme 

converts SA to catechol, and thus affects SA-dependent signalling (Thatcher et al., 2005; 

Glazebrook, 2001). However the assumption that NahG phenotypes result from an absence of 

SA may not be entirely correct (Glazebrook et al., 2003). It has been suggested that catechol, 

the product of SA degradation increases susceptibility, with NahG affecting the expression of 

many more genes than sid2, thus implying that NahG may influence signalling pathways in 

addition to the SA-dependent pathway (Thatcher et al., 2005; Glazebrook et al., 2003; 

Glazebrook, 2001). 

Ordering of genes in the SA-dependent pathway is complex as there are several feedback 

loops (Glazebrook, 2005). For example, cell death promotes SA production, but SA 

production promotes cell death (Glazebrook, 2005). In addition, PAD4 and EDS1 are required 

for SA production, but the expression of these genes is enhanced by SA (Glazebrook, 2005). 

3.3.2.4 Jasmonic acid (JA) dependent pathway 

Jasmonates are produced from the major plant plasma membrane lipid, linolenic acid 

(Thatcher et al., 2005). Biological roles of JA and some of its biosynthesis intermediates 

include fruit ripening, fertility and root growth, and responses to wounding, insects, microbial 

pathogens and abiotic stress (Thatcher et al., 2005). JA and methyl jasmonate (MeJ) induce 

defence-related genes, such as the defensin PDF1.2 (PR-12) and the thionin Thi2.1 (PR-13) 

(Glazebrook, 2005; Thatcher et al., 2005). PDF1.2 and Thi2.1 gene expression is not induced 

after SA treatment, although PDF1.2 also requires ethylene (ET) (Glazebrook, 2005). JA also 

induces genes that regulate its own synthesis (DAD1, LOX2, AOS, OPR3, and JMT) (Thatcher 

et al., 2005). 

Several mutants have been isolated that activate or suppress the JA-mediated signalling 

pathways. These include fad (fatty acid deficient), dad1 (defective anther dehiscence 1), dde1 

(delayed dehiscence 1) and opr3 (12-oxophytodienoic acid reductase 3) mutants (Thatcher et 

al., 2005). All of the mutants are defective in the enzymes that they encode, and these 

enzymes are required for JA biosynthesis (Thatcher et al., 2005). 
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All known activities of JA in A. thaliana require the function of COI1 (Glazebrook, 2005). 

The coi1 (coronatine insensitive) mutant is insensitive to MeJ and coronatine (a bacterial 

toxin that mimics the action of MeJ) and encodes a LRR-containing F-box protein that may 

recruit repressors and target them for removal by ubiquination (Glazebrook, 2005; Thatcher et 

al., 2005). The coi1 mutant blocks JA signalling and increases susceptibility to necrotrophic 

fungal pathogens (Thatcher et al., 2005). 

A mutation in the MAP kinase mpk4 blocks expression of PDF1.2 and Thi2.1 in response to 

MeJ and expresses SA-mediated defences. Additionally, impairment of JA signalling is 

independent of elevated SA levels. It is thought that MPK4 may impact SA signalling 

upstream of SA by affecting the balance between SA-dependent and JA-dependent signalling 

(Thatcher et al., 2005). 

Mutants with activated JA-mediated defence pathways include cev1 and cet mutants 

(Thatcher et al., 2005). cev1 expresses PDF1.2, Thi2.1 and CHI-B and has increased levels of 

JA and ET. The cet (constitutive expressor of thionin) mutants exhibit activated JA-dependent 

gene expression, increased levels of JA and show spontaneous lesion formation (Thatcher et 

al., 2005). It is thought that the lesion formations in the various cet mutants may be a result of 

cell death pathways that are independent of SA (Thatcher et al., 2005). 

3.3.2.5 Ethylene (ET) dependent pathway 

Ethylene (ET) is a plant hormone that is involved in plant growth and development and is 

regulated in response to both biotic and abiotic stresses (Thatcher et al., 2005). Mutants 

isolated with defects in ET responses include ein (ET insensitive) and etr (ET resistant) 

mutants. Components of the ET signalling pathway include the nuclear-localised transcription 

factor EIN3, with activates ERF1 (ET response factor 1), a member of plant specific ethylene-

responsive element binding protein (EREBP) family, which in turn binds to GCC-box 

promoter elements to activate defence genes such as PDF1.2 and CHI-B (Thatcher et al., 

2005). The GCC-box motif is associated with ET and pathogen-induced gene expression and 

found in many pathogen-responsive genes. ERF1 expression can be induced by both ET and 

JA, although intact signalling components from both pathways are simultaneously required 

for expression, since mutations that block either pathway prevent ERF1 expression (Thatcher 

et al., 2005). Microarray experiments have shown that ERF1 regulates the expression and 

integrates the signals of both ET and JA responsive genes indicating that ERF1 acts at a 

downstream intersection between the ET and JA signalling pathways (Glazebrook, 2005; 
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Thatcher et al., 2005). ERF1 expression requires ET and JA as well as COI1 and EIN2 

(Glazebrook, 2005). 

3.3.2.6 Systemic Acquired Resistance (SAR) 

Following pathogen attack, the early defence signalling events are often amplified through the 

generation of secondary signally molecules, such as SA, JA, and ET (Thatcher et al., 2005). 

These may activate defences both locally at the infection site and systemically in non-infected 

tissues. The activation of the HR triggers a systemic response known as systemic acquired 

resistance (SAR). SAR is associated with an increase in SA locally, and then accumulated 

systemically throughout the plant. This leads to the expression of defence genes, such as PRs 

in distant uninfected tissues (Thatcher et al., 2005). These activated defence genes result in 

the susceptible, uninfected tissue gaining resistance to the pathogen (Thatcher et al., 2005). 

SAR results in a long-lasting, systemic resistance to subsequent infection by other pathogens, 

including bacteria, fungi and viruses (Thatcher et al., 2005). 

Very few mutants unique in SAR have been identified. Two such mutants include dir1-1 

(defective in induced resistance) and cdr1 (constitutive disease resistance). DIR1 encodes an 

apoplastic lipid transfer protein that leads to the production or transduction of a mobile signal 

from locally infected tissue to systemic tissue to induce SAR (Thatcher et al., 2005). CDR1 

encodes an apoplastic aspartic protease and may be involved in the activation of SAR through 

the generation of a mobile signal (Thatcher et al., 2005). 

3.3.2.7 Interactions between pathways 

Although SA-dependent and JA/ET-dependent pathways induce different sets of PR genes 

and provide resistance against different pathogens, there is both synergism and antagonism 

between the pathways (Thatcher et al., 2005; Schenk et al., 2000). The signalling molecules, 

SA, JA and ET, each result in lesion formation mimicking HR cells death. However, there are 

differences in lesion formation and these differences may be a result of synergistic or 

antagonistic effects between the SA, JA and ET signalling pathways (Thatcher et al., 2005). 

SA and JA pathways often seem to act antagonistically, with SA shown to have an inhibitory 

effect on JA biosynthesis (Thatcher et al., 2005). Pathogen-induced SA accumulation 

suppresses JA formation and JA-responsive gene expression. Conversely, JA is reported to 

negatively regulate SA signalling (Thatcher et al., 2005). The mpk4 mutation blocks the JA-

inducible expression of PDF1.2 and causes the constitutive activation of SA-dependent 
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signalling, suggesting that the block in JA signalling may relieve the suppression of SA 

signalling (Thatcher et al., 2005). The mechanisms that result in the negative cross-talk 

between JA and SA signalling are not well understood, and it has been suggested that this is 

due to cross-talk at multiple points (Glazebrook, 2005). 

However, SA and JA also act synergistically to induce defence-associated genes (Schenk et 

al., 2000). It has been shown that PDF1.2 expression and NPR1-independent expression of 

PR-1 in ssi1 (suppressor of SA insensitivity 1) requires both SA and JA/ET signalling 

pathways, suggesting that SSI1 plays a role in regulating the cross-talk between SA and 

JA/ET signalling pathways (Thatcher et al., 2005). The JA and ET pathways often work 

synergistically. Most genes induced by ET in microarray studies were also induced by MeJ 

(Maleck et al., 2000). 

Generally, it was found that in response to virulent bacterial pathogen attack, SA and JA 

signalling oppose each other, SA and ET signalling also tend to oppose each other, and JA 

and ET signalling usually acts together (Thatcher et al., 2005). 

3.3.3 MADIBA Arabidopsis thaliana data analysis 

For this analysis, the expression of A. thaliana plants that were treated with Ralstonia 

solanacearum (bacterial wilt) was used. This microarray data was produced by the Molecular 

Plant-Pathogen Interactions (MPPI) group at the University of Pretoria. R. solanacearum is a 

soil-borne plant pathogen that naturally infects roots and specifically invades the xylem 

vessels. This bacterium has an unusually wide host range, being able to infect over 200 host 

species, belonging to more than 50 botanical families (Salanoubat et al., 2002). MADIBA 

was used to analyse these data to determine which pathways are activated in response to a R. 

solanacearum infection, in both the susceptible and resistant interactions. 

To determine the expression of the susceptible interaction, R. solanacearum isolate K was 

used to infect A. thaliana ecotype Col-5 (Naidoo, 2008). From this experiment, 133 genes 

were found to be significantly responsive, with 76 genes being up-regulated and 57 genes 

down-regulated. The up- and down-regulated genes were analysed separately. 

In the analysis of the up-regulated genes, it was found in the Metabolic Pathways module that 

the fatty acid metabolism, phenylalanine metabolism and stilbene, coumarine and lignin 

biosynthesis pathways all contained three enzymes each. However, the annotations in these 

pathways were primarily derived from PRIAM, so this may not be a particularly reliable 
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result. This is because the PRIAM enzyme predictions are completely automatic, based solely 

on similarity to known enzymes and have not been tested experimentally. In addition, the 

enzyme position specific scoring matrices (PSSM) that are used to determine similarity were 

derived primarily from bacterial enzymes (Claudel-Renard et al., 2003), and so may not be 

reliable for plants. 

In the Gene Ontology module, there were several terms pertaining to glutamate enzyme 

activity in the molecular function ontology. These included glutamate-5-kinase and glutamate 

decarboxylase activity (GO:0004349 and GO:0004351, respectively). In the biological 

process ontology, as expected from a response to bacterial wilt, several terms involving water 

loss were significant, including cellular response to water deprivation (GO:0042631), 

response to desiccation (GO:0009269), response to water deprivation (GO:0042631), and 

hyperosmotic salinity response (GO:0042538). Interestingly the term jasmonic acid and 

ethylene-dependent systemic resistance, ethylene mediated signalling pathway (GO:0009871) 

appeared, although with a relatively poor p-value (p-value = 0.0018). The ethylene (ET) term 

make sense as it has been suggested that ET promotes wilting, as delayed wilting symptoms 

were observed in an ein2-1 mutant, which is insensitive to ET signalling (Hirsch et al., 2002). 

Other terms included fatty acid oxidation (GO:0001561), tyrosine catabolic process 

(GO:0006572) and glyoxysome organisation and biogenesis (GO:0010111). 

In the Transcription Regulation module, oligo-analysis, a tool within RSAT, found that the 

motifs ACACGT and ATAAAT were over-represented (e-values = 0.012 and 0.2 

respectively). Similarly, the dyad-analysis program found that the motifs CACN(2)GTC and 

ACAN(0)CGT were over-represented (e-values = 0.02 and 0.3 respectively). 

When analysing the genes that were down-regulated in the susceptible interaction, it was 

found in the Metabolic Pathways module that the only significant pathway was the carbon 

fixation pathway (3 enzymes, p-value = 0.0043). This could mean that when a plant is 

infected by a pathogen, carbon fixation is reduced, with more energy focussed towards 

fighting the pathogen. 

In the Gene Ontology module, the molecular function ontology found some interesting terms 

including hydrolase activity, specifically catalysing the transmembrane movement of 

substances (GO:0016820), transmembrane receptor protein serine/threonine kinase activity 

(GO:0004675) and MAP kinase activity (GO:0004707). The last two terms in particular are 
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known parts of signal transduction cascades, so it is possible that these genes are down-

regulated when the pathogen interferes with these signals to prevent an effective defence 

response. It has been shown that some pathogens are able to interfere with the host responses. 

For example, experiments have revealed that Pseudomonas syringae pv. tomato is able to 

manipulate the abscisic acid signalling pathway in A. thaliana, resulting in a compromised 

defence response (de Torres-Zabala et al., 2007). Thus it is possible that pathogens are able to 

manipulate aspects of the host response, such as plant hormone homeostasis and signal 

cascades, to suppress defence responses (de Torres-Zabala et al., 2007). In the biological 

process ontology, the signalling aspect was confirmed with the activation of MAPK activity 

during osmolarity sensing term (GO:0000169). Also, as predicated by the Metabolic 

Pathways module, the terms carbon utilisation by fixation of carbon dioxide (GO:00015977) 

and carbon utilization (GO:0015976) were significant. The cellular component ontology 

identified several significant terms that indicated that most of the genes are localised in the 

chloroplast including the chloroplast ribulose bisphosphate carboxylase complex 

(GO:0009573), chloroplast thylakoid (GO:0009534, GO:0009535 and GO:0009579) and 

photosystem I reaction centre (GO:0009538). These terms are most likely related to the 

carbon fixation terms seen above. Another significant term suggested that the gene products 

were located extrinsic to the membrane (GO:0019898), again hinting at some possible 

involvement in signal transduction. 

Using oligo-analysis, it was found that the motifs CGTTCA and GGTCCA were over-

represented (e-values = 0.48 and 0.52 respectively). Dyad-analysis identified the motifs 

AATN(20)GGG and CTGN(2)GAC as over-represented (e-values = 0.02 and 0.3 

respectively). While all the motifs detected did not match any currently known TFBS, they 

still nonetheless could be significant. 

To determine how the gene expression differed in the resistant interaction, R. solanacearum 

isolate CK was used to infect the A. thaliana ecotype Kil-0, and this experiment was 

performed on a 27000 probe whole genome array (Naidoo, 2008). In the data from the 

resistant interaction, 76 genes were found to be significantly different, with 53 genes up-

regulated and 23 down-regulated. The current hypothesis is that the salicylic acid (SA) 

signalling pathway is involved in the resistant response in A. thaliana to R. solanacearum 

(Deslandes et al., 2003; Noutoshi et al., 2005), so it was hoped that MADIBA could be used 

to confirm this result. 
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When analysing the up-regulated genes in MADIBA, only the Gene Ontology module 

showed significant results. Terms that were found in the molecular function ontology 

included chitin binding (GO:0008061) and chitinase activity (GO:0004568), as well as 

alcohol dehydrogenase activity (GO:0004022) and calmodulin binding (GO:0005516). Terms 

in the biological process ontology corroborated some of these terms, including cellulose and 

pectin-containing cell wall organization and biogenesis (GO:0009664) and response to chitin 

(GO:0010200). Some defence and R. solanacearum response terms included cellular response 

to water deprivation (GO:0042631), response to reactive oxygen species (GO:0000302), 

oxygen and reactive oxygen species metabolic process (GO:0006800), response to oxidative 

stress (GO:0006979), cell death (GO:0008219), in addition to defence response to bacterium, 

incompatible interaction (GO:0009816), defence response to bacterium (GO:0042742), and 

response to bacterium (GO:0009617). Unfortunately, no terms relating to SA signalling were 

found, although curiously several terms relating to JA and ET signally were. These included 

jasmonic acid and ethylene-dependent systemic resistance, ethylene mediated signalling 

pathway (GO:0009871), jasmonic acid and ethylene-dependent systemic resistance 

(GO:0009861), response to ethylene stimulus (GO:0009723), response to jasmonic acid 

stimulus (GO:0009753) and response to abscisic acid stimulus (GO:0009737). Some other 

response terms included embryonic development (GO:0009790), response to high light 

intensity (GO:0009644) and response to cold (GO:0009409). 

When the down-regulated genes were analysed, again only the Gene Ontology module found 

results. These terms included carbon utilisation (GO:0015976), cellular calcium ion 

homeostasis (GO:0006874), cellulose and pectin-containing cell wall modification during 

multidimensional cell growth (GO:0009831), cellulose and pectin-containing cell wall 

loosening (GO:0009828). 

3.3.4 MADIBA defence pathways analysis 

Since MADIBA does not currently possess a means to identify genes which have a part in 

defence signalling, and are thus potentially useful in improving plant defences, a sub-module 

of the Arabidopsis Characteristics module was considered. Initial thoughts were to derive a 

plant defence signalling pathway map from literature studies, such as in Figure 3.3 and 

highlight the genes (nodes) that are present in the pathway, in a similar fashion to the 

Metabolic Pathways module. However, this approach was abandoned as it was concluded that 

there is insufficient information to draw an accurate representation. In addition many of the 
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interactions happen only after infection with certain pathogens and different combinations of 

signalling components are activated under different conditions. Further, the ordering of the 

genes in the signalling cascade was primarily performed by using mutant studies, so this 

means that such networks may not necessarily occur in this manner in a wild-type plant. Thus 

an alternative approach was required. 

3.3.4.1 DRASTIC 

The first approach was to investigate the up- or down-regulation of a group of genes in 

response to some experimental condition. The aim was to identify which conditions an 

experiment has a similar expression pattern to, and this was accomplished by obtaining the 

regulation of a set of genes from the experiments contained in the DRASTIC database (11; 

Button et al., 2006). Using this database, the regulation (either up- or down-regulated) for 

each gene in the submitted cluster, to various conditions, was obtained and compiled into a 

table, where a green block indicates up-regulation and a red block indicated down-regulation. 

When DRASTIC was applied to the up-regulated set of genes from the susceptible interaction 

with R. solanacearum, 55 were found that had some response to a treatment. Of these, 25 

were annotated as up-regulated in response to Pseudomonas syringae pv tomato DC3000 

avrRpt2, and one was marked as down-regulated (Figure 3.4). However, this result is the 

opposite that would be expected from a susceptible interaction. A possible reason for this is 

that there is a delayed expression of certain genes in the susceptible interaction, which would 

normally be immediately expressed in a resistant interaction, that is, there is a common 

expression of genes between in the susceptible and resistant interactions.  

In the down-regulated genes from the susceptible interaction, the only significant experiment 

found was a methyl jasmonate treatment. Of the 57 genes that were submitted 12 results were 

found, with 8 marked as up-regulated and the remaining 4 were down-regulated. This is again 

the opposite of what would be expected, as in the susceptible interaction, SA signalling is 

repressed, resulting in increased MeJ signalling. However, in this case, the genes in the gene 

set were down-regulated in the R. solanacearum experiment. 

This same process was repeated for the resistant interaction. In the up-regulated gene set, of 

the 55 genes submitted, 9 genes were marked as up-regulated in response to P. syringae pv. 

tomato DC3000 avrRpt2; 5 up and 2 down in response to an Alternaria brassicicola infection; 

and 5 up and 2 down in response to a MeJ treatment. The first result is what would be 
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expected, as both the experiment in DRASTIC and the data from the R. solanacearum 

experiment are from resistant interactions. However, the last two responses are again the 

opposite of what would be expected. In the down-regulated gene set, there were no significant 

responses found. 

 

Figure 3.4: Screenshot of a portion of the results of the regulation of the genes, retrieved from the 

DRASTIC database, in the up-regulated gene set from the susceptible interaction with R. 

solanacearum. It can be seen that many of the genes in the cluster have been annotated as being up-

regulated in response to Pseudomonas syringae pv tomato DC3000 avrRpt2 (a green block indicates 

up-regulation and a red block indicated down-regulation). Each block can be clicked for additional 

information, such as reference data. 

3.3.4.2 PCA Experiment Comparer 

Since the DRASTIC database is relatively small, due to the data being manually curated, the 

dataset may not reveal all patterns. Thus, an alternative approach was to compare the 

expression profile of the genes in the cluster to the expression profiles of a variety of other 

experiments, namely the data in NASCArrays (Nottingham Arabidopsis Stock Centre Arrays) 

(Craigon et al., 2004; 20). However, this dataset is extremely large, making it difficult for a 

researcher to interpret. Thus, to reduce the number of variables, Principal Component 

Analysis (PCA) was applied to the data.  
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As an initial test to determine if a PCA could be used to correctly group similar expression 

profiles, the data from Glazebrook et al. (2003) were used. In this experiment, slides 

containing approximately 8000 probes were used to determine the expression of wild-type 

plants against several signalling-defective mutant plants, including eds3, eds4, eds5, eds8, 

pad1, pad2, pad4, NahG, npr1, sid2, ein2 and coi1 (Glazebrook et al., 2003). This dataset was 

used as it explored the global expression of wild-type and several signalling-defective mutant 

plants in response to P. syringae pv. maculicola strain ES4326 infection, allowing the 

placement of regulatory genes in the defence signalling network. Hierarchical clustering was 

performed by Glazebrook et al. on both the mutants and genes, and four clusters were 

identified as being biologically significant (Figure 3.5). The mutants could be roughly 

grouped into three groups: one group consisting of eds4, eds5, sid2 and npr1-3, which were 

affected only SA signalling; another consisting of pad2, eds3, npr1-1, pad4 and NahG 

affecting SA signalling as well as another unknown process; and the last comprised of eds8, 

pad1, ein2, and coi1, which affected ethylene and jasmonate signalling (Glazebrook et al., 

2003).  

A PCA was applied on the log2-ratios of the genes in all the clusters, and across all the 

mutants, to determine if the same clustering could be obtained as by the authors. The results 

of the PCA are shown in Figure 3.6. As can be seen, a relatively similar result was obtained, 

with similar groupings. Thus it suggested that a PCA could be applied to group expression 

data into similar profiles. The Q2 values for this PCA model were 0.329 for the first PC and 

0.318 for the second. While these values are fairly low, it is most likely due to the relatively 

small dataset, and possibly noisy microarray data.  

When applying the PCA Experiment Comparer method on defence response data, again the 

clusters from Glazebrook et al. (2005) were used for the proof of concept. The dataset that 

was used in this exploratory analysis were the mutants that were only affected by SA 

signalling, that is, eds4, eds5-1, eds5-3, npr1-3 and sid2. All the genes from the four clusters 

were used. 

In the eds4 mutant, the closest match was to experiment observing the transcriptome changes 

in Arabidopsis during pathogen and insect attack. In particular, the closest slide was from a 

green peach aphid (Myzus persicae) infestation. 
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Figure 3.5: Clusters proposed by Glazebrook et al., showing the gene name on the right, and the mutant 

along the top (Glazebrook et al., 2003). Each coloured block represents the log2-ratio values 

(calculated as log2(infected mutant/infected wild-type)). The lengths of the branches on the 

dendogram indicate the correlation between the datasets with shorter branch lengths meaning closer 

correlations. 

Close matches with the eds5-1 mutant interestingly included a response of wild-type plants to 

a Pseudomonas syringae pv tomato DC3000 infiltration after 2 hours, as well as treatment 

with gibberellin GA4. The former is significant as infection with the virulent strain of P. 

syringae DC3000 would result in suppression of the SA pathway and induction of the JA and 

ET pathways, as would be expected from this SA-deficient signalling mutant (eds5-1). In the 

latter experiment, gibberellins are known to promote the degradation of the plant growth 

repressor DELLA proteins (Navarro et al., 2008). In addition, it has been shown that DELLAs 

suppress SA signalling and biosynthesis, and is also involved in JA perception and signalling, 

suggesting that DELLAs increase susceptibility to virulent biotrophs and resistance to 
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necrotrophs (Navarro et al., 2008). Therefore through this mechanism, gibberellin increases 

the susceptibility to necrotrophs by degrading DELLAs and thus altering the levels of SA and 

JA (Navarro et al., 2008). However, this is the opposite result of what would be expected 

from the eds5-1 mutant which is deficient in SA signalling. Possible reasons could be that the 

above proposed model is not accurate, or simply that GA4 acts differently than the 

gibberellins that were used by Navarro et al. Other close experiments to the eds5-1 mutant 

included a whole genome expression experiment on Arabidopsis’ response to the application 

of herbicidal levels of 2,4-D, as well as a potassium starvation treatment. These could be 

indications of crosstalk with stress responses. 

In the eds5-3 mutant, a close experiment was again the Pseudomonas syringae pv tomato 

DC3000 infiltration after 2 hours. The eds5-3 mutant’s expression was similar to a cpr5 

mutant experiment. The cpr5 mutant has been shown to cause constitutive expression both an 

NPR1-dependent and an NPR1-independent signalling pathways (Bowling et al., 1997), that 

is SA- and JA/ET-dependent signalling pathways respectively. This match could have 

resulted because both the eds5-3 and cpr5 mutants caused increased expression in the JA 

signalling pathway. Other experiments were responses to cold and a drought stress treatment, 

again possibly indicative of stress response crosstalk. 

When analysing the data from the npr1-3 mutant, the experiments matched were similar to 

those of the eds5-1 mutant. These included the response to 2,4-D application and potassium 

starvation. Interestingly, these data included two responses to Pseudomonas syringae pv 

tomato DC3000 infiltration – at 2 hours and at 24 hours. Again, a similar experiment was a 

response to cold treatment. 

Finally, in the sid2 mutant close experiments were again overlaps of experiments previously 

seen. These included the Pseudomonas syringae pv tomato DC3000 infiltration, harvested 

after 24 hours, and the cpr5 mutant. 

When calculating Q2 for the above datasets, it was generally found that the values were 

generally fairly poor, averaging between 0.1 and 0.3. This suggested that there was possibly a 

lot of noise in the data making it difficult to detect clear patterns. One possible explanation for 

the noise is the comparison of different types of experiments to each other that may not in fact 

be comparable, for example, comparing a gene knockout experiment with a whole genome 

treatment. Nonetheless, the use of PCA did identify some patterns in the expression profiles. 
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The amount of overlap between all the mutants is not surprising as both the PCA and the 

Glazebrook et al. hierarchical clustering showed that these mutants have similar expression 

patterns. In addition, since all the mutants are suspected of being involved in the SA 

signalling pathways (and thus are deficient in SA signalling) this explains the large number of 

treatments involved in the JA- and ET-dependent signalling pathways. 

 

Figure 3.6: Plots of the top two principal components, using the data from the Glazebrook et al. (2003) 

mutant study. The inset in the bottom left is the dendogram representing the clusters that were 

elucidated using hierarchical cluster (Glazebrook et al., 2003). The areas bordered with the same 

colours represent the same set of mutants. As can be seen, the PCA resulted in similar results, with 

same groupings formed, even though the distances between the mutant experiments is different. 
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3.3.5 PCA on Ralstonia solanacearum data 

The data from the susceptible R. solanacearum interaction was analysed using the PCA 

Experiment Comparer in an attempt to see if it was possible to determine which signalling 

pathway is activated in response to R. solanacearum. It was hypothesised that the data from 

this experiment would match the data from other susceptible interactions with other bacterial 

pathogens. The top five results after submitting the data are shown in Table 3.2. Several 

interesting results were obtained including a Pseudomonas syringae DC3000 infiltration in a 

WRKY knockout mutant, as well as a MeJ treatment. This last result confirmed the MADIBA 

GO analysis that also indicated that terms with JA and MeJ were significant. In a susceptible 

interaction, the SA pathway is generally repressed by the pathogen to reduce the defence 

response, and so the JA pathway is up-regulated. In addition, since it is known that some 

pathogens such as P. syringae act as hemi-biotrophs (act both as biotrophs and necrotrophs) 

(Glazebrook, 2005), it could be possible that the gene set used was particular to a phase that 

stimulated the JA signalling pathway.  

The other results were a match to a cpr5/scv1 double mutant, which has wild-type 

susceptibility to Peranospora parasitica, slightly enhanced susceptibility to Pseudomonas 

syringae and resistance to Botrytis cinerea (Anderson et al., 2004); as well as drought stress 

and a hydrogen peroxide treatment on plants over-expressing Zat12. The drought stress 

experiment is understandable due to the nature of a R. solanacearum infection which causes 

wilting symptoms (Deslandes et al., 2003). Terms relating to wilting and water loss were also 

identified in the MADIBA GO analysis. Zat12 is thought to be involved in high light and cold 

acclimation, and so together with the drought stress and hydrogen peroxide treatments, could 

also indicate some crosstalk between the different signalling pathways. 

The box plot of the Q2 values for the top three principal components is shown in Figure 3.7. 

While the average value is fairly low (all less than 0.5), these values are still higher than the 

Q2 values that were calculated for the test cases. 

When the PCA Experiment Comparer was applied to the resistant interaction data, it was 

expected that these data would match experiments related to SA signalling (Deslandes et al., 

2003; Noutoshi et al., 2005). However, the only experiment related to SA signalling was a 

BTH treatment (NASCARRAYS-392), and specifically the slide that matched was a wild-

type plant, harvested 24 hours after spraying with 60µM BTH. Since BTH is a SA analogue 

(Shimono et al., 2007), this could be an indication of increased SA signalling in the resistant 
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interaction. Unfortunately, the other close experiments had little to do with defence signalling, 

being involved in diverse experiments such as circadian gene expression in response to 

different light conditions, response to cold, cell cycle experiments and an investigation into 

the transcriptome of post-germinative Arabidopsis embryos. Interestingly, many of these 

experiments matched terms found using the MADIBA GO analysis module. 

3.3.6 Conclusion 

Some novel ways were suggested for identifying genes involved in the defence response. One 

way was to identify how each gene responds to various treatments, and the DRASTIC 

database was used for this purpose. Unfortunately, no definitive results could be determined 

when using this information, and in many cases, the opposite result of what was expected was 

found. Since the data in DRASTIC is manually curated from literature, the amount of data are 

not sufficient to draw inferences as to whether or not a gene is involved in a defence response. 

Using the NASCArrays data provided a greater set of works to perform this analysis on, and 

applying a PCA on it allowed for the data to be interpreted. While this approach did work to 

an extent, numerous other concerns arose. One in particular was the issue of comparing 

different types of experiments to each other that may not in fact be comparable, for example, 

comparing a gene knockout experiment with a whole genome treatment, or gene expressions 

from roots compared with the gene expression from shoots. In addition, because there was not 

a standard format for naming of slides, many values had to be discarded, including many that 

were related to plant defence. 

The PCA Experiment Comparer method showed that it is possible to group some unknown 

data from an experiment, and potentially identify which other experimental conditions the 

data matches. When applying this data to R. solanacearum data, several interesting results 

were found, particularly in the data from the susceptible interaction experiment. This method 

provided numerous insights into the data, showing similarity to another susceptible 

interaction, as well as a MeJ treatment, as was expected. An analysis of the genes in the 

resistant interaction showed a match to a BTH treatment, which may be an indication of 

increased SA signalling, thus supporting the hypothesis that SA is involved in the resistant 

interaction. When applying this method, only genes that were determined to be significantly 

up- or down-regulated were used. An alternative approach may be to use all genes, including 

those that are constitutively expressed, that is, those genes whose expression does not 
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significantly change. This may potentially provide more information upon which to base a 

comparison.  

Besides using a PCA, it may be possible to utilise more involved methods, such as principal 

components discriminant function analysis (PC-DFA) and support vector machines (SVM) 

instead, which are more robust and give an estimate of strongly the data clusters together (i.e. 

how likely the clustering is true). 

While numerous other cross validation methods, such as parameter bootstrapping, could be 

used, the Q2 statistic was used as a basic suggestion to the relevance of the data. Thus this 

value attempted to provide an indication of the significance of the results. 

 

Figure 3.7: Box plot of the Q2 values for the first three principal components after a PCA using the 

susceptible R. solanacearum interaction data. The plot was determined after three complete cross-

validation runs. Each box shows the median, the first and third quartiles, and the maximum and 

minimum calculations. Outliers are represented as circles (none present in this figure). 
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Table 3.2: The five closest results from the PCA Experiment Comparer to the data from the susceptible R. solanacearum interaction. Provided are the experiment’s 

reference number in NASCArrays (20), the distance indicating how “far away” the experiment is from the R. solanacearum data, the title of the experiment, the 

slide name, the treatment of the particular slide matched, and a description of the experiment. The distance measure is a calculation of the Euclidian distance 

from the experiment to the submitted data and thus is a relative measure having no scale. 

NASCArrays 
Reference 

Distance Title Slide Treatment Description 

398 0.00756 Group II-A WRKY 
transcription factors 
and early leaf 
senescence 

Ulker_WRKY-KO-
30-Pst-DC3000 

Vacuum infiltration with 
Pseudomonas syringae DC3000 
(1x107 cfu/ml), harvested 6 hours 
after treatment 

Comparison of the gene expression profiles of 
3-weekold wild type and WRKY T-DNA 
knockout mutants grown in a growth chamber 
under long day growth conditions and 
subsequently challenged for 6 hours with the 
virulent bacterial pathogen P. syringae 
DC3000. 

174 0.00917 AtGenExpress: 
Methyl Jasmonate 
time course in 
wildtype 

RIKEN-GODA22A 10µM MeJ for 3 hours Wild-type seedlings were treated with methyl 
jasmonate for 30 min, 1 and 3 hours. 

141 0.01109 AtGenExpress: 
Stress Treatments 
(Drought stress) 

AtGen_6-
4411_Droughtstres
s-Shoots-
6.0h_Rep1 

Plants were stressed by 15 min. dry 
air stream (clean bench) until 10% 
loss of fresh weight; then incubation 
in closed vessels in the climate 
chamber. 

Wild type plants (col-0) were grown for 16 
days, and drought stress treatments started at 
3 hours of light period; samples taken at 0.5, 
1, 3, 6, 12, 24 hours after treatment. 

355 0.01175 Mutant array Yang_1-
9_CPR5SCV1-
1_Rep1_ATH1 

cpr5/scv1 double mutant Two week-old Arabidopsis aerial tissues from 
Columbia-0 and cpr5, cpr5npr1, cpr5scv1, 
cpr5npr1svi1, and npr1 lines were collected 
for analysis. 

338 0.01272 Hydrogen peroxide 
stress and Zat12 
over-expression in 
Arabidopsis 

Mittler_2-
7_Zat12_Rep1_AT
H1 

20 mM hydrogen peroxide for 1 
hour 

Investigation of the transcriptome of 
transgenic Arabidopsis seedlings (5-day-old) 
constitutively expressing the zinc-finger 
protein Zat12 (At5g59820) under the control 
of the 35S-CaMV promoter (Zat12). The 
transcriptome of these seedlings was 
compared to that of wild type seedlings grown 
under the same conditions (WT) and to that of 
wild type seedlings grown under the same 
conditions and subjected to a hydrogen 
peroxide stress (WT+H2O2). 
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3.4 Application to rice 

Arabidopsis thaliana and rice are model species for dicotyledonous and monocotyledonous 

plants respectively (Rensink and Buell, 2004). Analysis of rice can lead to crop improvements 

in both developed and developing countries. These crops can include economically important 

crops, such as wheat and maize, as well as orphan crops such as cassava, cowpea and pearl 

millet, which are important for food security in Africa. In this section, rice will be discussed 

as model species, followed by a case study using MADIBA. This will be followed by an 

application of MADIBA on pearl millet, a related member of the grass family. 

3.4.1 Importance of rice 

Cereals are one of the greatest sources of food for the world's population. Rice (Oryza sativa) 

is one of three cereals produced annually at worldwide levels of over half a billion tons (608 

million metric tons of rice was produced worldwide in 2004 – UN Food and Agriculture 

Organisation). Unlike the other cereals, more than 90% of rice is consumed by humans, with 

approximately half of the world's population deriving a significant caloric intake from its 

consumption (Goff, 1999). Since the human population is predicted to rise over the next 

several years, it is likely that the demand for rice will also increase. Rice production has 

increased significantly over the past several years as a result of new varieties and improved 

technologies. However, the increase in production is no longer keeping pace with the growth 

in the number of consumers (Goff, 1999; Sasaki and Burr, 2000). This is primarily due to the 

lack of new land, water and labour to increase the cultivation of rice, and so, larger yields per 

plant will be needed to meet the higher demand (Sasaki and Burr, 2000; Ronald and Leung, 

2002). In addition, the increasing affluent portions of the population will want better quality 

rice. 

Applications of molecular techniques will assist in achieving these crop improvements. EST 

cloning however, does not provide sufficient information in order to base crop improvements 

(Goff, 1999). Map based sequence information is required to fully exploit the full potential of 

the rice sequence since of the location of a specific gene in the genome allows the 

identification of candidate genes that control specific traits. To this end, the rice genome was 

sequenced. Through multiple sequencing projects, there are currently four draft sequences 

available – three focussed in the Nipponbare cultivar from the temperate japonica subspecies, 

and one focussed on the 93-11 variety from the tropical indica subspecies (Rensink and Buell, 

2004). All four drafts are publicly available to the academic community (Buell, 2002). With 
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the genome sequenced, it should be possible to identify all genes or proteins that are 

expressed under a condition of interest, and using comparative genomic analyses, identify the 

genes that are predicted to be involved in the trait of interest. Through this, it will be possible 

to use reverse genetics to confirm the prediction (by over-expression or knock-out mutants), 

assess the correlation of the gene with the trait in the population and so aid in the engineering 

of new crop varieties, and allele mining of various germplasms to identify useful variants 

(Ronald and Leung, 2002). 

3.4.2 Rice as a model species 

Two features makes rice attractive as a model species: 1) it is a crop species, so improvements 

can have practical applications, and 2) it represents the taxonomically distinct 

monocotyledons (Rensink and Buell, 2004). While Arabidopsis thaliana is well established as 

a model species for plant biology, in particular dicotyledonous plants, it serves as a poor 

model for cereals and other monocotyledons. Furthermore, rice has a considerably smaller 

genome size as compared to the other cereals, with an estimated size of 420-450Mb (Sasaki 

and Burr, 2000). Despite having the smallest genome of the cereals, the rice genome is still 

three times the size of the A. thaliana genome (Sasaki and Burr, 2000). In a comparative 

study between rice and A. thaliana, it was found that rice contains a homologue for 

approximately 81% of the proteins in the A. thaliana genome (Sasaki and Burr, 2000). This 

suggests a considerable overlap between the genes that are required for basic functions in 

monocotyledonous and dicotyledonous plants. The complete sequence of both plants presents 

opportunities for comparative genomics and investigations into the divergence of plants. 

As a member of the Poaceae (Gramineae) family, rice is closely related to the other major 

cereals: sorghum, maize, barley and wheat. Since these cereals have much larger genome 

sizes (1000, 3000, 5000 and 16000Mb respectively), the smaller genome size of rice means a 

higher gene density, that is, a higher chance of encountering a gene (Goff, 1999). It is 

estimated that the rice genome contains one gene every 5.3kb (Rensink and Buell, 2004; Yuan 

et al., 2005). Despite the difference in the size of the various cereals, it is predicted that the 

cereals display close synteny, which means that the genes are arranged in a similar general 

order within the genome (Rensink and Buell, 2004; Moore et al., 1995). Figure 3.8 illustrates 

this concept. Although the synteny between the cereal genomes is not as absolute as 

previously thought, local regions of co-linearity will still be important in positioning clones in 
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larger cereal genome projects, as well as identifying agricultural regions of interest (Goff, 

1999). 

The study of individual genes also demonstrates that there is a considerable homology among 

the various cereal gene families (Gale and Devos, 1998). This conservation of gene and 

protein sequences suggests that studies on the function of a gene in rice could lead to the 

elucidation of functions of orthologous genes and proteins of other cereals. It is thus possible 

for the identity of a gene in any cereal to be matched to the corresponding rice gene (Gale and 

Devos, 1998). The structural similarities in the various cereal genomes have led to the 

proposal that cereal genomes arose from a common ancestor and can be viewed as a single 

genetic system. Thus the use of the rice genome will become important as the base species in 

comparative genomics in cereals. 

 

Figure 3.8: An alignment of the genomes of six major grass crop species, drawn using 12 rice linkage 

segments, whose order reflects the circularized ancestral grass genome. The rice linkage segments are 

drawn as radiating lines and formed into chromosomes (coloured and numbered lines). The thin 

dashed lines correspond to duplicated segments (Moore et al., 1995).  

3.4.3 MADIBA rice data analysis 

In this section, the objective was to determine whether the data from a rice SA treatment 

could easily be interpreted using MADIBA. Once this proof of concept was shown, it was 

hoped to use MADIBA on SA responses in pearl millet (section 3.4.4). 
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The data for the rice analysis was obtained from an experiment where rice plants were 

exposed to benzothiadiazole (BTH) (Shimono et al., 2007). BTH is a functional analogue of 

SA and is used to protect various plants from infection diseases by activating the salicylic 

acid (SA) signalling pathway (Shimono et al., 2007; Murray et al., 2002). When applied to 

plants at high dosages, it induces constitutive activation of defence response. By contrast, 

when applied at relatively low dosages, the plants’ defence responses do not activate 

immediately but only become apparent after pathogen infection (Shimono et al., 2007). It has 

also been shown that over-expression of BTH- and SA-inducible WRKY transcription factor 

(TF) genes in rice increased resistance to rice blast fungus (Magnaporthe grisea) and 

Rhizoctonia solani (Shimono et al., 2007).  

44000 genes from BTH-treated rice plants were screened using 60-mer oligo DNA 

microarrays, and a statistical analysis by Shimono et al., using analysis of variance with a 

false discovery rate (q-value) < 0.05, identified 326 significant up-regulated genes. These 

included several WRKY TF genes and many defence related genes (Shimono et al., 2007). 

The sequences for these 326 genes were obtained from GenBank, and submitted to MADIBA. 

A BLASTX search was performed on the sequences with a maximum e-value of 1. The 

default top hit was taken for each gene, and generally the matches had good e-values (e-value 

< 10-10). When the annotations of the genes were compared, it could be seen that the set of 

genes contained several genes annotated as glutathione transferases, DNA binding proteins, 

protein binding proteins, cytochrome P450 and numerous WRKY genes (Figure 3.9). 

 

Figure 3.9: Pie chart from MADIBA, showing common annotations in the cluster. Of interest are the 

glutathione transferases and cytochrome P450, as both are involved in plant defences. 
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Using the Metabolic Pathways module, a number of the genes’ products appear in several 

metabolic pathways. These included the starch and sucrose metabolism pathway (6 unique 

enzymes), tyrosine metabolism, phenylalanine metabolism and flavanoid biosynthesis 

pathways (4 unique enzymes in each). However, none of these appear to be significant, with 

only the flavanoid biosynthesis pathway having a p-value less than 0.05 (p-value = 0.03514). 

However, in this pathway, all the enzymes that were present in the cluster were annotated by 

PRIAM only, so this result may not be completely reliable. As mentioned above, PRIAM 

annotations are performed automatically, using sequence similarity to find enzymes of the 

same family, and are not proven experimentally. 

After analysing the set of genes using the Gene Ontology module and in the molecular 

function ontology, it was found that the term glutathione transferase activity (GO:0004364) 

was highly significant (FDR corrected p-value = 1.1636x10-11), as well as several terms 

relating to transferase activity including UDP-glycosyltransferase activity (GO:0008194) and 

UDP-glucosyltransferase (GO:0035251) activity. When analysing the cluster using the 

biological process ontology, a number of unusual results were found. The GO term with the 

lowest p-value was the toxin catabolic process term (GO:0009407, p-value = 1.954x10-10), as 

well as several other terms related to jasmonic acid, for example jasmonic acid biosynthetic 

process (GO:0009695) and response to jasmonic acid stimulus (GO:0009686). Terms related 

to salicylic acid did occur, but had much lower p-values. This is curious as BTH treatments 

are known to induce the SA pathway. It is possible that this discrepancy is due to incomplete 

GO annotations of the rice genome. However, it has been reported in Arabidopsis thaliana 

that systemic acquired resistance (SAR) is mediated by jasmonic acid, and not SA as 

previously thought (Truman et al., 2007). Other terms that appeared related to responses to 

abiotic stress, such as cold and salt, and to cell growth stimuli. Looking at the cellular 

component ontology revealed that most of the gene products occur in the nucleolus and in the 

chloroplast. 

The Transcription Regulation module was used to try to identify transcription regulator 

binding sites, using RSAT and TRANSFAC. Analysis by the Patch program in the 

TRANSFAC subsection of the Transcription Regulation module showed that a large 

proportion of the genes (134 out of a total of 326) contained a motif (ATTTAC) that is 

functionally important in the promoter of PR-1a, a well characterised pathogenesis related 

protein (Buchel et al., 1999). Using the oligo-analysis tool of RSAT, the highest ranking 
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motif was CGCCGC, with an expected occurrence of 27.05, and actual occurrence of 282 and 

an e-value of 2x10-15. None of the top 5 motifs presented matched the W-box binding site of 

the WRKY transcription factors ((C/T)TGAC(T/C) (Ulker and Somssich, 2004)), although 

while searching through all the motifs that were found, the motif CTGACC was found, which 

exactly matches the WRKY TFBS. This motif occurred 88 times, with an expected 

occurrence of 46.59 and e-value of 8.7x10-5, ranked 606th. This low position is probably due 

to the fact that not all the genes that were submitted were WRKY TF. It is interesting to note 

that most of the motifs that were found by both the oligo-analysis and dyad-analysis were 

extremely CG rich. This is probably due to the fact that A. thaliana was used as the 

background model, since rice is currently not available in RSAT as a background model. The 

choice of background model is important as the statistics that RSAT calculates are dependent 

on the base composition of the intergenic regions of the organism being studied. However, the 

intergenic base composition of rice is not the same as A. thaliana. The average GC content in 

rice is approximately 44%, while it is 36% in A. thaliana (Rensink and Buell, 2004; Saccone 

and Pesole, 2003). In fact, it has been reported that in general, the average GC content in 

grasses is higher than other plants (Saccone and Pesole, 2003). Nonetheless, several of the 

motifs may still be valid.  

In the Chromosomal Localisation module, it could be seen that most of the genes occurred on 

chromosomes 1 and 3. In addition, many of the glutathione S-transferases were located close 

to each other on chromosome 10 (Figure 3.10). 

 

Figure 3.10: View of a portion of chromosome 10 of the genes, showing that a number of glutathione S-

transferases were located close to each other. 
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3.4.4 MADIBA pearl millet data analysis 

Pearl millet is an indigenous African crop, and is an important crop in the semiarid tropics of 

Africa and Asia. Thus, as a staple food source, it is necessary to identify means to prevent 

diseases that may potentially reduce yields of this crop (Crampton, 2006). 

To test whether it is possible to use MADIBA on other cereals, data from a SSH (suppression 

subtractive hybridisation) experiment was used, where pearl millet plants were treated with 

either methyl jasmonate (MeJ) or salicylic acid (SA), prior to infection with the leaf rust 

fungus Puccinia substriata (Crampton, 2006). This study was performed by the MPPI group 

at the University of Pretoria, using a 2000 probe microarray derived from a SSH cDNA 

library, where pearl millet plants were treated with the elicitors chitin, flagellin and wounding. 

In the experiment, it was found that the prior treatment of SA resulted in increased resistance 

to the pathogen, whereas MeJ did not confer any significant resistance (Crampton, 2006). 

This result suggested that the SA signalling pathway is activated in response to rust infection. 

MADIBA was used to compare the responsive genes after SA treatment with those that were 

responsive after MeJ treatment. 

3.4.4.1 SA responsive genes 

From these data, 19 cDNA fragments that were responsive to SA but not MeJ were identified 

(Table 3.3). All these cDNAs were up-regulated in response to SA in at least one time point 

when compared to t0. In addition, a BLAST search of these cDNAs against GenBank revealed 

that they have functions that are known to be involved in SA biosynthesis and defence (UDP-

salicylic acid glucosyltransferase, heat-shock protein 70), signal transduction in response to 

pathogens (calcium binding EF hand protein, serine carboxypeptidase, S-adenosylmethionine 

decarboxylase), and cellular detoxification in response to pathogens (glutaredoxin, multi-drug 

efflux protein, peroxidase). 

Table 3.3: Table of the salicylic acid responsive genes that were used in the MADIBA analysis 

cDNA Blast ID Putative Function Function E-value 
5-B6 P12783 Phosphoglycerate kinase, 

cytosolic  
  1.00x10-49 

6-A4   No significant similarity     
16-B9   No significant similarity      
7-A7   No significant similarity     
14-B12 P49105 Glucose-6-phosphate isomerase  Basic metabolism 3.00x10-60 
13-D2 XP466501 Rhodanese-like domain-containing 

protein  
Basic metabolism 3.00x10-21 

8-B2 BAD34358 Putative UDP-salicylic acid Defence 5.00x10-8 
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glucosyltransferase  
2-F11 CAA05547 Putative HSP70  Defence 1.00x10-39 
3-B6 AAP51748 Serine carboxypeptidase  Defence 2.00x10-33 
6-H2 CAA69075 S-adenosylmethionine 

decarboxylase 
Defence 8.00x10-37 

1-G9 AY104653 Glutaredoxin  Oxidative burst 3.00x10-46 
12-C6 NP_919535 Putative peroxidase Oxidative burst 3.00x10-53 
6-B6 AB007405 Alanine aminotransferase  Photorespiration  
1-H12 AAM15963 Putative phosphoenolpyruvate 

carboxylase  
Photosynthesis 5.00x10-16 

12-F9 P12329 Chlorophyll a/b binding protein 1, 
chloroplast precursor (LHCII type I 
CAB-1) 

Photosynthesis 4.00x10-10 

7-A8 D63581 Elongation factor 1 alpha Protein synthesis 2.00x10-10 
5-B12 AK101337 Putative calcium binding EF-hand 

protein 
Signalling 1.00x10-53 

8-D7 XM_478265 Putative MATE efflux protein 
family protein  

Stress 2.00x10-37 

16-B8 BAD28236 Putative ASR2 Stress 2.00x10-11 

 

The sequences of these 19 cDNAs were submitted to MADIBA, and a BLASTX search was 

performed against the rice proteome, with a maximum e-value of 1. cDNA 6-A4 was 

discarded as it did not have any similarity to any rice protein, and the cDNAs 16-B9 and 7-A7 

had fairly low e-values (0.266 and 0.285, respectively) but were retained for the analysis. The 

default top hit of the others were taken. Table 3.4 shows the hits that were used. 

Table 3.4: Table showing the best hits from the rice database in MADIBA that were used in the further 

analyses. 

cDNA MADIBA best hit Annotation e-value 
8-B2 LOC_Os09g34250.1 Indole-3-acetate beta-glucosyltransferase, putative, 

expressed 
3.742x10-9 

1-G9 LOC_Os04g42930.1 OsGrx_C2.2 - glutaredoxin subgroup I, expressed 4.265x10-52 
8-D7 LOC_Os07g31884.1 Transparent testa 12 protein, putative, expressed 1.024x10-38 
2-F11 LOC_Os01g62290.2 Heat shock cognate 70 kda protein, putative, 

expressed 
1.047x10-19 

3-B6 LOC_Os10g01134.1 Serine carboxypeptidase 1 precursor, putative, 
expressed 

1.436x10-50 

5-B12 LOC_Os06g14324.1 Calcium binding EF-hand protein, putative, 
expressed  

5.549x10-66 

12-C6 LOC_Os10g02040.1 Peroxidase 54 precursor, putative, expressed  1.686x10-54 
6-H2 LOC_Os04g42090.5 S-adenosylmethionine decarboxylase proenzyme, 

putative, expressed 
0.000 

16-B8 LOC_Os02g33820.1 Abscisic stress ripening protein 1, putative, 
expressed 

5.947x10-9 

5-B6 LOC_Os06g45710.1 Phosphoglycerate kinase, cytosolic, putative, 
expressed  

2.360x10-49 

14-B12 LOC_Os03g56460.3 Glucose-6-phosphate isomerase, cytosolic A, 
putative, expressed  

3.116x10-59 

7-A8 LOC_Os03g08060.2 Elongation factor 1-alpha, putative, expressed  2.089x10-11 
6-B6 LOC_Os10g25130.1 Alanine aminotransferase 2, putative, expressed 8.167x10-78 
13-D2 LOC_Os02g38240.1 Rhodanese family protein, putative, expressed  1.615x10-22 
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6-A4 None None None 
16-B9 LOC_Os03g40390.1 Expressed protein  0.266 
1-H12 LOC_Os02g14770.3 Phosphoenolpyruvate carboxylase 1, putative, 

expressed  
0.000 

7-A7 LOC_Os11g40840.1 Receptor protein kinase CLAVATA1 precursor, 
putative, expressed 

0.285 

12-F9 LOC_Os01g41710.1 Chlorophyll a-b binding protein 2, chloroplast 
precursor, putative, expressed  

1.037x10-6 

 

A comparison of the genes that were responsive to BTH in the previous rice experiment, and 

the genes that were responsive to SA in this millet experiment, showed only an overlap of one 

gene, namely LOC_Os09g34250, a putative indole-3-acetate beta-glucosyltransferase. 

However, the product of this gene has been annotated as a UDP-glucose:salicylic 

glucosyltransferase by the original annotators of the gene and protein in GenBank. This 

indicates that there are differences in the annotations that are defined in the TIGR Osa1 

database and the original annotations. Nonetheless, it is possible that this gene is an important 

component in the SA signalling pathway. 

After analysing the genes with the Metabolic Pathways module, no real significant pathways 

were seen. The pathways with the most unique enzymes were the carbon fixation pathway 

(three enzymes) and the glycolysis/gluconeogenesis pathway (two enzymes). 

Analysis of the GO terms in the molecular function ontology revealed that the most 

significant terms were alanine transaminase activity (GO:0004021) and glycine transaminase 

activity (GO:0047958). Previous experiments (Wu et al., 2006) have shown that a γ-

aminobutyrate transaminase is induced by SA and abscisic acid but not JA in rice. It was also 

found that hot pepper plants (Capsicum annuum L. cv. Bugang) encode an alanine 

transaminase whose expression is induced by SA and ethylene but not by MeJ (Kim et al., 

2005). It is possible that this enzyme, as well as being involved in metabolic reactions, may 

be a component in the plant defence signalling pathway. Other significant terms include 

transmembrane receptor protein serine/threonine kinase activity (GO:004675) and chlorophyll 

binding (GO:0016168). In the biological process ontology, the most significant terms seem to 

orient around photosynthesis (GO:0009769 and GO:0015979) and photorespiration 

(GO:0009853), as well as glycolysis (GO:0006069), responses to toxins (GO:0009036) and 

detection of bacterium (GO:0016045). Less significant was a term dealing with the response 

to abscisic acid (GO:0009737), another plant hormone known to be involved in plant defence 

signalling as well as abiotic stresses (Rabbani et al., 2003). In the cellular component 
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ontology, the most significant terms seemed to be localised in the thylakoid membrane and 

light harvesting complex, further emphasising the photosynthesis aspect from the other 

ontologies. It should be noted that in both the biological process and cellular component 

ontologies, 10 of the genes were not annotated with annotations from that ontology. Further in 

the molecular function ontology, 7 genes did not have any GO annotation. This means that a 

significant portion of the submitted genes (over half in the cases of the biological process and 

cellular component ontologies) could not be used in this analysis.  

A search in the TRANSFAC section of the Transcription Regulation module showed that 

many motifs were found that were related to chlorophyll binding proteins, including cab140 

(chlorophyll a/b-protein 140) (binding sites CTCA and TAGCC), cab11 (CATCC), as well as 

PR-1a (ATTTAC). 

The high occurrence of photosynthesis related terms was intriguing, possibly suggesting that a 

relation between defence signalling and photosynthesis exists. It has been shown previously 

that light and its interactions with photosynthesis related processes impact strongly on the 

susceptibility of plants to infections (Bechtold et al., 2005). In addition, light intensity may 

affect which pathways operate, as low light intensities are required for the expression of the 

SA signalling pathway, but does not operate at very high light intensities (Bechtold et al., 

2005). 

3.4.4.2 MeJ responsive genes 

To contrast the SA responsive genes, a set of cDNAs that were responsive only to MeJ were 

selected, and the analyses run on them. Table 3.5 shows the cDNAs that were selected for the 

analysis, as well as the results after submitting to MADIBA. A BLASTX was again 

performed with a maximum e-value of one. As can be seen, several of the cDNAs that were 

submitted did not have any significant similarity to rice. It could be possible that these gene 

fragments may be unique to pearl millet. Increasing the maximum e-value did result in more 

hits found, but due to the poor matches, these genes were not used in the further analyses. 

This meant that out of the 24 cDNAs that were selected, 9 were discarded. Curiously, a gene 

that was included in this analysis was a Pathogenesis Related (PR) protein (clone 14-A1), 

which is traditionally thought to be involved in SA signalling (Thatcher et al., 2005; 

Glazebrook, 2001). However, this gene was significantly expressed when the pearl millet 

plants were treated with MeJ, but not as much when treated with SA. 
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A comparison of the genes that are responsive to MeJ and the genes that were responsive to 

BTH showed that again there was only one gene in common, namely LOC_Os01g28450.1, a 

pathogenesis-related protein PRB1-2 precursor. This could mean that important components 

that are pathogenesis-related may be used in both the SA and JA pathways. 

In the Metabolic Pathways module, no pathways were indicated, although this was to be 

expected as this experiment was not a metabolic perturbation, but rather a signal transduction 

experiment. 

Analysis with the GO module showed that in the biological process ontology, significant 

terms included response to jasmonic acid stimulus (GO:0009753, FDR corrected p-value = 

0.009), as expected, in addition to response to ethylene stimulus (GO:0009723), systemic 

acquired resistance (GO:0009627) and response to salicylic acid stimulus (GO:0009751). 

These last two terms are most likely a result of the inclusion of the PR protein in this analysis. 

Numerous other responses to stimuli were detected, including response to chemical stimulus 

(GO:0042221, p-value = 1.326x10-4), desiccation (GO:0009269), salt stress (GO:0009651), 

response to oxidative stress (GO:0009751), response to sucrose stimulus (GO:0009744), 

response to stress (GO:0009651), heat (GO:0009408) and light (GO:0009408). This again 

could be suggestive of crosstalk between the various signalling pathways. 

Table 3.5: Set of cDNA fragments that were identified as being responsive to methyl jasmonate (MeJ) 

only, and the results after submitting their sequences to MADIBA. 

cDNA Putative Function MADIBA best hit E-value 
4-A1 Pathogenesis related 

protein 1  
LOC_Os01g28450.1 protein pathogenesis-
related protein PRB1-2 precursor, putative, 
expressed 

1.23x10-20 

16-E11 Pore-forming toxin-like 
protein Hfr-2  

No similarities found  

19-H3 Putative disease 
resistance protein 

LOC_Os12g39620.5 protein disease 
resistance protein, putative, expressed 

1.97x10-72 

15-G10 Manganese superoxide 
dismutase 

No similarities found  

13-G1 Putative dehydration-
responsive protein RD22  

LOC_Os08g38810.2 protein RAFTIN1a 
protein, putative, expressed 

1.52x10-18 

1-D3 Putative farnesyl-
pyrophosphate synthetase  

LOC_Os01g50760.1 protein farnesyl 
pyrophosphate synthetase, putative, 
expressed 

8.03x10-64 

7-E2 Putative inorganic 
pyrophosphatase 

LOC_Os06g08080.1 protein pyrophosphate-
energized vacuolar membrane proton pump, 
putative, expressed 

6.68x10-48 

7-G5 Glyceraldehyde 3-
phosphate dehydrogenase, 
phosphorylating 

LOC_Os08g03290.2 protein glyceraldehyde-
3-phosphate dehydrogenase, cytosolic, 
putative, expressed 

1.39x10-63 

10-C3 Putative transcription factor LOC_Os02g54160.1 protein ethylene 1.65x10-9 
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EREBP1  response element binding protein, putative, 
expressed 

1-E5 Putative ubiquitin-
associated (UBA) protein  

LOC_Os02g38050.1 protein PB1 domain 
containing protein, expressed 

5.02x10-25 

14-C1 Putative pyruvate 
dehydrogenase kinase 1  

LOC_Os07g44330.3 protein protein kinase, 
mitochondrial precursor, putative, expressed 

2.65x10-65 

1-G12 Triose 
phosphate/phosphate 
translocator  

No similarities found  

18-D6 Putative photosystem I 
reaction centre subunit II, 
chloroplast precursor 

LOC_Os08g44680.1 protein photosystem I 
reaction center subunit II, chloroplast 
precursor, putative, expressed 

1.58x10-26 

3-F10 Rice homologue of Tat 
binding protein  

LOC_Os07g49150.1 protein 26S protease 
regulatory subunit 4, putative, expressed 

4.55x10-58 

2-D3 No significant similarity No similarities found  
4-A9 No significant similarity No similarities found  
5-B9 No significant similarity No similarities found  
5-F7 No significant similarity No similarities found  
5-H11 No significant similarity No similarities found  
6-C3 No significant similarity LOC_Os01g03390.1 protein Bowman-Birk 

type bran trypsin inhibitor precursor, putative, 
expressed 

7.48x10-4 

6-E1 No significant similarity LOC_Os06g01210.1 protein plastocyanin, 
chloroplast precursor, putative, expressed 

4.80x10-17 

6-G9 No significant similarity No similarities found  
6-H12 No significant similarity LOC_Os01g69100.1 protein expressed 

protein 
2.11x10-6 

7-A10 No significant similarity LOC_Os01g69100.1 protein expressed 
protein 

1.50x10-4 

 

3.4.5 Conclusion 

Data from a rice expression experiment to BTH response was used to show the functionality 

of MADIBA. The results did not show SA responsiveness as was expected, although this 

possibly could be a result of incomplete annotations of the rice genes. Even so, RSAT was 

able to identify the WRKY TFBS (W-box) in the upstream regions. 

Data from a pearl millet experiment was applied to MADIBA. In this way, it was shown that 

it is possible to use orthologous cereal data with the rice database. In the set of SA responsive 

genes, there were a large number of genes relating to photosynthesis. Thus, it could be 

possible that photosynthesis and light, and the formation of reactive oxygen species play a 

significant role in plant defences. The MeJ responsive genes did not produce any remarkable 

results, although it did confirm many of the genes that were in the cluster as being part of 

jasmonic acid and ethylene signalling. 

The results from many of the plant analyses (both rice and A. thaliana) did not only return 

results pertaining to defence responses, as expected, but also numerous responses to abiotic 
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stresses, such as cold and light. This could be an indication the expression of overlapping 

gene sets, as well as common signalling molecules, resulting in crosstalk between the 

different response pathways.  

3.5 Application to Pectobacterium atrosepticum 

3.5.1 Pectobacterium atrosepticum introduction 

The Enterobacteriaceae are a large family of rod-shaped Gram-negative bacteria which 

contains some of the most devastating pathogens, including many human and animal 

pathogens, including Escherichia coli, Salmonella enterica and species of Yersinia and 

Shigella (Toth et al., 2006). However, this family also includes several plant pathogens, 

including species of Erwinia (Toth et al., 2006; Toth et al., 2003). The Erwinia genus was 

first described in 1917 to include all members of Enterobacteriacae that cause disease on 

plants. However, this has resulted in nomenclatural differences, and on the basis of 16S rDNA 

sequence analysis, it has been suggested the taxonomy be restructured with Erwinia 

carotovora ssp. atrosepticum renamed to Pectobacterium atrosepticum (Pba), Erwinia 

carotovora ssp. carotovora to Pectobacterium carotovorum ssp. carotovorum (Pcc) and 

Erwinia chrysanthemi to Dickeya dadantii. However, this new nomenclature has not been 

widely accepted by the research community (Toth et al., 2003). 

The soft-rotting enterobacterial plant pathogens (SREPPs), such as those mentioned above, 

are major bacterial plant pathogens of potato and other crops, and cause tissue maceration, 

termed soft rot disease, through the production of plant cell wall degrading enzymes (Toth et 

al., 2003). Worldwide, these pathogens result in the loss of millions of US dollars as a result 

of crop losses, particularly in potato, the fourth largest crop in the world (Toth et al., 2006). 

Pectobacterium atrosepticum (Pba), which is the aetiological agent of potato black leg, will 

be the focus of this section. Other notable members of the group include Pectobacterium 

carotovorum ssp. carotovorum (Pcc) which infects a wide range of crops, including Brussel 

sprouts, carrot, celery, cucumber, turnip and potato; and Dickeya dadantii (formally known as 

Erwinia chrysanthemi), which is more frequent in sub-tropical regions and infects carnations, 

maize, pineapple, potato and African violet (Toth et al., 2003). While much is currently 

known about how the bacteria attack plants and protect themselves against plant defences the 

processes underlying the establishment of infection, differences in host range and their ability 

to survive when not causing disease is still largely a mystery (Toth et al., 2003). 

 
 
 



 95 

With the complete sequencing of the Pba genome (strain SCRI1043) (Bell et al., 2004), 

comparative genomics has led to several interesting discoveries. It was found that Pba has a 

genome that is of a similar size to genomes of enterobacterial animal pathogens and shares a 

common set of genes. In Pba, several of these genes are regulators that have been altered for 

the control of genes associated exclusively with disease in plants. These genes are apparently 

acquired by horizontal gene transfer that involved interactions with plants (Toth et al., 2006). 

SREPPs synthesise and secrete large quantities of plant cell wall degrading enzymes that are 

responsible for the soft rot phenotype, earning them the epithet “brute force” pathogens (Toth 

and Birch, 2005). This is in contrast to classic “stealth” pathogens such as Pseudomonas 

syringae which possesses a large variety of Type III secreted effector proteins and 

phytotoxins to manipulate and suppress host defences (Toth and Birch, 2005). However, as a 

result of whole genome sequencing, it has been found that there are components of stealth 

pathogenesis within Pba, including a Type III secretion system and phytotoxins, suggesting 

that stealth and brute force should not be regarded as mutually exclusive modes of 

pathogenesis (Toth et al., 2006; Toth and Birch, 2005). Thus Pba reveals the capacity for a 

pathogen to be highly destructive, as well as subtly manipulate host defences (Toth and Birch, 

2005). In addition, it also possesses the ability to thrive in association with plant hosts on 

which it does not cause disease, suggesting that it is more versatile than many animal-

pathogenic enterobacteria, which are highly specific in their hosts (Toth et al., 2006; Toth and 

Birch, 2005). 

3.5.2 Quorum sensing 

The primary weapon used by soft-rotting enterobacterial plant pathogens (SREPPs) is the 

coordinated production of high levels of multiple exoenzymes (enzymes that are secreted by 

the bacteria and function outside the cell), including pectinases, cellulases and proteases, 

which are used to breakdown plant cell walls in order to release nutrients for bacterial growth 

(Toth et al., 2003). Pectinases are the main exoenzyme responsible for disease development, 

and results in the breakdown of pectins in the middle lamella and plant cell walls causing 

tissue collapse, cell damage and cell leakage (Toth et al., 2003). While exoenzymes are not 

unique to SREPPs, the ability to co-ordinately produce large amounts of these exoenzymes at 

critical stages of infection makes them formidable pathogens (Toth et al., 2003). This is 

accomplished through a complex set of regulatory networks and secretion systems within the 

pathogen.  

 
 
 



 96 

The term quorum sensing (QS) refers to the ability of bacteria to regulate gene expression 

according to the accumulation of signalling molecules that are made by every cell in the 

population (Barnard and Salmond, 2007; Toth et al., 2004). In this way, the gene expression 

of related regulatory systems is coupled to the accumulation of a diffusible chemical 

signalling molecule (Barnard and Salmond, 2007). SREPP utilise two types of QS signalling 

molecules: N-acyl homoserine lactones (N-AHL, or AI-1 signals), synthesised by the LuxI 

family of proteins; and the AI-2 signal, synthesised by the LuxS homologues (Barnard and 

Salmond, 2007; Toth et al., 2004). The AI-2 system has not been fully elucidated in SREPP, 

so the focus here will be on the N-AHL system. 

N-AHL signals are characterised by an invariant homoserine lactone ring to which a variable 

acyl side chain is attached (Barnard and Salmond, 2007). Pba is known as a class II strain as 

the QS signal used is 3-oxo-C6-HSL (N-(3-oxohexanoyl)-L-homoserine lactone), but very 

little amounts of 3-oxo-C8-HSL, and vice versa for class I strains (such as Pcc strains EC153 

and SCC3193) (Barnard and Salmond, 2007). In both class I and II stains, these molecules are 

synthesised by a luxI homologue. Specifically in Pba strain SCRI1043, the homologue is 

known as expI (Barnard and Salmond, 2007; Toth et al., 2004). expI is known to be involved 

in the regulation of plant cell wall degrading enzymes as well as virulence (Toth et al., 2004). 

The QS signal molecule is constitutively expressed in small amounts by each cell in the 

population and accumulates as the population increases and indicates their presence to other 

cells in the population (Toth et al., 2003; Barnard and Salmond, 2007; Toth et al., 2004). 

Upon reaching a critical population limit (a point at which the population is said to be 

“quorate”, estimated to be about 106 cells/mL) a synchronous, community wide response is 

indicated by the triggering of the expression of certain genes (Toth et al., 2004; Toth et al., 

2003). Behaviour associated with N-AHL production includes pathogenesis, biofilm 

formation, antibiotic production, antibiotic production, exoenzyme production and plasmid 

production (Toth et al., 2004). The classical explanation of how the QS signal is able to reach 

a high enough signal, is that the concentration of the signal is purely dependent upon the sheer 

number of cells in a population that are producing the signal within a confined space (Barnard 

and Salmond, 2007). Essentially this means that the level of signal will be proportional to the 

size of the population, if the signal is not allowed to escape quickly from the vicinity (Barnard 

and Salmond, 2007). 
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In order to respond to the QS signal, other bacteria in the population require a sensor which 

will detect and transmit the information into a cellular response. In SREPP, the QS signal is 

detected by a member of the LuxR family of DNA-binding transcriptional regulators (Barnard 

and Salmond, 2007). These are thought to bind directly to the N-AHL signal molecule and 

undergo a conformational change, which then modulates their DNA-binding ability. It is also 

possible for there to be more than one luxR homologue (Barnard and Salmond, 2007). In Pba, 

the luxR homologues are called expR and virR (Toth et al., 2003), the latter being found to be 

central to the QS-dependent regulation of the production of various virulence determinants 

(Barnard and Salmond, 2007). VirR appears to function as a repressor only in the absence of 

the 3-oxo-C6-HSL signal. This means that at low cell densities, expression of Nip, Svx (both 

secreted pathogenicity factors) and plant cell wall degrading enzymes (cellulases, proteases, 

pectate lyases) is repressed by VirR and is alleviated upon accumulation of the signal 

molecule (Barnard and Salmond, 2007). ExpR is also only fully activated in the presence of 

the QS signal, and is a transcriptional activators which induces the production of exoenzymes 

(Toth et al., 2003). In addition it has an auto-inducing effect on expI, resulting in accelerated 

production of pathogenicity factors (Toth et al., 2003).  

N-AHLs are particularly sensitive to pH and become unstable under alkaline conditions, 

undergoing rapid hydrolysis (Toth et al., 2003; Barnard and Salmond, 2007). Thus the 3-oxo-

C6-HSL QS signal acts as a built-in pH sensor (Barnard and Salmond, 2007). This is possibly 

an element in a plant’s defences against a SREPP infection since one of the first plant 

responses to infection is an alkalisation of the infection site to a pH greater than 8.2 (Toth et 

al., 2003; Barnard and Salmond, 2007). 

While QS is obviously a key factor in the control of gene expression, it is not the only 

regulatory system. For example, full expression of the plant cell wall degrading enzymes 

requires the presence of plant cell wall breakdown products, such as 2-keto-3-deoxygluconate 

(KDG). This is due to the presence of the KdgR regulator, which binds to the DNA target 

sites of these genes (Barnard and Salmond, 2007). The repression is abolished by the presence 

of KDG, and thus expression of plant cell wall degrading enzymes is induced. The production 

of these enzymes being under both QS and KdgR control makes sense since being quorate 

does not necessarily mean that the bacteria are located anywhere near plant tissue, and the 

secretion of plant cell wall degrading enzymes without the presence of a substrate would be a 

waste of resources (Barnard and Salmond, 2007). In addition, these plant cell wall degrading 
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enzymes are potent activators of plant defence responses, so if the population was small, it 

would make sense to postpone production until absolutely required (Barnard and Salmond, 

2007). Similarly, the action of the pectinases on pectin in the cell walls results to a range of 

breakdown products which in turn results in the induction of exoenzymes, thus acting as a 

positive feedback mechanism to accelerate exoenzyme production (Toth et al., 2003). 

QS may be more subtle than previously thought as potato plants that were genetically 

modified to produce N-AHL were found to be more susceptible to infection (Barnard and 

Salmond, 2007; Toth et al., 2004). In addition QS can be stimulated by other factors such as 

available oxygen and nitrogen, temperature, iron deprivation, plant degradation intermediates, 

DNA-damaging agents, among many others (Toth et al., 2003). Although SREPPs do not 

need QS for successful colonisation of the plant host, it is required for disease development in 

suitable environmental conditions through the induction and delivery of the major virulence 

factors (Toth and Birch, 2005). 

The QS regulatory network allows the bacteria to couple the accumulation of a small, 

diffusible signalling molecule to the regulation of gene expression. This system serves as an 

integration point for a variety of different regulatory networks, and simplifies the components 

of the gene regulatory system (Barnard and Salmond, 2007). It also reduces the number of 

transcriptional regulators that are required to bring about the required chances in expression 

of downstream target genes (Barnard and Salmond, 2007). Separate regulators, such as KdgR 

can be layered into the regulatory hierarchy to allow differential regulation of subsets of genes 

in response to different environmental cues (Barnard and Salmond, 2007). Quorum sensing 

thus represents an elegant solution to the complex problem that bacteria face – that of sensing 

and responding appropriately to a large number of external signals (Barnard and Salmond, 

2007). 

3.5.3 MADIBA  Pectobacterium atrosepticum data analysis 

Data for this analysis was from an expI mutant experiment in Pba strain SCRI1043. This 

experiment was performed at the Scottish Crop Research Institute (SCRI) and the data were 

kindly provided by Dr Ian Toth and Dr Leighton Pritchard. expI has been found to be central 

to quorum sensing (QS), so the aim was to identify genes involved in this biological 

phenomenon. ExpI synthesises the AHL, the QS signalling molecule, and it has been found 

that virulence is significantly reduced in strains with a mutation in the expI gene (Liu et al., 

2008). In addition, virulence was restored following complementation with the expI gene in 
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trans (Liu et al., 2008). In the previous analyses, the data were pre-processed using some 

form of clustering. However, the expI data had not clustered and thus STEM was used to 

group the genes together, prior to analysing selected clusters with MADIBA. 

Short Time-series Expression Miner (STEM) (Ernst and Bar-Joseph, 2006) is a Java program 

designed specifically to analyse short time series microarray gene expression data (3-8 time 

points). In time series experiments, thousands of genes are being profiled simultaneously 

while the number of time points is small. In these cases, many genes may randomly have the 

same expression pattern. Furthermore, there are few full time series repeats to increase the 

statistical power. Popular current methods for time series data, such as clustering and self-

organising maps (SOM), ignore the temporal dependencies among successive time points. 

STEM performs an analysis by taking advantage of the fact that there are a large number of 

genes and a number of time points that is too small to identify significant temporal expression 

profiles and the genes associated with these profiles (Ernst and Bar-Joseph, 2006). The 

clustering algorithm selects a set of distinct and representative temporal expression profiles 

(called “model profiles”), which are selected independently of the data. The algorithm then 

assigns each gene passing a filter to the model profile that most closely matches the gene’s 

expression profile, as determined by a correlation coefficient. The filter conditions used 

include if a gene does not show a sufficient response to experimental conditions (Minimum 

Absolute Expression Change); there are too many missing values (Maximum Number of 

Missing Values); or the gene expression pattern over repeats is too inconsistent (Minimum 

Correlation between Repeats). Since the model profiles were selected independently from the 

data, the algorithm is able to determine which profiles have a statistically significant higher 

number of genes assigned by using a permutation test (Ernst and Bar-Joseph, 2006). 

Significant model profiles can be analysed by themselves or grouped together based on 

similarity to form clusters of significant profiles.  

The expI- experiment consisted of a time course with 6 time points, namely 0, 0.5, 4, 12, 20, 

and 72 hours post-infection (hpi), with inoculations performed on sterilised potato plants. 

When these data were applied to STEM, only 1127 out of a total of 5051 genes passed the 

filter, using the default filter options. These default values were Minimum Absolute 

Expression Change=1, Maximum Number of Missing Values=0, and Minimum Correlation 

between Repeats=0. It is possible that the Minimum Absolute Expression Change variable 

was set too high which resulted in most of the genes being discarded. The expression values 
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were normalised using log normalisation (log2(vi) – log2(v0)) and the data were clustered 

using the STEM clustering method. Interestingly, STEM is fairly sensitive to the number of 

decimal places in the data. When the data was rounded to two decimal places (the original 

data had seven decimal places) a different clustering result was obtained. Although the only 

difference was a slight rearrangement in the significance of the clusters, this could mean that 

the STEM clustering method is not that robust. However it could be argued that a microarray 

scanner is not sensitive enough to read down to seven decimal places. The result of the 

clustering using all decimal places is shown in Figure 3.11. 

 

Figure 3.11: Screenshot of the model profiles overview interface of STEM (Ernst and Bar-Joseph, 2006), 

using the Pba data. Each box represents a profile, and the number in the corner is the profile ID 

number. The coloured profiles have a statistically significant number of genes assigned, with non-

white profiles of the same colour representing profiles grouped into a single cluster. Clicking on a 

profile box brings up detailed information about the profile (Figure 3.13). The profiles surrounded by 

a red box were analysed in this section. 

Two analyses were performed on the STEM clusters. First the most significant cluster was 

analysed using MADIBA as a proof of concept to show that MADIBA could be used to 
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analyse Pba data. Next, a cluster was selected to answer the biological question of which 

genes are affected by ExpI, and more broadly which genes are involved in quorum sensing. 

STEM cluster 1 was analysed as a proof of concept for the Pba data analysis, and consisted of 

profiles 27 and 15, with a total of 222 genes. After submitting the gene names from this 

cluster to MADIBA, it could be seen that there were common annotations involving phage 

regulatory proteins and type III secretion proteins. Using the Metabolic Pathways module, it 

was found that there were numerous enzymes present in the purine (10 enzymes) and 

pyrimidine (4 enzymes) metabolism pathways. In the purine metabolism pathway, most of the 

enzymes in the cluster were involved in the metabolism of GNP (GMP, GDP and GTP) as 

well as some terms involved in DNA and RNA elongation. These predictions are fairly 

reliable as the enzymes were coloured red or yellow, indicating that two or three annotations 

agreed respectively. The p-value for this pathway was not particularly significant (p-value = 

0.1722) but was mostly likely because the set of enzymes only made up a small part of a large 

map. A similar prediction could be seen in the pyrimidine metabolism pathway, except 

involving UNP and CNP. Other pathways present with multiple enzymes present included 

glycolysis and gluconeogenesis (2 enzymes), starch and sucrose metabolism (3 enzymes), 

biotin metabolism (3 enzymes). 

After analysing the data with the Gene Ontology module, it was found that many of the terms 

in the molecular function ontology were related to replication, such as alpha DNA polymerase 

activity (GO:0003889), as well as rRNA binding (GO:0019843) and several tRNA activity 

related annotations (GO:0016439 and GO:0008883). This result was further corroborated in 

the biological process ontology where the most significant terms were mRNA 

polyadenalation (GO:0006378) and catabolism (GO:0006402), translation (GO:0006412), 

RNA processing (GO:0006396), tRNA modification and aminoacylation (GO:0006400, 

GO:0006426, and GO:0006429) and chromatin silencing (GO:0006342). Other terms 

included defence responses (GO:0006952) and GTPase mediated signal transduction 

(GO:0007264). The cellular component ontology added additional support for the cluster 

involving replication with the localisation primarily on the ribosome (GO:0005840, 

GO:0015934), or nuclease complexes (GO:0005971, GO:0009318 and GO:0030529). 

The Transcription Regulation module did not identify any motifs that are known to be 

involved in QS. However, many of the genes with similar functions in Pba (and bacteria in 

general) belong to a single operon, and thus would have only one transcription factor binding 
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site to induce the transcription of all of the genes. Since tools such as RSAT and TRANSFAC 

try to identify over-represented motifs, such approaches may not be appropriate for 

prokaryotes that express genes under operonic control. Nonetheless, some of the motifs that 

were found may potentially be involved in other molecular processes. The top motif found by 

oligo-analysis was GGCTGA (e-value=7.7x10-3), and the top result found by dyad-analysis 

was TCAN(1)CCA (e-value=0.041). 

Using the Chromosomal Localisation module, a circular diagram is drawn representing the 

circular chromosome of Pba (Figure 3.12). In it, it is possible to see that some of the genes 

are located close to each other in an operon-type structure. 

 

Figure 3.12: Output of the Chromosomal Localisation for Pba. The circle represents the circular 

chromosome of Pba, and the blue lines represent a gene. The genes shown are the genes from the 

STEM cluster 1. Some genes can be seen to be located close together, and may be a possible indication 

of co-expression. 

In the Pectobacterium Specific module, it was found that most of the annotations matched 

those for Dickeya dadantii (formally Erwinia chrysanthemi). This similarity is due to the two 

organisms being closely related to other, and possibly also because a gene’s annotation in one 

organism was used to annotate a gene in the other. 
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Since the most significant cluster did not reveal anything particularly interesting relating to 

QS, it was decided to analyse the clusters that one would expect from genes under control of 

ExpI. Since this experiment was performed on an expI mutant, genes under the control of 

ExpI would be down-regulated when compared to wild-type plants. Profile 10 (cluster 5) was 

selected as it was the most significant profile which matched this requirement of generally 

down-regulated genes (Figure 3.13). This group of genes contained 129 genes, although when 

inspecting the annotations, it was found that approximately one third of the genes do not have 

a functional annotation, being marked as hypothetical. 

 

Figure 3.13: Profile 10 of the Pba data. Each line represents the expression of a gene across the time 

points. Along the top are the statistics on the number of genes assigned to the profile, the number of 

genes expected and the enrichment p-value. The time points are 0.5, 4, 12, 20, and 72 hpi. 0hr is not 

shown as it was used as the control in the normalisation process. 

When analysing these data in the Metabolic Pathways module, it was found that the only 

significant genes were involved in the starch and sucrose metabolism, and the nitrogen 

metabolism pathways (4 enzymes each). It is possible that these pathways are induced during 

QS to produce energy for the infection process. 

In the Gene Ontology analysis, interestingly the molecular function ontology showed that 

cellulase activity (GO:0008810), as well as hydrolase activity, acting on ester bonds 

(GO:0016788) were significant terms. These terms are noteworthy as an aspect of QS is the 
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production of large amounts of plant cell wall degrading enzymes. In the biological process, 

several terms relating to QS were found, most notably the quorum sensing term itself 

(GO:0009372), in addition to further terms relating to cell wall degrading enzyme activity, 

such as polysaccharide catabolic process (GO:0000272). Also present were terms involved in 

the secretion and transport of these exoenzymes, including extracellular transport 

(GO:0006858) and protein secretion by the type II secretion system (GO:0015628). This last 

result was confirmed in the cellular component ontology with the terms proteinaceous 

extracellular matrix (GO:0005578) and type II protein secretion system complex 

(GO:0015627). It is known that the plant cell wall degrading enzymes delivered by Pba, 

mainly cellulases and pectinases, are delivered using this secretion system (Toth and Birch, 

2005). 

Analysing this cluster with the Transcription Regulation module, the oligo-analysis program 

of RSAT found that the motifs ATAAAT, ATAATA and GATAAA were significant (e-value 

= 0.088, 0.49 and 0.9 respectively). The dyad-analysis program only found one motif, 

AATN(6)AAT, that was significant (e-value = 0.57) (Figure 3.14). While these motifs did not 

match any motifs that are known to be involved in QS, such as the lux or esaR boxes (von 

Bodman et al., 2003), these still could be involved in the quorum sensing process.  

 

Figure 3.14: Portion of the results as obtained by the dyad-analysis program of RSAT. Shown is the only 

motif found by dyad-analysis, and is drawn showing the location of that motif in the upstream region 

of the genes. 
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3.5.4 Conclusion 

The data that were used in this analysis was from an expI mutant in Pba, which is known to 

be involved in quorum sensing. STEM was used to cluster the data, and two clusters were 

selected for analysis with MADIBA. The most significant cluster (cluster 1) was used as a 

proof of concept to ensure that MADIBA worked correctly for Pba data. It was found that in 

this cluster most of the genes were involved in transcription and translation. The profiles in 

this cluster showed down-regulation at the later time points in comparison to the wild-type, so 

it is possible that gene transcription is activated late in the infection when the bacterium has 

become quorate, signalling the production of plant cell wall degrading enzymes.  

Profile 10 was also analysed, as it fitted the profile of genes that are under the control of ExpI, 

that is, are down-regulated compared to the wild-type. A MADIBA analysis of the genes in 

this cluster showed significant terms involved in quorum sensing, including the production of 

cell wall degrading enzymes and transport of these exoenzymes through the type II secretion 

system. Since genes in profile 10 showed significant involvement in QS, further examination 

of the genes in this cluster may reveal more genes that are implicated in QS, especially those 

that are currently annotated as hypothetical. 

3.6 Concluding remarks 

In this chapter, MADIBA was applied to numerous datasets to show its functionality and ease 

of use. Various organisms were analysed, namely Plasmodium falciparum, Arabidopsis 

thaliana, rice, and Pectobacterium atrosepticum. The Plasmodium data were used a proof of 

concept, and was analysed using published microarray data. The Arabidopsis section focussed 

on plant defences, with data from the MPPI group where A. thaliana plants were infected with 

Ralstonia solanacearum. A method termed PCA Expression Comparer was developed to 

compare the expression of a submitted dataset to other experimental treatments, and showed 

that as expected, that the susceptible interaction had increased JA induction. The converse 

was also shown where the resistant interaction showed induced SA signalling, with a match to 

a BTH treatment. In the rice section, published data on a BTH experiment on rice plants was 

used to show functionality. As an extension to the rice section, pearl millet data from the 

MPPI group was used, where SA and MeJ treatments were used to identify resistance to the 

rust fungus. Pearl millet is a related cereal and showed that MADIBA could be used on other 

monocotyledonous crops. Finally data from an expI- mutant of Pectobacterium atrosepticum 

were used to identify which genes are involved in quorum sensing. Using MADIBA, a cluster 
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containing several terms involved in quorum sensing and plant cell wall degrading enzymes 

was identified. 
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Chapter 4 – Concluding Discussion 

While numerous other tools similar to MADIBA, such as WebGestalt, FatiGO and GoMiner 

exist, MADIBA differs in that it has a wider range of analyses which can be performed in an 

integrated fashion, for example, it performs a GO analysis as well as a Transcription 

Regulation analysis. In addition, MADIBA is unique in the organisms it is able to analyse – a 

eukaryotic pathogen (Plasmodium falciparum), a bacterium (Pectobacterium atrosepticum), a 

monocotyledonous plant (Oryza sativa) and a dicotyledonous plant (Arabidopsis thaliana). 

MADIBA has been designed to be generic and easily expandable, so that any new organisms 

that are required by the community can readily be incorporated into the database, with only a 

fully annotated genome necessary. For example, MADIBA could be applied to potato, the 

host of Pba, once this genome has been sequenced, to identify host responses. The current 

analysis modules are continually being improved to assist the user in identifying the reasons 

for the co-expression of a set of genes. Also, due to its modular nature, any new analysis can 

easily be added to MADIBA at a later stage. Since it is a web application, this makes 

MADIBA platform-independent and can be accessed from anywhere in the world. 

Furthermore, the database can be updated, so that the latest information is available to the 

user. MADIBA is highly dependent on the quality of the genomes’ annotations, so as the 

annotations are improved, so will the results returned by MADIBA. Furthermore, as the 

genome annotations are revised, it is important to update the data within MADIBA, and will 

be done in a semi-automated manner using pre-built Python scripts. 

All the statistics performed on the data are analysed in terms of the entire genome. However, 

since whole genome microarray slides are not always used, a proposed improvement is to 

analyse the data in terms of only the genes that were on the slide. Also, with the increased 

number of statistical methods being adopted, the variety of statistical analyses available could 

be widened, such as by including GSEA (Subramanian et al., 2005) (through R) or rank tests, 

and so, provide a greater level of flexibility for the user. 

The number of genes in the cluster that are initially submitted is important, as this may have 

an affect on the quality of the results returned by MADIBA. If too many genes are submitted, 

a significant result may get masked by other possibly insignificant results. However, if too 

few genes are submitted, the calculations and statistics may indicate that the result is not 
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significant at all. This is particularly evident in the Gene Ontology module, where the size of 

the cluster affects the statistics. 

In the Metabolic Pathways module, the significance of a pathway is determined by using 

Fisher’s exact test, which determines the membership of an enzyme in the pathway and the 

cluster. While this result can be useful in determining the importance of a metabolic pathway, 

its interpretation can be difficult. For example, in a large metabolic pathway, if enzymes are 

only found in a small section of the pathway, the p-value will be insignificant. However, that 

portion of the pathway may in fact have an important function, for example, a specific aspect 

of glycolysis. 

In the Organism Specific module, orthology was inferred by using the reciprocal best BLAST 

hit. Since this is not the most accurate or reliable method for determining orthology, the 

implementation of tools such as Ortholuge (Fulton et al., 2006) and GreenPhyl (Conte et al., 

2007) are being considered. These tools take into account phylogenetic information in 

addition to sequence similarity, increasing the confidence of an orthology prediction. Also, in 

general orthologous genes had similar annotations. While it is possible that orthologous genes 

have similar functions, such as in rice and Arabidopsis thaliana which have a large amount of 

shared genes (Sasaki and Burr, 2000), it is also likely that the A. thaliana data would have 

been used to putatively annotate the rice genome. The annotation would then have been 

putatively transferred from the one organism to the other, without any experimental evidence. 

A similar situation is seen with Pba and Dickeya dadantii. Thus, in its current format, this 

module is not particularly informative, and while some details can be gained from 

homologous and orthologous proteins, this is not a particularly valuable analysis to perform. 

Further improvements could be applied to make this module more useful, such as by a feature 

to detect leucine rich repeats (LRRs), which are important in plant defence (Di Matteo et al., 

2003), or host-pathogen interactions. Some such improvements were added in the Arabidopsis 

Characteristics module with the implementation of the DRASTIC database and the PCA 

Experiment Comparer. 

MADIBA is useful in the study of Plasmodium falciparum, especially as the gene regulation 

in this parasite is poorly understood (Daily et al., 2007). MADIBA successfully identified 

useful genes and pathways that could possibly be used in gaining knowledge on the molecular 

workings of this parasite. 
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Diseases of plants are an enormous problem for agriculture worldwide, with effects ranging 

from spots on leaves to catastrophes where entire fields of crops are destroyed. An example of 

the latter includes the potato blight (caused by Phytophthora infestans) that struck Europe in 

the 1840s (Strange and Scott, 2005). The high reliance of the Irish population on potatoes 

resulted in about a million Irish dying of starvation and caused the emigration of more than a 

million people. Thus it is obvious that crop species are a vital source of human nutrition, and 

understanding the mechanisms that plants use to defend themselves against pathogens may 

lead to novel strategies to enhance disease resistance in crops. A tool that matches the 

expression profile of a group of genes in a study to the expression profiles in publicly 

available microarray data thus becomes of value. 

Once it is determined which genes are induced and which pathway is involved, this 

information can be used to develop potential crop protection strategies. Such strategies could 

include genetically modifying a transcription factor that is master regulator of a certain 

pathway, inserting an antimicrobial protein that is highly induced by a pathway, or use a spray 

that activates natural plant defences. An example of the last is spraying plants with 

benzothiadiazole (BTH), a SA analogue, which induces the SA pathway (Murray et al., 

2002). In this way, an effective means to enhance disease resistance in agriculturally 

important crops can be found. However, the extent of the conservation between these basic 

common pathways in Arabidopsis thaliana and other plants is unknown, although recent 

evidence suggests that the level of conservation of down-stream defence signalling 

components may be substantial (Anderson et al., 2005). 

In the Arabidopsis analyses, MADIBA was used to investigate the signalling pathways in 

Arabidopsis thaliana in both the resistant and susceptible interactions when infected with 

Ralstonia solanacearum (bacterial wilt) (Naidoo, 2008). The DRASTIC and PCA Experiment 

Comparer analyses were implemented as a subsection in the Arabidopsis Characteristics 

module and used to analyse the data from these experiments. It was expected that the data 

from the resistant interaction would match experiments related to SA signalling (Deslandes et 

al., 2003; Noutoshi et al., 2005). While a BTH treatment did match the data, confirming the 

hypothesis that SA is involved in the resistant interaction with R. solanacearum, several other 

diverse experiments were found including responses to light and cold, as well as several cell 

cycle experiments. This could suggest that the resistant response induces abiotic stress 

responses and possibly affect the cell cycle. Possible future experiments could involve 
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infection at different growth stages, or in conjunction with an abiotic stress, such as cold, to 

determine if these factors affect the defence response. 

Conversely, in the susceptible interaction with R. solanacearum, JA-signalling was expected 

to be induced due to impaired SA-signalling in the susceptible plants and the general 

antagonistic nature of the two signalling pathways. This was indeed the case, and was further 

confirmed by the MADIBA GO analysis. These data also matched a susceptible interaction 

with Pseudomonas syringae DC3000 in a WRKY knockout mutant. The WRKY knockout 

possibly made the plant more susceptible since WRKY transcription factors are important for 

NPR1 expression, a key regulatory protein in the SA signalling pathway (Thatcher et al., 

2005). 

While the DRASTIC database did not provide much information, it could still be valuable for 

a researcher to easily identify how certain genes are regulated in response to various 

treatments. The PCA Experiment Comparer allowed a comparison of expression profiles from 

a large number of experiments. This analysis is particularly powerful as a user with the log2-

ratios for a cluster of genes is able to determine what other experimental conditions can result 

in a similar expression profile. 

In the rice analysis, data from rice treated with BTH was used as a proof of concept. In 

addition, data from a comparison of salicylic acid and methyl jasmonate treatments in pearl 

millet prior to infection with the rust fungus was used. In the experiment, it was found that the 

SA treatment resulted in increased resistance to the pathogen, whereas MeJ did not confer any 

significant resistance, suggesting that the SA signalling is involved in response to rust 

infection (Crampton, 2006). MADIBA was used to analyse the responsive genes after SA 

treatment, as well as those that were responsive after MeJ treatment. In the SA responsive 

genes, several terms related to defence were found, in addition to a large number of genes 

involved in photosynthesis, possibly suggesting a relation between defence signalling and 

photosynthesis. While it has been determined that light and the resultant photosynthetic 

processes can impact the susceptibility of plants to infections (Bechtold et al., 2005), further 

investigations could involve determining if there are differences in susceptibility when 

infection occurs during the day or at night. A MADIBA analysis on the MeJ responsive genes 

confirmed that the responsive genes are involved in JA- and ET-signalling, although the GO 

analysis also suggested a considerable involvement in stress responses. Experiments to test 

this could involve treatment with JA or ET prior to some form of stress, such as drought. 
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Pectobacterium atrosepticum recently became the first fully sequenced enterobacterial plant 

pathogen, and currently remains the only published genome sequence for this group of 

pathogens (Bell et al., 2004). With the availability of whole genome microarrays for Pba, it is 

possible to investigate quorum sensing to identify previously undefined gene sets linked to 

this major pathogenicity regulon. MADIBA was used to analyse microarray data from an expI 

mutant and a cluster was identified that contained several quorum sensing related terms. 

However, many of the other members of the cluster did not possess a functional annotation, 

and these unknown genes could be studied experimentally to possibly reveal greater detail 

about the mechanisms of quorum sensing in enterobacterial plant pathogens. MADIBA could 

also be used to further analyse data to help target key metabolic and regulatory pathways that 

are affected during the infection process, as well as identify genomic regions and functionally 

related pathways in Pba that are activated or suppressed during disease development. 

Thus, it is hoped that MADIBA will make analysing data easier for researchers, so that less 

time is spent examining the data and more time deriving conclusions. MADIBA can assist in 

assigning putative functions to unknown cereal genes (from GO data or orthologous 

annotations) and providing data on the protein product, enzymatic pathways, common 

promoter elements, transcription regulation and localisation of genes on the chromosomes. 

Such information can be utilised in identifying genes with quantitative traits for use as a 

functional marker (such as the Dwarf8 gene in maize from which a functional marker can be 

developed for plant height and flowering time (Andersen and Lubberstedt, 2003)), or key 

pathway regulators, and so be useful in understanding an organism’s biology. 
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Summary 

Microarray technology makes it possible to identify changes in gene expression of an 

organism, under various conditions. The challenge to researchers that employ microarray 

expression profiling is that once pre-processing is completed, and a cluster of co-expressed 

genes obtained, is to derive biological meaning from this data. Data mining is thus essential 

for deducing significant biological information such as the identification of new biological 

mechanisms or putative drug targets. While many algorithms and software have been 

developed for analysing gene expression, the extraction of relevant information from 

experimental data is still a substantial challenge, requiring significant time and skill. 

MADIBA (MicroArray Data Interface for Biological Annotation) facilitates the assignment of 

biological meaning to gene expression clusters by automating the post-processing stage. A 

relational database has been designed to store the data from gene to pathway for Plasmodium 

falciparum, Oryza sativa (rice), Arabidopsis thaliana, and Pectobacterium atrosepticum 

(Pba).  

As input, the user submits a cluster of genes, either the gene identifiers or the gene sequences. 

Tools within the web interface allow rapid analyses for the identification of the Gene 

Ontology terms relevant to each cluster; visualising the metabolic pathways where the gene 

products are implicated, their genomic localisations, putative common transcriptional 

regulatory elements in the upstream sequences, and an analysis specific to the organism being 

studied. The user has the option of outputting selected results of the analyses, either in PDF or 

plain text formats. 

MADIBA is an integrated, online tool that will assist researchers in interpreting their results 

and understand the meaning of the co-expression of a cluster of genes. Functionality of 

MADIBA was used to analyse a number of gene clusters from several experiments – 

expression profiling of the Plasmodium falciparum life cycle, a Ralstonia solanacearum 

infection of Arabidopsis thaliana, a rice treatment with BTH, a millet SA- and MeJ-treatment 

experiment, and an expI mutant experiment in Pectobacterium atrosepticum. Data from the 

Plasmodium falciparum and rice were used to illustrate MADIBA’s functionality. For the A. 

thaliana analyses, the DRASTIC database was implemented to identify how genes respond to 

various treatments. In addition, a method named PCA Experiment Comparer was developed, 

which compares the expression values of the numerous experiments in NASCArrays. Using 
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the A. thaliana-R. solanacearum interaction data several related experiments matched in both 

the susceptible and resistant interactions. In the millet analyses, besides defence related genes 

being identified, several genes also involved in photosynthesis were found, possibly 

suggesting a relation between light and defence signalling. The Pba data identified genes 

involved in quorum sensing, as well as some associated genes with no known function that 

may also be related to this regulatory process. 

With the advent of whole genome microarray chips and an increasing number of organisms 

being sequenced, tools such as MADIBA will become even more significant in understanding 

the underlying biology. MADIBA provides access to several genomic data sources and 

analyses, allowing users to quickly annotate and visualise the results. MADIBA is freely 

available and can be accessed at http://www.bi.up.ac.za/MADIBA/. 
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